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Abstract

Can we reconcile stability with non-manipulability in two-sided matching problems by selecting lot-
teries over matchings? We parameterize, through sets of utility functions, how ordinal preferences induce
preferences over lotteries and develop corresponding notions of ex-ante stability and non-manipulability.
For most sets, the properties are incompatible. However, for the set of utility functions with increasing
differences, stability and non-manipulability characterize Compromises and Rewards. This novel rule is
fundamentally different from the one that has attracted most attention in the literature, Deferred Accep-
tance. We then derive complementary negative results that show that increasing differences essentially
is a necessary condition for the properties to be compatible.

1 Introduction

In designing a centralized procedure that elicits preferences to match agents, we are faced with an impos-
sibility: if the rule used to match always selects a stable matching, then it is manipulable1 (Roth, 1982;
Alcalde and Barberà, 1994). We examine whether this can be overturned when we instead select a lottery
over matchings and appropriately redefine the properties. The answer is: sometimes. We develop notions
of ex-ante stability and non-manipulability and show that they often are incompatible. However, we also
identify a condition under which there is a non-manipulable rule that selects stable probabilistic matchings.

Resorting to stochastic methods to solve matching problems is common in practice. Lotteries play a
part in, for instance, the assignment of medical graduates to internships (Bronfman et al., 2015; Roth
and Shorrer, 2015); the admission of students to courses and universities (Stasz and van Stolk, 2007); the
introduction of new players in professional sports leagues (Taylor and Trogdon, 2007); the allocation of
housing to undergraduates (Abdulkadiroğlu and Sönmez, 1999); the distribution of social housing to the
population (see the New York City Department of Housing Preservation and Development); and in routing
and connecting users to servers (Valiant, 1982).

In practice, a lottery is often used to gain equity: loosely speaking, it is a fair way to ex-post separate
those ex-ante identical. Like the introduction of a time dimension or repetition, lotteries vastly extends
the allocation space. These alterations to a model can overturn negative results: With a time dimension
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1
A non-manipulable rule is sometimes referred to as “strategy-proof”. In the preference revelation game associated with the

rule, truth-telling is a weakly dominant strategy.
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and sufficiently patient agents, we can overturn the non-existence of Condorcet winners (see Rubinstein,
1979; Bernheim and Slavov, 2009). Through repetition, an ex-ante efficient social choice function becomes
implementable when copies of the same decision problem are linked together (Jackson and Sonnenschein,
2007). In Shapley and Scarf’s (1974) object allocation problem, no deterministic rule satisfies either equal
treatment of equals, no-envy, or anonymity ; in contrast, there is a stochastic rule that satisfies all of these
properties (Bogomolnaia and Moulin, 2001). These important results serve as inspiration for our analysis.

We start off where the literature on deterministic matching faced an obstacle. Namely, rules that always
select stable matchings (Roth, 1982) or individually rational and efficient matchings (Alcalde and Barberà,
1994) are manipulable. A natural question is: what about rules that randomize between stable matchings?
Proposition 1 shows that such “ex-post stable” rules fail a weak incentive requirement. We take this to imply
that such rules fall outside the scope of this paper: indeed, the rule that we argue in favor of occasionally
randomizes only between unstable matchings. This feature distinguishes our work sharply from the majority
of papers on two-sided matching in which stable matchings are the key objects of study.

In the model, agents report ordinal preferences to a centralized clearing house. Conveniently, this is all
the information that is used in defining the ex-post properties. In contrast, to define ex-ante properties,
preferences over lotteries matter. We first use stochastic dominance to induce preferences over lotteries.
We then note that each ordinal preference is consistent with infinitely many utility functions and, to each
such function, we can associate an expected utility function over lotteries. These concept are connected: one
lottery is not stochastically dominated by another whenever there is a utility function for which the expected
utility of the former is at least that of the latter. We then parameterize how preferences over lotteries are
induced by restricting the set of utility functions to consider to an arbitrary set V. Specifically, one lottery
is at least as good as another if its expected utility is no smaller for some utility function in V. We then
define a parameterized form of ex-ante stability, for which a larger V corresponds to a stronger “V-stability”.
Generally, V-stable probabilistic matchings need not exist unless the utility functions in V are “sufficiently
similar”. We then define “V-non-manipulability” in the same spirit: reporting true preferences should be
at least as good as telling a lie, no matter the utility function in V that is used to evaluate the resulting
probabilistic matchings.

A set that turns out to be interesting is the set of utility functions with “increasing differences”. A utility
function u has increasing differences if, when j is preferred to k and k to m, the utility difference between j
and k, u(j)−u(k), exceeds the utility difference between k and m, u(k)−u(m).2 Loosely speaking, a utility
function with increasing differences is bounded from below by a sufficiently steep exponential function. This
type of utility function may represent that the agents differ severely in quality, like an Ivy League college
versus a decent college versus an even worse college that still provides basic education.3 Alternatively, we
can focus on the preference over lotteries that these utility functions induce. In particular, a fair lottery
between j and m is preferred to being matched to k with certainty. Most of our results have reference to the
utility functions with increasing differences, U id.

Taking inspiration from David Gale’s Top Trading Cycles mechanism (Shapley and Scarf, 1974) and the
Probabilistic Serial mechanism (Bogomolnaia and Moulin, 2001), we introduce Compromise and Rewards,
CR, a rule that selects probabilistic matchings.4 Its essential feature is to make agent i’s partner a coin flip
between an agent who prefers i (the compromise) and an agent who i prefers (the reward). To achieve this,
a graph is created in which each agent points to her preferred partner. This graph contains a cycle in which
each agent is neighbor to an agent who prefers her and an agent who she prefers. In the lottery that CR
selects, the agent is matched with probability one half to each of her neighbors. In this way, CR treats both
“sides” equally, a feature that sharply distinguishes it from Gale and Shapley’s (1962) Deferred Acceptance
(DA). Moreover, as the agent has to “give up” her “reward” to affect her “compromise” (point to a less
preferred agent), she does not benefit from misreporting her preferences.

2
This is similar to a utility function that satisfies “uniformly relatively bounded indifference with respect to bound 1/2” in

Mennle and Seuken (2017b,a).
3
However, it does not apply if there is more than one Ivy League college as these would not “differ severly in quality”.

4
For the problem of allocating objects, probabilistic versions of Top Trading Cycles have been studied by Abdulkadiroğlu

and Sönmez (1998), Kesten (2009), and Aziz (2015) among others.
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Our most important result is Theorem 1. It shows that probabilistic rules can overturn the incompatibility
of stability and non-manipulability in certain circumstances. Loosely speaking, stability first disqualifies rules
that overlook too much of the preferences, like constant rules and dictatorships. This is reinforced by non-
manipulability: the rule should benefit agents on both sides, as consistently favoring agents on one side
may permit agents on the other side to manipulate. However, this then implies that agents may match
not to someone they prefer but to someone who prefers them – a compromise. For the rule to nevertheless
be stable, the utility functions have to weigh these compromises lightly compared to the corresponding
“rewards”. Along these lines, CR and U id become natural candidates to examine. And indeed, Theorem 1
establishes that CR is U id-stable and U id-non-manipulable.

We then examine whether this result can be developed further – are there other rules that satisfy these
properties, and what about other sets of utility functions? For the first question, Theorem 2 states that
CR is the only rule to satisfy weaker versions of the properties in Theorem 1. Hence, a rule is U id-stable
and U id-non-manipulable if and only if it is CR. For the second question, Theorem 3 shows that no rule is
stable and non-manipulable for larger sets that contain U id. In addition, Theorem 4 establishes that positive
results cannot be obtained for sets that “differ too much” from U id.

We offer two ways to interpret the results. The first is to say that, for an application in which the
preferences naturally satisfy increasing differences, stability and non-manipulability are compatible. Indeed,
for such an application, we present a novel rule with desirable properties. However, we do not have a real-
world example in which restricting to increasing differences is compelling. The second is to turn it around:
in an application that lacks a natural preference restriction, the properties are incompatible. But if we insist
on some form of stability and non-manipulability, it is reasonable to go for the strongest forms compatible.
In this way, CR and U id provide a good solution: they impose minimal constraints on how agents’ ordinal
preferences induce preferences over stochastic outcomes (in the sense of Theorems 3 and 4), all the while
guaranteeing the existence of an ex-ante stable and non-manipulable rule (Theorems 1 and 2).

We can put our results into context as follows. Gale and Shapley (1962) introduced the two-sided
matching problem and showed that DA always selects a stable matching. The importance of stability was
solidified through a series of papers that highlighted the benefit of selecting stable matchings when solving
practical problems (see, for instance, Roth, 1984, 1991; Roth and Peranson, 1999; and the survey by Roth
and Sotomayor, 1990). This encouraged researchers to get a better understanding of stable matchings; for
our purposes, the work of Vande Vate (1989) and Rothblum (1992) is of particular interest. They developed a
new way of describing stable matchings: namely, as the solutions to an integer program. This was followed up
by Roth et al. (1993) who considered the program’s relaxation, that is, the corresponding linear program. In
short, the stable matchings are the extreme points of a polytope, appropriately termed “the stable matching
polytope”, and the linear program provides non-integer solutions that correspond to lotteries over stable
matchings or “fractional stable matchings”.5 In a recent study, Manjunath (2013) shows that, if the agents
compare lotteries using stochastic dominance, then lotteries over stable matchings are “weakly sd-stable”.
He also shows that, if the agents compare lotteries by their expected utility, then a lottery over unstable
matchings may Pareto dominate a stable matching. Our work expands on this intuition.

An alternative interpretation of a lottery is time sharing: a coin flip between j and k can be interpreted
as the agent spending half her time with j and half her time with k. Thus, our study is somewhat related
to dynamic matching. This literature has been focused on developing notions of stability, like “strict self-
sustaining stable plans” (Damiano and Lam, 2005), “dynamically-stable matchings” (Kadam and Kotowski,
2016), and “credible group stability” (Kurino, 2009). Preferences are generally modelled as dynamically
changing and the results tend to rely on stable matchings and variations on DA. In further contrast to
this paper, (full) non-manipulability has consistently been left out of the analysis. Indeed, this holds in
general: presumably as a consequence of the discouraging results found by Roth (1982) and Alcalde and
Barberà (1994), there have been few attempts to design rules that provide all agents with incentives to
report preferences truthfully.6 The success of DA in applications may also have contributed to the lack of

5
See also Biró and Fleiner (2010), Chiappori et al. (2014), and Manjunath (2016).

6
Some exceptions exist for restricted preference domains. Alcalde and Barberà (1994) show that, if preferences satisfy “top

dominance”, then there are stable and non-manipulable rules. Bogomolnaia and Moulin (2004) study dichotomous preferences.
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attempts to reconcile stability and non-manipulability. In any case, our findings provide a novel contribution
to the literature.

The paper is structured as follows. We present the model in Section 2. In Section 3, we examine ex-post
properties. In Section 4, we introduce ex-ante properties. In Section 5, we present our main results and
introduce CR. We discuss related questions in Section 6. Proofs are in the Appendix.

2 Model and definitions

There is a set of agents N partitioned into M = {m1, . . . ,mn} and W = {w1, . . . , wn}; we fix N , M , and W
throughout. A matching µ : N → N is a bijection that maps each agent to her partner such that, for i ∈ N ,
µ(i) = j =⇒ µ(j) = i. Agents may only match across sides, so µ(i) ∈ N i where N i = M ∪{i} if i ∈W and
N i = W ∪{i} if i ∈M . If µ(i) = i, then i is single. We also describe µ by its graph: µ = {(i, j), (k,m), . . . }
is equivalent to µ(i) = j, µ(k) = m, and so on. The set of matchings is M. A preference for i ∈ N is
a binary relation Ri on N i such that, for {j, k} ⊆ N i, i finds j at least as desirable as k whenever j Ri k.
Preferences are complete, transitive, and antisymmetric. The first- (top-) and second-ranked partners are
t(Ri) and s(Ri): for each j ∈ N i \ {t(Ri)}, t(Ri) Pi s(Ri) Ri j. The strict (irreflexive) relation is Pi. For

i ∈ N , the set of preferences is Ri. For S ⊆ N , RS is the Cartesian product ×i∈SRi. A profile of

preferences, or simply a profile, is R ≡ (Ri)i∈N ∈ R
N .7 A two-sided matching problem is completely

described by a profile.
A matching is individually rational if each agent finds her partner at least as desirable as being single.

Thus, for R ∈ RN , µ ∈ M is individually rational if, for each i ∈ N , µ(i) Ri i. A matching is (Pareto)

efficient if no other matching makes everyone at least as well off and someone better off. Thus, for R ∈ RN ,
µ ∈ M is efficient if there is no µ′ ∈ M such that, for each i ∈ N , µ′(i) Ri µ(i), and, for some j ∈ N ,
µ′(j) Pj µ(j). The set of efficient matchings at R is E(R) ⊆ M. A group of agents block a matching

if they can pair up to make everyone in the group better off. Thus, for R ∈ RN , S ⊆ N blocks µ ∈ M if
there is µ′ ∈ M such that, for each i ∈ S, µ′(i) ∈ S and µ′(i) Pi µ(i). A matching that is not blocked is
stable. The set of stable matchings at R is S(R) ⊆M.

A probabilistic matching π ∈ RN×N is such that, for {i, j} ⊆ N , πij = πji ∈ [0, 1] is the probability

with which i and j are matched. If j 6∈ N i, then πij = 0. Moreover, π is doubly stochastic:
∑

j∈Ni πij = 1.

The set of probabilistic matchings is Π. For πi ∈ RN , supp(πi) ≡ {j ∈ N i | πij > 0}. We reserve

µ0 ∈ M and π0 ∈ Π to be such that, for each i ∈ N , µ0(i) = i and π0
ii = 1. For L ⊆ M, ∆L ⊆ Π

is the set of probabilistic matchings that are induced by lotteries over matchings in L. As an example,
suppose that µ = {(m1, w1), (m2, w2)}, µ′ = {(m1, w1), (m2), (w2)}, and µ′′ = {(m1), (w1), (m2, w2)}. Then
∆({µ, µ0}) = ∆({µ′, µ′′}). Moreover, Π = ∆M (compare Birkhoff, 1946; von Neumann, 1953). A rule

ϕ : RN → Π maps to each profile a probabilistic matching. With π ≡ ϕ(R), we define ϕi(R) ≡ (πij)j∈N and

ϕij(R) ≡ πij . We reserve ϕ0 to be such that, for each R ∈ RN , ϕ0(R) = π0.

3 Ex-post properties

A natural starting point is to examine ex-post properties of rules. These, as the properties studied in the
deterministic setting, are based solely on the agents’ ordinal preferences.

A rule is ex-post individually rational if the rule always selects a probabilistic matching that is induced
by a lottery over individually rational matchings.

Definition 1 (Ex-post individual rationality). For each R ∈ RN and {i, j} ⊆ N ,

ϕij(R) > 0 =⇒ j Ri i.

Azevedo and Budish (2013) examine a large-market limit. In contrast, we study the full preference domain in the finite case.
7
For {i, j} ⊆ N and S ⊆ N , we denote R−i≡ (Rk)k∈N\{i}, R−ij≡ (Rk)k∈N\{i,j}, and R−S≡ (Rk)k∈N\S .
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A rule is ex-post efficient/stable if the rule’s selection always is induced by a lottery over the respective
type of matchings. As different lotteries may induce the same probabilistic matching, we require only there
to exist a lottery over the right type of matchings that induces the rule’s selection. Hence, the selection of
an ex-post efficient rule may also be induced by a lottery over inefficient matchings.

Definition 2 (Ex-post efficiency). For each R ∈ RN ,

ϕ(R) ∈ ∆E(R).

Definition 3 (Ex-post stability). For each R ∈ RN ,

ϕ(R) ∈ ∆S(R).

Respect mutual best is a substantial weakening of ex-post stability. Agents who top-rank each other should
be matched with certainty.

Definition 4 (Respect mutual best). For each R ∈ RN and {i, j} ⊆ N ,

j = t(Ri) and i = t(Rj) =⇒ ϕij(R) = 1.

Ex-post stability implies ex-post individual rationality, ex-post efficiency, and respect mutual best. The
latter three properties are logically independent.

Next is a requirement on the agents’ incentives to report true preferences. An agent ex-post manipulates
a rule if she with certainty is at least as well off and with positive probability is better off telling a lie than
telling the truth at some profile. Thus, i ∈ N ex-post manipulates ϕ at R ∈ RN through R′i ∈ Ri if
π′i ≡ ϕi(R

′
i, R−i) 6= ϕi(R) ≡ πi and, for each {j, k} ⊆ N i, π′ij > 0 and πik > 0 imply j Ri k. A rule is ex-post

non-manipulable if it never is susceptible to ex-post manipulation.8,9

We are now ready to present our first result. Proposition 1 shows that the aforementioned ex-post
properties are incompatible.

Proposition 1. Let ϕ be ex-post individually rational; if ϕ respects mutual best or if ϕ is ex-post efficient,
then ϕ is ex-post manipulable.

Other combinations of the properties can be satisfied. For instance, DA10 is ex-post stable, so it respects
mutual best and is ex-post individually rational and ex-post efficient. The rule ϕ0 is ex-post individually
rational and ex-post non-manipulable. Compromises and Rewards (Section 5) respects mutual best and is
ex-post efficient and ex-post non-manipulable.11

4 Ex-ante properties

Motivated by Proposition 1, we turn to ex-ante properties. The ex-post properties are silent on how agents
compare lotteries over matchings; now, in contrast, preferences over probabilistic matchings matter. Recall
that agents report ordinal preferences. In the absence of richer information, it is common to use stochastic
dominance to induce preferences over probabilistic matchings.12

8
For completeness, we define also standard non-manipulability for rules φ : RN →M that select matchings. Standard

non-manipulability requires that, for each R ∈ RN
, each i ∈ N , and each R

′
i ∈ Ri, φi(R) Ri φi(R

′
i, R−i).

9
We can define weak ex-post non-manipulability by requiring a manipulation to leave the agent better off with certainty.

Randomizing between the W - and the M -optimal stable matching is ex-post stable and weakly ex-post non-manipulable.
10

Specifically, the rule that, for each profile, selects the probabilistic matching induced by the degenerate lottery that puts
probability 1 on the W -optimal stable matching.

11
In consequence, Compromises and Rewards is not ex-post individually rational. An interesting parallel is d’Aspremont

and Gérard-Varet (1979): their “expected externality mechanism” is efficient, non-manipulable, and budget-balanced but not
individually rational.

12
See, for instance, Bogomolnaia and Moulin (2001); Manjunath (2013); Doğan and Yildiz (2015).
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4.1 Stochastic dominance and expected utility

Agent i’s sd-preference is the binary relation Rsd
i on Π induced by Ri∈ Ri such that, for each {πi, π

′
i} ⊆

RN ,13

πi R
sd
i π′i ⇐⇒ ∀k ∈ N i,

∑
jRik

πij ≥
∑
jRik

π′ij .

If πi R
sd
i π′i but not π′i R

sd
i πi, then πi P

sd
i π′i. Equivalently, πi P

sd
i π′i if πi R

sd
i π′i and πi 6= π′i. To better

connect the sd-preference to the parameterized preference that we later define, it is useful to now define the
“not stochastically dominated by”-relation:

πi R
nsd
i π′i ⇐⇒ ¬

(
π′i P

sd
i πi

)
.

A utility function is an injective function u : N → R. The set of utility functions is U . Moreover,
u ∈ U is consistent with Ri∈ Ri if, for each {j, k} ⊆ N i, j Ri k ⇐⇒ u(j) ≥ u(k). The set of utility
functions consistent with Ri is U(Ri) ⊆ U . With some abuse of notation, a profile of utility functions

is u = (ui)i∈N ∈ U
N . For R ∈ RN , let UN (R) = ×i∈NU(Ri) ⊆ U

N . Given u ∈ U , the expected utility of

πi ∈ RN is

E(u, πi) =
∑
j∈Ni

πiju(j).

There is a utility function consistent with Ri for which the expected utility of πi is at least that of π′i if
and only if πi is not stochastically dominated by π′i (see Bogomolnaia and Moulin, 2001). That is, for each

Ri∈ Ri and {πi, π
′
i} ⊆ RN ,

πi R
nsd
i π′i ⇐⇒ ∃u ∈ U(Ri) : E(u, πi) ≥ E(u, π′i).

4.2 Parametrization

We create a parameterized preference by restricting the utility functions to be considered. A set of utility
functions is V ⊆ U . Such sets are non-empty, closed under positive affine transformation,14 and closed
under permutation of the agents’ names. Intuitively, if u is in the set, then so are all the utility functions
that have the same image as u. For each {i, j} ⊆ N , {Ri, R

′
j} ⊆ Ri×Rj , and {u, u′} ⊆ U(Ri)×U(R′j) such

that {u(k) | k ∈ N i} = {u′(k) | k ∈ N j}, u ∈ V ⇐⇒ u′ ∈ V.

The parameterized preference RVi is defined as follows. For each Ri∈ Ri, V ⊆ U , and {πi, π
′
i} ⊆ RN ,

πi R
V
i π
′
i ⇐⇒ ∃u ∈ V(Ri) : E(u, πi) ≥ E(u, π′i).

The strict relation PVi is such that

πi P
V
i π′i ⇐⇒ ∃u ∈ V(Ri) : E(u, πi) > E(u, π′i).

We are now ready to define our ex-ante properties. Informally, agents S “V-block” π through π′ if each
i ∈ S has a utility function in V for which she prefers π′ to π. Thus, the smaller V the more difficult it is to
block and the more “V-stable” outcomes exist; “strong sd-stability” (see Manjunath, 2013) is “U-stability”.

For R ∈ RN and V ⊆ U , S ⊆ N V-blocks π ∈ Π if there is π′ ∈ Π such that, for each i ∈ S, supp(π′i) ⊆ S

and π′i R
V
i πi, and, for some j ∈ N , π′j P

V
j πj . A probabilistic matching that is not V-blocked is V-stable.

The set of V-stable probabilistic matchings at R is SV(R) ⊆ Π.

13
The notation

∑
jRik

is short for summing over the set {j ∈ N i | j Ri k}.
14

If v ∈ U is a positive affine transformation of u ∈ V, then v ∈ V.
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Definition 5 (V-stability). For each R ∈ RN ,

ϕ(R) ∈ SV(R).

For R ∈ RN and V ⊆ U , π ∈ Π is V-efficient if there is no π′ ∈ Π such that, for each i ∈ N , π′i R
V
i πi,

and, for some j ∈ N , π′j P
V
j πj . The set of V-efficient probabilistic matchings at R is EV(R) ⊆ Π.

Definition 6 (V-efficiency). For each R ∈ RN ,

ϕ(R) ∈ EV(R).

Finally, reporting true preferences should be at least as good as telling a lie, no matter the utility function
in V that is used to evaluate the resulting probabilistic matchings. For V ⊂ W ⊆ U , W-non-manipulability
is stronger than V-non-manipulability whereas U-non-manipulability coincides with “strategy-proofness” in
Bogomolnaia and Moulin (2001, page 309).

Definition 7 (V-non-manipulability). For each R ∈ RN , i ∈ N , and R′i ∈ Ri,

¬
(
ϕi(R

′
i, R−i) P

V
i ϕi(R)

)
.

Definition 8 (V-group non-manipulability). For each R ∈ RN , S ⊆ N , and R′S ∈R
S , there is i ∈ S such

that

¬
(
ϕi(R

′
S , R−S) PVi ϕi(R)

)
.

5 Results

We now present our main contributions. In Subsection 5.1, we define the set of utility functions with
“increasing differences” U id. In Subsection 5.2, we introduce Compromises and Rewards, CR, shown in
Theorem 1 to be U id-stable and U id-group non-manipulable. Thereafter, Theorem 2 shows that CR is the
only rule that respects mutual best and is U id-efficient and U id-non-manipulable. Theorem 3 is a maximality
result with regards to U id. Finally, Theorem 4 is a necessary condition on V for there to exist V-efficient
and V-non-manipulable rules that respect mutual best.

5.1 Utility functions with increasing differences

A utility function has “increasing differences” if, for each triplet of agents, the utility difference between the
most and the second most preferred exceeds the utility difference between the second most and the least
preferred.15 The set of utility functions with increasing differences is U id ⊆ U .

Definition 9 (u ∈ U(Ri) has increasing differences). For each {j, k,m} ⊆ N i,

j Pi k Pi m =⇒ u(j)− u(k) > u(k)− u(m). (id)

Inequality (id) applies to every triplet of agents and not merely consecutively ranked ones. As an example,
say u ∈ U has increasing differences and takes on the values α0 ≤ · · · ≤ αn, that is, {u(j) | j ∈ N i} =
{α0, . . . , αn}. Increasing differences implies that the function is bounded from below by an exponential

function; if, say, α0 = 0 and α1 = 2, then, for each k ≥ 1, αk ≥ 2k.

15
If we change the inequality to a weak inequality, then Theorem 1 no longer holds unless V-stability is weakened.
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Rm1
Rm2

Rm3
Rm4

Rm5
Rw1

Rw2
Rw3

Rw4
Rw5

w1 w2 w3 w4 w5 m2 m3 m1 m4 m4

∅

Table 1: Preferences for Example 1. Less preferred agents than those listed can be ranked in any way.

5.2 Compromises and Rewards

We now introduce a rule that satisfies several desirable properties for the set U id. A further appealing novelty
is that the rule treats the two “sides” symmetrically.16 In this way, it is fundamentally different from DA,
which by design gives some agents preferential treatment.

Definition 10 (Compromises and Rewards, CR). For each R ∈ RN , define π ≡ CR(R) as follows.

1. Create a graph in which each agent points to her top-ranked partner in the graph.

2. Select a cycle in the graph and label it C = 1, . . . ,m.

3. If m ≤ 2, set, for each i ∈ C, πi,i+1 = 1 (i+ 1 mod m).

4. If m > 2, set, for each i ∈ C, πi,i+1 = 1/2 (i+ 1 mod m).

5. Remove the agents of C and reiterate the procedure until no agent remains.

A cycle is a list of agents C = 1, . . . ,m such that 1 points to 2, 2 to 3, . . . , (m− 1) to m, and m to 1 (if
m = 1, then agent 1 points to herself). As there is a finite number of agents, there always is a cycle. Indeed,
there are as many cycles as there are components in the created graph. If there are multiple components,
then the order in which we proceed is irrelevant: a cycle remains a cycle if another cycle is removed. We
illustrate the rule in Example 1.

Example 1. Consider the profile R in Table 1. We reiterate the procedure four times to determine CR(R);
see Figure 1. There are two cycles in the first graph and the one not selected, m4, w4, remains a cycle in the
second graph.

m1 m2 m3 m4 m5

w1 w2 w3 w4 w5

i:

m4 m5

w4 w5

ii:

m5

w5

iii:

m5

iv:

Figure 1: The four graphs encountered in determining CR(R).

The non-zero entries of π ≡ CR(R) are as follows:

πm1w1
= πw1m2

= πm2w2
= πw2m3

= πm3w3
= πw3m1

= 1/2

πm4w4
= πw5w5

= πm5m5
= 1.

5.3 Main results

Theorem 1 is positive: it shows that probabilistic rules can overturn the incompatibility between stability
and non-manipulability in the right circumstances. Thereafter, Theorem 2 pins down CR as the only rule
to satisfy weaker versions of the properties for U id.

Theorem 1. Compromises and Rewards is U id-stable and U id-group non-manipulable.

16
It is “gender fair” (Özkal-Sanver, 2004).
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Theorem 2. If a rule respects mutual best and is U id-efficient and U id-non-manipulable, then it is Compro-
mises and Rewards.

Next, we show that the properties are incompatible for larger sets that contain U id. To derive this
maximality result, we parametrize inequality (id) by ε ≥ 0 to define the set U id

ε ⊇ U
id. For each ε ≥ 0,

Ri∈ Ri, and u ∈ U(Ri), u ∈ U
id
ε (Ri) if and only if, for each {j, k,m} ⊆ N i,

j Pi k Pi m =⇒ (1 + ε)(u(j)− u(k)) > u(k)− u(m).

The larger ε, the larger U id
ε ; if ε = 0, then U id

ε = U id.

Theorem 3. For each ε > 0, no rule respects mutual best and is U id
ε -efficient and U id

ε -non-manipulable.

Finally, Theorem 4 shows that utility functions with increasing differences essentially are necessary for
the properties to be compatible. Specifically, the utility functions have to be bounded from below by
the exponential function with base β ≡ (

√
13 − 1)/2 ≈ 1.3028 (recall that the corresponding function for

increasing differences has base 2).

Theorem 4. Let u ∈ V ⊆ U take on the values α0 = 0 < α1 = β < α2 < · · · < αn. If there is a rule that
respects mutual best and is V-efficient and V-non-manipulable, then, for each k ≥ 1, αk ≥ β

k.

To see the implications of Theorem 4, we can apply it to two “standard” utility functions. Suppose first
that u ∈ U takes on the values 0, 1, . . . , n. Then, if n ≥ 6 and u ∈ V, no rule respects mutual best and is
V-efficient and V-non-manipulable. If u instead takes on the values

√
0,
√

1, . . . ,
√
n, then the properties are

incompatible for n ≥ 3.

6 Discussion

We conclude with a discussion on plausible changes to the model.

6.1 What if agents report cardinal preferences?

Instead of using utility functions to find the best “ordinal”17 rule, agents may report utilities from U id

directly. The strategy spaces are extended immensely: this makes non-manipulability significantly stronger
whereas stability gets significantly weaker. By Theorem 2, CR is the only ordinal rule that is U id-stable
and U id-non-manipulable, but we can only conjecture that the properties characterize the rule. To support
this conjecture, we refer to similar results for related models (like Ehlers et al., 2016): even though there is
cardinal information available, this information cannot affect the selection of a non-manipulable rule.

6.2 What if agents may be indifferent?

An interesting generalization is to allow agents to be indifferent between partners, that is, preferences need
not be antisymmetric. Each agent partitions her potential partners into “tiers” of agents between whom
she is indifferent. So, at the top tier may be the most successful students and companies; at the second top
tier are the ones slightly worse; and so on. It is plausible that a college student would take a gamble for an
internship at a world-leading company at the risk of ending somewhere else over a certain but only decent
internship. Unfortunately, the impossibility cannot be overturned.18,19

17
A rule is ordinal if, for each pair of utility profiles consistent with the same preference profile, the rule makes the same

selection.
18

Non-manipulability is here strengthened in two ways: (i) there are more profiles at which to manipulate, and (ii) there
are more lies to manipulate through. Our proof uses only (i). That is, an agent manipulates at a profile where his preference
includes an indifference by telling a lie that includes no indifferences.

19
Respect mutual best is redefined as follows. Suppose j is the only one out of i’s top-ranked partners who top-ranks i.

Moreover, i is j’s only top-ranked partner. Then i and j should be matched with certainty.
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Rm1
Rm2

Rm3
Rw1

Rw2
Rw3

w1 w1 w3 m3 m1 m1

w2 w2 w2 m2 m2 m2

w3 w3 w1 m1 m3 m3

Table 2: Preferences for Subsection 6.4.

Proposition 2. When agents may be indifferent, if a rule respects mutual best and is U id-efficient, then it
is U id-manipulable.

6.3 What if there is no real outside option?

The combination of individual rationality and non-manipulability is generally very strong, as, for instance,
shown in Proposition 1. However, we may also consider a setting in which individual rationality is vacuous.
More precisely, suppose that each agent prefers a partner to being single, regardless of the partner. This
yields a new domain of profiles RN

0 ⊂ R
N such that, for each m ∈M , w ∈W , Rm∈ (R0)m, and Rw∈ (R0)w,

w Pm m and m Pw w. Roth (1982) focused on this domain and showed that rules that select stable matchings
are standard manipulable. As a side note, we strengthen his result:

Proposition 3. If φ : RN
0 →M respects mutual best, then φ is standard manipulable.

Of course, our focus is on rules that select probabilistic matchings. As a corollary to Theorem 1, CR
is U id-stable and U id-non-manipulable in this restricted setting. However, it is no longer the only rule to
satisfy these properties.20

6.4 How is CR related to the optimal stable matchings?

It is natural to think of CR as randomizing between two matchings: one that consistently favors the women
and one that favors the men. From the perspective of the men, the former matching is the “compromise”,
the latter the “reward”. Denote these matchings µc and µr, respectively. The profile R in Table 2 shows
that there is no systematic relation between µc and µr and the woman- and man-optimal stable matchings,
µw and µm. At R, m1 prefers µw(m1) = w2 to µc(m1) = w3 and µr(m1) = w1 to µm(m1) = w2. In contrast,
m2 prefers µc(m2) = w2 to µw(m2) = w3 and µm(m2) = w1 to µr(m2) = w2.

6.5 What about matching in general?

The general matching problem, or the “roommate problem”, is studied by Tan (1991), Abeledo and Rothblum
(1994, 1996), Teo and Sethuraman (1998), Chung (2000), and Gudmundsson (2014b), among others. The
agents are no longer partitioned into two sides but are instead part of a single group. Preliminary results
indicate that CR can be adapted to be non-manipulable and select probabilistic matchings that cannot be
blocked by groups of fewer than six agents (Gudmundsson, 2014a). Whether the rule is fully stable is an
open question.
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Biró, P. and Fleiner, T. (2010). Fractional Solutions for NTU-games. In Proceedings of COMSOC 2010: 3rd
International Workshop on Computational Social Choice, pages 283–294.

Bogomolnaia, A. and Moulin, H. (2001). A New Solution to the Random Assignment Problem. Journal of
Economic Theory, 100(2):295–328.

Bogomolnaia, A. and Moulin, H. (2004). Random Matching Under Dichotomous Preferences. Econometrica,
72(1):257–279.

Bronfman, S., Hassidim, A., Afek, A., Romm, A., Sherberk, R., Hassidim, A., and Massler, A. (2015).
Assigning Israeli medical graduates to internships. Israel Journal of Health Policy Research, 4:6.
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A Proofs

In the proofs, we abbreviate ex-post by xp, U id by id, standard by st, individual rationality by IR, respect
mutual best by RMB, efficiency by EFF, non-manipulability by NM, and stability by STAB.

A.1 Proof of Proposition 1

Let M = {m1,m2}, W = {w1, w2}, and refer to preferences in Table 3. Let ϕ be xp-IR, π ≡ ϕ(R),
π′ ≡ ϕ(R′m1

, R−m1
), and π′′ ≡ ϕ(R′w1

, R−w1
).

Part 1: Let ϕ RMB. To obtain a contradiction, suppose ϕ is xp-NM. By RMB, ϕw2m2
(R′m1

, R′′w2
, R−m1w2

) =

1. By xp-IR, π′m1w2
= 0. By xp-NM, π′w2m2

= 1, else w2 manipulates at (R′m1
, R−m1

) through R′′w2
. So

π′w1m2
= 0. By RMB, ϕw1m1

(R′m1
, R′′w1

, R−m1w1
) = 1. By xp-NM, π′w1m1

= 1, else w1 manipulates at

(R′m1
, R−m1

) through R′′w1
. By xp-NM, πm1w1

= 1, else m1 manipulates at R through R′m1
.

By RMB, ϕm1w2
(R′w1

, R′′m1
, R−m1w1

) = 1. By xp-IR, π′′w1m1
= 0. By xp-NM, π′′m1w2

= 1, else m1

manipulates at (R′w1
, R−w1

) through R′′m1
. So π′m2w2

= 0. By RMB, ϕm2w1
(R′w1

, R′′m2
, R−m2w1

) = 1. By

xp-NM, π′′m2w1
= 1, else m2 manipulates at (R′w1

, R−w1
) through R′′m2

. By xp-NM, πw1m2
= 1, else w1

manipulates at R through R′w1
. Therefore πw1m1

= πw1m2
= 1, which is a contradiction.

Part 2: Let ϕ be xp-EFF. To obtain a contradiction, suppose ϕ is xp-NM. By xp-IR and xp-EFF,
ϕm2w2

(R′m1
, R′m2

, R−m1m2
) = 1. By xp-NM, π′m2w2

= 1, else m2 manipulates at (R′m1
, R−m1

) through R′m2
.

By xp-EFF, π′m1w1
= 1. By xp-NM, πm1w1

= 1, else m1 manipulates at R through R′m1
.

By xp-IR and xp-EFF, ϕw2m1
(R′w1

, R′w2
, R−w1w2

) = 1. By xp-NM, π′′w2m1
= 1, else w2 manipulates at

(R′w1
, R−w1

) through R′w2
. By xp-EFF, π′′w1m2

= 1. By xp-NM, πw1m2
= 1, else w1 manipulates at R through

R′′w1
. Therefore πw1m1

= πw1m2
= 1, which is a contradiction.
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A.2 Proof of Theorem 1

We proceed in two separate parts that have similar setups. Let R ∈ RN , S ⊆ N , and π ≡ CR(R). In Part 1,

suppose there is π′ ∈ Π such that π is blocked by S through π′. In Part 2, suppose there is R′S ∈ R
S such

that S manipulates at R through R′S ; let π′ ≡ ϕ(R′S , R−S). Furthermore, assume S is minimal in this regard:

that is, no T ⊂ S blocks or manipulates. Let C0, C1, . . . denote the cycles encountered when determining
CR(R). Moreover, let t be such that, for each x < t, S ∩ Cx = ∅. Let Ct = 1, . . . ,m. (Our proof is for
m > 2; the case m ≤ 2 can be handled along the same lines but is much simpler.) To obtain a contradiction,
suppose S ∩ Ct 6= ∅.

Part 1: id-STAB.
Let i ∈ S∩Ct. As i points to i+1 in the cycle Ct, for each j ∈ N \(C0∪C1∪· · ·∪Ct−1) ⊇ S, (i+1) Ri j.
Suppose first (i+ 1) 6∈ S. Then, for each j ∈ S, (i+ 1) Pi j. Let j denote i’s most preferred agent in S:

for each k ∈ S, j Ri k. If (i− 1) Ri j, then i is clearly worse off at π′ than at π, a contradiction. Otherwise,

if j Pi (i− 1), then, for each u ∈ U id(Ri),

E(u, πi)− E(u, π′i) ≥
u(i+ 1) + u(i− 1)

2
− u(j) =

(u(i+ 1)− u(j))− (u(j)− u(i− 1))

2
> 0,

so i is worse off at π′ than at π. This is a contradiction. Hence, (i+ 1) ∈ S. By repeating the argument for
each i ∈ Ct, Ct ⊆ S.

Suppose i ∈ Ct is such that no j ∈ Ct has a lower probability of being matched with her neighbor of Ct

at π′: for each j ∈ Ct, π′i,i+1 ≤ π′j,j+1. This includes j = i − 1, so π′i,i+1 ≤ π′i−1,i. As π′i,i+1 + π′i,i−1 ≤ 1,

π′i,i+1 ≤ 1/2.
To obtain a contradiction, suppose πi,i+1 < 1/2. Let j denote i’s most preferred agent in S excluding

i + 1: for each k ∈ S \ {i + 1}, j Ri k. As Ct ⊆ S, (i − 1) ∈ S, so j Ri (i − 1). For each u ∈ U id(Ri) such
that u(j) = 0,21

u(i+ 1) + u(i− 1) =
(
(u(i+ 1)− u(j))− (u(j)− u(i− 1))

)
> 0.

As first u(i− 1) ≤ 0 and 0 ≤ π′i,i+1 ≤ π′i,i−1 by the choice of i, and second π′i,i+1 < 1/2 by assumption and

u(i+ 1) + u(i− 1) > 0, i is not better off at π′ than at π:

E(u, π′i) ≤ π
′
i,i+1u(i+ 1) + π′i,i−1u(i− 1) + (1− π′i,i+1 − π

′
i,i−1) · u(j)

≤ π′i,i+1u(i+ 1) + π′i,i+1u(i− 1) + (1− π′i,i+1 − π
′
i,i−1) · 0

= π′i,i+1

(
u(i+ 1) + u(i− 1)

)
< (1/2) ·

(
u(i+ 1) + u(i− 1)

)
= E(u, πi).

This is a contradiction, so π′i,i+1 = 1/2. But then, for each i ∈ Ct, π′i,i+1 = 1/2 and π′i = πi. Hence, all

agents in Ct are matched under π′ as under π and no one is better off. Then S \ Ct ⊂ S can block, a
contradiction to S being minimal.

Part 2: id-group NM. Note first that the misreport has no effect on the cycles C0, C1, . . . , Ct−1: they
occur when defining CR(R′S , R−S) as well. Let N t ≡ N \ (C0 ∪C1 ∪ · · · ∪Ct−1). For each i ∈ S and j 6∈ N t,

π′ij = 0. By a similar argument as in Part 1, we can show that, for each i ∈ S ∩ Ct, π′i,i+1 ≥ 1/2, else there

is a utility function in U id(Ri) for which i is worse off at π′ than at π. So if i is selected as part of the cycle
C ′ when defining CR(R′S , R−S), then i is a neighbor of (i+ 1) in C ′.

Suppose (i+ 1) 6∈ S. For each j ∈ N t, (i+ 2) Ri+1 j. Hence, (i+ 1) points to (i+ 2) when C ′ is selected,
so C ′ = . . . , i, (i+1), (i+2), . . . . Otherwise, if (i+1) ∈ S, then π′i+1,i+2 ≥ 1/2, else there is a utility function

in U id(Ri+1) for which (i + 1) is worse off at π′ than at π. Therefore, C ′ = . . . , i, (i + 1), (i + 2), . . . or

C ′ = . . . , (i+ 2), (i+ 1), i, . . . . Repeating the argument, we find that either C ′ = i, (i+ 1), . . . , (i− 1) = Ct

or C ′ = i(i − 1) . . . (i + 1) (that is, Ct in reverse). But then, for each i ∈ Ct, π′i = πi, so no agent in Ct is
better off at π′ than at π. Again, then S \Ct ⊂ S can manipulate, a contradiction to S being minimal.

21
As U id

is closed under affine transformations, such a u exists.
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Lemma 1. Let ϕ be id-NM. Consider R ∈ RN , π ≡ ϕ(R), and {i, j} ⊆ N such that πij > 0 and, for each

k ∈ N i such that k Pi j, πik = 0. Let R′i ∈ Ri be such that j = t(R′i) and let π′ ≡ ϕ(R′i, R−i). Then
π′ij = πij.

Proof. To obtain a contradiction, suppose first π′ij > πij > 0. Let S = {k ∈ N i | j Pi k} and u ∈ U id(Ri) be
such that maxk∈S u(k) = 1, mink∈S u(k) = 0, and

u(j) =
1− πij + π′ij

π′ij − πij
= 1 +

1

π′ij − πij
> 2.

Then i manipulates at R through R′i, contradicting id-NM :

E(u, π′i)− E(u, πi) ≥
(
π′iju(j) + (1− π′ij) · 0

)
−
(
πiju(j) + (1− πij) · 1

)
= (π′ij − πij)u(j)− (1− πij)
= (1− πij + π′ij)− (1− πij) = π′ij > 0.

Analogously, if π′ij < πij , then use u′(j) ≡ 2− u(j) to show that E(u′, πi) > E(u′, π′i). So i manipulates

at (R′i, R−i) through Ri, contradicting id-NM.

Lemma 2. Let ϕ RMB and be id-NM. Consider R ∈ RN , π ≡ ϕ(R), and {i, j} ⊆ N such that j = t(Ri)
and i = s(Ri). Then πij ≥ 1− πij − πii =

∑
k∈N\{i,j} πik.

Proof. Let R′i ∈ Ri be such that t(R′i) = i. By RMB, π′ ≡ ϕ(R′i, R−i) is such that π′ii = 1.
Define ∆ = 1 − 2πij − πii. To obtain a contradiction, suppose ∆ > 0. Note that this excludes πii = 1.

Define

ε =
∆

2(2πij + ∆)
=

1− 2πij − πii
2(1− πii)

=
1

2
−

πij
1− πii

.

As ∆ > 0 and πij ≥ 0, ε > 0; as πii < 1, ε ≤ 1/2. Let u ∈ U id(Ri) be such that u(j) = 2 + ε, u(i) = 1, and,

for each k ∈ N i such that i Pi k, u(k) < ε. Then, using u(k) < ε in the first step and ∆ > 0 in the last,

E(u, πi) < πiju(j) + πiiu(i) + (1− πij − πii) · ε
= πij(2 + ε) + πii · 1 + (1− 2πij − πii) · ε+ πijε

= 2πij(1 + ε) + πii + ∆ε

= (2πij + ∆) · ε− (1− 2πij − πii) + 1

= ∆/2−∆ + 1 = 1−∆/2 < 1 = E(u, π′i).

Then i manipulates at R through R′i, a contradiction.

A.3 Proof of Theorem 2

Let ϕ RMB and be id-EFF and id-NM. To obtain a contradiction, suppose there is R ∈ RN such that π ≡
CR(R) 6= ϕ(R) ≡ π′. Let C0, C1, . . . denote the cycles encountered when determining CR(R). Moreover, let
t be such that, for each x < t and each i ∈ Cx, π′i = πi. Let Ct = 1, . . . ,m. Let N t ≡ N \(C0∪C1∪· · ·∪Ct−1)
be the agents that remain when Ct is chosen. To obtain a contradiction, suppose there is i ∈ Ct such that
π′i 6= πi.

Part 1: If m = 1, then, for each j ∈ supp(π′1)\{1} 6= ∅, 1 P1 j. Then agent 1 manipulates by top-ranking
being single.

Part 2: If m = 2, then π12 = 1 > π′12. Let R′1 ∈ R1 be such that 2 = t(R′1). By Lemma 1,
ϕ12(R′1, R−1) = π′12. Let R′2 ∈ R2 be such that 1 = t(R′2). By Lemma 1, ϕ12(R′1, R

′
2, R−1,2) = π′12 < 1. This

contradicts RMB.
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Part 3: Suppose m > 2. Let π1 ≡ π′, and, without loss of generality, i ∈ Ct be such that π1
i,i+1 <

πi,i+1 = 1/2. Consider R′i ∈ Ri such that t(R′i) = i+ 1 and s(R′i) = i. Let π2 ≡ ϕ(R′i, R−i). By Lemma 1,

π2
i,i+1 = π1

i,i+1 < 1/2. By Lemma 2, π2
i,i−1 ≤ π2

i,i+1. Consider R′i−1 ∈ Ri−1 such that t(R′i−1) = i and

s(R′i−1) = i − 1. Let π3 ≡ ϕ(R′i, R
′
i−1, R−i,(i−1)). By Lemma 1, π3

i−1,i = π2
i−1,i. By Lemma 2, first applied

from the perspective of (i− 1) and then from i, π3
i−1,i−2 ≤ π3

i−1,i ≤ π3
i,i+1. Repeat the argument along the

cycle and let R∗ ≡ (R′
C

t , R−Ct) and π∗ ≡ ϕ(R∗). Then

π∗i,i+1 ≤ π
∗
i+1,i+2 ≤ · · · ≤ π

∗
i−1,i ≤ π

∗
i,i+1.

Hence, for each i ∈ Ct, π∗i,i−1 = π∗i,i+1 < 1/2. As a consequence of Lemma 2, supp(π∗i ) = {(i−1), i, (i+1)} ⊆
Ct.

For each i ∈ Ct,

E(u, π∗i ) = π∗i,i+1u(i+ 1) + π∗i,i+1u(i− 1) + (1− 2π∗i,i+1)u(i)

= π∗i,i+1

(
(u(i+ 1)− u(i))− (u(i)− u(i− 1))

)
+ u(i).

As u ∈ U id, this is increasing in π∗i,i+1. Hence, id-EFF implies π∗i,i+1 = 1/2, a contradiction.

A.4 Independence of properties

Removing any one of the properties of Theorem 2 opens up the scope for other rules:
Without RMB : Let ω : {1, . . . , n} → N be an ordering of the agents and ω−1(i) denote agent i’s position

in ω. Let N1 = N . At step t ∈ N, let {i, j} ⊆ Nt be such that, for each k ∈ Nt, ω
−1(i) ≤ ω−1(k) and j Ri k.

Set ϕω
ij(R) = 1 and Nt+1 = Nt \ {i, j}. The rule ϕω is id-EFF and id-NM.

Without id-EFF : Let ϕx(R) = CR(R) unless R ∈ RN is such that, when defining CR(R), there is a cycle
that contains all agents. For such R and π ≡ ϕx(R), set, for each i ∈ C, πi,i+1 = πii = πi,i−1 = 1/3. The
rule ϕx RMB and is id-NM (Proposition 4).

Without id-NM : Let ϕ(R) = WDA(R) unless R ∈ RN is such that WDA(R) is inefficient. For such
R, set ϕ(R) = CR(R). The rule differs from CR and WDA: for R and R′ in the proof of Proposition 1,
ϕ(R) = WDA(R) 6= CR(R) and ϕ(R′) = CR(R′) 6= WDA(R′). Moreover, ϕ RMB and is id-EFF.

Proposition 4. The rule ϕx defined in Subsection A.4 is id-NM.

Proof. By Theorem 1, CR is id-NM. For an agent to manipulate ϕx, she needs to do so at profiles where the
selection of CR differs from that of ϕx.

To obtain a contradiction, suppose i ∈ N can manipulate ϕx. Let R ∈ RN and R′i ∈ Ri be as follows.
When determining CR(R), there is one cycle that contains all agents, so ϕx(R) 6= CR(R). When determining
CR(R′i, R−i), there is no such cycle, so ϕx(R′i, R−i) = CR(R′i, R−i). In Part 1, i’s manipulation is through
R′i at R; in Part 2, through Ri at (R′i, R−i). Let π ≡ ϕx(R) and π′ ≡ ϕx(R′i, R−i). As in Figure 2, let

{j, k,m} ⊆ N i be such that t(Ri) = j, t(R′i) = m, and t(Rk) = i. Hence, πij = πik = πii = 1/3 and

π′ik = π′im = 1/2. We treat m ∈ {i, k} separately, that is, when π′im = 1.

k i j

. . . m . . .

Figure 2: At R, there is a cycle i, j, . . . ,m, . . . , k that contains all agents (solid). The preference R′i is such
that m is i’s most preferred agent (dashed).

Part 1: To obtain a contradiction, suppose i manipulates ϕ at R through R′i. Note that j Pi i and
j Pi k. Consider u ∈ U id(Ri) such that u(i) = 0 and u(j) = 2. If i Pi k, then u(k) < u(i) = 0. If k Pi i, as
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Rm1
Rm2

Rw1
Rw2

w1 w2 m2 m1

∅ ∅ ∅ ∅

Table 4: Preferences for the proof of Theorem 3.

u ∈ U id(Ri),

j Pi k Pi i =⇒ u(j)− u(k) > u(k)− u(i) ⇐⇒ 2− u(k) > u(k)− 0 ⇐⇒ u(k) < 1.

Similarly, u(m) < 1. Therefore,

E(u, π′i)− E(u, πi) =
1

2

(
u(k) + u(m)

)
− 1

3

(
u(j) + u(k) + u(i)

)
=

1

6

(
u(k) + 3u(m)− 2u(j)− 2u(i)

)
<

1

6

(
1 + 3 · 1− 2 · 2− 2 · 0

)
= 0.

This contradicts that i manipulates ϕx at R through R′i.
We obtain the same contradiction for m ∈ {i, k}. If m = i, then π′ii = 1 and E(u, π′i) = u(i) = 0 ≤

E(u, πi). This is clear if k Pi i, whereas if i Pi k, as u ∈ U id(Ri),

u(j)− u(i) > u(i)− u(k) ⇐⇒ E(u, π) =
1

3

(
u(j) + u(k) + u(i)

)
> u(i) = 0.

If m = k, then π′ik = 1, so

E(u, π′i)− E(u, πi) =
1

6

(
4u(k)− 2u(j)− 2u(i)

)
<

1

6

(
4 · 1− 2 · 2− 2 · 0

)
= 0.

Part 2: To obtain a contradiction, suppose i manipulates ϕ at (R′i, R−i) through Ri. Note that m P ′i i

and m P ′i j. Consider u ∈ U id(R′i) such that u(i) = 0 and u(m) = 2. As m P ′i j, u(j) < u(m) = 2.
Therefore,

E(u, πi)− E(u, π′i) =
1

3

(
u(j) + u(k) + u(i)

)
− 1

2

(
u(k) + u(m)

)
=

1

6

(
2u(j)− u(k) + 2u(i)− 3u(m)

)
<

1

6

(
2 · 2− 0 + 2 · 0− 3 · 2

)
< 0.

This contradicts that i manipulates ϕx at (R′i, R−i) through Ri. We obtain the same contradiction for
m ∈ {i, k} as i then is matched with her most preferred partner at π′.

A.5 Proof of Theorem 3

Let M = {m1,m2} and W = {w1, w2}, and refer to preferences in Table 4. It suffices to show the incom-
patibility for small ε > 0 as this implies that the properties are incompatible for all larger ε. Fix 0 < ε < 1
and let u ∈ U id

ε \ U
id and v ∈ U id take on the values 0, 1, 2 − ε/2 and 0, 1, 4, respectively. Let ϕ RMB and

be U id
ε -EFF and U id

ε -NM. Finally, let π ≡ ϕ(R).
First, we show that, when each agent’s preference is represented by u, then ϕ has to select π0 at R. By

RMB, if an agent i top-ranks being single, then she is guaranteed utility u(i) = 1. By U id
ε -NM, for this
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manipulation not to be beneficial for m1:

E(u, πm1
) ≥ 1 ⇐⇒ πm1w1

(2− ε/2) + πm1m1
≥ 1

⇐⇒ πm1w1
(2− ε/2) + (1− πm1w1

− πm1w2
) ≥ 1

⇐⇒ πm1w1
(1− ε/2) ≥ πm1w2

.

As 1 − ε/2 < 1, if πm1w2
> 0, then πm1w1

> πm1w2
. Repeating the argument for each agent, we derive a

contradiction:

πm1w1
> πw2m1

> πm2w2
> πw1m2

> πm1w1
.

Hence, πm1w2
= 0. Apply the argument for w2 to find πw2m2

= 0, and continue for each agent to reach

π = π0.
Second, we show that, when each agent’s preference is represented by v, then ϕ cannot select π0 at R.

Let π′ ≡ CR(R). Then, for each i ∈ N , 2 = E(v, π′i) > E(v, π0
i ) = 1. By U id

ε -EFF, π 6= π0. This is a
contradiction.

Lemma 3. Let V ⊆ U and ϕ RMB and be V-NM. Let p1 ≡ {i1, j1}, p2 ≡ {i2, j2}, . . . , pT ≡ {iT , jT } be such
that, for each t ∈ {1, . . . , T},

∀k ∈ N \
t−1⋃
x=1

px, jt Rit
k and it Rjt

k.

Then, for each t ∈ {1, . . . , T}, ϕitjt
(R) = 1.

Proof. By RMB, ϕi1j1
(R) = 1, so the statement is true for T = 1.

Assume the statement to be true for T = 1, . . . , t− 1. We only need to verify the statement for the final
pair of the sequence: for instance, the second to last pair is itself the final pair in a shorter sequence, for which,
by assumption, the statement is true. Let R′it ∈ Rit

be such that t(R′it) = jt. Similarly, let R′jt ∈ Rjt
be such

that t(R′jt) = it. By RMB, ϕitjt
(R′it , R

′
jt
, R−itjt) = 1. By assumption, for each x < t, ϕixjx

(R′it , R−it) = 1,

so ϕjtix
(R′it , R−it) = ϕjtjx

(R′it , R−it) = 0. By V-NM, ϕitjt
(R′it , R−it) = 1, else jt manipulates at (R′it , R−it)

through R′jt . By assumption, for each x < t, ϕixjx
(R) = 1, so ϕjtix

(R) = ϕjtjx
(R) = 0. By V-NM,

ϕitjt
(R) = 1, else it manipulates at R through R′it . Hence, the statement is true for T = t. By induction, it

holds for each T .

A.6 Proof of Theorem 4

Let ϕ RMB and be V-EFF and V-NM. Fix the number of agents n and the values α0 = 0 < α1 < · · · < αn.
Select an arbitrary k ≥ 2. We show that αk ≥ βαk−1. Preferences are in Table 5. Let π ≡ ϕ(R),
π′ ≡ ϕ(R′m1

, R−m1
), π′′ ≡ ϕ(R′′m1

, R−m1
), and π′′′ ≡ ϕ(R′m1

, R′′w2
, R−m1w2

). Moreover, let u ∈ V(Rm1
),

u′ ∈ V(R′m1
), and u′′ ∈ V(R′′w2

) all take on the values α0, α1, . . . , αn. Hence, u, u′, and u′′ are equal in terms

of their range, but not in terms of which preference they represent. For instance, u(wk+1) = u′′(m2) = αn.

Part 1: Incentive constraints at (R′m1
, R−m1

) We first examine the effect that V-NM has on π′. In

particular, m1 should not benefit from reporting R′′m1
nor should w2 from reporting R′′w2

.

By RMB, π′′m1m1
= 1. By Lemma 3, π′m3w3

= · · · = π′mnwn
= 1, so π′m1w1

+ π′m1w2
+ π′m1m1

= 1. By

V-NM, E(u′, π′m1
) ≥ E(u′, π′′m1

), else m1 manipulates at (R′m1
, R−m1

) through R′′m1
:

E(u′, π′m1
) ≥ E(u′, π′′m1

) ⇐⇒ αkπ
′
m1w1

+ αk−1π
′
m1m1

≥ αk−1

⇐⇒ π′m1w2
≤ αk − αk−1

αk−1
· π′m1w1

.
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u Rm1
Rm2

Rm3
. . . Rmn

Rw1
Rw2

Rw3
. . . Rwn

R′m1
R′′m1

R′′w2

αn wk+1 wk+1 w3 . . . wn mk+1 mk+1 m3 . . . mn wk+1 ∅ m2
...

...
...

...
...

...
wn wn mn mn wn

αk w1 w2 m2 m1 w1

αk−1 w2 w1 m1 m2 ∅
αk−2 ∅ m3 w3

...
...

...
mk wk

α0 ∅ w2

Table 5: Preferences for the proof of Theorem 4. For k = 2, the lower contour set of Rw2
at m2 is {w2}. For

k = 3, it is {m3, w2}. The preference R′m1
is defined analogously.

By Lemma 3, π′′′m3w3
= · · · = π′′′mnwn

= 1 and π′′′w2m2
= 1. By Lemma 3, π′m3w3

= · · · = π′mnwn
= 1. So

π′w2m1
+ π′w2m2

+ π′w2w2
= 1 = π′m1w1

+ π′m1w2
+ π′m1m1

. By V-EFF, π′m2m2
= π′w1w1

= 0, so π′m1m1
= π′w2w2

and hence π′w2m2
= π′m1w1

. By V-NM, E(u′′, π′w2
) ≥ E(u′′, π′′′w2

), else w2 manipulates at (R′m1
, R−m1

)

through R′′w2
:

E(u′′, π′w2
) ≥ E(u′′, π′′′w2

) ⇐⇒ αkπ
′
w2m1

+ αk−1π
′
w2m2

≥ αk−1

⇐⇒ π′m1w2
≥ αk−1

αk

· (1− π′m1w1
).

Moreover, π′m1w1
≥ 0, π′m1w2

≥ 0, and π′m1w1
+ π′m1w2

≤ 1. Therefore, π′ is in the triangle ABC in Figure 3.

π′m1w1

π′m1w2

αk − αk−1
αk−1

αk−1
αk

1

1

A

B

C

Figure 3: The constraints imposed on π′ to ensure that m1 and w2 cannot manipulate at (R′m1
, R−m1

)
illustrated graphically. Arrows indicate directions of constraints.

Part 2: Incentive constraint at R By Lemma 3, πm3w3
= · · · = πmnwn

= 1. Then, by V-EFF,
πm1w1

+ πm1w2
= 1.

We impose πm1w1
= 1/2 and argue that this is without loss. In brief, we show that αk needs to exceed

αk−1 by a certain factor. If not, then agent m1 can manipulate the rule. The larger we make πm1w1
, the

smaller this factor becomes. That is, the more difficult it is for m1 to manipulate. However, symmetrically,
we can show that αk has to exceed αk−1 by a certain factor for w2 not to manipulate. The larger we make
πm1w1

, the smaller we make πw2m1
= 1 − πm1w1

, and the larger we make the factor. We want to find the
smallest factor such that neither m1 nor w2 can manipulate. This requires πm1w1

= πm1w2
= 1/2.
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Hence, E(u, πm1
) = (αk +αk−1)/2. By V-NM, E(u, πm1

) ≥ E(u, π′m1
), else m1 manipulates at R through

R′m1
. We relax the right hand side by a lower bound b ≤ E(u, π′m1

) defined as the minimum of E(u, π′m1
)

over π′ in ABC. If E(u, πm−1) < b, then m1 is able to manipulate at R no matter π′; if E(u, πm−1) ≥ b,
then V-NM can still be satisfied for some choice of π′ in ABC.

Part 3: Minimization We minimize E(u, π′m1
) = αkπ

′
m1w1

+ αk−1π
′
m1w2

+ αk−2π
′
m1m1

over π′ in ABC.

As π′m1w1
+π′m1w2

+π′m1m1
= 1, E(u, π′m1

) = (αk−αk−2)π′m1w1
+(αk−1−αk−2)π′m1w2

+αk−2. As αk > αk−2
and αk−1 > αk−2, this is increasing in π′m1w1

and π′m1w2
. So the minimizer is on AB, where

π′m1w2
=
αk−1
αk

· (1− π′m1w1
).

Therefore, the lower bound b satisfies the following inequality:

b ≤ αk(αk − αk−2)− αk−1(αk−1 − αk−2)

αk

π′m1w1
+
αk−1(αk−1 − αk−2)

αk

+ αk−2.

As αk > αk−1 > αk−2 ≥ 0, this is increasing in π′m1w1
. So the minimizer is at the point A, where

αk − αk−1
αk−1

· π′m1w1
=
αk−1
αk

· (1− π′m1w1
)

⇐⇒ π′m1w1
=

α2
k−1

αk(αk − αk−1) + α2
k−1

.

After some simplification, we find

b =
αk−1(2αkαk−1 − αkαk−2 − α

2
k−1)

α2
k − αkαk−1 + α2

k−1
+ αk−2.

In the next step, we minimize αk subject to E(u, πm1
) = (αk + αk−1)/2 ≥ b. Hence, we look for the

smallest value of αk such that m1 with certainty cannot manipulate the rule at R through R′m1
. We rewrite

the constraint to arrive at

α2
k + αkαk−1 − 2αkαk−2 − 3α2

k−1 + 2αk−1αk−2 ≥ 0.

As αk > αk−1 > αk−2, the left hand side is increasing in αk. Hence, the constraint binds at the minimum.
Therefore, as the solution of a second order equation,

αk =
1

2

(
−αk−1 + 2αk−2 +

√
13α2

k−1 − 12αk−1αk−2 + 4α2
k−2

)
≥ 1

2

(
−αk−1 + 2αk−2 +

√
13α2

k−1 − 4
√

13αk−1αk−2 + 4α2
k−2

)
.

Here, 4
√

13 > 4
√

9 = 12 and αk−1 > αk−2 ≥ 0, so −4
√

13αk−1αk−2 ≤ −12αk−1αk−2. In the next step,√
13 >

√
4 = 2 and αk−1 > αk−2 imply

√
13αk−1 > 2αk−2, so

αk ≥
1

2

(
−αk−1 + 2αk−2 +

√
(
√

13αk−1 − 2αk−2)2
)

=
1

2

(
−αk−1 + 2αk−2 +

√
13αk−1 − 2αk−2

)
=

1

2

(
−αk−1 +

√
13αk−1

)
= βαk−1.

With α0 = 0 and α1 = β, α2 ≥ βα1 = β2, α3 ≥ βα2 = β3, and so on. This completes the proof.
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Rm1
Rm2

Rm3
Rm4

Rw1
Rw2

Rw3
Rw4

R′m1
R′w1

R′m2
R′w3

w1w2 w3 w4 ∅ m2 m3 m1 m1 w1 m1 ∅ ∅
w3w4 ∅ ∅ m1 m1 ∅ ∅ w2 ∅

∅ ∅ w3

w4

Table 6: Preferences for the proof of Proposition 2; the preference Rm1
contains indifference between agents

w1 and w2 and agents w3 and w4.

Additional notes In the proof, we provide only a lower bound that relates αk to αk−1. This bound
actually only applies to α2: as k gets large, the relation between αk and αk−1 approaches another value.
Starting from

αk =
1

2

(
−αk−1 + 2αk−2 +

√
13α2

k−1 − 12αk−1αk−2 + 4α2
k−2

)
,

we make the intelligent guess that this recursive relation is solved by an exponential function, so αk = ak

for some a > 1. This guess is inconsistent with α0 = 0, but works well for large k. Then

ak =
1

2

(
−ak−1 + 2ak−2 +

√
13a2k−2 − 12a2k−3 + 4a2k−4

)
.

(i) Factoring out ak−2, (ii) isolating the radical, and (iii) squaring both sides:

a2 =
1

2

(
−a+ 2 +

√
13a2 − 12a+ 4

)
2a2 + a− 2 =

√
13a2 − 12a+ 4

4a4 + 4a3 − 7a2 − 4a+ 4 = 13a2 − 12a+ 4.

After simplification, we arrive at a3 + a2 − 5a + 2 = 0. The polynomial has three real roots, but only one
that exceeds 1, namely

a =
8

3
cos

(
1

3
arccos

(
−101

128

))
− 1

3
≈ 1.4728.

This shows that the utility function eventually has to grow considerably faster than as stated in Theorem 4.

A.7 Proof of Proposition 2

Let M = {m1,m2,m3,m4}, W = {w1, w2, w3, w4}, and refer to preferences in Table 6. Let ϕ RMB and be
id-EFF and π ≡ ϕ(R). To obtain a contradiction, suppose ϕ is id-NM.

By RMB, ϕw3w3
(R′w3

, R−w3
) = ϕm2m2

(R′m2
, R−m2

) = ϕw1m1
(R′w1

, R−w1
) = 1. By id-NM, πw3m1

≥
πw3m2

, πm2w3
≥ πm2w1

, and πw1m2
≥ πw1w1

, else there is u ∈ U id such that w3, m2, or w1 manipulates at
R. In conclusion,

πm1w3
≥ · · · ≥ πw1m2

≥ πw1w1
.

By id-EFF, πw1m3
= 0. By RMB, πm4m4

= 1 so πw1m4
= 0. Therefore,

πw1m1
= 1− πw1w1

− πw1m2
≥ 1− πm1w3

− πm1w3
= 1− 2πm1w3

.
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Rm1
Rm2

Rm3
Rw1

Rw2
Rw3

R′m1
R′m2

R′w1
R′′w1

w1 w2 w1 m2 m1 m1 w2 w1 m2 m3

w2 w1 w2 m1 m2 m2 w1 w2 m3 m2

w3 w3 w3 m3 m3 m3 w3 w3 m1 m1

Table 7: Preferences for the proof of Proposition 3.

As πm1w1
≥ 0,

πm1w1
+ πm1w3

≥ 1− 2πm1w3
+ πm1w3

= 1− πm1w3
≥ max{πm1w3

, 1− πm1w3
} ≥ 1/2,

where πm1w1
+ πm1w3

= 1/2 ⇐⇒ πm1w3
= 1/2.

By a symmetric line of arguments,

πm1w2
+ πm1w4

≥ max{πm1w4
, 1− πm1w4

} ≥ 1/2,

where πm1w2
+ πm1w4

= 1/2 ⇐⇒ πm1w4
= 1/2.

As (πm1w1
+ πm1w3

) + (πm1w2
+ πm1w4

) ≤ 1, we have πm1w3
= πm1w4

= 1/2. As a consequence of Theo-

rem 2, for each R̂ ∈ RN such that R̂ has no indifferences, ϕ(R̂) = CR(R). In particular, ϕ(R′m1
, R−m1

) =

CR(R′m1
, R−m1

). Then m1 manipulates at R through R′m1
. This contradicts id-NM.

A.8 Proof of Proposition 3

Let M = {m1,m2,m3}, W = {w1, w2, w3}, and refer to preferences in Table 7. Let φ : RN
0 → M RMB,

µ ≡ φ(R), and µ′ ≡ φ(R′w1
, R−w1

). To obtain a contradiction, suppose φ is st-NM.

Let (i, j) ∈ {(1, 2), (2, 1)}. By RMB, φmi
(R′mi

, R−mi
) = wj . By st-NM, µ(mi) 6= w3, else mi manipulates

atR throughR′mi
. Therefore, µ(m3) = w3 and µ ∈ S(R). We may assume µ = {(m1, w1), (m2, w2), (m3, w3)}

as the case µ = {(m1, w2), (m2, w1), (m3, w3)} can be treated symmetrically.
By st-NM, µ′(w1) 6= m2, else w1 manipulates at R through R′w1

. Let (i, j) ∈ {(1, 2), (2, 1)}. By RMB,

φmi
(R′mi

, R′w1
, R−miw1

) = wj . By st-NM, µ′(mi) 6= w3, else mi manipulates at (R′w1
, R−w1

) through R′mi
.

By RMB, φw1
(R′′w1

, R−w1
) = m3. By st-NM, µ′(w1) = m3, else w1 manipulates at (R′w1

, R−w1
) through

R′′w1
. Therefore µ′(m3) 6= w3, so w3 is without partner. This is a contradiction.
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