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Prosocial Behavior and Policy Spillovers:
A Multi-Activity ApproachI

Claes Eka,1

aCentre for Collective Action Research, Department of Economics, University of Gothenburg, P.O. Box 640,
SE-40530 Gothenburg, Sweden

Abstract

Observing that people who wish to engage in prosocial behavior are often presented with

more than one means to the same end, we develop a model in which agents may contribute

to a single public good through a range of different activities. We use this model to make two

points. First, noting that effort on one activity has been argued to reduce (moral licensing) as

well as increase (moral consistency) effort on other activities, we derive sufficient conditions

under which policy to facilitate one activity partially crowds out effort on other activities.

Second, we use an example to argue that a given single-activity model may be extended to

multiple activities in several alternative ways, and that not all generalizations need reproduce

the ideas and results of the original model; in general, careful thinking is needed to determine

which multi-activity model is appropriate.

Keywords: public goods, prosocial behavior, moral licensing, self-image

JEL classification: D03, D11, H41

1 Introduction

Introspection, as well as research on ‘mental accounting’ (Henderson and Peterson, 1992;

Thaler, 1999) suggests that people view commonly undertaken prosocial acts as belonging

to broad categories. Recycling household waste, buying organic products, and donating to

environmental NGOs are all examples of pro-environmental acts; voting, running for local

office, or demonstrating are ways to affirm democratic values; and a multitude of charities

(for which one may volunteer as well as donate) imply that there are many ways of aiding the

less fortunate. In each domain, there is a range of alternatives. By contrast, the vast majority

of economic studies on prosocial behavior assume that people may contribute through only

IThis version: September 2017. The first draft of this paper was completed while at the Lund University
School of Economics and Management.

Email address: claes.ek@economics.gu.se (Claes Ek)
1Tel.: +46 31 786 52 49.
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a single activity. Beyond explaining why people contribute, analyzing how people contribute

requires a high-resolution model that includes more than one contributing activity. This paper

develops such a model.

We focus on the situation where some policy intervention targets one of several prosocial

activities. For example, many countries have introduced directed schemes (whether through

facilitation, public information or economic incentives) to encourage specific environmental

behaviors like recycling, leaving the car at home, or reducing energy use. To better understand

such situations, multi-activity models are useful in at least two respects.

First, they allow for analysis of spillovers, that is, policy impacts on activities other than

the one targeted. Such effects can be expected to arise whenever the efforts that people

spend on a given activity reflect not merely its own characteristics, but those of similarly

categorized acts as well. Spillovers can be seen as a manifestation of standard notions of

(gross) substitutability: as policies alter the relative material incentives to contribute through

the targeted activity, demand for other activities shifts up or down.

There are at present a few field studies on spillovers, e.g. on electricity use from a water-

conservation campaign (Jacobsen et al., 2012; Lacetera et al., 2012; Tiefenbeck et al., 2013;

Carlsson et al., 2016), as well as a small but rapidly growing literature on ‘expenditure sub-

stitution’ across charities in response to donation matching or other shocks (Reinstein, 2011;

Cairns and Slonim, 2011; Null, 2011; Meer, 2016; Filiz-Ozbay and Uler, 2016; Ek, 2017). All

of these studies estimate whether spillovers (or cross-price effects) are positive or negative,

i.e. whether policies produce crowding in or crowding out.2 While the bulk of the evidence

points toward crowding out, exceptions are not uncommon.

In psychology, this fact is reflected in competing theoretical accounts (Merritt et al., 2010;

Dolan and Galizzi, 2015). On the one hand, some theories stress consistency across separate

decisions (Festinger, 1957; Bem, 1967), suggesting that one prosocial act can spur another.

If activity-specific policy does increase effort on the targeted activity, we should then expect

crowding in. On the other hand, a literature on ‘moral balancing’ (Cain et al., 2005; Sachdeva

et al., 2009; Blanken et al., 2015) argues that people who have just behaved prosocially may

feel they have a ‘moral license’ to subsequently relax their moral standards, while people who

have just behaved badly may feel obliged to engage in subsequent ‘moral cleansing’ (Ploner

2Here, crowding out should not be confused with other uses of the term. First, government provision of

public goods may crowd out private contributions (Andreoni, 1990; Nyborg and Rege, 2003), and spending by

one charity may crowd out spending by other charities (Ribar and Wilhelm, 2002). Second, material incentives

for prosocial behavior may crowd out intrinsic motivation, perversely reducing contributions (Frey and Jegen,

2001; Bénabou and Tirole, 2006; Bowles, 2008). To this we add a third layer of complexity, namely that

interventions that target a particular activity may crowd out (or in) effort on other activities.
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and Regner, 2013). Again, if the policy is effective, efforts on other activities should decrease,

leading to crowding out.

Importantly, experimental and empirical methods predominate among these prior studies,

with formal analysis arguably lagging behind. Our model represents a first step toward filling

that gap. Building on the model of Brekke et al. (2003), we derive sufficient conditions under

which activity-specific policy crowds out effort on all other activities. Thus, we establish neg-

ative spillovers as the benchmark in large-scale public-goods settings.3 This result, however,

is limited in two ways. First, we also explore a model variant where agents endogenously

update the ‘ideal’ contribution with which they compare their own contribution. In this case,

the sign of spillovers is found to be ambiguous. Second, we solve the model only for the case

of two activities. Because of this, the activity which exhibits spillovers should be interpreted

as an aggregate of all ‘other activities’ that are not directly impacted by an intervention, and

negative spillovers need not apply to all (real-world) activities within that aggregate.

A second reason why multi-activity models are useful is that they allow us to re-evaluate

previous results from single-activity models. Unlike our multi-activity framework, single-

activity models obviously do not include activities that are only indirectly targeted by a

policy, and depending on the manner in which this feature is added, results may alter even

with respect to the targeted activity. This general point should not be too counter-intuitive:

for example, compare the impact of a price increase in a single-good utility problem with a

situation where we also add a close substitute not affected by the price increase.

As our model draws on that of Brekke et al. (2003), we illustrate this point by revisiting

a variant of that model, namely Bruvoll and Nyborg (2004). Our model, which at first glance

seems a straightforward extension of Bruvoll and Nyborg (2004) to multiple activities, does

introduce new issues and accommodate results that are sometimes at odds with the ideas

and conclusions of the original paper. However, several plausible ways of extending Bruvoll

and Nyborg (2004) exist, raising questions concerning which multi-activity model within the

overall Brekke et al. (2003) framework is appropriate. We attempt to shed light on the issues

involved by outlining some key alternatives.

Like Brekke et al. (2003), we focus on moral rather than social norms, and our model can

be interpreted in terms of ‘duty-orientation’: individuals derive utility from maintaining a

3This paper also relates to a branch of the charitable-giving literature which examines the choice between

different modes of contributing, i.e. between volunteering and money donations (Andreoni et al., 1996; Feldman,

2010; Lilley and Slonim, 2014; Brown et al., 2016). Since our model expresses all contributing activities in

terms of time spent, it is not directly comparable to the theoretical analysis contained within these papers; yet

the overall focus is similar. For example, volunteering and monetary donations are typically found to be net

(if not necessarily gross) substitutes.
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positive self-image of themselves as responsible citizens, but also disutility from failing to live

up to some ‘ideal’ contribution level. Thus prosocial motivation derives from a process of self-

image maintenance in which agents base their actions partly on the (perceived) characteristics

of the public-good production function. Note that it is common for moral-licensing accounts

(e.g. Sachdeva et al., 2009) to also appeal to some manner of self-concept maintenance

process. We believe our model forms a useful framework for rigorous analysis of such processes,

including the formulation of testable hypotheses related to moral balancing.

Compared to theories that emphasize for instance the signaling of one’s prosociality to

others (e.g. Bénabou and Tirole, 2006; Andreoni and Bernheim, 2009), the moral-norms

approach has the advantage of relative simplicity. Moreover, internalized norms are arguably

the main drivers of behavior in many contexts. Common prosocial acts such as waste recycling,

anonymous donations, or voting by mail are not readily observable by other people, and any

explanation of them in terms of social image will be indirect at best.4

The structure of this paper is as follows. Section 2 outlines our multi-activity extension

to the duty-orientation model. Section 3 introduces our main comparative-statics results by

means of a relatively simple example. Section 4 analyzes a more general case, and section

5 considers an extension where the magnitude of the ‘ideal contribution’ is endogenously

determined. Section 6 revisits earlier research on government centralization of an activity.

Section 7 concludes.

2 The multi-activity model

Consider a community of N identical individuals. Each person may contribute to a single

public good G by spending effort, measured in time units, on K different activities. As agents

are identical, we denote the effort that each person spends on activity k simply as ek ≥ 0.

Assuming that labor supply is fixed, the time available to each agent is some constant T > 0,

and because any time not spent contributing is devoted to leisure instead, the choice facing

each agent is to allocate time across leisure L ≥ 0 and all effort variables to maximize utility

given the restriction L+
∑K

k=1 ek = T .

We will examine the elements of each identical agent’s utility function in turn. As a

generalization of Brekke et al. (2003), consider first

g = g(e,θ)

4Variants of the Brekke et al. (2003) moral-motivation model have been applied to corporate social respon-

sibility and labor market screening (Brekke and Nyborg, 2008), hypothetical bias in stated-preference surveys

(Johansson-Stenman and Svedsäter, 2012), green consumerism (Nyborg et al., 2006), and households’ recycling

efforts (Bruvoll and Nyborg, 2004).
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where g is the personal public-good production function utilized by each identical agent, and

e is the ‘effort vector’ (with typical element ek ≥ 0). Finally, θ is the vector of parameters

(with typical element θk ≥ 0) regulating the productivity of all agents with respect to activity

k. Because individual contributions are embedded in a wider institutional framework, these

parameters reflect not only the quality of available technology but also issues of convenience

and information, so long as these are relevant for how much is accomplished per unit of ef-

fort. For example, suppose the local government launches a campaign to facilitate household

recycling by increasing the number of drop-off sites and by sending out leaflets on how to re-

cycle. Both interventions would arguably cause the relevant θ to increase. However, ‘nudging’

policies exploiting framing or peer effects would not.

Production is characterized by the following. g is twice continuously differentiable, strictly

concave, and increasing in all ek and θk. Productivity is convex, with g′′ekθk > 0. We exclude

direct productivity spillovers across activities, so for all l 6= k, g′′ekθl = g′′θkθl = 0. While this

last assumption may seem strong, θs are activity-specific by definition: for instance, a policy

affecting more than one activity should be viewed as shifting both productivity parameters.

There are some additional technicalities. If productivity with respect to a particular

activity is zero, then increasing the amount of effort put into that activity has no effect on

production, so g′ek > 0 if and only if θk > 0. Unless stated otherwise, we will assume that

productivity is indeed nonzero. Furthermore, if no effort is spent on a given activity, changing

its productivity does not affect production: g′θk > 0 if and only if ek > 0. Hence, defining

g0 = g(0,θ), we always have g(e,θ) ≥ g0. In many cases, it will be natural to set g0 = 0.5

Like Andreoni (1990), we assume that people derive utility from personally contributing

to the public good. Such a ‘warm-glow’ component may be given various psychological in-

terpretations, including a favorable sense of social image or self-image as a generous person

(Bénabou and Tirole, 2006), or as the desire to help other contributors feel validated (Rotem-

berg, 2014). Brekke et al. (2003) interpret it as the motivation to adhere to a moral norm and

formulate a ‘self-image function’ reflecting whether the agent views herself as a responsible

citizen. Our multi-activity version is given by

I = I(g(e,θ)− g∗) (1)

where g(e, θ) is the amount that each agent actually contributes, while g∗ ≥ g0 is the ‘ideal’

amount that a truly responsible citizen would contribute; unless stated otherwise, we will

5Given all of the above assumptions, one can show that it must be possible to write the production function

as g = f0(e1, ..., eK) +
∑
k fk(ek, θk). Hence, our framework includes the multiple-public-goods model where

g =
∑
k gk(ek, θk) as a special case. But as this expression explicitly states that each gk uses only a single

input activity, the converse is not true.
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suppose g∗ > g0. In line with psychological theories of ‘self-discrepancy’ (e.g. Higgins, 1987),

the utility of contributing is a function of the distance between the two. I is twice continuously

differentiable, and maximized when g(e,θ) = g∗; furthermore, I ′ > 0 whenever g < g∗; I ′ = 0

when g = g∗; I ′ < 0 when g > g∗; and I ′′ ≤ 0 everywhere.

The ideal g∗ itself could be exogenous or endogenous. Throughout most of the paper

we will suppose it exogenous, interpreting it as some standard of conduct existing in the

social environment independently of individual agents. People form beliefs about it and may

eventually internalize it as simply ‘the right thing to do’ in particular or general contexts.

This interpretation squares well with Akerlof and Kranton (2000)’s incorporation of social

identity theory (e.g. Tajfel and Turner, 1979) into economics. In their model, individuals

first subscribe to a particular social identity, which then provides them with a number of

behavioral dos and don’ts that might best be viewed as exogenous from the point of view of a

single person. Section 5 considers endogenous ideal formation of the particular type explored

in Brekke et al. (2003).

We can now formulate the utility function that each agent maximizes. It is assumed to

be additively separable in its arguments; each agent solves

max
e
U(e,θ) = u

(
T −

K∑
k=1

ek

)
+ v(G−i(θ)) + I (g(e,θ)− g∗) (2)

subject to 0 ≤
∑

k ek ≤ T : we have used the budget constraint to define utility strictly

in terms of the agent’s effort vector. The utility-of-leisure function u is twice continuously

differentiable, strictly increasing and concave, as is v(G), the utility of consuming the public

good.6 We assume throughout most of this paper that N is large enough that each agent

approximates own contributions by zero, so the argument of v is simply other people’s public

good production G−i = (N − 1)g. As is standard, each agent views G−i as exogenous, so

choices are entirely nonstrategic. Nevertheless, because v(G−i) may change as other agents

adjust their efforts in response to productivity shocks, this term will prove important for

analyzing changes in individual utility in section 6.

As U is continuous and the choice set is compact, the set of solutions to utility problem

6Since activities may directly impact the well-being of the person performing them,

U(e, L,θ) = u
(
e, L

)
+ v(G−i(θ)) + I(g(e,θ)− g∗)

might be a more general, though also significantly more complex, utility model. Here activities are arguments

not only of the self-image function but also directly of u. Acts that entail discomfort beyond foregone leisure

would then feature negatively in u, while those seen as valuable in their own right would feature positively.
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(2) is nonempty. The necessary and sufficient Kuhn-Tucker conditions for a solution are

−u′ + g′ekI
′ − λ ≤ 0 (3)

for all k, with equality if ek > 0. Here λ ≥ 0 is the Lagrange multiplier associated with

the restriction
∑

k ek ≤ T , and the usual complementary slackness conditions imply λ = 0 if∑
k ek < T . It is then easy to demonstrate the following property of any solution (all proofs

can be found in Appendix B at the end of this paper).

Proposition 1. If ē is a solution to problem (2), we have g0 ≤ g(ē) ≤ g∗. If also g∗ > g0,

then g(ē) < g∗.

Thus no agent will produce more than the ideal amount, and except in the trivial case

where g∗ = g0, all agents will produce strictly less than the ideal. However, in general we

cannot rule out corner solutions where it is optimal to set all effort variables to zero and

produce the minimal amount g0.

For k 6= l, we define productivity-led spillovers as derivatives dēl/dθk, i.e. as the marginal

impact of θk on optimal effort element ēl. If the production function is linear (g =
∑

k θkek),

or more generally whenever we can write g = g(θ1e1, ..., θKeK), these effects correspond

to standard notions of price-driven gross substitution. To see this, suppose we interpret

activities as units of production rather than durations; that is, define êk = θkek for all k.

Then we have g = g(ê1, ..., êK) and the budget constraint 0 ≤
∑

k êk/θk ≤ T , implying prices

pk = 1/θk. It follows that e.g. dê2/dp1 > 0 if and only if dê2/dθ1 < 0, which is itself

equivalent to de2/dθ1 < 0. Thus crowding-out corresponds to the redefined alternatives being

gross substitutes, and crowding-in similarly corresponds to gross complementarity.

3 An example: individual carbon footprints

In Section 4, we discuss the model in general terms. First, however, let us build intuition

by a rather more specific example. Suppose we interpret the public good as absence of the

‘bad’ F produced by emissions of carbon dioxide. Individuals can reduce per-capita emissions

(their personal ‘carbon footprint’) by engaging in some number of activities. As our point

of comparison, we will first assume that there is only a single climate-friendly action that

can be undertaken, that its corresponding effort variable is e1 = e, and that its productivity

parameter is θ1 = θ; we will consider two activities shortly. For now, use the simple function

g = −F = −(F 0 − θ
√
e)

F 0 > 0 is the amount emitted if no action is taken. In the real world, we expect at any given

time that some proportion of the population is indeed taking action; therefore this parameter

is best interpreted as lying above the actual population average.
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The ideal contribution g∗, which is exogenous, translates into the negative of some ideal

emissions profile 0 ≤ F ∗ < F 0. This parameter might be, for instance, some globally equitable

‘fair share’, in per-capita emission terms, of the carbon budget needed to keep global warming

below two degrees Celsius. For example, the most ambitious emissions scenario described in

Annex II of IPCC (2013) requires that global annual CO2 emissions drop to 3.50 gigatonnes

by 2050. Assuming a population of ten billion people, this yields an equal share of 0.35 tonnes

per capita and year.7

The utility function we will use is designed to be as simple as possible. If utility-of-leisure

is linear with a marginal utility of one, and the self-image function is a quadratic function

with a maximum of zero, individuals simply maximize

U(e) = T − e+G−i − a (−F − (−F ∗))2 = T − e+G−i − a
(
F ∗ − F 0 + θ

√
e
)2

(4)

subject to 0 ≤ e ≤ T . Note that v(G−i) has been dropped from (4), as it is irrelevant for

behavior. The parameter a here reflects the strength of the self-image motive. In the following,

we will concern ourselves only with the class of interior solutions for which 0 < e < T ; yet if

a = 0, the corner solution e = 0 is trivially optimal. Thus, we require a > 0.8

We denote the interior maximum to (4) by ē. It is

ē =

(
aθ
(
F 0 − F ∗

)
1 + aθ2

)2

(5)

Let us also write

F (ē) = F 0 − θ
√
ē =

F 0 + aθ2F ∗

1 + aθ2
(6)

where it is easy to check that F ∗ < F (ē) < F 0, in confirmation of Proposition 1. Now

suppose that some new government policy is implemented with the aim of making it easier

for individuals to lower their emissions. In other words, suppose that θ increases. Then

dF (ē)

dθ
= −

2aθ
(
F 0 − F ∗

)
(1 + aθ2)2

< 0 (7)

so all agents reduce their emissions in response; but

dē

dθ
=

2a2θ
(
F 0 − F ∗

)2
(1 + aθ2)3

(
1− aθ2

)
(8)

7Of course, our choice of the year 2050 arbitrary; also, since IPCC (2013) states that warming is largely

determined by cumulative emissions, strictly positive per-capita emissions may not be viable in the long run.
8The marginal product of effort approaches infinity as e → 0, so any optimum must have e > 0 if a > 0.

However, corner solutions for which e = T (so L = 0) are possible in general, but are here assumed not to

arise.
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This expression is positive if and only if a ≤ 1/θ2, a condition which if combined with (6) can

be reformulated in emissions terms as F (ē) ≥ (F 0 +F ∗)/2. This tells us that efforts increase

only if emissions were high enough initially.9 Of course, if productivity keeps increasing, effort

will always drop eventually. Indeed, in the limit as θ →∞, it becomes possible to live up to

the ideal with next to no effort: ē→ 0 but, by (6), F (ē)→ F ∗.

Such are the features of the single-activity version of the model. We now move on to its

two-activity counterpart. The production function is now g = −F = −(F 0− θ1
√
e1− θ2

√
e2),

so contributions made through e1 and e2 are simply added up. Agents maximize

U(e1, e2) = T − e1 − e2 +G−i − a
(
F ∗ − F 0 + θ1

√
e1 + θ2

√
e2
)2

(9)

and similarly to before, we focus on the interior solutions where e1 > 0, e2 > 0 (true for a > 0)

but e1 + e2 < T (need not be true). For k = 1, 2, solving for optimal efforts yields

ēk =

(
aθk

(
F 0 − F ∗

)
1 + a

(
θ21 + θ22

))2

(10)

and

F (ē1, ē2) = F 0 − θ1
√
ē1 − θ2

√
ē2 =

F 0 + a
(
θ21 + θ22

)
F ∗

1 + a
(
θ21 + θ22

) (11)

where again we have F ∗ < F (ē1, ē2) < F 0.10

Now consider an increase in θ1 (the effect of a shift in θ2 being completely analogous).

Activity 2 should then be interpreted as an aggregate of all climate-related activities that are

9If one extends the model to include heterogeneity such that each agent i has some parameter value ai ≥ 0,

the same conditions (with a replaced by ai) reveal that only the less image-concerned agents, for whom initial

emissions were relatively high, increase their efforts. Consequently, as θ increases, and emissions reductions

can be carried out with greater ease, there is a gradual convergence of the effort put in by different types. If

productivity is low, highly image-concerned agents make great efforts but unconcerned agents next to none;

as productivity increases both groups, from the direction of each, approach the middle ground. If a decision

maker’s ambition is simply to minimize total emissions, it may thus be profitable to selectively disseminate

information on productivity increases; that is, to inform only the previously unengaged, whose ai, presumably,

is small. It may be less advisable from a democratic perspective.
10It is simple to show that effort on any activity increases (implying that actual emissions drop) when F ∗

decreases. In the single-activity model, we have

dē

dF ∗
= −

2a2θ2
(
F 0 − F ∗

)
(1 + aθ2)2

< 0

and similar results hold for each individual activity in the two-activity model. We may interpret the shift

in F ∗ as new information becoming available, e.g. a high-profile scientific report concluding that the carbon

budget deemed safe is smaller than previously expected, implying that everyone’s ‘fair share’ of that budget

diminishes.
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not directly affected by the shift in θ1. Suppose e1 is the (extra) time invested when traveling

by bicycle instead of taking the car,11 and θ1 shifts as a result of a policy to increase the

number of bicycle lanes in the community. Since as a result less extra time e1 will be needed

for any given trip, agents can travel by bicycle instead of by car on more trips and still hold

e1 constant. Thus, the emissions reduction per unit of e1 increases. Differentiation of (11)

with respect to θ1 now reveals that

dF (ē1, ē2)

dθ1
= −

2aθ1
(
F 0 − F ∗

)(
1 + a

(
θ21 + θ22

))2 < 0 (12)

so emissions always drop; while differentiation of ē1 + ē2 yields

dē1
dθ1

+
dē2
dθ1

=
2a2θ1

(
F 0 − F ∗

)2(
1 + a

(
θ21 + θ22

))3 (1− a (θ21 + θ22
))

The effect on total efforts is positive iff a ≤ 1/(θ21 + θ22) or, in emission terms, F (ē1, ē2) ≥
(F 0 + F ∗)/2. Again, we see that only if initial emissions are sufficiently large do total efforts

increase. Clearly, aggregate behavior in the two-activity model is qualitatively identical to

that of the single-activity model. However, the following important results arise when each

effort variable is considered in isolation.

dē1
dθ1

=
2a2θ1

(
F 0 − F ∗

)2(
1 + a

(
θ21 + θ22

))3 (1− a (θ21 − θ22))

dē2
dθ1

= −
4a3θ1θ

2
2

(
F 0 − F ∗

)2(
1 + a

(
θ21 + θ22

))3 < 0

We see that the sign of dē1/dθ1 is ambiguous; the more striking fact, however, is that dē2/dθ1

is always strictly negative. Thus, overall the directed productivity shock drives negative

spillovers across activities, with aggregate effort on other activities being crowded out. The

interpretation could be the following. Because bicycling is now easier, the agent undertakes

fewer car trips and, as a result, feels licensed to engage more in other carbon-intensive activ-

ities, such as consuming red meat. But the compensation is incomplete; (12) shows that in

the net, total emissions still drop.

We see that to fully understand engagement with any one activity, we must consider the

characteristics of other activities as well. Suppose that we were to evaluate a policy designed

11It is in the abstract nature of our model that this example is not entirely natural, because there are issues

involved of not only time, but also money, convenience, etc. Also, in real life there are upper limits to what

each activity, taken alone, can achieve. No such limit exists here.
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to increase the productivity of a particular activity. In principle, all impacts of this policy

should be considered in its evaluation. It is true that the single-activity model correctly

associates increased productivity with reduced emissions for all agents; but comparison of

(7) and (12) shows that this reduction is overestimated. Becuase the single-activity model

considers effort only towards the particular activity targeted by the productivity shock, it

misses the larger picture, which is that the policy drives lower efforts on other activities.

The next section will show that an important determinant of the sign of spillovers is the

cross-partial derivative of the public-goods production function, g′′e1e2 = ∂2g/∂e1∂e2, which

in this example was equal to zero, as g was additive. We will also see that crowding-out of

the same type as observed here obtains for a broad set of production technologies.

4 Exogenous ideals

With g∗ remaining exogenous, this section will extend most of the results of the previous

example to a more general case by applying the theory of monotone comparative statics

(Milgrom and Shannon, 1994). This is an ordinal theory that does not presuppose the solution

to be unique or interior, or the parameter shift to be marginal.

To facilitate understanding of the results to follow, we begin by stating some fundamentals

of lattice theory. A lattice is a particular type of partially ordered set X with the property

that, for any two elements x, y ∈ X, both their join (or least upper bound) x ∨ y and their

meet (or greatest lower bound) x ∧ y exist as elements of X. In this paper, all partially

ordered sets will be given by Euclidean space with the coordinatewise order, where for two

vectors x, y ∈ Rn, x ≥ y if xi ≥ yi for each i = 1, ..., n. In this case the definitions of join

and meet are particularly simple, namely x ∨ y = (max{x1, y1}, ...,max{xn, yn}) ∈ Rn and

x∧ y = (min{x1, y1}, ...,min{xn, yn}) ∈ Rn. It follows from the definition that Rn is a lattice,

as both join and meet of any two n-dimensional vectors are in that set.

A sublattice is some subset S of a lattice X for which both the join and meet (in X) of

any two points in S are elements of S.

Below we will be interested in seeing how the set of solutions to (2) changes when we shift

some productivity parameter θk. We will use the following comparative-statics result, which

is slightly adapted from Theorem 4 in Milgrom and Shannon (1994). Since we will shift only

one parameter r at a time, the parameter space R is simply the positive real line.

Proposition 2. Let U : X × R → R, where X is a lattice and R is a partially ordered set.

If the constraint set S : R → 2X is nondecreasing in r and if U is quasisupermodular in

e and satisfies the single-crossing property in (e; r), then arg maxe∈S(r) U(e, r) is monotone

nondecreasing in r.

11



Here (monotone) nondecreasingness is defined in terms of the strong set order ≥s: for X

a lattice with some given relation ≥ (such as the coordinatewise order on Rn), with Y and Z

subsets of X, we say that Y ≥s Z if for every y ∈ Y and z ∈ Z, y∨z ∈ Y and y∧z ∈ Z. If the

stated conditions hold, Proposition 2 then implies that for r′ ≥ r, arg maxe∈S(r′) U(e, r′) ≥s
arg maxe∈S(r) U(e, r). In the special case where the solution sets of (2) are singleton, the

set order ≥s reduces to the coordinatewise order, with Proposition 2 simply stating that all

choice variables are increasing in r.

For U twice continuously differentiable, quasisupermodularity holds if ∂2U/∂ek∂el ≥ 0

for all k 6= l, and the single-crossing condition holds if U exhibits ‘increasing differences’

such that ∂2U/∂ek∂r ≥ 0 for all k. Hence, quasisupermodularity represents a general type

of complementarity (in utility terms) between the choice variables, while the single-crossing

property similarly represents complementarity between the choice variables and the parameter

being shifted.

Under what conditions can Proposition 2 be applied to utility problem (2), with r = θk?

While checking for quasisupermodularity and the single crossing property is straightforward,

nondecreasingness of the constraint set S = {(e1, ..., eK)|0 ≤
∑

k ek ≤ T} is trickier. This

set does not depend on productivity, so for any θk we will have S(θk) = S. We therefore

obtain nondecreasingness in θk (as required by the theorem) if and only if S is a sublattice,

as it is then easy to verify that S ≥s S. However, when K > 1, our constraint set S is not a

sublattice of the lattice X = RK+ . To see why, take effort vectors e′ = (T, 0, ..., 0, 0) ∈ S and

e′′ = (0, 0, ..., 0, T ) ∈ S. Under the coordinatewise order, e′ ∨ e′′ = (T, 0, ..., 0, T ), which is not

in S. Hence, S is not a sublattice.

Fortunately, for K = 2, there is a workaround. For k 6= l, redefine (2) as12

max
ek,ẽl

U(ek, ẽl, θk) = u(T − ek + ẽl) + v(G−i(θk)) + I(g(ek,−ẽl, θk)− g∗) (13)

with ẽl = −el. Then for X = {(ek, ẽl)|ek ≥ 0, ẽl ≤ 0} and S = {(ek, ẽl) ∈ X|0 ≤ ek − ẽl ≤ T},
S is in fact a sublattice of X in the coordinatewise order. Hence, as long as K = 2, there

is no immediate obstacle to applying Proposition 2.13 When el is redefined in the above

manner, Proposition 2 implies a tendency for negative spillovers. In particular, if all solution

12For notational brevity, we suppress θl as an argument of U throughout this section.
13This method only works if K = 2. For example, for K = 3, define ẽ2 = −e2 and ẽ3 = −e3 and let

S = {(e1, ẽ2, ẽ3)|e1− ẽ2− ẽ3 ≤ T, e1 ≥ 0, ẽ2 ≤ 0, ẽ3 ≤ 0}. Then, for e′ = (0,−T, 0) ∈ S and e′′ = (0, 0,−T ) ∈ S,

under the coordinatewise order e′ ∧ e′′ = (0,−T,−T ) /∈ S. Using some simple order on X other than the

coordinatewise one does not solve this problem; for instance, letting x ≥ y if x1 ≥ y1, x2 ≤ y2, and x3 ≤ y3 is

exactly equivalent to using ẽ2 = −e2 and ẽ3 = −e3 in the usual coordinate order: for e′ = (0, T, 0) ∈ S and

e′′ = (0, 0, T ) ∈ S, the alternative order implies x ∧ y = (0, T, T ) /∈ S.
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sets are singleton, ek is increasing in θk but el = −ẽl is decreasing. This is the ‘crowding-out’

effect observed in the previous section. As before, in most settings activity l 6= k should be

interpreted as an aggregate of all activities that are only indirectly affected by the productivity

shock. Although we will be able to describe the movement of the aggregate, we can draw no

conclusions about particular activities within it.

4.1. The sign of policy spillovers

With theoretical foundations now in place, we will proceed to analyze the effect of activity-

specific policy. It may be helpful to begin by briefly considering the single-activity model

U(e, θ) = u(T − e) + v (G−i(θ)) + I(g(e, θ)− g∗)

Note that the interval 0 ≤ e ≤ T is a sublattice of R+, so analyzing a shift in θ using

Proposition 2 is feasible. Since there is only one effort variable, we only need to check the

single-crossing property. Using the notation g′ = dg/de, g′θ = dg/dθ, and g′′ = d2g/de2, we

find effort increasing in line with productivity if

∂2U(e, θ)

∂e∂θ
= I ′′g′g′θ + I ′g′′eθ ≥ 0 (14)

This condition is analogous to that required for (8) to be positive; indeed, for I = −a(F ∗−F )2

and g = −F = θ
√
e−F 0, it translates into F (e) ≥ (F 0 +F ∗)/2. It specifies when e and θ are

complements in a utility sense. When θ increases, on the one hand the marginal productivity

of additional effort grows since g′′eθ > 0. On the other hand, I is concave. As there is a ‘first-

order’ effect g′θ (from shifting θ but hypothetically holding effort constant) on production, the

marginal benefit in utility terms of any extra effort decreases. Complementarity obtains if

and only if the former effect dominates.14

Now, suppose K = 2 and consider a shift in activity-specific productivity parameter θk.

We differentiate (13) twice to find sufficient conditions for Proposition 2 to hold:

∂2U(ek, ẽl, θk)

∂ek∂θk
=I ′′g′ekg

′
θk

+ I ′g′′ekθk ≥ 0 (15)

∂2U(ek, ẽl, θk)

∂ẽl∂θk
=− I ′′g′elg

′
θk
− I ′g′′elθk ≥ 0 (16)

∂2U(ek, ẽl, θk)

∂ek∂ẽl
=− u′′ − I ′′g′ekg

′
el
− I ′g′′e1e2 ≥ 0 (17)

14Since in general both terms in (14) depend on e, the condition may be satisfied only for some initial values

of e. We saw in footnote 12 that if agents are heterogeneous the idea may be extended to people, with different

types reacting differently.
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Here conditions (15) and (16) check for increasing differences, while (17) is a quasisupermod-

ularity condition. If all three hold, the set of optimal redefined efforts (ek, ẽl) is monotone

nondecreasing in θk; in other words, spillovers will tend to be negative.

Condition (15) is exactly the same type of within-activity complementarity condition

we observed in the single-variable case.15 Condition (16) states that θk and el should be

substitutes in utility terms; since there are no productivity spillovers (g′′elθk = 0), their only

interaction is through the first-order effect g′θk , so it is immediately true.

Finally, (17) states that ek and el should be substitutes in a utility sense. It is notable

that for this to hold, it is sufficient that the two activities are substitutes in the production of

the public good, i.e. that g′′e1e2 ≤ 0; in particular, we do not need to assume that g is concave

or quasiconcave. Public goods to which people commonly contribute arguably tend to satisfy

this substitute condition, if only because many production functions likely have g′′e1e2 = 0.

Also, consider an example. An agent has to decide how to split a donation (or time spent

doing voluntary work) across two charities working with the same social issues; but if the

benefit of this type of social work is a (one-dimensional) concave function, any amount which

the agent gives to one charity will weakly reduce the marginal benefit of also donating to the

other.16

4.2. Do negative spillovers reverse the effect of policy?

We have just seen that when activities are substitutes in public-good production, we might

expect a qualitative crowding-out effect to dominate. What are the quantitative properties of

that effect? In particular, is crowding-out incomplete in the sense that public-good production

increases with θk, as it did in the previous section? To answer this question, we will redefine

the utility problem as a single-variable one where agents choose their sum of efforts ê = e1+e2.

We begin by stating a useful result. It guarantees that for any utility maximum with

associated total efforts ê, public-goods production can be understood as the value function

ĝ(ê) of a ‘production-maximization problem’ (PMP) with the restriction that total effort be

exactly ê. The situation is illustrated in Figure 1. Utility maximization becomes a two-stage

process; we will focus on the agent’s choice of total efforts, which are then allocated in an

15Conditions (15)-(17) are sufficient but not necessary. For example, again given I = −a(F ∗ − F )2 and

g = −F = θ1
√
e1 + θ2

√
e2 − F 0, condition (15) translates into 2F (e1, e2) ≥ (F 0 + F ∗) − θl

√
el. Combining

with (10) and (11), we obtain a < 1/θ2k, which is a stronger requirement than a < 1/(θ2k − θ2l ), the necessary

and sufficient condition for dθk/dek to be positive.
16The alternative, where g′′e1e2 > 0 (so activities are complements in production), would reflect a ‘weakest

link’ structure. For example, coral reefs across the world face multiple threats including unsustainable fishing,

pollution, and climate change (Burke et al., 2011). If each of these alone represents an existential threat to

the reefs, the marginal benefit of addressing one cause will increase, the more action is taken on the others.
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optimal fashion across specific activities. While our assumption that g is strictly concave

implies that the PMP has a unique solution, the right panel of Figure 1 shows that the result

holds under multiple optima as well. Lemma 1 also provides an increasingness result which is

a necessary prerequisite for drawing comparative-statics conclusions about production levels.

Lemma 1. Each ê that results from maximizing (2) corresponds to a unique optimal produc-

tion level

ĝ(ê, θk) = max
e1,e2

g(e1, e2, θk) (18)

subject to e1 ≥ 0, e2 ≥ 0, and e1 + e2 = ê.

Moreover, ĝ is strictly increasing in ê.

Figure 1: The production-maximization problem. Left panel: the PMP has a unique solution.

Right panel: the PMP has multiple solutions.

It follows from Lemma 1 that a given effort vector e = (e1, e2) will solve (2) if and only if

it solves the PMP given some ê = e1 + e2 which solves

max
ê
Uê(ê, θk) = u(T − ê) + v(G−i(θk)) + I(ĝ(ê, θk)− g∗) (19)

subject to 0 ≤ ê ≤ T . The equivalence arises because any solution to either (2) or (19) will

solve the PMP; the former, because of Lemma 1; the latter, by construction.17

The key to showing that production levels are monotone nondecreasing is to note how

Lemma 1 implies that ĝ, being bijective, has an inverse ê = ĝ−1(ĝ, θk). Thus, reformulate

17In Appendix A, we derive sufficient conditions for total efforts ê to increase in line with activity-specific

productivity and the ideal contribution.
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(19) yet again as

max
ĝ
Uĝ(ĝ, θk) = u(T − ĝ−1(ĝ, θk)) + v(G−i(θk)) + I(ĝ − g∗) (20)

subject to 0 ≤ ĝ−1(ĝ, θk) ≤ T . Note that although the constraint set now depends on the

parameter θk, Proposition 2 still applies, as the set is nondecreasing. That is, for θ′k ≥
θk, {ĝ|0 ≤ ĝ−1(ĝ, θ′k) ≤ T} ≥S {ĝ|0 ≤ ĝ−1(ĝ, θk) ≤ T}, or equivalently [g0, ĝ(T, θ′k)] ≥S
[g0, ĝ(T, θk)].

The single-crossing condition corresponding to (20) is

∂2Uĝ
∂ĝ∂θk

= u′′
(
ĝ−1
)′
θk

(
ĝ−1
)′
ĝ
− u′

(
ĝ−1
)′′
ĝθk

(21)

Twice totally differentiating the identity ĝ−1(ĝ(ê, θk), θk) = ê with respect to ê and/or θk

reveals that (ĝ−1)′ĝ > 0, (ĝ−1)′θk < 0, and (ĝ−1)′′ĝθk < 0, so (21) is strictly positive, and

production is monotone nondecreasing in θk.

The following proposition summarizes what we have learned regarding policy spillovers.18

Proposition 3. Suppose K = 2 and consider a shift in parameter θk > 0. Then the set of

optimal production levels arg maxĝ Uĝ(ĝ, θk) is monotone nondecreasing in θk. Furthermore,

if

I ′′g′ekg
′
θk

+ I ′g′′ekθk ≥ 0

− u′′ − I ′′g′ekg
′
el
− I ′g′′e1e2 ≥ 0

then there is a crowding-out effect: arg max(ek,−el) U(ek,−el, θk) is monotone nondecreasing

in θk.

We conclude that results on policy-driven behavioral spillovers are broadly similar to those

of the previous section. For a range of plausible production functions, activity-specific policy

tends to drive a crowding-out effect which is incomplete in the sense that overall public-goods

production increases: spillovers weaken, but do not reverse the effect of the policy. It is

important to note that none of the results of Proposition 3 require that g be either concave or

18Regarding the ideal contribution, it is very easy to show that optimal production is monotone nondecreasing

in g∗ > g0. The one-dimensional constraint set of (20) is nondecreasing in g∗, as it does not depend on this

parameter and is a sublattice. It is then enough to check the single sufficient increasing-differences condition

∂2Uĝ
∂ĝ∂g∗

= −I ′′ > 0

which is obviously true.
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quasiconcave.19 Thus, when the ideal contribution is exogenous, the pattern of negative-sign

spillovers seems relatively clear-cut.

5 Endogenous ideals

Thus far, we have assumed that the ideal contribution is exogenous, but there are at least

two reasons to suppose that people sometimes update their beliefs about the proper course

of action in response to activity-specific policy. First, what one ideally should do is arguably

dependent in part on what one can do. Thus, as capabilities increase, people may feel that

‘I could have done more’. Second, activity-specific policy may signal that either a specific

activity or the overall public good is more important than previously thought.

Brekke et al. (2003) attempt to capture both these concerns by letting an activity-specific

ideal be formed endogenously through introspection and Kantian (categorical imperative-

type) moral reasoning. We will generalize their approach to a two-activity setting. Through-

out this section, we suppose that all solutions are interior and unique and that g′′ekek ≤ g
′′
e1e2 ≤

0 for k = 1, 2. Finally, for tractability, we assume that utility is quasilinear such that v′′ = 0,

v′ = 1, noting that this permits us to consider situations where each agent does not approxi-

mate own contributions by zero.

In the endogenous-ideal model, there is a preliminary stage before utility maximization is

performed. At this initial stage, all agents ask themselves: ‘What would be the outcome if

everyone acted like me?’ Then, starting from that thought experiment, they maximize a social

welfare function which aggregates all (identical) individual utilities U . If the welfare function

is utilitarian (all N utilities are given equal weight), each agent considers maximization of

W (e1, e2) = NU(e1, e2) = N
(
u
(
T − e1 − e2

)
+Ng(e1, e2)

)
(22)

subject to 0 ≤ e1 + e2 ≤ T . Call (22) the agent’s welfare maximization problem. The

effort vector (e1, e2) is associated with and chosen by the particular individual performing the

thought experiment. No matter which effort vector is chosen, it will result in g = g∗, so I

does not appear in (22).

Denote a welfare solution as (e∗1, e
∗
2); in addition g∗ = g(e∗1, e

∗
2) by construction. The above

analysis accommodates the impact of new information (the policy signaling effect), as agents’

view of the utility function U is not necessarily correct. In particular, information campaigns

19Also, since Proposition 3 does not depend on the magnitude of the ideal contribution, it applies with-

out modification to more typical warm-glow functions of the type I(g(e1, e2, θ1, θ2)), where I is everywhere

increasing in g and concave.
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may cause agents to revise their idea of the shape of the production function g, possibly

leading to a new welfare optimum (Nyborg, 2011).

In any case, once the welfare optimum has been calculated, to determine actual efforts,

each individual maximizes utility as given by

U(e1, e2) = u
(
T − e1 − e2

)
+G−i + g(e1, e2) + I(g(e1, e2)− g∗) (23)

subject to 0 ≤ e1 + e2 ≤ T . At this point, the solution from the welfare problem is again

treated as a fixed ideal. Thus, the magnitude of g∗ is the only information from the welfare

problem that is retained in utility maximization.

We will now examine whether our previous results on policy-driven spillovers still hold for

the above model. As a brief indication that they do not, let us return to the carbon-dioxide

example of Section 3. Welfare optimization in this setting entails maximizing

W (e1, e2) = N
(
T − e1 − e2 −N

(
F 0 − θ1

√
e1 − θ2

√
e2
))

and produces interior solution (e∗1, e
∗
2) = (θ21N

2/4, θ22N
2/4). This implies F ∗ = F 0−(N/2)(θ21+

θ22), which clearly depends on both productivity parameters. Inserting this ideal into utility

maximum (10) yields20

ek =

(
aNθk

(
θ21 + θ2

)
2
(
1 + a

(
θ21 + θ22

)))2

for k = 1, 2. Differentiating, we find that

de2
dθ1

=
a2N2θ1θ

2
2

(
θ21 + θ22

)(
1 + a

(
θ21 + θ22

))3 > 0

with an analogous expression for de1/dθ2. Thus, we have crowding-in. The two models —

exogenous and endogenous ideal formation — deliver opposing predictions on the sign of

spillovers in this particular case.

However, returning to problems (22) and (23), it will become apparent that while the

general endogenous-ideal model does not rule out crowding-in, it also does not guarantee it.

The analysis to follow is based on implicit-function methods. The monotone comparative-

statics method used in Section 4 is of limited value here, as it is unable to demonstrate

positive spillovers: recall from the discussion on sublattices that one of the activities needs to

be redefined as ẽl = −el.21

20Recall that unlike (23), problem (9) had agents approximating their own contribution to overall emissions

by zero. In the present example, dropping the own-contributions term g(e1, e2) does not affect the sign of

spillovers.
21Using implicit-function methods to solve the exogenous-ideal model under the assumptions used in this

section produces unambiguous crowding-out.
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At an interior solution to the welfare maximization problem, first-order conditions are

−u′+Ng′k = 0, for k = 1, 2. Implicit differentiation with respect to θk produces the following

system of equations: (
u′′ +NHg

)
e∗θ = −Ng′′eθ (24)

Here u′′ is a 2 × 2 matrix for which every element is u′′, Hg is the Hessian matrix of g, and

g′′eθ is a diagonal matrix where, for k = 1, 2, element (k, k) is g′′ekθk . We are interested in e∗θ;

element (k, l) of this matrix is de∗k/dθl. System (24) has a solution if and only if the matrix

u′′ +NHg is invertible; and

|u′′ +NHg| = Nu′′
(
g′′e1e1 + g′′e2e2 − 2g′′e1e2

)
+N2

(
g′′e1e1g

′′
e2e2 −

(
g′′e1e2

)2) ≥ 0 (25)

by the concavity of g.22 In any reasonably well-behaved problem, this determinant is nonzero.23

Then, once we have e∗θ, we may use it to calculate the pair g∗θ , for which each element k = 1, 2

is
dg∗

dθk
= g′e1

de∗1
dθk

+ g′e2
de∗2
dθk

+ g′θk

Finally, we consider the impact of increased productivity on the utility-maximizing solution,

taking the changed ideal into account. The first-order conditions of the utility-maximization

problem (23) are −u′ + (1 + I ′)g′ek = 0 for k = 1, 2. Noting that g∗ = g∗(θk), we differentiate

these conditions with respect to θk to produce the implicit-function system(
u′′ + (1 + I ′)Hg + I ′′∇eg(∇eg)′

)
eθ = −

(
(1 + I ′)g′′eθ + I ′′∇eg (∇θg − g∗θ)

′) (26)

where ∇eg is the gradient of g with respect to the effort variables, and ∇θg = (g′θ1g
′
θ2

)′ is the

pair of ‘first-order’ effects of the productivity parameters on production. eθ is the sought-after

matrix of derivatives, as element (l, k) of eθ is del/dθk.

System (26) has a solution if and only if the matrix u′′ + (1 + I ′)Hg + I ′′∇eg(∇eg)′ is

invertible. Again, it will be in most problems, since at an interior solution the determinant

22Strict concavity implies not only g′′e1e1g
′′
e2e2 − (g′′e1e2)

2 ≥ 0, but g′′e1e1 + g′′e2e2 − 2g′′e1e2 ≤ 0 as well. To see

why, note that the former condition implies

g′′e1e2 ≥ −
√
g′′ekekg

′′
elel = −

√
(−g′′ekek )(−g′′elel) ≥ −

−g′′ekek − g
′′
elel

2
=
g′′ekek + g′′elel

2

where the last inequality is due to the relationship between arithmetic and geometric means. Thus g′′e1e1 +

g′′e2e2 − 2g′′e1e2 ≤ 0.
23The textbook example of a function for which both terms in parentheses could equal zero is a higher-order

polynomial like −x41−x42, whose Hessian determinant is zero in exactly one point. This function is not strictly

increasing, however, and while it is probably possible to construct a different counterexample which satisfies

all our assumptions about g (for instance, in one dimension, the primitive function of 10− tan−1(x−1)3 does),

clearly it would need to be very specific.
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of this matrix is equal to

(1 + I ′)
(
g′′e1e1 + g′′e2e2 − 2g′′e1e2

) (
u′′ + (g′e1)2I ′′

)
+ (1 + I ′)2

(
g′′e1e1g

′′
e2e2 − (g′′e1e2)2

)
≥ 0 (27)

The qualitative properties of the solution depend on the sign of the relevant element of ∇θg−
g∗θ . This vector consists of first-order productivity effects on the absolute distance between

actual and ideal effort. For exogenous g∗, the first-order change in self-ideal discrepancy is

simply g′θk > 0, and increased productivity instantaneously make individuals better off in the

sense that they enjoy improved self-image even without adjusting their efforts. If, however,

the ideal is endogenous, the first-order effect is g′θk−dg
∗/dθk, which may be negative; in other

words, the ideal may not only rise in response to a productivity increase, but rise by more

than the first-order effect on production, g′θk . If so, people are instantaneously made worse,

rather than better, off. Indeed, in the welfare problem, this turns out to be our benchmark

case.

Lemma 2. Suppose a unique and interior solution to (22) exists. Consider a small shift in

productivity parameter θk at that solution and suppose that g is strictly quasiconcave, with

g′′ekek ≤ g
′′
e1e2 ≤ 0 for k = 1, 2. If a solution to system (24) exists, then

g′θk ≤
dg∗

dθk
.

for k = 1, 2.

In analyzing the utility-maximization problem, it is important to bear in mind that its

optimum is likely to be a different point in the ‘effort plane’ from the welfare optimum. Hence,

there is no guarantee that Lemma 2 will still hold at that point, so we need to learn more

about the magnitude of g′θk at the utility-maximizing point. We will now show that given our

assumptions on g′′e1e2 , Lemma 2 applies to the utility-maximizing point as well.

Recall that by Lemma 1, each utility-maximizing sum of efforts ê corresponds to only a

single production level ĝ. But because of strict quasiconcavity, each optimal production level

then also corresponds to a unique optimal effort vector. Hence, we may define a vector-valued

‘conditional effort function’ e(ĝ(ê)) = e(ê). Moreover, if only interior solutions are allowed,

casual inspection of the first-order conditions for a utility maximum shows that e(ê) must

map on to the line g′e1 = g′e2 in effort space. Indeed, by Proposition 1, the segment of this

line where g0 ≤ g ≤ g∗ traces out the set of all possible interior utility maxima.

Now, differentiate the condition g′e1 = g′e2 implicitly with respect to ê. That is, define (for

k = 1, 2)

g′e1 (ek (ê) , ê− ek (ê))− g′e2 (ek (ê) , ê− ek (ê)) = 0
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and differentiate both sides with respect to ê to produce (for k 6= l)

dek
dê

=
g′′elel − g

′′
e1e2

g′′e1e1 + g′′e2e2 − 2g′′e1e2
≥ 0

so long as g′′e1e1 + g′′e2e2 − 2g′′e1e2 6= 0, since g is concave and by assumption g′′e1e2 ≥ g
′′
elel

. Thus,

both activities are ‘normal’ in the production-maximization problem. Finally, applying the

chain rule to the conditional effort function gives

dek
dĝ

=
dek
dê
dĝ
dê

By Lemma 1 we have dĝ/dê > 0, so dek/dĝ ≥ 0 at any point where g′e1 = g′e2 . It follows that,

if ē = (ē1, ē2) denotes the utility maximum, we must have ēk ≤ e∗k for k = 1, 2. Finally, by

Lemma 2 and since g′′ekθk > 0,

g′θk(ē) ≤ g′θk(e∗) ≤ dg∗

dθk
(28)

With these technicalities out of the way, we can go on to analyze the end result of a produc-

tivity shift on actual efforts. Our results are summarized in the following proposition.

Proposition 4. Suppose a unique and interior solution to (22) exists, as well as to (23).

Consider a small shift in productivity parameter θk > 0 at these points and suppose g is

strictly quasiconcave, with gkk ≤ g12 ≤ 0 for k = 1, 2. If systems (24) and (26) both have a

solution, then for l 6= k,

A. dek
dθk

> 0.

B. del
dθk

R 0.

C. production strictly increases: dg
dθk

> 0.

Unlike Proposition 3, the above result does not guarantee crowding-out, although activity-

specific policy still drives increased public-good production. In fact, we can draw no general

conclusions about the sign of spillovers. The intuition is the following. Agents revise their view

of the ideal contribution upwards to match productivity increases, fueling further expansion

of effort. While the productivity shift itself tends to drive increased effort only on activity k,

the increase in ideal contributions affects both activities, and may or may not be sufficiently

pronounced to produce effort increases also for el, depending on complex interactions between

e.g. the marginal product of e1 and e2.

Under what conditions are predictions from the endogenous-ideal model close to those of

the exogenous-ideal one? The proof of Proposition 4 reveals that the difference in spillovers
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between the exogenous and the endogenous case is determined by dg∗/dθk, or more precisely

by
g′1
(
g′′ekek − g

′′
e1e2

)
(1 + I ′)I ′′

|u′′ + (1 + I ′)Hg + I ′′∇eg(∇eg)′|
· dg

∗

dθk
(29)

where the determinant is given by (27), and

dg∗

dθk
= g′e1

de∗1
dθk

+ g′e2
de∗2
dθk

+ g′θk =
N2g′e1g

′′
ekθk

(
g′′e1e2 − g

′′
elel

)
|u′′ +NHg|

+ g′θk (30)

with the determinant given by (25). All else equal, differences between the models grow larger

(and, by (B.5), spillovers more likely to be positive) as dg∗/dθk increases, but since the ideal

contribution is endogenous, all else is typically not equal. Indeed, it turns out that there are

few clear-cut patterns to be found. For example, differentiating (29) and (30) reveals only

ambiguous effects of increasing g′1 = g′2 or g′′e1e2 in the welfare as well as the utility maximum.

Nevertheless, some conclusions can be drawn. For example, (30) is increasing in g′1 = g′2,

implying that g∗ increases relatively strongly if its level, based on introspective moral reason-

ing, would have been low to begin with. Consider a hypothetical example. In each of two

different collective households, having a clean kitchen is a public good. Cleaning can be done

by vacuuming (ek) and/or mopping the floor (el). Suppose the tenants of the first household

place a higher marginal value on leisure than those of the second household, implying that

initially the Kantian ideal level of cleanliness would be lower in the first household than in

the second. (Actual cleaning efforts need not be lower in the first household, as these are

partly determined by image motivation.) Now suppose that both households are given a

more efficient model of vacuum cleaner (θk increases). Where should we expect the perceived

ideal to increase the most? According to (30), the answer is the first household, because in

the second household, cleaning the kitchen very thoroughly is already considered ideal. As

a result, if we are willing to make the ceteris paribus assumption, we might expect the first

household to mop more when receiving the new vacuum cleaner, and the second to mop less.

More importantly, we can also conclude from (29) and (30) that the differences between the

models increase (and spillovers shift towards crowding-in) as u′′ increases, i.e. as the utility

of leisure becomes more approximately linear. The intuition is that −u′′, in reflecting the

marginal value of leisure time, also reflects the benefits of engaging in moral licensing. When

θk increases, agents will tend to increase ek in response. The resulting drop in leisure is costlier

for smaller (more negative) u′′, and the temptation to let the increase in ek license decreased

el will be correspondingly greater. Since the pattern emerges even in the hypothetical welfare

problem, the ideal contribution is more responsive to productivity shocks for large u′′, further

increasing the divide between spillover results in the exogenous and endogenous model. This

may be one reason why the quasilinear example of Section 3 implies crowding-out when g∗ is
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exogenous, and crowding-in when it is endogenous.

6 Revisiting an earlier result: centralizing an activity

In this section, we argue that there may be several plausible ways of extending a given

single-activity model to the multi-activity case, and that the mode of extension is likely to

make a difference. In particular, not all generalizations need reproduce the ideas of the original

model; one needs to think carefully about which multi-activity model is appropriate to a given

situation.

We illustrate these points by revisiting Bruvoll and Nyborg (2004), who analyze the ag-

gregate utility consequences of centralization, i.e. of having government perform a single

contributing activity directly. They use a self-image function with an exogenous production-

based ideal, making their model analogous to24

U = u(T − e) + v(G−i(θ)) + I(g(e, θ)− g∗) (31)

which is utility function (2) with K = 1.

Bruvoll and Nyborg (2004) interpret g as the environmental improvement from each

agent’s efforts on recycling household waste, and ask what would happen if that waste were

to be sorted at a centralized plant rather than by households. Such a policy would obviously

render individual recycling efforts superfluous; Bruvoll and Nyborg (2004) argue that it would

also ease the burden of having to secure a positive self-image. Thus, holding the amount of

waste sorted constant across regimes, individual utility would increase. This in turn suggests

that in cost-benefit analyses, household willingness to pay to avoid having to recycle should be

strictly positive. The argument is that, while activities such as source separation of waste by

households may appear voluntary because individuals are not, strictly speaking, obligated to

engage in them, they really are not: the need to improve one’s self image forms a behavioral

constraint that individuals would be better off without.

The effect of centralization in Bruvoll and Nyborg (2004) is to exogenously set g∗ equal to

g0 = 0. Because only one contributing activity exists, doing so eliminates the need to perform

any activity, and it is not difficult to see that this should raise utility. The clarity of this result,

24The Bruvoll and Nyborg (2004) utility model is specified as

U = u(c, T − e,G−i + g(e), I(g(e)− g∗))

where c is individual consumption. Bruvoll and Nyborg (2004) do not consider productivity shifts, so θ is not

explicitly an argument of G−i or g. Compared to the original model, equation (31) imposes linear separability,

abstracts from consumption c, and assumes that individuals disregard their own contribution g(e), except in

the self-image term I. None of these changes alter the central conclusions of the original paper.
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however, relies on the implicit assumption that the single centralized activity can be analyzed

separately from other activities, e.g. other environmentally friendly acts. This assumption is

not necessarily present in multi-activity models, where at least one non-centralized activity

will be included. To make this point more clearly, suppose N identical agents maximize

U(e1, e2) = u (T − e1 − e2) + v(G−i(θ1, θ2)) + I (g(e1, e2, θ1, θ2)− g∗) (32)

From a purely technical standpoint, this may seem like a straightforward generalization of

model (31); indeed, it is model (2) with K = 2. Yet (32) does not examine the centralized

activity in isolation, and therefore raises new issues that are not apparent in the single-activity

case.

First, it is no longer clear whether or how g∗ should change as a result of centralization.

Certainly, as the ideal is based on overall production g(e1, e2, ·), it seems unreasonable to set it

to zero if only one of possibly many activities is centralized. An exogenous g∗ may well reflect

concepts that are independent of the number of available activities: in the example of Section

3, ideal per-capita emissions were derived from the atmospheric CO2 concentration considered

safe, which does not change if an activity is centralized.25 In what follows, therefore, we will set

the relevant productivity parameter θk to zero, while g∗ will remain fixed at its initial level.

Supposing that solutions to (32) are unique, we denote an identical individual’s optimal

allocations before and after centralization by e0 = (e01, e
0
2) and e1 = (e11, e

1
2), respectively.

When activity k is fully centralized, agents subsequently choose the boundary solution e1k = 0

for all agents. To see why, note that θ1k = 0 implies g′ek = 0 everywhere. The left-hand side

of the kth Kuhn-Tucker condition (3) for maximizing (32) then becomes −u′ − λ < 0, which

is incompatible with e1k > 0.26

Second, in Bruvoll and Nyborg (2004), full centralization is taken to mean that total

production G = Ng(·) is held fixed at its initial level. While a reasonable approach in a

single-activity setting, holding overall production constant is not really possible here; agents

will, for instance, increase el (l 6= k) in response to activity k being centralized if Proposition

3 applies. It seems rather more natural to fix efforts. Let centralization be equivalent to all

agents not only making efforts e1l (as they actually do), but also e0k at initial productivity θ0k.

25If, like Bruvoll and Nyborg (2004), we interpret the public good as ‘environmental quality’, another example

is the concept of an individual ecological footprint (Wackernagel and Rees, 1996).
26A reviewer suggested that centralization should not be understood as θk = 0, but rather as making recycling

infinitely easy, since waste is then sorted without individual effort. Indeed, we noted in the single-activity

example of section 3 that effort also approaches zero when productivity becomes very large. In response, we

would argue that θk is associated with each agent’s own productivity; our interpretation is that centralization

makes recycling morally irrelevant (g∗ = 0) in the Bruvoll and Nyborg (2004) model precisely because agents

are rendered unable to directly affect the share of sorted waste at the margin (so θk = 0).
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Under the notational convention g = g(ek, el; θk), the ex-post production of others will then

be G−i = (N − 1)g(e0k, e
1
l ; θ

0
k).

Third, centralization effectively guarantees that some level of effort will be provided on the

targeted activity. Disregarding additional tax payments, agents may view that guarantee as an

effort-free windfall to their self-image, making them better off; then again, they might not. If

windfalls are fully image-relevant, the production level fed into the self-image function should

be g(e0k, e
1
l ; θ

0
k), which is a single identical agent’s share of total ex-post production. Then the

conclusion of Bruvoll and Nyborg (2004) — that centralization increases each agent’s utility

— is unsurprisingly borne out. We follow the original treatment in excluding public-sector

costs of performing the centralized activity.

Proposition 5. Suppose that activity k is fully centralized. Ex-post production is given by

G−i = (N − 1)g(e0k, e
1
l ; θ

0
k), and is fully counted as a windfall, so I = I(g(e0k, e

1
l ; θ

0
k)− g∗) for

all agents. Then U(0, e1l ) ≥ U(e0k, e
0
l ).

However, it can also be argued that windfalls should not be image-relevant. Recall that g

is a personal production function. In truth, agents only put in (ek, el) = (0, e1l ), while facing

productivity θk = 0. If they are impure altruists in the sense of Andreoni (1990), they will

be especially concerned with the effects of their own actions, and may be unimpressed by

outcomes that they have not ‘earned’ themselves. If so, we should feed g(0, e1l ; 0) into the

self-image function.27

In this case, centralization has an ambiguous effect, which is especially illuminating to

examine in incremental terms. Suppose that regardless of how much effort agents put in

on activity k, public policy adds just enough to keep effort constant at e0k in G−i = (N −
1)g(ek, el; θ

0
k). θk is the productivity faced solely by individuals and can be interpreted as

the degree of centralization, as overall effort on activity k is always defined by e0k and θ0k. If

windfalls are not image-relevant, the resulting utility function is formally identical to (32),

27The windfall issue is also recognized by Johansson-Stenman and Svedsäter (2012), who lean toward this

position. The image-relevance of windfalls likely depends on the framing adopted by agents. If an agent

views production in terms of individual ‘shares’, then her share remains her own even if it is centralized,

and what is done in her name may spill over onto her personal self-image. This might be the case, for

example, when the CO2 problem is expressed in terms of individual carbon footprints. Other frames may not

be share-oriented, such as the view that pro-environmental acts are a way, not to ease personal culpability,

but to support a societal transition toward ‘sustainability’. More broadly, we consider windfalls likely to be

disregarded whenever g∗ is framed as improvements by some constant amount rather than improvements up

to some amount. This is similar to warm-glow models, where doing more is always desirable; indeed, provided

windfalls are image-irrelevant, the results to follow apply to increasing image functions I(g(·)) as well.
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and at an interior solution the envelope theorem gives

dU

dθk
= v′

dG−i
dθk

+ I ′g′θk = (N − 1)v′g′el
del
dθk

+ I ′g′θk (33)

If Proposition 3 holds, the sign of this expression is indeterminate. Thus, centralization

(lowering θk) may leave agents worse off. This is due to a trade-off. On the one hand, e0k

is now guaranteed to be supplied at productivity θ0k, leaving individuals free to substitute to

other activities, increasing total production. On the other hand, people are worse off because

g∗ is unchanged and centralized efforts do nothing to improve their self-image.28

In this setting, then, a second-best problem may arise. While all else equal it would

increase aggregate utility to relieve agents of their moral motivation to contribute, such an

objective is beyond reach, and incremental steps toward it — by centralizing a single activity

— may lower aggregate utility instead.29

In conclusion, we have shown that extending the Bruvoll and Nyborg (2004) framework

to model (32) introduces some additional issues, and moreover accommodates the idea that

centralization may not entail a utility gain. More broadly, however, it is a simple matter

to formulate a different multidimensional model which clearly reproduces both the intuitions

and the results of Bruvoll and Nyborg (2004). Consider a plausible alternative to ‘self-image’

function (1), namely

S(e) = I(e1 − e∗1, ..., eK − e∗K) (34)

where for k = 1, ...,K, e∗k ≥ 0 are activity-specific ideal contributions. In most other ways

the self-image function is similar to (1): it is twice continuously differentiable and maximized

when, for all k, ek = e∗k. We have I ′k > 0 when ek < e∗k; I
′
k = 0 when ek = e∗k; I

′
k ≤ 0 when

ek > e∗k. We could also assume that I is strictly concave in effort.

28If we allow the ideal contribution to be endogenously determined as in section 5, the counterpart to (33) is

dU

dθk
= (N − 1)v′g′el

del
dθk

+ I ′
(
g′θk −

dg∗

dθk

)
where condition (28) implies that the second term is negative and Proposition 4 implies that the first term

may be positive. Thus, compared to the case of exogenous ideals, both terms may switch sign, and it remains

unclear whether a given effect necessarily dominates.
29As this suggests that some agents may be willing to pay to avoid decreasing individual responsibility for

recycling, it may also be premature to conclude that the aggregate opportunity cost of time spent recycling

must be strictly positive. Several survey studies (Bartelings and Sterner, 1999; Bruvoll et al., 2002; Berglund,

2006) estimate this cost by asking whether people would prefer waste sorting to be done by households or

by others. For example, in Bruvoll et al. (2002) 27% of respondents stated a preference for sorting the waste

themselves, while 72% did not. In all studies, however, subsequent willingness-to-pay questions were phrased

in a way that ruled out negative WTP values; we suggest it may be worthwhile to drop that restriction.
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An obvious difference between this model and model (1) lies in whether best efforts are

good enough. Function (1) is a consequentalist’s model: people ask, ‘Am I making enough of

a difference?’ Only productive results are compared, so it is enough to approach any point

in RK which lies on the level curve g = g∗. By comparison, (34) is a deontological image

function, where the question is, ‘Am I trying hard enough?’ Here, to improve one’s self-image

is to approach a single point in RK .30

More importantly, the models can be thought of in terms of different mental accounting

strategies. Read et al. (1999) document a range of broad versus narrow modes of ‘choice

partitioning’, including ‘choice bracketing’ (whether a sequence of choices are made jointly or

piecemeal) and ‘joint/separate evaluation’ (whether each alternative is judged solely on its

own merits, or actively compared with other options). Differences between the two multi-

dimensional self-image functions arguably capture something of the flavor of both, since

contributions are often made as separate choices (joint/separate evaluation) and at differ-

ent points in time (choice bracketing). Interpreting the models in these terms, function (1)

imposes broad partitioning, while (34) assumes narrow partitioning.

Read et al. (1999) present a great deal of evidence documenting the often striking difference

that different modes of choice partitioning make for behavior. Similarly, the ‘separate’ model

(34) does much better at replicating the arguments of Bruvoll and Nyborg (2004) than the

‘joint’ model (32). In the latter, it is not obvious that setting g∗ = 0 is appropriate when only

activity k is being centralized, but we have no objection to setting e∗k = 0 within the former.

The fit with previous results is better because narrow partitioning is imposed by construction

within a one-dimensional model that is interpreted in terms of recycling or some other single

non-composite activity. Whether the self-image function is production-based (e.g. Bruvoll

and Nyborg, 2004) or effort-based (Brekke et al., 2003), there exists only one activity, so the

ideal will be general to all activities by definition, while comparisons between activities are

omitted from the analysis.

As a result, the intuitions of most papers in the ‘duty-orientation’ literature differ from

those that underlie equation (33). These papers often stress that moral responsibility, includ-

ing for single non-aggregate activities, is a burden which individuals would prefer not to bear

(Bruvoll and Nyborg, 2004; Brekke et al., 2010). For example, Nyborg (2011) argues that a

single-activity version of the self-image model is consistent with evidence (Dana et al., 2007)

30An experiment by Cornelissen et al. (2013) suggests that people’s ethical mind-set (consequentalist versus

rule-based) may make a difference for the direction of spillovers. Subjects that were primed to think of decisions

in terms of outcomes exhibited negative spillovers, while those primed to think in terms of rules exhibited

positive spillovers. We have shown in this paper that spillovers tend to be negative for the consequentialist

model (1); showing that (34) leads to positive spillovers requires additional assumptions on I.
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that when people are offered the chance to remain ignorant of how their choices affects the

other player’s payoff in a binary dictator game, many will choose to do so and then pick the

selfish option. In equation (33), by contrast, an overarching motivation to contribute is taken

for granted; while individuals would be better off without that general feeling of moral respon-

sibility, they need not feel the same about any given activity. In effect, agents ask: ‘Given

that (unfortunately) I ought to make this much of a difference, how should I allocate effort

across activities?’ Here, to the extent that activities expand the choice set for approaching

the overall ideal, they make agents better off, not worse.

As for which approach is the right one, model (1) does have the somewhat attractive

property that substitutability across activities derives from the public-good production tech-

nology, which may be observable. By contrast, in a model based on (34), the sign of spillovers

depends on mixed-partial derivatives of I(e1 − e∗1, ..., eK − e∗K) that are difficult to interpret.

Nevertheless, the competing ideas presented in this section should be tested: is moral behav-

ior best described as consistent or as piecemeal, with each moral act considered in isolation?

While it is clear that people often do engage in narrow partitioning, there is also evidence

that efforts on different activities may be driven by the same general motivation (Thøgersen

and Ölander, 2006). In our view, careful research on this question is warranted.

7 Concluding remarks

This paper has extended variants of the Brekke et al. (2003) duty-orientation model to

the case of several contributing activities. This extension has been fruitful in two respects.

First, we have used the multi-activity model to analyze productivity-led spillover effects from

a policy which targets a particular prosocial activity. Here we have considered two cases:

one where the ‘ideal contribution’ considered by agents is exogenous, and one where it is

endogenously determined through moral introspection. In the former, our results point to

crowding-out of effort on other activities, similar to the ‘moral licensing effect’(Blanken et al.,

2015; Jacobsen et al., 2012; Tiefenbeck et al., 2013), as the benchmark case. In the latter,

the model fails to provide a clear prediction on the sign of spillovers.

Second, we have argued that the manner of generalization to multiple activities matters:

a given single-activity model may (but need not) be extended in such a way that previous

results and intuitions are lost. In the setting we consider, results depend crucially on whether

the self-image value of contributing to a public good is considered separately for each prosocial

activity, or (as in our model) is aggregated across all activities. In our view, this dichotomy

is important, but tends not to be readily apparent in single-activity settings.

With respect to both of the above types of results, we consider the present paper only a

starting point for further research. In particular, we would like to see models emphasizing
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social and strategic interaction (such as that of Bénabou and Tirole, 2006) extended to the

case of two or more activities. It is likely that this would produce new results and intuitions

with respect both to spillovers and direct effects. Our hope is that this paper has at least

demonstrated the usefulness of explicitly considering non-targeted activities in research on

policies that aim to encourage prosocial behavior.
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Appendices

A Monotone comparative statics and total efforts

Here we derive sufficient conditions for optimal total efforts to be monotone nondecreasing

in θk and g∗. Our starting point is the problem (19). The constraint set of this problem is

simply a constant interval on the real line, hence a sublattice. Let us therefore proceed to apply

Proposition 2. Using differentiability of ĝ produces the sufficient single-crossing condition

∂2Uê
∂ê∂θk

= I ′′
(
∂ĝ

∂θk

∂ĝ

∂ê

)
+ I ′

∂

∂θk

(
∂ĝ

∂ê

)
≥ 0 (A.1)

Now, note that both ê and θk are parameters in the PMP. Thus, we may use an envelope

theorem to differentiate ĝ. To make its application feasible, it is enough to suppose that

the initial solution to the PMP is unique, with ek > 0. The PMP is formally equivalent

to the standard utility-maximization problem with an equality constraint and a price vector

of ones; thus, as usual, strict quasiconcavity (which follows from strict concavity) ensures

uniqueness. Applying the envelope theorem produces ∂ĝ/∂θk = g′θk and ∂ĝ/∂ê = λ, where λ

is the Lagrange multiplier associated with the restriction e1+e2− ê = 0. If the initial solution

to (19) had ek > 0, the corresponding necessary Kuhn-Tucker conditions for the PMP imply

λ = g′ek .31 When differentiating a second time, we can no longer ignore effects through effort

variables, so

∂

∂θk

(
∂ĝ

∂ê

)
=

∂

∂θk

(
g′ek (ek (θk) , el (θk) , θk)

)
= g′′ekek

dek
dθk

+ g′′ekel
del
dθk

+ g′′ekθk

where dek/dθk and del/dθk are shifts in optimal efforts within the PMP, i.e. while holding ê

constant. For this reason, del/dθk = −dek/dθk, and condition (A.1) is transformed into

∂2Uê
∂ê∂θk

= I ′′g′ekg
′
θk

+ I ′
((
g′′ekek − g

′′
ekel

) dek
dθk

+ g′′ekθk

)
≥ 0

Applying monotone comparative statics methods to the PMP, we see that dek/dθk will be

nonnegative in the above expression whenever g′′ekel ≤ 0 (as g′′ekθk > 0 and g′′elθk = 0). If also

g′′ekek < g′′ekel , the sufficient condition for total efforts to increase with productivity ends up

being more restrictive than condition (15), which guarantees that direct effects from policy

are positive. This is the case, for example, in the simple example of Section 3, where g′′ekek <

g′′ekel = 0.

31The constraint qualification required for the Kuhn-Tucker conditions to be necessary holds, as, since ek > 0

by assumption, binding constraints in the PMP are e1 + e2 = ê and, possibly, el = 0. Even if both are active,

the associated gradient vectors are linearly independent.
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As for the relationship between g∗ and total efforts, we obtain the following from (19):

∂2Û

∂ê∂g∗
= −I ′′∂ĝ

∂ê
= −I ′′λ ≥ 0

so the set of total efforts is then monotone nondecreasing in g∗.

B Mathematical proofs

Proof of Proposition 1

Proof. g(e) ≥ g0 by definition. The proof that g(e) ≤ g∗ is by contradiction. Suppose

g(e) > g∗. Since g(e) = g0 otherwise, there must exist some k for which optimal ek > 0,

implying that the corresponding Kuhn-Tucker condition (3) is satisfied with equality. But

this is a contradiction as, for g(e) > g∗, we have −u′ + g′ekI
′ − λ < 0. Hence e cannot be

an optimum. If g∗ > g0, we suppose instead that g(e) ≥ g∗. The rest of the argument is

identical.

Proof of Lemma 1

Proof. If ê = 0, the result is trivial. For ê > 0, suppose e′ = (e′1, ..., e
′
K) solves (2) but that

g(e′) does not satisfy (18) at effort level ê′ =
∑

k e
′
k. Because Proposition 1 implies g∗ > g(e′)

and g is continuous, there must then exist some other vector e′′ with ê′′ =
∑

k e
′′
k = ê′ and

g∗ ≥ g(e′′) > g(e′), implying

u(T − ê′) + v(G−i) + I(g(e′)− g∗) < u(T − ê′′) + v(G−i) + I(g(e′′)− g∗)

so e′ cannot solve (2).

For strict increasingness, consider vectors e′ 6= e′′, with ê′′ > ê′ but g(e′′) ≤ g(e′). Also,

suppose that both vectors satisfy (18) for their respective effort levels. Now, consider the

effort vector (e′1 + ê′′ − ê′, e′2, ..., e′K). Its sum of efforts is e′1 + ê′′ − ê′ + e′2 + ...+ e′K = ê′′, yet

if g is strictly increasing,

g(e′1 + ê′′ − ê′, e′2, ..., e′K) > g(e′) ≥ g(e′′)

so e′′ cannot satisfy (18) after all.
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Proof of Proposition 5

Proof. Note that

U(0, e1l )− U(e0k, e
0
l ) =u

(
T − e1l

)
+ (N − 1)g

(
e0k, e

1
l ; θ

0
k

)
+ I

(
g
(
e0k, e

1
l ; θ

0
k

)
− g∗

)
−u
(
T − e0k − e0l

)
− (N − 1)g

(
e0k, e

0
l ; θ

0
k

)
+ I

(
g
(
e0k, e

0
l ; θ

0
k

)
− g∗

)
(B.1)

We claim that any agent will have e0l ≤ e1l ≤ e0k+e0l ; then, because both g and I are increasing

functions, (B.1) is clearly nonnegative. The proof of e0l ≤ e1l ≤ e0k + e0l is by contradiction.

First, to show that e1l ≤ e0k + e0l , suppose instead that e1l > e0k + e0l ≥ 0. This is possible

only if e0k + e0l < T . Recall from the discussion of Kuhn-Tucker conditions (3) that λ ≥ 0,

with λ = 0 if ek + el < T (complementary slackness). Thus, if e1l = e1k + e1l < T , ex-ante and

ex-post Lagrange multipliers (denoted λ0, λ1) are both equal to zero, and if e1l = T , we have

λ0 = 0 but λ1 ≥ 0; hence, in either case, λ1 ≥ λ0. Then we have

I ′(g(e0k, e
1
l ; θ

0
k)− g∗)g′el(e

0
k, e

1
l )− λ1 < I ′(g(e0k, e

0
l ; θ

0
k)− g∗)g′el(e

0
k, e

0
l )− λ0

≤ u′(T − e0k − e0l ) ≤ u′(T − e1l )

where the first (strict) inequality is due to strict concavity of g, and the second is the Kuhn-

Tucker condition number l in the ex-ante problem. By Kuhn-Tucker condition number l in

the ex-post problem, this chain of inequalities implies that e1l = 0, so the ex-post solution

cannot have e1l > e0k + e0l .

Next, to show that e0l ≤ e1l , suppose instead that e0l > e1l ≥ 0. Then, regardless if

e0k + e0l = T or not, we must certainly have e1l < T , so λ1 ≤ λ0. But then, similarly to above,

we have

I ′(g(e0k, e
1
l ; θ

0
k)− g∗)g′el(e

0
k, e

1
l )− λ1 > I ′(g(e0k, e

0
l ; θ

0
k)− g∗)g′el(e

0
k, e

0
l )− λ0

= u′(T − e0k − e0l ) ≥ u′(T − e1l )

so the ex-post utility maximum cannot have e1l < e0l .

Proof of Lemma 2

Proof. The solution to system (24), if it exists, is

e∗θ = −N
(
u′′ +NHg

)−1
g′′eθ (B.2)

For k = 1, 2 and l 6= k, we use this to calculate

dg∗

dθk
− g′θk = g′e1

de∗1
dθk

+ g′e2
de∗2
dθk

=
N2g′e1g

′′
ekθk

(
g′′e1e2 − g

′′
elel

)
|u′′ +NHg|

where the second equality uses the first-order conditions for an interior optimum. This ex-

pression is non-negative for g′′e1e2 ≥ g
′′
elel

.
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Proof of Proposition 4

Proof. The solution to system (26), if it exists, is

eθ = −
(
u′′ + (1 + I ′)Hg + I ′′∇eg(∇eg)′

)−1 (
(1 + I ′)g′′eθ + I ′′∇eg (∇θg − g∗θ)

′) (B.3)

For part A, we use (B.3) to find

dek
dθk

=
(1 + I ′)

(
g′′ekθk

(
−u′′ − g′′elel(1 + I ′)−

(
g′e1
)2
I ′′
)

+ g′e1

(
dg∗

dθk
− g′θk

) (
g′′elel − g

′′
e1e2

)
I ′′
)

|u′′ + (1 + I ′)Hg + I ′′∇eg(∇eg)′|
> 0

(B.4)

because g′′e1e2 ≥ g
′′
elel

.

For part B, we use (B.3) to also calculate

del
dθk

=
(1 + I ′)

(
g′′ekθk

(
u′′ + g′′e1e2(1 + I ′) +

(
g′e1
)2
I ′′
)

+ g′e1

(
dg∗

dθk
− g′θk

) (
g′′ekek − g

′′
e1e2

)
I ′′
)

|u′′ + (1 + I ′)Hg + I ′′∇eg(∇eg)′|
Q 0

(B.5)

Finally, for part C, since the FOC implies g′e1 = g′e2 , total differentiation at an interior utility

maximum produces
dg

dθk
= g′e1

(
de1
dθk

+
de2
dθk

)
+ g′θk

but using expressions (B.4) and (B.5) we find

de1
dθk

+
de2
dθk

=
(1 + I ′)

(
g′′ekθk

(
g′′e1e2 − g

′′
elel

)
(1 + I ′) + g′e1

(
dg∗

dθk
− g′θk

) (
g′′e1e1 + g′′e2e2 − 2g′′e1e2

)
I ′′
)

|u′′ + (1 + I ′)Hg + I ′′∇eg(∇eg)′|
≥ 0

because g is concave. Hence, dg
dθk

> 0.
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