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Abstract

The most popular approach to modelling and forecasting mortality rates is the model of

Lee and Carter (Modeling and Forecasting U. S. Mortality, Journal of the American Statistical

Association, 87, 659–671, 1992). The popularity of the model rests mainly on its good fit to

the data, its theoretical properties being obscure. The present paper provides asymptotic

results for the Lee-Carter model and illustrates its inherent weaknesses formally. Require-

ments on the underlying data are established and variance estimators are presented in

order to allow hypothesis testing and the computation of confidence intervals.

JEL Classification: C33; C51; C53; J11.
Keywords: Lee-Carter model; mortality; common factor models; panel data.

1 Introduction

The Lee-Carter model (Lee and Carter, 1992) is nowadays one of the standard tools for fore-
casting mortality being used in a wide range of studies (for a non-exhausitve list, see Girosi
and King, 2007). It has also sparked an entire strand in the literature that suggests extensions
and methodological alternatives (see Plat, 2009, for a relatively recent review). Surprisingly,
however, the basic theoretical properties of the Lee-Carter model have never been thoroughly
investigated. This paper closes the gap by providing asymptotic results for the estimated pa-
rameters and by pointing out drawbacks in both the construction and the use of the model.

Consider the X × T matrix M = {mx,t} of logarithmic mortality rates for age groups x =

1, . . . , X and time periods t = 1, . . . , T. Following Lee and Carter (1992), it is defined as

M = α′ + κβ′ + E, (1)

∗Department of Economics, Lund University, Box 7082, 220 07 Lund, Sweden. Telephone: +46 46 222 79 11. Fax:
+46 46 222 4613. E-mail address: simon.reese@nek.lu.se.

1



where the X × 1 vectors α =
[
α1 . . . αX

]′
and β =

[
β1 . . . βX

]′
are age-group specific

intercepts and slope coefficients respectively and the T × 1 vector κ =
[
κ1 . . . κT

]′
is an un-

observed time trend. E is a matrix of deviations from the sum of common trend and individual
intercepts. It is clear that this parameterization is a special case of the static factor model, which
is characterized by the existence of a certain number of unobservable factors that may affect
all entities in the sample differently. The time trend κ is the only latent factor that is assumed
in (1). Its properties are not further specified by Lee and Carter, but the authors model the
estimated trend ex-post as a Random Walk with Drift (RWD) when forecasting mortality rates.
In order to avoid this inconsistency we treat the common trend directly as a RWD, formally
defining it as

κt = δ + κt−1 + νt. (2)

This specification is not new to the literature. In fact, Girosi and King (2007) make the same
assumption in order to show that the Lee-Carter model consisting of equations (1) and (2) is
a special case of the RWD model. If the same equations are to be interpreted with regards to
their implications for the factor model, it is insightful to decompose κt into its deterministic
and stochastic components:

κt = tδ + ηt (3)

where ηt = ηt−1 + νt. Taking together equations (1) and (3) we obtain

mx,t = αx + βxtδ + βxηt + ex,t (4)

which is nearly identical to the nonstationary common factor model with intercept and trend in
Bai and Ng (2008, eq. 7.1). By estimating the sum of both the deterministic and the stochastic
parts of the latent trend (3), Lee and Carter deviate from the customary approach in the PC
literature. Furthermore, they use the identifying restriction ∑T

t=1 κt = 0 in order to estimate αx

with

α̂x = T−1
T

∑
t=1

mx,t (5)

in a first step. However, from (4), it is obvious that the identifying restriction is necessarily
violated since

T−1
T

∑
t=1

tδ =
T + 1

2
δ 6= 0
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which implies that the estimator of α is biased unless κ0 = − T+1
2 δ. This result represents a

weakness in the construction of the Lee-Carter model. Its consequences for the estimators of β

and κ as well as the fitted values have not been established yet and need to be studied.
Estimators for the remaining parameters are obtained after subtracting the estimated in-

dividual intercepts. Let M∗ = M− α̂ denote the individually demeaned mortality rates. An
estimator of β which satisfies the additional identifying assumption ∑X

x=1 βx = 1 is obtained
using the singular value decomposition (SVD) M∗ = UΣV′, where U (V) is the T × T (X × X)
matrix containing the left (right) singular vectors of M∗ and Σ is a T×X matrix with the singu-
lar values σi ∀i = 1, . . . , min{X, T} in decreasing order on the diagonal and all other elements
equal to zero. Lee and Carter set β̂x = v1 and κ̂t = σ1u1, where v1 (u1) is the right (left) singular
vector corresponding to the largest singular value.1 A problem with this estimation procedure
is that the identifying restriction, which is a necessary normalisation for the SVD, is treated as
an inherent characteristic of the data generating process. It is unclear what β̂ estimates in the
very likely case that the assumption is not satisfied. Furthermore, Lee and Carter treat their
estimates as known parameters after having conducted the SVD, disregarding any estimation
uncertainty. This entails the risk of drawing erroneous conclusions when comparing different
parameters, since the difference might simply reflect estimation errors in small samples. Ad-
ditionally, forecasting uncertainty is measured incorrectly since all estimated parameters are
treated as known.

It is well known that the SVD used by Lee and Carter is directly related to the eigendecom-
position since V (U) is the matrix of eigenvectors of M∗′M∗ (M∗′M∗). We can hence use results
from the literature on factor models that rely on Principal Components (PC) for estimating a
rotation of the latent factors. The asymptotic theory for PC-based estimation of static factor
models is well-established (see Bai and Ng, 2008, for a survey) and can be used in order to
derive the properties of the Lee-Carter model. Taking an asymptotic perspective enables us to
provide results for measurement uncertainty and confidence intervals for a comparatively gen-
eral class of data generating processes. If the Lee-Carter model were to be analyzed in a finite
sample framework, prohibitively rigid assumptions on the stochastic properties of the model
components would have to be made to yield tractable results. This is avoided in asymptotic
analysis which provides its limit results as a good approximation for finite samples. The bal-
ance of the paper is as follows: Section 2 establishes the assumptions that need to be made and
discusses the asymptotic distributions of the model estimates. In section 3, estimators for the
asymptotic variances are presented whereas section 4 discusses the implications of estimation
uncertainty for the confidence intervals of forecasts. Finally, section 5 concludes.

1In this paper, we use the normalization ∑X
x=1 β2

x = 1 which is standard in most software packages. The order
results are unaffected by this choice and the variance estimators in section are valid irrespective of the chosen
normalisation.
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2 Asymptotic theory for the model parameters

The model specification of Lee and Carter (1992) is fairly superficial, including solely the spec-
ification of expected value and variance of the model errors and an ex-post treatment of the
latent trend as RWD. Additional assumptions have to be made in order to obtain tractable
asymptotic distributions. In the following, let K denote a generic finite number. Furthermore,
note that on several occasions the expression X → ∞ is used, which, despite the marked in-
crease in life expectancy during the 20th century, clearly appears awkward in the case of age
groups. However, the expression is used to state a limit result and assumes only that life ex-
pectancy is not fixed at some upper level. The rate at which life expectancy (and thus age
groups) increases is hence not restricted allows for an intuitively appealing very slow expan-
sion rate relative to time periods.

Assumption 1 νt ∼ i.i.d.(0, σν), E[ν4] ≤ K, T−3κ′κ ∈ (0, K], and κ0 ≤ K.

Assumption 2

(i) αx is either deterministic s.t. |αx| ≤ K, or stochastic s.t. E
[
α4

x
]
≤ K. In either case, X−1α′α

p→
σ2

α > 0 as X → ∞.

(ii) βx is either deterministic s.t. |βx| ≤ K, or stochastic s.t. E
[
β4

x
]
≤ K. In either case, X−1β′β

p→
σ2

β > 0 as X → ∞.

Assumption 3

(i) E[ex,t] = 0 and E[e8
x,t] ≤ K.

(ii) E[ex,tey,s] = |σxy,ts| ≤ σxy ∀(t, s) and |σxy,ts| < τts ∀(x, y) s.t. 1
X ∑X

x=1 ∑X
y=1 σxy ≤ K,

1
T ∑T

t=1 ∑T
s=1 τts ≤ K and 1

XT ∑X
x=1 ∑X

y=1 ∑T
t=1 ∑T

s=1 |σxy,ts| ≤ K.

(iii) For every (t, s), E
[
|X−1/2 ∑X

x=1(ex,sex,t − E[ex,sex,t])|4
]
≤ K.

(iv) For each t, X−1/2 ∑X
x=1 βxex,t

d→ N(0, Γt), as X → ∞ where

Γt = limX→∞ X−1 ∑X
x=1 ∑X

y=1 E[βxβyex,tey,t].

(v) For each s, t : s 6= t, limX→∞ X−1 ∑X
x=1 ∑X

y=1 E[|βxβyex,tey,s|] < max{Γt, Γs}

(vi) For each x, T−3/2 ∑T
t=1 κtex,t

d→ N(0, Φx) as T → ∞ where

Φx = limT→∞ T−3 ∑T
t=1 ∑T

s=1 E[κtκsex,sex,t].

Assumption 4 {βx}, {κt} and {ex,t} are three mutually independent groups

Assumption 5 For all t ≤ T, x ≤ X, ∑T
s=1 τts ≤ K and ∑X

x=1 |σxy| ≤ K.
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Assumption 6

(i) for each t,

E

[
X−1/2T−3/2

T

∑
s=1

(e∗s e∗t − E[e∗s e∗t ])κ
∗
s

]2

≤ K

(ii) E
[

X−1/2T−3/2 ∑T
t=1 e∗′t βκ∗t

]2
≤ K

These assumptions are standard in the PC literature and largely follow the ones in Bai and
Ng (2008). It is important to note that Assumption 1 differs from the specification in the PC
literature by requiring a normalisation of the squared sum by T−3. This is necessary due to
the dominating properties of the linear trend in the RWD. Assumption 2 is possibly more gen-
eral than necessary by allowing for random age-group-specific coefficients on the latent trend.
In fact, it appears plausible that β reflects the inherent characteristics of a specific age groups
which would the impact of the latent trend a fixed parameter. Assumption 3 is especially in-
teresting since it allows for considerably more generality in the model errors than assumed
previously in the literature. In contrast to common claims (Brouns et al., 2005, Lee and Miller,
2001) heteroskedasticity can be allowed for and even weak serial and cross-sectional corre-
lation in the model errors is permissible. For an in-depth discussion of all assumptions, the
interested reader is referred to Bai and Ng (2008).

As alluded to previously, α̂x is biased since it estimates the sum of αx and the mean of
the latent trend. Since the average of κ is a linear function of the number of time periods, it
is obvious that α̂x diverges at rate T. The following theorem states its asymptotic behaviour
more precisely.

Theorem 1 Under assumptions 1-5,

αx − α̂x
d→ lim

T→∞

T + 1
2

βxδ +
√

Tβx N(0, σ2
ν /3) + T−1/2N(0, σ2

x)

where σ2
x = Var[T−1/2 ∑T

t=1 ex,t]

The second term on the right hand side implies that, in addition to a deterministic bias, the
distribution of α̂x is affected by a stochastic term whose variance increases at rate T. Thus,
generally α̂x does not deliver any insight about the numerical value of the age-specific inter-
cept. However, comparisons between different intercept coefficients in the same sample are
possible since the bias arising from inclusion of the mean latent trend is identical. A more
problematic comparison is that of α across different samples (see e.g. Lee, 2000, or Janssen,
2013). Let α̂x,j = αx,j + κ0 +

T+1
2 βx,jδj + T−1 ∑T

t=1 ηt,j + op(1) be the estimated baseline log mor-
tality rate of age group x in sample j = 1, 2. The difference αx,1 − αx,2 may not only be due
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to the non-diminishing terms κ0 and −1 ∑T
t=1 ηt,j, it is even affected by differences in the drift

terms to a magnitude that increases with the number of time periods in the sample. This im-
plies a possibility to systematically manipulate the comparison of intercepts in two samples by
choosing the sample range adequately.

It is easy to see that the bias in the estimation of αx implies that the estimator of κ, which is
obtained from the difference of mx,t and αx, is an estimator of the demeaned RWD, eliminating
all information about the true trend levels. In this light, comparisons of estimated trends across
samples, as e.g. done graphically in Tuljapurkar et al. (2000), appear pointless since they do
not provide any insight about the relative position of different trends. Furthermore, κt and βx

can only be estimated up to a factor since estimation methods solely identify the product κtβx

which is identical to (κth)(h−1βx) for any h 6= 0. In the Lee-Carter model, where only one
latent factor is given, the SVD implies a fairly clear normalisation.

Proposition 1 Under assumptions 1-6,

h = X1/2σβ + Op(X1/2T−1/2) + Op(T−1) (6)

Obviously, this expression is nonbounded as the number of age groups tends to infinity, mak-
ing it inconvenient for interpretation. Still, under the assumption that X/T → 0 the multiplier
converges to a multiple of the root mean square deviation of the slope coefficients from zero.

Given the definition of the normalisation h, it is possible to state the asymptotic distribution
of the estimated factors.

Theorem 2 Under Assumptions 1-6 and assuming that X/T4 → 0,

(κ̂t − κ∗t h) d→ N(0, Γtσ
−2
β )

for each t as N, T → ∞ where κ∗t = κt − T−1 ∑T
t=1 κt.

Interestingly, κ̂t does not converge, as it is subject to a certain persisting degree of estimation
uncertainty irrespectively of the amount of information used. This observation is a direct con-
sequence of the chosen normalisation in the SVD. The scaling entails a fast rate of convergence
for β̂x while keeping a certain margin of error around κ̂. It is possible to use a different scaling
which allows for the estimators of both β and κ to converge by adapting the estimation steps
in the PC literature (see e.g. Bai and Ng, 2008). An important implication of Theorem 2 con-
cerns studies that test for breaks in the latent trend of the Lee-Carter model (see e.g. Li, 2011).
In order for the underlying statistical analysis to be valid, estimation uncertainty in κ must be
taken into account.

Remark The admissible relative rate of convergence for the results to hold allows for all pat-
terns that have been observed in the relative development of time and life expectancy. Both
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the very slow increase in longevity until the industrial revolution and the steep rise of life
expectancy thereafter, which implies an increase in the number of age groups involved the
analysis of mortality rates, satisfy the requirement stated in theorem 1. It is worth noting that
the presence of a drift term drives the requirements on X/T. Similar factor models that assume
the latent trends to be a pure random walk (Bai, 2004) or to be stationary (Bai, 2003) require
stricter assumptions.

In addition to the results on the latent factor, the asymptotic properties of its individual
coefficients can be reported.

Theorem 3 Under Assumptions 1-6,

√
XT3(β̂x − βxh−1)

d→ 12
δ2σβ

N(0, Φx)

for each x as X, T → ∞.

In contrast to κ̂t, β̂x converges fairly quickly to a multiple of the true parameters vector.
But as already noticed by Lee (2000), the levels of this multiple have no meaning, a fact which
is due to the inconvenient normalisation. Nevertheless, the established limiting results allow
testing hypotheses on the relative magnitudes of slope coefficients at different ages.

The results presented for the latent trend and its slope coefficients naturally lead to a state-
ment for the fitted values m̂x,t = α̂x + κ̂t β̂x. Their asymptotic properties are given by Theorem
4 below.

Theorem 4 Under Assumptions 1-6 and assuming that X/T4 → 0

(X−1v1 + T−1v2)
−1/2(m̂x,t − E[mx,t])

d→ N(0, 1)

for each (x, t) as X, T → ∞ where

v1 =
(

σ−1
β βx

)2
Γtσ
−2
β

and

v2 = σ2
x +

(
12
δ

(
t
T
− 1

2

)
.
)2

Φx

Interestingly, the fitted values of the model prove to be consistent despite the bad properties
of α̂x and the persistent degree of estimation uncertainty around the estimated trend. The
increasing margin of error in the estimated intercept is absorbed when summing it with the
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demeaned fit κ̂t β̂x whereas the multiplication of κ̂t with its slope coefficients causes its estima-
tion error to disappear asymptotically. The overall rate of convergence depends on the relative
expansion rate and is min{X−1/2, T−1/2}.

3 Variance estimators

The asymptotic variances in Theorems 1–4 are not known for the samples that one might work
with and hence need to be estimated using a feasible procedure. For the latent trend the asymp-
totic variance

aVar[κ̂t] = σ−2
β plim

X

∑
x=1

X−1/2σ2
x,tβ

2
x

can be estimated by one of the three proposed estimators in Bai and Ng (2006). The most
general of these, allowing for cross-section correlation and heteroskedasticity, is given by

âVar[κ̂] = X−1
X

∑
x=1

X

∑
y=1

β̂x β̂y

T

∑
t=1

ê∗x,t ê
∗
y,t (7)

where ê∗x,t = m∗x,t− κ̂t β̂x. However, this generality requires imposing a stationarity assumption
on the error terms which implies that the variance of the estimated trend is identical across
time periods. This restriction can be lifted if one is willing to assume that the error term is
cross-sectionally uncorrelated. In this case, it is possible to use the simpler term

âVar[κ̂t] =
X

∑
y=1

(ê∗y,t)
2 β̂2

y, (8)

whereas additionally assuming homoskedasticity in the errors over both time and age groups
allows using

âVar[κ̂t] = σ̂2
e∗

X

∑
y=1

β̂2
y (9)

where σ̂2
e∗ = (XT − (X + T − 1))−1 ∑X

x=1 ∑T
t=1(ê∗x,t)

2

Estimating the variance of β̂x can be conducted at a similar level of generality as it was the
case for the trend estimator. In order to allow for serial correlation, Bai (2003) suggests using a
Newey-West estimator whose equivalent in the Lee-Carter model is given by

âVar[
√

XT3 β̂x] = XT3

(
ζ0,x + 2

r

∑
p=1

(
1− p

r + 1

)
ζp,x

)
λ−2

1 , (10)
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where ζp,x = T−1 ∑T
t=p+1 ê∗x,tκ̂t ê∗x,t−pκ̂t−p and r =

⌊
0.75T1/3⌋.

Concerning the fitted values, their estimated variance can be constructed from the variance
estimators of the estimated latent trend and the slope coefficients since Theorem 4 implies that

âVar[m̂x,t] = β̂2
xV̂ar[κ̂t] + κ̂2

t V̂ar[β̂x] + T−1σ̂
2
x. (11)

This expression requires a consistent estimator of σ2
x, which is given by

σ̂
2
x = T−1

T

∑
t=1

ê2
x,t + 2

r

∑
p=1

(
1− p

r + 1

)
T−1

T

∑
t=p+1

êx,t êx,t−p. (12)

4 Forecasting mortality rates

Predicting future values of the latent trend boils down to extrapolating the drift term from the
last known observation. The drift term itself is unknown and usually2 estimated as

δ̂ = (T − 1)−1
T

∑
t=2

∆κ̂t (13)

where ∆κ̂t = κ̂t − κ̂t−1. Its asymptotic properties can hence straightforwardly be derived from
those of κ̂t.

Lemma 4.1 Under assumptions 1-6 then as X, T → ∞,√
T
X
(δ̂− δh) = A + Op(X−1/2) + Op(T−3/2).

where A d→ N(0, σ2
βσ2

ν ).

Most interestingly, the variance of δ̂ increases at rate X/T which implies that tighter restrictions
on the rate of convergence have to be imposed in order to ensure convergence. The fact that δ̂

estimates a multiple of δ is a consequence of the factor estimation which itself yields a scaled
estimate of the latent trend. This also applies to the estimated random innovations

ν̂ = ∆κ̂t − δ̂

= νth + X−1/2∆e′tβ
δ√
12

+ op(1) (14)

which, in addition to being scaled by the same factor as κ̂t and δ̂, include a perturbation term
that arises from the uncertainty involved in the estimation of κ̂. The latter term is problematic

2see e.g. Girosi and King (2007, Ch.2)
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because {ν̂t, t = 1, . . . , T} is used to estimate the variance of νT+qh. The estimator

σ̂2
ν = (T − 1)−1

T

∑
t=2

ν̂2
t

includes the variance of the second term on (14) and hence introduces a positive bias in the
estimated variance of future random innovations.

If one is interested in obtaining the distribution of forecasts of the latent trend, the above
variance estimators are essential components for the estimation of the forecasting variance.

Theorem 5 Let κ̂T+q|T = κ̂t + qδ̂. Under assumptions 1-6 and assuming X/T = O(1) and νt ∼
i.i.d.n.(0, σ2

ν ),

κ̂T+q|T − κT+qh

Var
[
κ̂T+q|T

] d→ N(0, 1),

where Var[κ̂T+q] = aVar[κ̂T] + q2 (ξaVar[
√

T/Xδ̂] + σ2
ν

)
and ξ = lim

X,T→∞
X/T

The additional assumption on the relative expansion rate of X and T arises from the properties
of δ̂ and ensures that Var[κ̂T+q] is finite. In applications, it is most often plausible to assume
that X/T → 0 so that the asymptotic variance can be simplified to Var[κ̂T+q] = aVar[κ̂T] + q2σ2

ν .
Still, even this simplified variance contains uncertainty due to the estimation of κ, a factor that
is usually disregarded in practice. An estimator of the variance for the q-step forecast is given
by taking the estimators of its components.

V̂ar[κ̂T+q] = V̂ar[κ̂T] + q2
(

X/TV̂ar[
√

T/Xδ̂] + σ̂2
ν

)
(15)

where the term X/TV̂ar[
√

T/Xδ̂] can be left out if X/T → 0.
Interest concerning the distribution of forecasts in the Lee-Carter model is not restricted to

the latent trend. Results concerning forecasts of age group-specific logged mortality rates are
equally important.

Theorem 6 Let m̂x,T+q|T = m̂x,T + qδ̂β̂x. Under the assumptions of Theorem 5 and assuming ex,t ∼
N(0, σ2

x) ∀t,

m̂x,T+q|T − αx − βxκT+q

Var
[
m̂x,T+q|T

] d→ N(0, 1)

where Var[m̂x,T+q|T] = aVar[m̂x,T] + q2β2
x(ξaVar[

√
T/Xδ̂] + σ2

ν ) + σ2
x

Again, an upper bound for the admissible relative expansion rate has to be imposed in order to
obtain a finite limiting variance for the forecasted logarithmic mortality rates. Additionally, the
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asymptotic variance includes Var[m̂x,t] and hence yet another source of estimation-related un-
certainty that is usually neglected. Assuming the idiosyncratic components to be homoskedas-
tic is actually not required to obtain the results of Theorem 6. However, it is necessary to get a
feasible variance estimate. This estimate is given by

V̂ar[m̂x,T+q|T] = âVar[m̂x,T] + q2 β̂2
x(X/TâVar[

√
T/Xδ̂] + σ̂2

ν ) + σ̂2
x . (16)

5 Conclusion

The present paper considers the asymptotic properties of the Lee-Carter model for modelling
and forecasting mortality rates. Taking an asymptotic perspective allows us to avoid a num-
ber of restrictive assumptions and to obtain results for a quite general class of DGPs which
are good approximations in finite samples. We derive asymptotic distributions and provide
variance estimators for the parameter estimators of the model. It is obvious that the superficial
design of the Lee-Carter model leads to inconsistencies that impair the usefulness of the esti-
mated parameters. Additionally, the trend estimate obtained from the SVD is not consistent,
implying that, in contrast to common practice, estimation uncertainty should not be disre-
garded. Lastly, forecasted values from the model turn out to be affected by an inconvenient
scaling choice in the SVD. This may result in additional forecasting uncertainy, depending on
the relative rate of expansion.
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A Notation and important equalities

We will conduct proofs of all Theorems based on the rescaled estimator

κ̃ = u1.

Since u1 is an eigenvector of M∗M∗′, the equality

M∗M∗′κ̃ = κ̃λ1 (17)

can be used to obtain

κ̃ = M∗M∗′κ̃λ−1
1

The above expression suggests that the rotation scalar h̃ can be defined as h̃ = β′βκ∗′κ̃λ−1
1 .

Using this definition, we obtain

κ̃− κ∗h̃ = (κ∗β′E∗′κ̃ + E∗βκ∗′κ̃ + E∗E∗′κ̃)λ−1
1 ,

and for each individual time period,

κ̃t − κ∗t h̃ = X−1T−3(κ∗t βE∗′κ̃ + e∗′t β′κ∗′κ̃ + e∗′t E∗′κ̃)XT3λ−1
1

= (j1,t + j2,t + j3,t + j4,t)XT3λ−1
1 , (18)

where

j1,t = X−1T−3
T

∑
s=1

κ∗t β′e∗s κ̃s (19)

j2,t = X−1T−3
T

∑
s=1

e∗′t βκ∗s κ̃s (20)

j3,t = T−3
T

∑
s=1

E[e∗′t e∗s ]κ̃s (21)

and

j4,t = T−3
T

∑
s=1

(e∗′t e∗s /X− E[e∗′t e∗s ])κ̃s) (22)
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B Consistency of factor estimates

Lemma B.1 Under assumption 1,

T−3
T

∑
t=1

(κ∗t )
2 =

δ2

12
+ Op(T−1)

Proof of Lemma B.1 Using 3, we obtain

T−3
T

∑
t=1

(κ∗t )
2 = T−3

T

∑
t=1

(
t− T − 1

2

)2

δ2 + T−3
T

∑
t=1

η2
t + T−3

T

∑
t=1

(
t− T − 1

2

)
δηt

= I + I I + I I I

where

I = T−3
(

1
12

T3 +
11
12

T
)

δ2 =
δ2

12
+ O(T−2)

by simple computation,

I I d→ T−2σ2
ν

∫ 1

0

(
W(r)−

∫ 1

0
W(s)ds

)2

dr = Op(T−2)

by Hayashi (2000, Proposition 9.2(b)), and

I I I ≤
(

T−3
T

∑
t=1

(
t− T − 1

2

)2

δ2

)1/2(
T−3

T

∑
t=1

η2
t

)1/2

= Op(T−1),

which follows from the first two results. �

Lemma B.2 Under assumptions 1-5,

X−1T−3λ1 = σ2
βδ2/12 + Op(T−1)

Proof of Lemma B.2 From (17) we obtain

X−1T−3κ̃M∗M∗′κ̃ = X−1T−3λ1
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whose deviation from κ̃′κ∗β′βκ∗′κ̃ can be decomposed into

X−1T−3(κ̃′M∗M∗′κ̃− κ̃′κ∗β′βκ∗′κ̃)

= X−1T−3κ̃′κ∗β′E′κ̃ + X−1T−3κ̃′Eβκ∗′κ̃ + X−1T−3κ̃′EE′κ̃

(23)

Consider the last term on the RHS above.

X−1T−3κ̃′EE′κ̃ ≤ X−1T−3

(
T

∑
t=1

T

∑
s=1

(etes)
2

)1/2

= Op(T−1)

The remaining two expressions in (23) are identical and of order

X−1T−3κ̃′Eβκ∗′κ̃ ≤ X−1T−3

((
T

∑
t=1

κ̃2
t

)(
T

∑
t=1

(e′tβκ∗′κ̃)2

))

≤ X−1T−3

((
T

∑
t=1

κ̃2
t

)(
T

∑
t=1

(
T

∑
s=1

(e′tβκ∗′s )
2

)(
T

∑
s=1

κ̃2
s

)))1/2

= X−1/2T−1

(
T−1

T

∑
t=1

(X−1/2e′tβ)
2T−3

T

∑
s=1

(κ∗′s )
2

)1/2

= Op(X−1/2T−1). (24)

These result show that asymptotically λ1 is the largest eigenvalue of κ∗β′βκ∗′. Note however
that the largest eigenvalues of κ∗β′βκ∗′ and κ∗′κ∗β′β are identical. Using this equality as well
as Assumption 2 and Lemma B.1 we obtain the required result. �

Lemma B.3 Under the assumptions of Lemma B.2,

1
T

T

∑
t=1

(κ̃− κ∗h̃)2 = Op(X−1T−3) + Op(T−6)

Proof of Lemma B.3 Considering (18), we can write

T−1
T

∑
t=1

(κ̃t − κth̃)2 = T−1
T

∑
t=1

(j1,t + j2,t + j3,t + j4,t)
2X2T6λ−2

1

≤ 4X2T6λ−2
1 T−1

T

∑
t=1

(j21,t + j22,t + j23,t + j24,t), (25)
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whose individual components are

T−1
T

∑
t=1

j21,t = T−1
T

∑
t=1

(
X−1T−3κ∗t

T

∑
s=1

β′e∗s κ̃s

)2

≤ X−1T−3

(
T−3

T

∑
t=1

(κ∗t )
2

) (
T−1

T

∑
s=1

(X−1/2β′e∗s )
2

) (
T

∑
s=1

κ̃2
s

)
= Op(X−1T−3), (26)

T−1
T

∑
t=1

j22,t = T−1
T

∑
t=1

(e∗′t β)2

(
X−1T−3

T

∑
s=1

κ∗s κ̃s

)2

≤ X−1T−3

(
T−1

T

∑
t=1

(X−1/2e∗′t β)2

) (
T−3

T

∑
s=1

(κ∗s )
2

) (
T

∑
s=1

κ̃2
s

)
= Op(X−1T−3). (27)

and

T−1
T

∑
t=1

j23,t = T−1
T

∑
t=1

(
T−3

T

∑
s=1

E[e∗′t e∗s ]κ̃s

)2

≤ T−6

(
T−1

T

∑
t=1

T

∑
s=1

τ2
t,s

) (
T

∑
s=1

κ̃2
s

)
= Op(T−6), (28)

where the order of
(

T−1 ∑T
t=1 ∑T

s=1 τ2
t,s

)
is obtained via Lemma 1(i) in Bai and Ng (2002). Con-

cerning j4,t, let γ̃(s, t) = e∗′t e∗s /X − E[e∗′t e∗s ]. Following the proof of Theorem 1 in Bai and Ng
(2002) we obtain

T−1
T

∑
t=1

j24,t = T−7
T

∑
t=1

(
T

∑
s=1

γ̃(s, t)κ̃s

)2

= T−7
T

∑
t=1

T

∑
s=1

T

∑
u=1

γ̃(s, t)γ̃(u, t)κ̃sκ̃u

≤ T−7

 T

∑
s=1

T

∑
u=1

[
T

∑
t=1

γ̃(s, t)γ̃(u, t)

]2
1/2(

T

∑
s=1

T

∑
u=1

[κ̃sκ̃u]
2

)1/2

≤ T−7

 T

∑
s=1

T

∑
u=1

[
T

∑
t=1

γ̃(s, t)γ̃(u, t)

]2
1/2

T

∑
s=1

κ̃2
s . (29)
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Via the inequality

E

( T

∑
t=1

γ̃(s, t)γ̃(u, t)

)2
 = E

[
T

∑
t=1

γ̃(s, t)γ̃(u, t)γ̃(s, v)γ̃(u, v)

]

≤ T2 max
s,t

E
[
|γ̃(s, t)|4

]
(30)

and the fact that E
[
|γ̃(s, t)|4

]
≤ X−2K by assumption 3(iii), equation (29) can be rewritten

T−1
T

∑
t=1

j24,t ≤ T−7

(
T

∑
s=1

T

∑
u=1

Op(X−2T2)

)1/2

= Op(X−1T−5). (31)

Collecting the results in (26)–(31) and noting that X−1T−3λ1 = Op(1), as shown in Lemma B.2,
we obtain the required result �

Lemma B.4 Under the assumptions of Lemma B.2,

h̃ = T−3/2

√
12
δ

+ Op(X−1/2T−5/2) + Op(T−4) (32)

Proof of Lemma B.4 We can use the decomposition

(κ∗)′κ̃ = (κ∗)′(κ̃− h̃κ∗) + (κ∗)′h̃κ∗

so that

h̃(κ∗)′κ̃ = (h̃κ∗)′(κ̃− h̃κ∗) + h̃2(κ∗)′κ∗ (33)

Now note that the LHS above can also be decomposed

h̃(κ∗)′κ̃ = (h̃κ∗ − κ̃)′κ̃ + κ̃′κ̃

= 1 + (h̃κ∗ − κ̃)′(κ̃− κ∗h̃) + (h̃κ∗ − κ̃)′κ∗h̃ (34)

Setting equal (33) and (34), we obtain

h̃2 =
(
(κ∗)′κ∗

)−1

(
1 +

T

∑
t=1

(κ̃t − κ∗t h̃)2

)
(35)
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after rearranging terms. From lemma B.1, it is known that T−3(κ∗)′κ∗
d→ δ2/12, implying that

h̃2 = T−3 12
δ2

(
1 + Op(X−1/2T−2) + Op(T−5)

)
. (36)

which implies the required result. �

Lemma B.5 Under the assumptions of Lemma B.2,

T−3/2(κ̃′ − h̃κ∗′)κ∗ = Op(X−1/2T−3/2) + Op(T−3)

Proof of Lemma B.5. We can rewrite the expression as

T−3/2
T

∑
t=1

(κ̃t − h̃κ∗′t )κ
∗
t =

(
XT3λ−1

1

)
T−3/2

T

∑
t=1

(j1,t + j2,t + j3,t + j4,t)κ
∗
t (37)

where

T−3/2
T

∑
t=1

j1,tκ
∗
t = X−1T−9/2

T

∑
t=1

T

∑
s=1

κ∗t β′e∗s κ̃sκ
∗
t

= X−1T−9/2
T

∑
t=1

T

∑
s=1

κ∗t β′e∗s κ∗s h̃κ∗t + X−1T−9/2
T

∑
t=1

T

∑
s=1

κ∗t β′e∗s (κ̃s − κ∗s h̃)κ∗t .

(38)

Using assumption 6(ii), we can determine the order of the first part of the above expression to
be

X−1T−9/2
T

∑
t=1

T

∑
s=1

κ∗t β′e∗s κ∗s h̃κ∗t = X−1/2

(
T−3

T

∑
s=1

(κ∗t )
2

)(
X−1/2T−3/2

T

∑
s=1

β′e∗s κ∗s

)
h̃

= Op(X−1/2T−3/2). (39)

The second part is given by

X−1T−9/2
T

∑
t=1

T

∑
s=1

κ∗t β′e∗s (κ̃s − κ∗s h̃)κ∗t

≤ X−1/2T−1/2

(
T−3

T

∑
t=1

(κ∗t )
2

)(
T−1

T

∑
s=1

(X−1/2β′e∗s )
2

)1/2(
T−1

T

∑
s=1

(κ̃s − κ∗s h̃)2

)1/2

= Op(X−1T−2) + Op(X−1/2T−7/2). (40)
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The term involving j2,t is solved similarly.

T−3/2
T

∑
t=1

j2,tκ
∗
t = X−1T−9/2

T

∑
t=1

T

∑
s=1

e∗′t βκ∗s κ̃sκ
∗
t

= X−1T−9/2
T

∑
t=1

T

∑
s=1

e∗′t βκ∗s h̃κ∗s κ∗t + X−1T−9/2
T

∑
t=1

T

∑
s=1

e∗′t βκ∗s (κ̃s − κ∗s h̃)κ∗t

(41)

The first part of the summation above is

X−1T−9/2
T

∑
t=1

T

∑
s=1

e∗′t βκ∗s h̃κ∗s κ∗t = X−1/2

(
T−3

T

∑
s=1

(κ∗s )
2

)(
X−1/2T−3/2

T

∑
t=1

e∗′t βκ∗t

)
h̃

= Op(X−1/2T−3/2) (42)

under assumption 6(ii). The same assumption is used for the second part, giving

X−1T−9/2
T

∑
t=1

T

∑
s=1

e∗′t βκ∗s (κ̃s − κ∗s h̃)κ∗t

≤ X−1/2T−1

(
T−1

T

∑
s=1

(κ̃s − κ∗s h̃)2

)1/2
T−3

T

∑
s=1

(κ∗s )
2

(
X−1/2T−3/2

T

∑
t=1

e∗′t βκ∗t

)2
1/2

= Op(X−1T−5/2) + Op(X−1/2T−4) (43)

For the term involving j3,t,

T−9/2
T

∑
t=1

j3,tκ
∗
t = T−9/2

T

∑
t=1

T

∑
s=1

E[e∗′t e∗′s ]κ̃sκ
∗
t

= T−9/2
T

∑
t=1

T

∑
s=1

E[e∗′t e∗′s ]κ
∗
s h̃κ∗t + T−9/2

T

∑
t=1

T

∑
t=1

E[e∗′t e∗′s ](κ̃s − κ∗s h̃)κ∗t (44)

The second term above can be written

T−9/2
T

∑
t=1

T

∑
s=1

E[e∗′t e∗′s ](κ̃s − κ∗s h̃)κ∗t

≤ T−2

(
T−1

T

∑
t=1

T

∑
s=1

τ2
ts

)1/2(
T−1

T

∑
s=1

(κ̃s − κ∗s h̃)2T−3
T

∑
t=1

(κ∗t )
2

)1/2

= Op(X−1/2T−7/2) + Op(T−5), (45)

using Assumption 3(ii) to obtain the order result. The order of the first term is determined by
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its nonzero expected value, whose order can be taken from assumption 3(v).

E

[
T−9/2

T

∑
t=1

T

∑
s=1

E[e∗′t e∗s ]κ
∗
s h̃κ∗t

]
= T−9/2

T

∑
t=1

T

∑
s=1

E[e∗′t e∗s ]E[κ
∗
s κ∗t ]h̃

≤ T−7/2T−1
T

∑
t=1

T

∑
s=1

τstT2δ2h̃

= O(T−3) (46)

Finally, letting γ̃(s, t) = e∗′t e∗s /X− E[e∗′t e∗s ],

T−9/2
T

∑
t=1

j4,tκ
∗
t = T−6

T

∑
t=1

T

∑
s=1

γ̃(s, t)κ̃sκ
∗
t

= T−9/2
T

∑
t=1

T

∑
s=1

γ̃(s, t)κ∗s h̃κ∗t + T−9/2
T

∑
t=1

T

∑
s=1

γ̃(s, t)(κ̃s − κ∗s h̃)κ∗t , (47)

whose second part is

T−9/2
T

∑
t=1

T

∑
s=1

γ̃(s, t)(κ̃s − κ∗s h̃)κ∗t

≤ X−1/2T−3/2

(
T−2

T

∑
t=1

T

∑
s=1

X1/2γ̃(s, t)2

)1/2(
T−1

T

∑
s=1

(κ̃s − κ∗s h̃)2T−3
T

∑
t=1

(κ∗t )
2

)1/2

= Op(X−1T−3) + Op(X−1/2T−9/2). (48)

The first part analyzed using assumption 6(i), yielding

T−9/2
T

∑
t=1

T

∑
s=1

γ̃(s, t)κ∗s h̃κ∗t

≤ X−1/2T−1

T−1
T

∑
t=1

(
X1/2T−3/2

T

∑
s=1

γ̃(s, t)κ∗s

)2
1/2(

T−3
T

∑
t=1

(κ∗t )
2

)1/2

h̃

= Op(X−1/2T−5/2). (49)

Taking together all results, we obtain

T−3/2(κ̃′ − h̃κ∗′)κ∗ = Op(X−1/2T−3/2) + Op(T−3) (50)

�

20



Lemma B.6 Under the assumptions of Lemma B.2,

(κ̃′ − h̃κ∗′)κ̃/T3/2 = Op(X−1/2T−3/2) + Op(T−3) (51)

Proof of Lemma B.6 Note that

(κ̃′ − h̃κ∗′)κ̃/T3/2 = (κ̃′ − h̃κ∗′)(κ̃− κ∗h̃)/T3/2 + (κ̃′ − h̃κ∗′)κ∗h̃/T3/2 (52)

The lemma thus follows from Lemmas B.3 and B.5 . �

Lemma B.7 Under the assumptions of Lemma B.2,

T−3/2κ∗′κ̃ = δ/
√

12 + Op(T−1) (53)

Proof of Lemma B.7 Use the decomposition

T−3/2κ∗′κ̃ = T−3/2κ∗′(κ̃− h̃κ∗) + (T−3κ∗′κ∗)(T3/2h̃) (54)

Lemma B.5 establishes the order of the first term on the RHS. For the components of the second
term, and Lemmas B.1 and B.4 can be used to obtain the result. �

Proof of Proposition 1 Given that κ̃t is an estimator of κ∗t h̃, the relation κ̂t = κ̃tλ
1/2
1 implies

that κ̂t estimates κ∗t h = κ∗t h̃λ1/2
1 . Application of Lemmas B.2 and B.4 now yields the required

result.

Proof of Theorem 1. Consider (4). Using Davidson (2000, 14.1.6) and White (2001, Th.5.20),

α̂x
d→ αx + lim

T→
βx

T + 1
2

δ +
√

Tβx N(0, σ2
ν /3) +

1√
T

N(0, σ2
x). (55)

where σ2
x = Var[T−1/2 ∑T

t=1 ex,t]. �

Proof of Theorem 2 Recall from (18) that the expansion

√
XT3(κ̃t − κ∗t h̃) =

√
XT3(j1,t + j2,t + j3,t + j4,t)XT3λ−1

1 . (56)
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can be applied. Consider
√

Xj1,t, which we can be expanded to

√
XT3 j1,t = X−1/2T−3/2

T

∑
s=1

κ∗t β′e∗s (κ̃s − κ∗s h̃) + X−1/2T−3/2
T

∑
s=1

κ∗t β′e∗s κ∗s h̃ (57)

For the first term on the RHS, we can apply Lemma B.3 to obtain

X−1/2T−3/2
T

∑
s=1

κ∗t β′e∗s (κ̃s − κ∗s h̃)

≤ X−1/2T−1

(
T

∑
s=1

(κ∗t β′e∗s )
2

)1/2 (
T−1

T

∑
s=1

(
κ̃s − κ∗s h̃

)2
)1/2

≤ T

(
T−2(κ∗t )

2 T−1
T

∑
s=1

(X−1/2β′e∗s )
2

)1/2 (
Op(X−1/2T−3/2) + Op(T−3)

)
= Op(X−1/2T−1/2) + Op(T−2) (58)

The second term is

X−1/2T−3/2
T

∑
s=1

κ∗t β′e∗s κ∗s h̃

= T1
(

T−1κ∗t

)(
X−1/2T−3/2

T

∑
s=1

κ∗s β′e∗s

)
h̃ (59)

which is of order Op(T−1/2) by assumptions 3(iv) and 6(ii) and Lemma B.4. Taking together
these two results, we obtain

√
XT3 j1,t = Op(T−1/2) (60)

For the order of j2,t we use Lemma B.7 to obtain.

√
XT3 j2,t = X−1/2T−3/2

T

∑
s=1

e∗′t βκ∗s κ̃s

= X−1/2
T

∑
s=1

e∗′t β
δ√
12

+ Op(T−1) (61)

Concerning j3,t,

√
XT3 j3,t =

√
XT−3/2

T

∑
s=1

E[e∗′t e∗s ](κ̃s − κ∗s h̃) +
√

XT−3/2
T

∑
s=1

E[e∗′t e∗s ]κ
∗
s h̃, (62)
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where assumption 5 can be used to yield

√
XT−3/2

T

∑
s=1

E[e∗′t e∗s ](κ̃s − κ∗s h̃)

≤
√

XT−1

(
T

∑
s=1
|τts|2

)1/2(
T−1

T

∑
s=1

(κ̃s − κ∗s h̃)2

)1/2

=
√

XT−1Op(1)
(

Op(X−1/2T−3/2) + Op(T−3)
)
= Op(T−5/2) + Op(

√
XT−4). (63)

Furthermore, note that E[|∑T
s=1 E[e∗′t e∗s ]κ∗s |] ≤ maxs E[|κ∗s |]∑T

s=1 |τts| ≤ TK since the properties
of the latent trend imply E[||κ∗t ||] = O(T). Consequently,

√
XT−3/2

T

∑
s=1

E[e∗′t e∗s ]κ
∗
s h̃ = X−1T−3/2Op(T)Op(T−3/2) = Op(

√
XT−2). (64)

We can hence conclude that

√
XT3 j3,t =

√
XT−3/2

T

∑
s=1

E[e∗′t e∗s ]κ
∗
s h̃ + Op(T−5/2) + Op(

√
XT−4) = Op(

√
XT−2). (65)

Finally,

√
XT3 j4,t =

√
XT−3/2

T

∑
s=1

(e∗′t e∗s /X− E[e∗′t e∗s ])(κ̃s − κ∗s h̃)

+
√

XT−3/2
T

∑
s=1

(e∗′t e∗s /X− E[e∗′t e∗s ])κ
∗
s h̃. (66)

Here, assumption 3(iii) can be invoked to obtain

√
XT−3/2

T

∑
s=1

(e∗′t e∗s /X− E[e∗′t e∗s ])(κ̃s − κ∗s h̃)

≤ T−1/2

T−1
T

∑
s=1

(
X−1/2

X

∑
x=1

(e∗x,te
∗
x,s − E[e∗x,te

∗
x,s])

)2
1/2(

T−1
T

∑
s=1

(κ̃s − κ∗s h̃)2

)1/2

= T−1/2
(

Op(X−1/2T−3/2) + Op(T−3)
)

= Op(X−1/2T−2) + Op(T−7/2) (67)
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and

√
XT−3/2

T

∑
s=1

(e∗′t e∗s /X− E[e∗′t e∗s ])κ
∗
s h̃

≤ T1/2

(
T−1

T

∑
s=1

(e∗′t e∗s /X1/2 − E[e∗′t e∗s ])
2

)1/2(
T−3

T

∑
s=1

(κ∗s )
2

)1/2

h̃

= Op(T−1). (68)

Collecting the order results of all components of (56), we obtain

√
XT(κ̃t − κ∗t h̃) =

(
X−1/2e∗′t β

) δ√
12

XT3λ−1
1 + Op(T−1/2) + Op(

√
XT−2)

d→
√

12δσβN(0, Γt),

(69)

where the last result is obtained from using Assumption 2 and Lemmas B.2 and B.7. Pre-
multiplication of the above with (X−1T−3λ1)

1/2 yields the equivalent result for κ̂, given the
asymptotic results on λ1 in Lemma B.2. �

Proof of Theorem 3 Consider alternative estimator β̃ = M∗′κ̃. Recalling the factor structure
of M∗, we can write

β̃x = βx h̃−1h̃κ∗′κ̃ + e∗′x κ̃

= βx h̃−1 + βx h̃−1(h̃κ∗′ − κ̃′)κ̃ + e∗′x κ∗h̃ + e∗′x (κ̃− κ∗h̃) (70)

where the normalisation κ̃′κ̃ = 1 is used in the last step. The order of the second term on the
RHS can be inferred from Lemma B.6. Furthermore

e∗′x (κ̃− κ∗h̃) =
T

∑
t=1

e∗x,t(κ̃t − κ∗t h̃)

= T

(
T−1

T

∑
t=1

(e∗x,t)
2

)1/2(
T−1

T

∑
t=1

(κ̃t − κ∗t h̃)2

)1/2

= Op(X−1/2T−1/2) + Op(T−2) (71)

and

e∗′x κ∗h̃ =

(
T−3/2

T

∑
t=1

e∗x,tκ
∗
t

)(
T3/2h̃

)
∼
√

12
δ

N(0, Φx) + Op(X−1/2T−1) + Op(T−5/2) (72)
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as implied by Assumption 3(v) and Lemma B.4.
Using these order results, we can hence write

β̃x − βx h̃−1 =
T

∑
t=1

e∗x,tκ
∗
t h̃ + Op(X−1/2) + Op(T−3/2)

∼
√

12
δ

N(0, Φx) + Op(X−1/2) + Op(T−1/2) (73)

The result for the estimator from the Lee-Carter model follows from the fact that β̂ =

β̃λ−1/2
1 (see e.g. Bai and Ng, 2008, section 3), yielding

√
XT3(β̂x − βx(h̃

√
λ1)
−1) ∼ 12

δ2σβ
N(0, Φx) + Op(X−1/2) + Op(T−1/2) (74)

�

Proof of Theorem 4 Note first that

m̂x,t − αx − κtβx = α̂x + κ̂t β̂x − κtβx

= αx + T−1
T

∑
t=1

κt + T−1
T

∑
t=1

ex,t + κ̂t β̂x − (κ∗t + T−1
T

∑
t=1

κt)βx

= T−1
T

∑
t=1

ex,t + κ̂t β̂x − κ∗t βx. (75)

Furthermore, we can substitute κ̃t β̃x for κ̂t β̂x since the two products are identical. Additionally
expanding the term (κ̃t β̃x − κ∗t βx), we obtain

m̂x,t − αx − κtβx = T−1
T

∑
t=1

ex,t + (κ̃t − κ∗t h̃)h̃−1βx + κ̃t(β̃x − βx h̃−1). (76)

As argued in Theorem 1, T−1/2 ∑T
t=1 ex,t

d→ N(0, σ2
x). Next, using Theorem 2 the second part

on the RHS can be written

(κ̃t − κ∗t h̃)h̃−1βx = X−1/2T−3/2
(

X−1/2e∗′t β
δ√
12

XT3λ−1
1 + Op(T−1/2) + Op(

√
XT−2)

)
h̃−1βx

= X−1/2
(

X−1/2e∗′t β
)

σ−2
β βx + Op((XT)−1/2) + Op(T−2), (77)

implying that

√
X(κ̃t − κ∗t h̃)h̃−1βx ∼ σ−1

β βx N(0, Γtσ
−2
β ) + Op(T−1/2) + Op(

√
XT−2). (78)
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Concerning the third term, κ̃t can be expanded, yielding

κ̃t(β̃x − βx h̃−1) = κ∗t h̃(β̂x − βx h̃−1) + (κ̃t − κ∗t h̃)(β̃x − βx h̃−1)

= T−1/2(T−1κ∗t )
(

T−3/2(e∗x)
′κ∗
)

T3h̃2 + Op(X−1/2T−3/2) + Op(T−3).

(79)

From this result, we obtain

√
Tκ̃t(β̃x − βx h̃−1) = δ

(
t
T
− 1

2
+ Op(T−1/2)

)(
T−3/2(e∗x)

′κ∗
12
δ2 + Op(X−1/2 + Op(T−1/2))

)
∼ 12

δ

(
t
T
− 1

2

)
N(0, Φx) (80)

Collecting the above results and letting

v1 =
(

σ−1
β βx

)2
Γtσ
−2
β

and

v2 = σ2
x +

(
12
δ

(
t
T
− 1

2

))2

Φx

we can state that

(X−1v1 + T−1v2)
−1/2(m̂x,t − κ∗t βx)

d→ N(0, 1). (81)

�

Proof of Lemma 4.1 By the definition of the estimator and by Theorem 2, we can write

δ̂ = (T − 1)−1
T

∑
t=2

(δh + νth + X−1/2∆e′tβσ−1
β + Op(T−1/2) + Op(

√
XT−2)) (82)

As shown in the proof of Theorem 2, the Op(T−1/2)-term represents
√

XT3 j1,t. Now note that

(T − 1)−1
T

∑
t=2

√
XT3∆j1,t = X−1/2T−3/2(T − 1)−1

T

∑
t=2

∆κ∗t

T

∑
s=1

β′e∗s (κ̃s − κ∗s h̃)

+ X−1/2T−3/2(T − 1)−1
T

∑
t=2

∆κ∗t

T

∑
s=1

β′e∗s κ∗s h̃. (83)
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The first term of this expression is given by

X−1/2T−3/2(T − 1)−1
T

∑
t=2

∆κ∗t

T

∑
s=1

β′e∗s (κ̃s − κ∗s h̃)

≤ T−1/2(δ + (T − 1)−1/2 1√
T − 1

T

∑
t=1

νt)(T−1
T

∑
s=1

(X−1/2β′e∗s )
2)1/2(T−1

T

∑
s=1

(κ̃s − κ∗s h̃)2)1/2

= T−1/2(Op(X−1/2T−3/2) + Op(T−3))

= Op(X−1/2T−2) + Op(T−7/2) (84)

similarly, for the first part we obtain

X−1/2T−3/2(T − 1)−1
T

∑
t=2

∆κ∗t

T

∑
s=1

β′e∗s κ∗s h̃

= (δ + (T − 1)−1/2 1√
T − 1

T

∑
t=1

νt)(X−1/2T−3/2
T

∑
s=1

β′e∗s κ∗s )h̃

= Op(T−3/2) (85)

This result implies that we can write√
T − 1

X
(δ̂− δh) = X−1/2 1√

T − 1

T

∑
t=2

νth

+ X−1/2 1√
X(T − 1)

T

∑
t=2

∆e′tβσ−1
β + Op(X−1/2T−1) + Op(T−3/2)

∼ N(0, σ2
βσ2

ν ) + Op(X−1/2) + Op(T−3/2), (86)

which completes the proof. �

Proof of Theorem 5 We can write κT+q = κT + qδ + ∑
q
p=1 ηT+p. Hence,

κ̂T+q|T − κ∗T+qh = (κ̂T − κ∗Th) + q(δ̂− δh) +
q

∑
p=1

ηT+p (87)

From Theorem 2 and Lemma 4.1 it is known that the first two terms above are asymptotically
normal with variances Γtσ

−2
β and X/Tσ2

ν σ2
β + T−1σ−1

β Γ∆ respectively. All covariances between
individual terms of the expression above are equal to zero by assumption except for Cov[κ̂T, δ̂].
We can rewrite the latter

Cov[κ̂T, δ̂] = σ−2
β E

[
X−1/2(e∗T)

′β
1

T − 1

T

∑
s=2

X−1/2(∆es)
′β

]
+ Op(

√
XT−2) + Op(XT−4),
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where the first part is

σ−2
β E

[
X−1/2(e∗T)

′β
1

T − 1

T

∑
s=2

X−1/2(∆es)
′β

]

= σ−2
β E

[
X−1/2(e∗T)

′β
1

T − 1
(X−1/2e′T β− X−1/2e′1β)

]
= σ−2

β E

[
1

X(T − 1)

X

∑
x=1

X

∑
y=1

e∗x,T βxey,T βy

]
− σ−2

β E

[
1

X(T − 1)

X

∑
x=1

X

∑
y=1

e∗x,1βxey,T βy

]
= O(T−1).

Thus, the covariance term can be disregarded if X/T4 → 0 and asymptotically the vari-
ance of the normally distributed term κ̂T+q|T − κ∗T+qh is given by Var[κ̂T+q|T] = aVar[κT] +

q2
(

aVar[δ] + σ2
β

)

Proof of Theorem 6 We can use the decomposition

m̂x,T+q|T −mx,T+q = (m̂x,T −mx,T) + q(δ̂− δh)h−1βx + qδ̂(β̂x − h−1βx)

−
q

∑
p=1

νT+pβx − ex,T+q (88)

Theorem 4 establishes the limiting distribution of the first term on the RHS. Concerning the
second term, note that

(δ̂− δh)h−1βx = X−1/2(δ̂− δh)σ−1
β βx

∼ (T − 1)−1/2βx N(0, β2
xσ2

ν + X−1σ−2
β Γ∆) + Op(T−1) (89)

by application of Lemma 4.1. Concerning the third term, note that

δ̂(β̂x − h−1βx) = Op

(√
X

T − 1

)
Op

(
1√
XT3

)
= Op(T−2) (90)

which implies that this term can be disregarded. Using the assumptions on νt and ex,t, we can
hence conclude that

m̂x,T+q|T −mx,T+q ∼ N(0, Var(m̂x,T+q|T)) + Op(T−1) (91)

where Var[m̂x,T+q|T] = aVar[m̂x,T] + q2(β2
xaVar[δ̂] + σ2

ν ) + σ2
e
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