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Abstract

This paper considers a house allocation problem with no initial ownership and where
prices are bounded from below and above by exogenously given price restrictions.
This type of housing market contains, e.g., the “assignment market” and the “student
placement problem” as special cases. A mechanism called the minimal RPE mecha-
nism is defined, and two main results are obtained. First, it is demonstrated that the
mechanism is manipulable at some profile in the full preference domain R. Second,
it is proved that there is a subset R̃ ⊂ R of the full domain, containing almost all
profiles in R, such that the minimal RPE mechanism is strategy-proof in that subset.

JEL Classification: C78; D71.
Keywords: house allocation; matching; strategy-proofness; domain restrictions.

1 Introduction

We consider a house allocation problem with no initial ownership where prices are bounded
from below and above by exogenously given price restrictions. Because the houses are in-
divisible objects, the upper and lower price restrictions are allowed to coincide, and the
upper and lower price restrictions can take any real number, this problem contains, e.g.,
the models by Balinski and Sönmez (1999), Demange and Gale (1985), Hylland and Zeck-
hauser (1979), Leonard (1983), and Shapley and Shubik (1972), as special cases. Our
main objective is to define a strategy-proof allocation mechanism for this type of housing
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market.1 One difficulty in achieving this task is that, due to the exogenously given price
constraints, a price equilibrium need not exist for all preference profiles in the full prefer-
ence domain (i.e., all profiles where preferences are rational, monotonic, and continuous).
Consequently, previous results, from, e.g., Demange and Gale (1985) and Leonard (1983),
cannot be used directly to construct a strategy-proof allocation mechanism. However, as
is demonstrated in this paper, the basic idea in those papers, i.e., that a minimal price
vector can be used as a main ingredient in a strategy-proof allocation mechanism, can also
be used in non-equilibrium situations.

Since the price restrictions exclude equilibrium for certain preference profiles, the con-
cept of a rationing price equilibrium (RPE, henceforth) is introduced. This concept is
partly characterized by a priority-order that is used to determine the allocation when no
price equilibrium exists, and partly characterized by a price condition stating that prices
on “overdemanded” houses must equal the upper price bound. The investigated allocation
mechanism then selects an RPE with a price vector that is minimal in the set of RPE price
vectors. This mechanism is called a minimal RPE mechanism.

The first main insight of this paper is negative. More explicitly, it is shown that a min-
imal RPE mechanism is manipulable at some profile in the full preference domain R. This
negative finding provides a rationale for restricting the preference domain, and it also adds
another example to the long line of examples that demonstrate that allocation mechanisms
or social choice rules often need to be defined on restricted domains (e.g., single-peaked
domains, or domains where the preferences satisfy the single-crossing condition or the
intermediateness condition, etc.) to avoid impossibility results.2

The second main result of this paper is positive and demonstrates that there is a subset
R̃ ⊂ R of the full domain, containing, in a mathematical meaning, almost all profiles in R,
such that the minimal RPE mechanism is strategy-proof in that subset. This result extends
a partial result obtained for the minimal RPE mechanism in Andersson and Svensson
(2014). In that paper, the mechanism was defined only on the subset R̃, and it was shown
that it is impossible for any group of agents to manipulate the mechanism if they report
preferences restricted to profiles in R̃. Hence, the result did not reveal if it is possible to
manipulate the mechanism with a profile in R\R̃. In this meaning, strategy-proofness was
not proved. This in combination with the fact that the domain R̃ is not a hyperrectangle
is problematic as the reports of the truthful agents and the misrepresenting agents jointly
determine whether or not the “new” preference profile belongs to the restricted domain
R̃, meaning that it is not possible for a group of agents to know that it is impossible to
manipulate until they know the reported preferences of the truthful agents. As the main
result of this paper demonstrates that the minimal RPE mechanism in fact is strategy-
proof, the agents need not to have any information about other agents’ preferences, or, put
differently, the “new” profile is always allowed to belong to the rectangular domain R.

The remaining part of this paper is organized as follows. Section 2 describes the basic

1Some recent papers have considered a housing market with price restrictions, see, e.g., Andersson
et al. (2015), Herings (2015), Talman and Yang (2008) or Zhu and Zhang (2011), but none of these papers
address the issue of strategy-proofness.

2See, e.g., Barberà et al. (2013) for a nice overview of domain restrictions and their consequences.
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economy and introduces a number of definitions and remarks. All results of this paper are
stated and proved in Section 3. The Appendix contains a measure on sets of profiles such
that R̃ = R a.e.

2 The Model and Basic Definitions

Let H = {1, . . . ,m} and A = {1, . . . , n} denote the finite sets of houses and agents,
respectively. Agents wish to buy at most one house and have an option not to buy any
house at all. This outside option is formally represented by a null house, denoted by 0.
These houses are available in an unlimited number of copies.

An assignment is a mapping µ : A → H ∪ {0} such that µa = µa′ for a 6= a′ only if
µa = 0. Hence, two distinct agents can not be assigned the same house in H. Denote by
µ0 the set of houses that is not assigned to any agent at assignment µ. The null house is
always included in this set as its supply is unlimited. Hence:

µ0 = {h ∈ H : µa 6= h for all a ∈ A} ∪ {0}.

Let p ∈ Rm+1 be a price vector. A coordinate in p is denoted by ph and represents the
price of house h ∈ H ∪ {0}. The price of the null house is, without loss of generality,
always assumed to equal zero, i.e., p0 = 0. Price vectors are assumed to be restricted
by exogenously given lower and upper bounds denoted by p ∈ Rm+1 and p ∈ Rm+1,
respectively, where p ≤ p. As p0 = 0, by assumption, it is clear that p

0
= p0 = 0. The

price space is given by:

Ω = {p ∈ Rm+1 : p
h
≤ ph ≤ ph for h ∈ H ∪ {0}}.

Each agent a ∈ A has preferences on pairs of houses and prices.3 Denote by Ra agent
a’s preference relation on the set of houses and prices (H ∪ {0}) × R. The corresponding
strict and indifference relations are denoted by Pa and Ia, respectively. Preferences are
assumed to be rational and strictly monotonic for all agents a ∈ A, i.e., Ra is a complete
and transitive binary relation on (H ∪ {0})× R and (h, p′h)Pa(h, ph) if p′h < ph. It is also,
for all agents a ∈ A, assumed that (0, 0)Pa(h, ph) for ph “sufficiently large”. Preferences
are further assumed to be continuous, i.e., the sets {ph ∈ R : (h, ph)Ra(h

′, p′h′)} and
{ph ∈ R : (h′, p′h′)Ra(h, ph)} are closed for each a ∈ A and all h, h′ ∈ H ∪ {0} and all
p′h′ ∈ R. All preference relations Ra satisfying the above properties for agent a ∈ A are
gathered in the set Ra. A (preference) profile is a list R = (R1, . . . , Rn) of the agents’
preferences. This list belongs to the set R = R1 × · · · × Rn. Finally, we adopt the
notational convention of writing a profile R ∈ R as R = (RC , R−C) for C ⊂ A.

There is also a priority-order π, i.e., a bijection π : A → A, where the highest ranked
agent a has πa = 1, the second highest ranked agent a′, πa′ = 2, and so on.

The following definitions have already been extensively discussed in Andersson and
Svensson (2014) so they are stated here without any further discussion.

3For convenience, we will often let (h, p) ≡ (h, ph), i.e., by (h, p) we mean house h at price ph in the
price vector p.
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Definition 1. A state is a pair x = (µ, p) where µ is an assignment and p ∈ Ω is a price
vector. A state can also be written as x = (x1, . . . , xn) where xa = (µa, pa) for a ∈ A.

Definition 2. For a given profile R ∈ R, a state x = (µ, p) is priority respecting if for
each a, a′ ∈ A, (i) xa′Paxa only if πa′ < πa, and (ii) xaRa(h, p) if h ∈ µ0.

Definition 3. For a given profile R ∈ R, a state x = (µ, p) and the assignment µ are
constrained efficient if x is priority respecting, and there is no priority respecting state
x′ = (µ′, p) that Pareto dominates x.

Definition 4. For a given profile R ∈ R, a state x = (µ, p) is a rationing price equilibrium
(RPE, henceforth) if (i) ph = p

h
for all h ∈ µ0, (ii) for all a, a′ ∈ A, pµa′ = pµa′ if xa′Paxa,

and (iii) x is constrained efficient.

For a given profile R ∈ R, the set of RPE states is denoted by ΣR. Let also Σ = ∪R∈RΣR.
Moreover, for a given profile R ∈ R, a price vector p is an RPE price vector if there is an
assignment µ such that the state (µ, p) is a rationing price equilibrium. The set of RPE
price vectors at profile R is denoted by ΠR.

Definition 5. For a given profile R ∈ R, a vector pm is a minimal RPE price vector if
pm ∈ ΠR and for p ∈ ΠR, p ≤ pm only if p = pm.

Definition 6. Let R∗ ⊂ R. An (allocation) mechanism with domain R∗ is a function
f : R∗ → Σ.

Definition 7. A minimal RPE mechanism is an allocation mechanism f with domain
R∗ ⊂ R where f(R) = (µ, p) is any selection of RPE states such that p is a minimal RPE
price vector in ΠR.

Definition 8. A mechanism f is manipulable at a profile R ∈ R by a nonempty group
of agents C ⊂ A if there is a profile R′ = (R′C , R−C), and two states f(R) = x = (µ, p)
and f(R′C , R−C) = x′ = (µ′, p′), such that x′aPaxa for all a ∈ C. If the mechanism f is
not manipulable by any group C ⊂ A at profile R, it is strategy-proof at profile R. Given
R∗ ⊂ R, the mechanism f is group strategy-proof on the domain R∗ if for any profile
R ∈ R∗, f is group strategy-proof at profile R.

We end this section with a few remarks related to equilibrium notions, efficiency, and
strategy-proofness. A first remark is that in the definition of an RPE, the priority-order is
used only to define the assignment of agents to houses in non-price equilibrium situations,
i.e., in situations where prices alone cannot define the assignment and, hence, where there
in principal only are indivisible items. If the priority-order is relaxed, the concept of
constrained efficiency can be replaced with efficiency in the definition of an RPE, and
the existence of an “equilibrium” is still guaranteed for all profiles in R. However, it
is well-known that a priority structure often is a consequence of efficiency and strategy-
proofness, e.g., in models with only indivisible items (Balinski and Sönmez, 1999; Larsson
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and Svensson, 2005; Svensson, 1999; Pápai, 2000), meaning that efficiency and strategy-
proofness are incompatible unless some kind of priority structure is imposed. Hence, if
the priority-order is relaxed in the considered model, it is not unlikely that there will be a
tradeoff between efficiency and strategy-proofness in the sense that if efficiency is imposed,
then strategy-proofness is lost.

A second remark is that there are alternative equilibrium notions for house allocation
problems with price restrictions. In particular, Talman and Yang (2008) analyze such
problem using the notion of a constrained Walrasian equilibrium (CWE, henceforth). This
notion is weaker than RPE4, and its rationing system is endogenous. Because there is no
efficiency requirement in a CWE, there are profiles in R where it is possible to make a
Pareto improving reallocation of the houses among the agents and at the same time respect
all requirements of a CWE. Note that the latter may be true even if an arbitrary priority-
order is attached to the concept. This can never occur at a RPE since it is constrained
efficient by definition.5

A final remark is related to the core. More specifically, Andersson et al. (2015, Theorem
3.4) demonstrate that the ascending auction in Talman and Yang (2008) always finds a
core allocation, as defined in Andersson et al. (2015, Definition 2.1), in a finite number of
steps. By using almost identical arguments as in their proof, it follows immediately that
also a minimal RPE mechanism always selects a core allocation.

3 Results

The first main insight of the paper is that the minimal RPE mechanism is manipulable on
the full preference domain. This is demonstrated in the following example.

Example 1. Let A = {1, 2, 3, 4, 5}, H = {1, 2, 3, 4, 5}, πa = a for all a ∈ A, and p
h

= 0
and ph = 1 for all h ∈ H. Suppose further, that preferences over bundles (h, p), for each
agent a ∈ A, are represented by a quasi-linear utility function uah(p) = vah− ph for h ∈ H
where:

V = (vah) =


10 10 0 0 0
10 0 0 5 0
0 10 0 0 5
0 0 0 10 0
0 0 0 0 10

 ,

and ua0(p) = −10. The above quasi-linear preferences are gathered in the profile R ∈ R.
We next remark that there are exactly two minimal RPE price vectors, p and p′, at profile
R, where p1 = p2 = p5 = 1, p3 = p4 = 0, p′1 = p′2 = p′4 = 1, and p′3 = p′5 = 0. The vector p
is obtained only at the assignment µ = (2, 1, 5, 4, 3), and the vector p′ is obtained only at

4The formal proofs of the claims and properties stated in the remaining part of this section are available
from the authors upon request.

5See Andersson and Svensson (2014) for further discussions.
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the assignment µ′ = (1, 4, 2, 3, 5). Hence, the mechanism f selects either (µ, p) or (µ′, p′)
at profile R.

If the mechanism selects state (µ′, p′), agent 4 can manipulate the mechanism by re-
porting R̂4. At this report, preferences are represented by a quasi-linear utility function
with the following values: v̂4j = v4j for j ∈ {1, 2, 3, 4} and v̂45 = 5. It is easy to check that

the unique selection of f at profile R̂ = (R̂4, R−4) is state (µ, p). Because (µ4, p)P4(µ
′
4, p
′),

agent 4 can successfully manipulate the mechanism. Similarly, if the mechanism selects
state (µ, p), agent 5 can manipulate the mechanism by reporting R̂5. At this report, prefer-
ences are represented by a quasi-linear utility function with the following values: v̂5j = v5j
for j ∈ {1, 2, 3, 5} and v̂54 = 5. �

The consequence of the above example is that a minimal RPE mechanism can only be
strategy-proof on a restricted domain. For this purpose, we will consider the domain
R̃ ⊂ R that contains all profiles where no two houses are “connected by indifference” at
any price vector in Ω.6 We will later (Theorem 1) demonstrate that the minimal RPE
mechanism indeed is group strategy-proof on this domain.

Definition 9. For a given profile R ∈ R, two houses, h′ and h′′ in H ∪ {0}, are connected
by indifference if there is a price vector p ∈ Ω, a sequence of distinct agents (a1, . . . , at),
and a sequence of distinct houses (h1, . . . , ht+1) such that:

(i) h′ = h1 and h′′ = ht+1,

(ii) ph′ = p̄h′ and ph′′ = ph′′ ,

(iii) (hj, p)Iaj(hj+1, p) for all 1 ≤ j ≤ t.

We first remark that houses 1 and 2 are connected by indifference at profile R in Example
1 as (1, p1)I1(2, p2). Consequently, R /∈ R̃ but R ∈ R. We next remark that the set R̃, in
a mathematical meaning, contains almost all profiles in R. In the Appendix, a measure on
sets of profiles is defined such that R̃ = R a.e., but it can intuitively be understood in the
following way. Let R ∈ R be any profile and h′ and h′′ be any two distinct houses in H∪{0}.
Further, let (aj)

t
j=1 and (hj)

t+1
j=1 be any two sequences of distinct agents and houses, respec-

tively, such that h′ = h1 and h′′ = ht+1. Then, because of monotonicity and continuity of
preferences, there is a unique sequence (phj)

t
j=1 of prices such that (hj, phj)Iaj(hj+1, phj+1

)
for all j < t. But Definition 9 also requires that (ht, pht)Iat(ht+1, pht+1). This will occur
with probability zero in most cases, e.g., if preferences are quasi-linear and represented by
utility functions of type uah(p) = vah − ph for vah ∈ R, a ∈ A and h ∈ H ∪ {0}, and the
various values vah are randomly drawn from a bounded interval in R. In this meaning, a
limitation to profiles in R̃ excludes very few profiles in R.

6Note that Definition 9, below, is weaker than the one originally used by Andersson and Svensson (2014,
Definition 5). It is, however, straightforward to check that their main non-manipulability result (restated
as Lemma 1 in this paper) also holds for the weaker definition.
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Theorem 1. Let f be a minimal RPE mechanism with domain R. Then f is group
strategy-proof on the domain R̃.

Before proving Theorem 1, we note that the definition of group strategy-proofness assumes
that it is not possible for a deviating group of agents to transfer money among themselves
after the outcome of the rule has been realized. If such side payments would be allowed,
it would be possible for the group A to gain by strategic misrepresentation at any profile
in R̃ where the minimal RPE mechanism selects a state x = (µ, p) with p 6= p.7 Similar
findings have previously been reported by, e.g., Demange and Gale (1985, p.875–876) and
Schummer (2000a, p.307), for generalizations of the second-price auction. We also remark
that another type of manipulation may occur when a group of agents bribe some other
group of agents to misrepresent their preferences, and if this misrepresentation results in a
net gain for all agents involved in the bribing situation. If such situation is impossible, the
mechanism is said to be bribe proof (Massó and Neme, 2007; Schummer, 2000a,b). Also
for this type of manipulation, negative results are available under general circumstances.
For example, Schummer (2000b) proves that the only mechanisms that satisfy the bribe
proofness axiom are essentially constant mechanisms.

To prove Theorem 1, we will make use of a number of lemmas. As Lemmas 1 and 2 are
equivalent to Theorem 3 and Lemma 5 in Andersson and Svensson (2014), respectively,
they are stated without a proof.

Lemma 1. Let f be a minimal RPE mechanism with domain R̃. Then there is no profile
R ∈ R̃ and no group C ⊂ A of agents such that the group C can manipulate f by reporting
a profile (R′C , R−C) ∈ R̃.

Theorem 1 is a substantial extension of the Lemma 1. The weakness in the latter result is
that if a group C of agents have to decide if it is not possible to manipulate at a given profile
R, they are restricted to choose preferences R′C such that no two houses are connected by
indifference at the profile (R′C , R−C), i.e., such that the profile (R′C , R−C) belongs to R̃.
To do that, the group must first know the preferences of the group A \C as the domain R̃
is not a hyperrectangle. Strategy-proofness, as in Theorem 1, on the other hand, requires
non-manipulability even if the reported preferences (R′C , R−C) belongs to R \ R̃.

The following lemma states that the “trade” between two states x, x′ ∈ ΣR, where
R ∈ R̃, can be decomposed uniquely into a number of trading cycles such that all agents
in a cycle are weakly better off at x′ than at x with strict preference for some agent, or all
agents in a cycle are weakly better off at x than at x′. More precisely, a trading cycle from

7To see this, suppose that f(R) = x = (µ, p) with ph > p
h

for some h ∈ H, and f(R′C , R−C) =
x′ = (µ′, p′). Assume further that C = A and that R′a is represented by a quasi-linear utility function
uah(p) = vah − ph where vaµa

= pµa
and vah = p

h
for each a ∈ A and for any h 6= µa. Then, p is

the unique minimal RPE price vector at profile R′ by construction of the preferences, and, consequently,
f(R′) = (µ′, p′) = (µ, p). Because ph > p

h
for some h ∈ H, the set A′ = {a ∈ A : pµa

> p
µa
} is nonempty.

Since f(R′) = (µ′, p′) = (µ, p), it then follows that x′aPaxa for all a ∈ A′ and xaIax
′
a for all a ∈ A \ A′

(the set A \ A′ is nonempty by Theorem 1). By monotonicity of the preferences, it is now clear that the
agents in A′ can transfer some “small” amount of money to the agents in A \ A′ after the outcome of the
mechanism has been realized in such a way that all agents in A gain strictly by the misrepresentation.
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µ to µ′ is a sequence (aj)
t
j=1 of distinct agents such µ′aj = µaj+1

for j < t, where µ′at = µa1
if the cycle is closed, and where µ′at ∈ µ0 and µa1 ∈ µ′0 if the cycle is open.

Lemma 2. Let R ∈ R̃ and x, x′ ∈ ΣR. Then there are unique partitions H = H1 ∪ H2

and A = A1 ∪ A2 of the sets of houses and agents, respectively, such that a ∈ A1 if
and only if a belongs to a trading cycle where all agents are weakly better of at x′ than
at x and some agent in the trading cycle is strictly better off. Moreover, A2 = A \ A1,
H1 = {h ∈ H : h = µ′a for some a ∈ A1}, and H2 = H \H1.

Lemma 3. Let R ∈ R̃ and x, x′ ∈ ΣR, where x = (µ, p), x′ = (µ′, p′), p′ ≤ p, and p′ 6= p.
Then, xaIax

′
a for all a ∈ A2.

Proof. To obtain a contradiction, suppose that xaPax
′
a for some a ∈ A2 (we need not

consider any other case by the construction of A2). Define next the assignment µ′′ as:
µ′′a = µ′a if a ∈ A1 and µ′′a = µa if a ∈ A2. Then, the assignment µ′′ defines a Pareto
improvement of µ′ at the state x′ since p′h = ph for all h with h = µa and a ∈ A2. This
contradicts that x′ being an RPE state if, in addition, the state x′′ = (µ′′, p′) is priority
respecting, i.e., if (i) the priorities are respected at state x′′ and (ii) x′′aRa(h, p) for all a ∈ A
if h ∈ µ′′0. Cases (i) and (ii) are proved separately as follows:

(i) Suppose that x′′a′Pax
′′
a for some a, a′ ∈ A. We will demonstrate that the priorities are

respected at state x′′ in all possible cases, i.e., that πa′ < πa in all possible cases. If
a, a′ ∈ A1 or if a, a′ ∈ A2, then πa′ < πa since x, x′ ∈ ΣR. If a ∈ A1 and a′ ∈ A2, then
x′′a = x′a and x′′a′ = xa′ , so x′′a′Pax

′′
a imply that xa′Pax

′
aRaxa and, hence, πa′ < πa since

x ∈ ΣR. Finally, if a′ ∈ A1 and a ∈ A2 then x′′a = xa, x
′′
a′ = x′a′ , and x′′a′Pax

′′
a imply

that x′a′PaxaRax
′
a and, hence, πa′ < πa since x′ ∈ ΣR.

(ii) Consider µ′′0 and let G = (aj)
t
j=1 be a trading cycle µ → µ′. Suppose first that G is

closed. Then, µaj 6∈ µ′′0 for all j. Hence, we need only consider open trading cycles.
Suppose therefore that G is open, i.e., that µa1 ∈ µ′0 and µ′at ∈ µ0. Then if G ⊂ A1,
h = µa1 ∈ µ′0 ∩ µ′′0 and, hence, x′aRa(h, p

′) for all a ∈ A. Thus, x′′aRa(h, p
′) for all

a ∈ A. If G ⊂ A2 then h = µ′at ∈ µ0 ∩ µ′′0 and, hence, xaRa(h, p) for all a ∈ A, and
then x′′aRa(h, p

′) for all a ∈ A, since ph = p′h when h = µ′at and at ∈ A2.

Hence, the state x′ can not be an RPE state which contradicts our assumptions, and,
consequently, xaIax

′
a for all a ∈ A2.

Let now G = (a1, . . . , at) and S = (h1, . . . , ht+1) be any two sequences of distinct agents
and houses, respectively, and let al, 1 ≤ l ≤ t, be any agent in the sequence G. Define next
T to be the set of all such triples (G,S, al).

Lemma 4. Let R ∈ R. Then:

(i) T is a finite set,
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(ii) For any triple (G,S, al), there are unique prices phj , for 1 ≤ j ≤ t + 1, such that
ph1 = ph1 , pht+1 = pht+1

, and (hj, phj)Iaj(hj+1, phj+1
) for all j 6= l,

(iii) R ∈ R̃ if and only if there is no triple (G,S, al) ∈ T such that (hl, phl)Ial(hl+1, phl+1
).

Proof. Case (i) follows since A and H are finite sets, case (ii) follows from the continuity
and monotonicity properties of the preferences, while case (iii) is a direct consequence of
Definition 9.

In all of the remaining proofs, a specific preference representation will play an important
role. This preference representation is next formally defined.

Definition 10. Let a′ ∈ A, h′ ∈ H, and δ = 1+max{ph : h ∈ H}−min{p
h

: h ∈ H}. Then,
preferences Ra′h′ ∈ Ra′ are represented by a quasi-linear utility function ua′h(p) = va′h−ph
on the set of houses and prices (H ∪ {0})× R where the values va′h are given by:

va′h = (1− h)δ if h 6= h′,

va′h′ = 2δ.

Lemma 5. Let R ∈ R̃, and consider the sets of distinct agents and distinct houses,
C = {â1, . . . , âk} ⊂ A and {ĥ1, . . . , ĥk} ⊂ H ∪ {0}, respectively. Let further R′aj = Rajhj

for all aj ∈ C. Then (R′C , R−C) ∈ R̃.

Proof. To obtain a contradiction, suppose that (R′C , R−C) /∈ R̃. Then, by Lemma 4, there
is a triple (G,S, al) ∈ T and unique prices phj , for all hj ∈ S, such that ph1 = ph1 , pht+1 =
pht+1

, and:
(hj, phj)Iaj(hj+1, phj+1

) for all 1 ≤ j ≤ t. (1)

SinceR ∈ R̃, by assumption, there is an agent âj ∈ C∩G. Let now âj = al. Because al ∈ C,
it follows by the construction of the preferences that (hl, phl)Ial(hl+1, phl+1

) if valhl − pal =
valhl+1

−pal+1
, i.e., if valhl−valhl+1

= pal−pal+1
. Hence, if |valhl−valhl+1

| 6= |pal−pal+1
|, then

also valhl− valhl+1
6= pal−pal+1

. Because |pal−pal+1
| < δ, by construction, we will therefore

obtain a contradiction to the assumption that (R′C , R−C) /∈ R̃ if |valhl − valhl+1
| ≥ δ. But

this condition must hold by the construction of the preferences, and the facts that hl 6= hl+1,
hl ∈ H ∪ {0}, and hl+1 ∈ H ∪ {0} as:

|valhl − valhl+1
| = |(1 + hl+1)δ| if hl = ĥj,

|valhl − valhl+1
| = | − (1 + hl)δ| if hl+1 = ĥj,

|valhl − valhl+1
| = |(hl+1 − hl)δ| if hl, hl+1 6= ĥj.

Hence, (hl, phl)Ial(hl+1, phl+1
) can never be the case, and, therefore, houses h1 and ht+1

cannot be connected by indifference, contradicting the assumption that (R′C , R−C) /∈ R̃.
Thus, (R′C , R−C) ∈ R̃.
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Lemma 6. Consider state (µ, p) ∈ ΣR′ where R′ = (R′C , R−C) ∈ R̃, R′aj = Rajhj , and
µaj = hj for aj ∈ C. Then, xajPajxk for all aj ∈ C and all k ∈ A \ {aj}.

Proof. This follows directly from the construction of Rajhj and the assumption that µaj =
hj, i.e., the condition xajPajxk for some arbitrary k ∈ A \ {aj} is equivalent to:

(1 + hk)δ > phj − phk .

But this condition always holds as hk ∈ H ∪ {0}, i.e., the value of the left hand side of
the condition is always weakly greater than δ, whereas the left hand side always is strictly
smaller than δ by the construction of δ.

Proof of Theorem 2. Let R ∈ R̃ and f(R) = x = (µ, p). To obtain a contradiction,
suppose that the agents in C ⊂ A can manipulate f at profile R ∈ R̃. Then there is a
profile R1 = (R1

C , R−C) and a state f(R1) = x1 = (µ1, p1) such that x1aPaxa for all a ∈ C
by Definition 8. Define now R2 = (R2

C , R−C) to be the profile where R2
a = Raµ1a

for all

a ∈ C. Because R ∈ R̃, it then follows from Lemma 5 that R2 ∈ R̃.
The first step in the proof is to demonstrate that there is a state x2 ∈ ΣR2 such that

x2 = (µ2, p1) for some assignment µ2. For this purpose, consider state x1 = (µ1, p1) at the
profile R2. We note the following:

(i) p1h = p
h

for all h ∈ µ1
0 as x1 ∈ ΣR1 .

(ii) x1aR
2
a(h, p) if h ∈ µ1

0. For a /∈ C, this follows since x1 ∈ ΣR1 and R2
a = R1

a. For a ∈ C,
this follows from Lemma 6 as agent a strictly prefers bundle x2a over any other bundle
at preferences R2

a.

(iii) For all a, a′ ∈ A, p1µa′ = pµa′ if x1a′P
2
ax

1
a. For a /∈ C, this follows because x1 ∈ ΣR1

and R2
a = R1

a. For a ∈ C, the conclusion again follows directly from Lemma 6.

(iv) x1a′P
2
ax

1
a only if πa′ < πa. For a /∈ C, this follows as x1a′P

2
ax

1
a for some a, a′ ∈ A implies

that πa′ < πa since x1 ∈ ΣR1 and R2
a = R1

a. For a ∈ C, the conclusion again follows
directly from Lemma 6.

From Definition 7 and points (i)–(iv), it then follows that if µ1 is constrained efficient at
profile R2, then we can choose x2 = x1 to prove that there is a state x2 ∈ ΣR2 . On the
other hand, if µ1 is not constrained efficient, then there is a constrained efficient assignment
µ2, at profile R2 and the price vector p1, which is a Pareto improvement of µ1. Then we
can set x2 = (µ2, p1). In this case, we remark that µ2 can be chosen so that points (i)–(iii)
above are satisfied since µ2 is a Pareto improvement. Point (iv) is satisfied by definition
since µ2 has to be priority respecting. Hence, there is a state x2 ∈ ΣR2 .

We next note that by the construction of R2
a and the fact that x2 ∈ ΣR2 , it follows

directly that x2a = x1a for all a ∈ C. Let now f(R2) = x3 = (µ3, p3). Then p3 ≤ p2, since
x2, x3 ∈ ΣR2 and p3 is the unique minimal RPE vector. The uniqueness property follows
from the fact that R2 ∈ R̃ and Theorem 2 in Andersson and Svensson (2014).
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We next show that x3aRax
2
a for all a ∈ A. Consider now the profile R2, the states x2

and x3, and the trade µ2 → µ3. Let H = H1 ∪H2 and A = A1 ∪ A2 be the partitions as
defined in Lemma 2. If p3h < p2h and µ2

a = h, then x3aP
2
ax

2
a and, hence, a ∈ A1 and h ∈ H1.

Then also p3h = p2h for all h ∈ H2. Moreover, by Lemma 3, x3aI
2
ax

2
a for all a ∈ A2. Hence,

x3aR
2
ax

2
a for all a ∈ A.

Note next that x3aPaxa for all a ∈ C. This follows as x3aRax
2
a, x

1
aPaxa, and x2a = x1a

for all a ∈ C. But because f(R2) = x3, the group C ⊂ A can manipulate the mechanism
f at profile R ∈ R̃ by reporting profile (R2

C , R−C) ∈ R̃. But that is a contradiction to
Lemma 1. Hence, the minimal RPE mechanism with domain R is group strategy-proof on
the domain R̃. �

Appendix: A Measure where R̃ = R a.e.

This Appendix provides a measure on subsets of profiles in R such that the subset of
profiles where two houses are connected by indifference has measure zero.

Let h ∈ H and let Dh be the set of continuous and strictly decreasing functions f :
[p
h
, p̄h]→ [0, 1]. Then each preference Ra, for each agent a ∈ A, can be represented by a list

ua = (uah)
n
1 of utility functions uah ∈ Dah, where Dah = Dh, and each such list represents

a preference Ra. Hence, ua ∈ ×hDah. Moreover, a preference profile R = (R1, . . . , Rn) can
be represented by an element in U = ×ahDah.

For each h ∈ H, let m̂h be the Lebesgue measure defined for measurable subsets of the
interval [p

h
, p̄h]. Let also, for a subset D′ ⊂ Dh:

mhD′ = m̂h{y : y = f(p̄h) for some f ∈ D′}.

Note that by this definition of the measure of a subset D′ ⊂ Dh of utility functions, we
have that mhD′ = 0 if for some y ∈ [0, 1] and for all uah ∈ D′ah, uah(p̄h) = y. This means
that if utility functions uah are drawn randomly, with equal probability, from the set Dah,
the probability that uah ∈ D′ah is zero. Finally, denote the product measure on U by
m = ×ahmh.

Proposition 1. R̃ = R a.e.

Proof. Let (a1, . . . , at) be a sequence of distinct agents and (h1, . . . , ht+1) a sequence of
distinct houses, and let S ⊂ ×ahDah be the subset of profiles where two distinct houses h′

and h′′ are connected by indifference for those two sequences, i.e.:

S = {u ∈ U : there is p ∈ Ω such that all conditions of Definition 9 are satisfied}.

To complete the proof, we need to demonstrate that mS = 0. To achieve this task,
decompose U according to U = U ′ × U ′′, where U ′′ = Datht+1 . Let u′ ∈ U ′ and:

g(u′) = matht+1{uatht+1 : (u′, uatht+1) ∈ S}.
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Then:

mS =

∫
u′∈U ′

gdm′,

where m′ = ×ah6=atht+1m
h (see, e.g., Royden, 1968, Lemma 16, p.266). However, g(u′) = 0.

To see this, note that phj , for j ≤ t, are uniquely determined by monotonicity of preferences.
This means that the functions uatht+1 with (u′, uatht+1) ∈ S have to satisfy uatht+1(p̄ht+1) =
u′atht(pht). But then g(u′) = 0.

But now it follows that the set of profiles where two houses are connected by indiffer-
ence has measure zero, since there is only a finite number of sequences of distinct agents
(a1, . . . , at) and distinct houses (h1, . . . , ht+1).

References

Andersson, T. and Svensson, L.-G. (2014). Non-manipulable house allocation with rent
control. Econometrica, 82:507–539.

Andersson, T., Yang, Z., and Zhang, D. (2015). How to efficiently allocate houses under
price controls? Economics Letters, 130:97–99.

Balinski, M. and Sönmez, T. (1999). A tale of two mechanisms: Student placement. Journal
of Economic Theory, 84:73–94.
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