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ON AXIOMS UNDERLYING USE OF RESERVE PRICE

CONAN MUKHERJEE
DEPARTMENT OF ECONOMICS, LUND UNIVERSITY

DEPARTMENT OF H&SS, INDIAN INSTITUTE OF TECHNOLOGY BOMBAY

ABSTRACT. This paper establishes reserve price as an ethical necessity contrary to its popu-
lar interpretation as an instrument of revenue generation. It provides an axiomatic justifica-
tion to reserve pricing at Vickrey auction in single as well as multiple objects settings. It also
provides a multi-object axiomatization of another popular class reserve price mechanisms
called maxmed mechanisms introduced by Sprumont [JET,2013]. In general, a topological
interpretation of reserve price is provided as the infimum of the set of non-negative real
numbers satisfying the following property: if all agents bid the same number from this set,
then at least one object is allocated.

For the single object setting, (i) it is shown that any anonymous strategy-proof mecha-
nism that satisfies non-bossiness (in decision) must have an allocation rule same as that of
a Vickrey auction with reserve price (VARP) and (ii) an axiomatization is provided for the
class of VARP mechanisms. The same results are shown to hold in multiple objects context
under an additional ethical axiom minimal impartiality (which requires that either all objects
or no object be allocated at any profile where all agents report the same value) and a techni-
cal regularity condition. These results are further extended to provide a characterization of
maxmed mechanisms in the multiple object setting.
JEL classification: C72; C78; D71; D63
Keywords: Anonymous, non-bossy, strategy-proof mechanism, maxmed mechanisms

1. INTRODUCTION

It is well known that reserve pricing at auctions is an important method of ensuring that
the seller revenue is not too low in settings where competition among bidders is low and
bidders are asymmetric (Ausubel and Cramton [3]). Vickrey auctions, on other hand, en-
sure that the objects are allocated efficiently and that agents have no incentive to misreport
irrespective of what other agents are reporting. Therefore, Vickrey auction with reserve
price [VARP]1 is a useful mechanism that achieves both objectives of efficient allocation of
objects and avoidance of low seller revenues. Hence, VARP has been widely observed in
practical applications.2 However, there is a dearth of literature on normative justifications

Email: conanmukherjee@gmail.com.
I thank Professors T. Andersson, D. Mishra, S. Serizawa, W. Thomson and the participants of Society

for Social Choice and Welfare Conference, Boston for their comments and suggestions. I also thank Abdul
Quadir for the stimulating discussions. This research was supported by funding from IRCC seed grant
project (no. 13IRCCSG014) by Indian Institute of Technology Bombay. The standard disclaimer holds.

1Vickrey auction with reserve price is a mechanism with a special allocation rule where objects are al-
located only to agents whose bids are not less than the reserve price. Further, winners of object pay the
maximum of the reserve price and the greatest losing bid as price and non-winners pay nothing.

2As pointed out by Lucking-Reiley [6], VARP was found to be held as early as 1897 by pioneering stamp
dealer William P. Brown of New York.
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2 CONAN MUKHERJEE

of VARP. This is in contrast to a large literature characterizing Vickrey auction without re-
serve prices.3 The first half of this paper, attempts to fill this gap by providing axiomatic
justification to reserve pricing at Vickrey auctions, both in single and multiple objects set-
ting. The second half of the paper discusses another popular class of mechanisms involv-
ing reserve price called maxmed mechanisms introduced by Sprumont [17].4 In particular, it
generalizes the maxmed mechanisms to the mutliple identical objects setting and provides
an axiomatization.

We consider the problem of allocating homogeneous indivisible objects with monetary
transfers and unit demand, under the condition that the planner may decide not to allo-
cate some or all of the objects. This problem has several practical applications where the
objects may be houses, jobs, locations etc. The agents are assumed to have quasi-linear
preferences over the object and money. In particular, each agent has a non-negative val-
uation for the object which is private information, and has utility as a linear function of
money. The planner, therefore, needs to design a mechanism to ensure truthful revelation
of valuations. A mechanism in this context, is a pair consisting of an assignment function
which determines which agent gets an object, and a vector of monetary transfers. Note
that our setting allows for no objects to be allocated to any agent.

We completely characterize the class of ethical mechanisms immune to strategic manip-
ulation (by a single agent) and show that each member of this class must have an allocation
rule same as that of VARP mechanisms. We describe ethical mechanisms by invoking three
notions of fairness: anonymity in welfare used by Ashlagi and Serizawa [1], Hashimoto and
Saitoh [5], no-envy introduced by Foley [4], Varian [19] and non-bossiness used by Satterth-
waite and Sonnenschein [16], Svensson [18]. A mechanism is said to satisfy anonymity in
welfare if utility levels of any two agents get interchanged, when their valuations are inter-
changed with all other agents’ valuations remaining unchanged. A mechanism is said to
satisfy no-envy, if each agent prefers his/her bundle of object and money, to that of others.
We use a weaker version of non-bossiness (also used by Mishra and Quadir [7]), that is,
non-bossiness in decision which requires that no agent can change his/her valuation in such
a way that the allocation decision of that agent does not change, but the allocation decision
of some other agent changes.5 Further, we describe mechanisms immune to manipulation
by invoking the concept of strategy-proofness. A mechanism is said to be strategy-proof
if truth-telling is a weakly dominant strategy for all agents in the direct revelation game
induced by it.

In the single object case, we show that a strategy-proof mechanism satisfies anonymity
and non-bossiness only if it has an allocation rule same as that of a VARP mechanism.
Then we completely characterize the class of mechanisms that satisfy anonymity, strategy-
proofness and non-bossiness. Any mechanism in this class, satisfies a mild zero-utility
condition (requiring that any agent with zero valuation for the object should get zero utility
by participating in the mechanism), if an only if it is a VARP mechanism.

3Moulin [8], Ashlagi and Serizawa [1], Sakai [13], [15], Saitoh and Serizawa [12], Mukherjee [9] etc.
4These mechanisms, too, have the same allocation rule as VARP mechanism but have a different transfer

function.
5This weaker axiom imposes no restriction on transfers.
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However, these characterizations fail to hold in the multiple homogeneous objects case
straightaway. That is because, with multiple objects, any subset of objects may be with-
held by the planner leading to a proliferation of the number of possible decisions at any
valuation profile. Therefore, we introduce a regularity condition (applicable only at some
valuation profiles) and an additional ethical axiom minimal impartiality (which requires that
either all or no object be allocated at any profile where all agents have bid the same value).
We show that any regular mechanism satisfies minimal impartiality along with anonymity,
non-bossiness, strategy-proofness and zero-utility, if and only if it is a VARP mechanism
of a special kind.

Finally, we characterize the class of regular, minimally impartial, anonymous, non-bossy,
strategy-proof mechanisms satisfying no-envy. Further, within this class of mechanisms,
we identify the Pareto undominated, individually rational and feasible mechanisms. We
then show that these mechanisms are the general version of the maxmed mechanisms of
Sprumont [17].

Perhaps the most popular paper on reserve pricing at auctions is Myerson [10]. Myer-
son [10], in an independent private value setting, identifies a particular VARP mechanism
as the revenue maximizing mechanism under the assumptions of: (i) symmetric bidders,
(ii) distribution of valuations satisfying a regularity condition and (iii) the planner know-
ing this distribution with certainty. Further, Myerson [10] obtains a revenue maximizing
mechanism involving different reserve prices for different agents, if assumption (i) is vi-
olated. In contrast, the present paper makes no such assumption and shows that, in an
independent private value setting, any ethical (anonymous and non-bossy) and strategy-
proof mechanism must have a non-negative reserve price (same across all agents) and
must allocate objects as in a VARP mechanism.

The other papers relevant to the present analysis are Athanasiou [2], Sakai [14] and Spru-
mont [17]. Athanasiou [2] characterizes the set of Pareto undominated mechanisms that
satisfy individual rationality in the class of anonymous and strategy-proof mechanisms.
Sprumont [17] too investigates Pareto undominated mechanisms satisfying individual ra-
tionality but restricts attention to the class of feasible mechanisms that are anonymous,
envy-free and strategy-proof mechanisms. For the two agent case, results of both these pa-
pers coincide to a special class of mechanisms with VARP allocation rule. For the general n
agent case, Sprumont [17] obtains a family of single parameter maxmed mechanisms with
VARP allocation rule. This paper characterizes a larger class of mechanisms with VARP
allocation rule (that contain the maxmed mechanisms) using the three axioms: anonymity,
non-bossiness and strategy-proofness. Further, it completely characterizes the class of
VARP mechanisms. Also, unlike these papers, the present paper extends the characteri-
zations to a multiple homogeneous object setting (which is a complicated exercise since
the multiple objects setting allows a strict subset of objects to be not allocated at some pro-
files). Finally, this paper generalizes maxmed mechanisms to the multiple homogeneous
objects setting and provides an axiomatization.

Sakai [14], too, restricts attention to the single object allocation problem and provides
axiomatizations of VARP mechanisms using weak versions of efficiency, individual ra-
tionality and equal treatment of equals. In contrast the present paper does not use any
efficiency axiom in any of the characterizations. That is, all the efficiency aspects embed-
ded in VARP arise in our setting as an implication of strategic and fairness axioms, both in
the single as well as multiple objects setting.
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Section 2 states the model and definitions. Section 3 contains the main results with first
subsection focusing on the single object case and the second subsection stating the multiple
objects case. Section 5 is the appendix containing proofs.

2. MODEL

We consider a situation where m homogeneous objects need to be allocated to agents in
N = {1, 2, . . . , n} with unit demand and the restriction 1 ≤ m ≤ n− 1. Each agent i ∈ N
has an independent private valuation vi ∈ R+. A mechanism is a tuple (d, τ) such that at
any reported profile of valuations b ∈ RN

+ , each agent i is allocated a transfer τi(b) ∈ R
and a decision di(b) ∈ {0, 1}. di(b) = 1 implies that agent i gets an object, while di(b) = 0
stands for i not getting the object. For any reported valuation profile b ∈ RN

+ , define
W(b) := {i ∈ N|di(b) = 1} to be the set of agents that are allocated an object. Note that at
any reported profile of valuations b ∈ RN

+ , ∑
n
i di(b) ≤ m. That is, all objects need not get

allocated at all reported profiles.
The utility to agent i with a true valuation of vi at any reported profile b ∈ RN

+ , from the
mechanism (d, τ) is given by u((di(b), τi(b)); vi) = vidi(b) + τi(b). Let ∀ i ∈ N, ∀ b ∈ RN

+ ,
b−i := (b1, . . . , bi−1, bi+1, . . . , bn). Define M(x) := max{xt} for all x = (xt)

p
t=1 , ∀ p ∈ N.

That is, M(x) is the largest element of any vector x in Euclidean space of any dimension.
Also define b(r) to be the rth ranked valuation in a non-increasing arrangement of coordi-
nates of any b ∈ RN

+ for all r = 1, 2 . . . , n. In case of ties, w.l.o.g. we use the tie-breaking rule
1 � . . . � n. Therefore b(1) = M(b) for all b ∈ RN

+ .6 Define B0 := {v ∈ RN
+ : W(v) = ∅}

to be the set of profiles at which no object is allocated. Finally, define for any x ≥ 0,
x̄t := (x, x, . . . , x) ∈ Rt

+ for all t = 1, 2, . . . , n. Therefore, x̄n = (x, x, . . . , x) ∈ Rn
+ and

x̄n−1 = (x, x, . . . , x) ∈ Rn−1
+ .

The following definition states the Vickrey auction with reserve price r ≥ 0 as a mecha-
nism with an allocation rule that does not allocate the object to any agent who has bid less
than r.

Definition 1. Any mechanism (dr, τ r) is said to be a Vickrey auction with reserve price r ≥ 0
(VARP) if for all i ∈ N and all v ∈ RN

+ ,
• vi < max{v−i(m), r} =⇒ dr

i (v) = 0

• τ r
i (v) =

{
0 if dr

i (v) = 0
−max{v−i(m), r} if dr

i (v) = 1

Define Γ to be the class of Vickrey auctions with reserve prices {dr, τ r}r≥0.

The popular strategic axiom in independent private values setting, strategy-proofness,
eliminates the incentive to misreport valuation for each agent. It is defined as follows.

Definition 2. A mechanism (d, τ) is strategy-proof (SP) if ∀ i ∈ N, ∀ vi, v′i ∈ R+, ∀ v−i ∈
RN\{i}
+ ,

u(di(vi, v−i), τi(vi, v−i); vi) ≥ u(di(v′i, v−i), τi(v′i, v−i); vi)

6For any i 6= j, i � j means that the tie is broken in favour of agent i. That is, if M(b) = b3 = b7 and 3 � 7,
then b(1) = b3.
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Therefore, an SP mechanism guarantees that revealing the true valuation is a weakly dom-
inant strategy for each agent.

The following three definitions pertain to three popular notions of fairness. The first
states states the fairness concept of anonymity in welfare which requires the allocation
to each agent, be independent of his/her identity. The second states the notion of non-
bossiness in decision which requires that if an agent cannot change his/her own decision
(of getting an object or not) by changing his/her valuation, then he/she should not be able
to change the decision of any other agent. The third states the notion of no-envy which
requires that every agent prefers his/her own allocation (of decision and transfer from the
mechanism) to that of any other agent.

Definition 3. A mechanism (d, τ) satisfies anonymity in welfare (AN) if for all i 6= j ∈ N
and all v ∈ RN

+ ,

u(di(vi, v j, v−i− j), τi(vi, v j, v−i− j); vi) = u(d j(v j, vi, v−i− j), τ j(v j, vi, v−i− j); vi)

Definition 4. A mechanism (d, τ) satisfies non-bossiness in decision (NBD) if for all i ∈ N,
all v ∈ RN

+ and all v′i ∈ R+,

di(v) = di(v′i, v−i) =⇒ d j(v) = d j(v′i, v−i), ∀ j 6= i

Definition 5. A mechanism (d, τ) satisfies no-envy (NE) if for all i 6= j ∈ N, all v ∈ RN
+ ,

u(di(v), τi(v); vi) ≥ u(d j(v), τ j(v); v j)

The following axiom requires that all agents get a non-negative utility at all possible
profiles so as to ensure voluntary participation in the mechanism.

Definition 6. A mechanism (d, τ) satisfies individual rationality (IR) if for all i ∈ N, all
v ∈ RN

+ ,
vidi(v) + τi(v) ≥ 0

The following axiom implies the fairness perception that if an agent has zero valuation
for the object, then the agent must not get a positive or negative utility by merely partici-
pating in the mechanism.

Definition 7. A mechanism (d, τ) satisfies zero-utility if for all i ∈ N and all v−i ∈ RN\{i}
+ ,

u(di(0, v−i), τi(0, v−i); 0) = 0

The following axiom of feasibility requires that the sum of transfers not exceed zero
for any profile of valuations and thus, ensures that implementing fair mechanisms do not
entail wastage of resources.

Definition 8. A mechanism (d, τ) satisfies feasibility (F) if for all v ∈ RN
+ ,

∑
i∈N

τi(v) ≤ 0

Finally, for any given class of mechanisms F , define a transitive preference relation on
the mechanisms in F in the following manner. For any two mechanisms (d, τ), (d′, τ ′) ∈
F , we say that (d, τ) � (d′, τ ′) if for all i ∈ N and all v ∈ RN

+ , u(di(v), τi(v); vi) ≥
u(d′i(v), τ

′
i (v); vi). If in addition, the inequality is strict for some i and some v, then we
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write that (d, τ) � (d′, τ ′) and say that (d, τ) Pareto dominates (d′, τ ′). If all the inequali-
ties are equalities, we write that (d, τ) ∼ (d′, τ ′) and say that (d, τ) is Pareto equivalent to
(d′, τ ′). Further, we call the class of mechanisms in F that are not dominated by any other
mechanism in F , as the set of Pareto undominated mechanisms in F .

3. MAIN RESULTS

3.1. Single object. In this section we study the single object case. The following theo-
rem states that any mechanism satisfying AN, SP and NBD must have an allocation rule
same as that of a VARP mechanism. That is, any such mechanism must have an associ-
ated reserve price (which is shown to be equal to the η of Lemma 3 in subsection 5.1 of
Appendix).

Theorem 1. A mechanism (d, τ) satisfies properties AN, SP and NBD only if ∃ r ≥ 0 such
that for all i ∈ N and all v ∈ RN

+ ,

di(v) =
{

1 if vi > max{v−i(1), r}
0 if vi < max{v−i(1), r}

Proof: See Appendix. �

DefineM to be the class of mechanisms (d, τ) that satisfy the following property. There
exists an r ≥ 0 such that ∀ i ∈ N and ∀ v ∈ Rn

+,

• di(v) =
{

1 if vi > max{v−i(1), r}
0 if vi < max{v−i(1), r}

• τi(v) =
{

K(v−i)−max{v−i(1), r} if di(b) = 1
K(v−i) if di(v) = 0

where K : Rn−1
+ 7→ R is a symmetric function. Note that Γ (the set of all VARP mechanisms)

is the set of mechanisms in M that have a special K(.) function where K(z) = 0 for all
z ∈ Rn−1

+ .

The following corollary completely characterizes the class of mechanisms that satisfy
AN, SP and NBD.

Corollary 1. Any mechanism (d, τ) satisfies AN, SP and NBD if and only if (d, τ) ∈ M.

Proof: The sufficiency is easy to check. The necessity follows from Proposition 4 (in sub-
section 5.1 of Appendix) and Theorem 1. �

Remark 1. The Corollary 1 characterizes a large class of mechanisms with VARP allocation
rule. The maxmed mechanisms characterized by Sprumont [17] can be obtained by setting

K(v−i) = med
{

0, v−i(1)− r,
r

n− 1

}
, ∀ v ∈ Rn

+, ∀ i ∈ N

in the Corollary 1. Therefore, the maxmed mechanisms belong to this class.

The following corollary provides a complete characterization of the VARP mechanisms
in the single object setting.
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Corollary 2. A mechanism (d, τ) satisfies AN, SP, NBD, and zero-utility if and only if
(d, τ) ∈ Γ .

Proof: The proof of sufficiency is easy to check. To see the necessity, fix any i ∈ N and any
v−i ∈ Rn−1

+ . Consider the profile (0, v−i). From the Theorem 1 and zero-utility condition,
it follows that ui(di(0, v−i), τi(0, v−i); 0) = K(v−i) = 0. Hence, the result follows. �

Remark 2. Sakai [14] provides a characterization of the class of VARP allocation rules using
the axioms of weak efficiency and non-imposition in the single object setting.7 However, our
characterizations do not use any efficiency axioms. In fact, both the reserve price as well
as the efficiency properties embedded in the VARP mechanisms, arise in this paper, as
implications of the fairness axioms AN, NBD and the strategic axiom SP.

3.2. Multiple objects. In this section we study the case where the number of objects m
can take any integer value from 2 to n− 1. Ideally, the results in single object case should
translate directly to the multiple homogeneous objects (with unit demand) setting. How-
ever, that is not the case. The reason for this are the two complications arising out of the
multiple objects setting. First, at any profile, any one agent getting an object no longer im-
plies that other agents do not get any object. Second, there may exist profiles where only a
subset of objects are allocated.

To accommodate for these two difficulties, we invoke a regularity condition and an eth-
ical axiom named “minimal impartiality”.

Definition 9. A mechanism (d, τ) is said to be regular if
(a) For any sequence {yk} ⊂ R+ such that {yk} → y; if for all k, yk

n /∈ B0 then

ȳn /∈ B0

(b) For any i ∈ N and any v ∈ Rn
+, if vi = in f {x ≥ 0 : x̄n /∈ B0} and di(v) = 1, then

∀ j 6= i ∈ N,
d j(y, v−i) = d j(v), ∀ y ∈ [0, vi)

Therefore, a mechanism is regular if the associated allocation rule satisfies the technical
conditions (a) and (b). Condition (a) is a mild continuity property which requires that
objects be allocated at any profile ȳn, if there exists a sequence of profiles converging to
ȳn such that at each member profile of this sequence: (i) all agents bid the same value and
(ii) at least one object is allocated. Condition (b) requires the allocation rule to be well-
behaved at profiles where some agent i has bid the value in f {x ≥ 0 : x̄n /∈ B0} and gets an
object. The allocation decision of all agents other than i at such profiles, should not change
in response to any unilateral reduction in i’s report.

Definition 10. A mechanism (d, τ) satisfies minimal impartiality (MI) if for all x ≥ 0,

x̄n /∈ B0 =⇒ |W(x̄n)| = m

7Non-imposition requires that for any i ∈ N and any v−i ∈ RN\{i}
+ , τi(0, v−i) = 0. That is, any mechanism

satisfying non-imposition would give zero transfers to any agent bidding 0 irrespective of what other agents
are bidding. It can easily be seen that Corollary 2 continues to hold if zero-utility condition is replaced by
non-imposition in its statement. That is because non-imposition is a stronger condition than zero-utility.
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The MI axiom is an ethical axiom which imposes impartial behaviour on the allocation
rules at profiles where all agents bid the same value. It requires that either all objects
be allocated or no object be allocated at such profiles. We assume w. l. o. g. that at any
such profile, if objects are allocated then the agents in {1, 2, . . . m} (the set of top m agents
according to the assumed tie-breaking rule) get an object each. Note that this axiom is
trivially satisfied in the single object context.

Before presenting the main theorem in this subsection, we prove the following lemma
which states that for any regular mechanism, if there exists a bid profile such that (i) all
agents bid the same value and (ii) at least one object is allocated: then some subset of
objects must be allocated at the profile where each agent bids the value in f {x ≥ 0 : x̄n /∈
B0}.
Lemma 1. If a mechanism (d, τ) is regular and {x ≥ 0 : x̄n /∈ B0} 6= ∅ then

η̄n /∈ B0

where η = in f {x ≥ 0 : x̄n /∈ B0}.
Proof: By definition of η, if {x ≥ 0 : x̄n /∈ B0} 6= ∅, then η ∈ [0, ∞). Therefore, there
exists a sequence {yk} converging to η such that yk > η for all k. Therefore, by Lemma 3,
yk

n /∈ B0, ∀ k. The result follows from the continuity condition (a) in Definition 9. �

The main theorem in this section states that any regular mechanism satisfying MI, AN,
SP and NBD must have an allocation rule same as that of VARP mechanism for m homo-
geneous objects. That is, any such mechanism allocates a object to any agent who has bid
greater than the reserve price as well as the m + 1th highest bid.

Theorem 2. A regular mechanism (d, τ) satisfies MI, AN, SP and NBD only if ∃ r ≥ 0 such
that ∀ i ∈ N, ∀ v ∈ Rn

+,

di(v) =
{

1 if vi > max{v−i(m), r}
0 if vi < max{v−i(m), r}

Proof: See Appendix. �

Define Tk to be the top k ∈ N agents according to the tie-breaking rule (which is es-
sentially a linear order on N). Given our assumed tie-breaking rule 1 � 2 � . . . � n,
Tk = {1, 2, . . . , k}. We now define a subclass of VARP mechanisms that respects its tie-
breaking rules in a particular way.

Definition 11. Γ ′ is the class of mechanism (dr, τ r) ∈ Γ such that
• For all x ≥ r, di(x̄n) = 1 for all i ∈ Tm.
• For any v ∈ Rn

+ such that ∃ i ∈ N with vi = r,

di(v) = 1 =⇒ i ∈ Tm

Γ ′ is the class of VARP mechanisms that satisfy two conditions. The first condition requires
that all objects are allocated to the top m agents according to the tie-breaking rule, at any
profile where (i) all agents have bid the same value and (ii) this value is not less than
the reserve price. The second condition requires that any agent bidding the reserve price
should get an object only if he/she is one of the top m agents according to the tie-breaking
rule. Therefore, if there are 3 agents and 2 objects to be allocated along with a tie-breaking
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rule 1 � 2 � 3: a VARP mechanism in Γ ′ with reserve price r should have d3(r, x, r) = 0
for all x ≥ 0. Further, any mechanism in Γ ′ is Pareto equivalent to any VARP mechanism
with same reserve price r belonging to Γ \ Γ ′.

The following corollary characterizes the class Γ ′ in a manner analogous to Corollary 2
and shows that Γ ′ is the class of regular mechanisms that satisfy AN, SP, NBD, MI and
zero-utility.

Corollary 3. A regular mechanism (d, τ) satisfies AN, SP, NBD, MI and zero-utility if and
only if (d, τ) ∈ Γ ′.

Proof: The proof of sufficiency is easy to check. The proof of necessity follows in a manner
identical to that in Corollary 2. �

Remark 3. The independence of AN, SP, NBD and IR axioms can easily be seen. To check
for the independence of the restrictions embodied in the regularity restriction and MI ax-
iom, consider a simple setting where m = 2 and n = 3. Consider a VARP mechanism8 with
reserve price r such that d(r, r, r) = (1, 1, 0), d(r−ε, r, r) = (0, 1, 1), d(r, r−ε, r) = (1, 0, 1)
and, d(r−ε, r−ε, r) = (0, 0, 1) for any ε ∈ (0, r). It can be checked that this mechanism
satisfies MI and condition (a) of regularity but violates condition (b) of regularity. Similarly
a VARP mechanism with reserve price r that satisfies MI, condition (b) of regularity but not
condition (a) of regularity if d(r, r, r) = (0, 0, 0). Finally, consider a VARP mechanism with
reserve price r with tie-breaking rule 1 � 2 � 3 such that d(x, x, x) = (1, 0, 0) for all x ≥ r
and d(r−ε, r, r) = (0, 1, 0), d(r, r−ε, r) = (1, 0, 0) and, d(r−ε, r−ε, r) = (0, 0, 0) for any
ε ∈ (0, r). This mechanism satisfies both conditions of regularity but does not satisfy MI.

We now investigate the mechanisms in Γ ′ that satisfy no-envy.

Theorem 3. If a regular mechanism (d, τ) satisfies NE, AN, SP, NBD and MI, then there
exists r ≥ 0 such that for all i ∈ N and all v−i ∈ Rn−1

+ ,

(A): If v−i(m) ≥ r, then K(v−i) = f (v−i(m)) where f () : [r, ∞) 7→ R is an arbitrary
continuous and non-decreasing real valued function with a slope not exceeding 1
at all points in [r, ∞).

(B): If v−i(m) < r, then K(v−i) = C where C is an arbitrary real constant.

Proof:
Proof of (A): From Theorem 2 it follows that ∃ r ≥ 0 such that ∀ z ∈ Rn−1

+ , T(z) =

max{z(m), r}. Fix an arbitrary z ∈ Rn−1
+ . W. l. o. g. suppose that zk = z(k) for all

k = 1, . . . , n − 1. To establish that K(z) = f (zm) (that is, K(z) is a function of zm only),
we need to show that (i) for all k = 1, . . . , m− 1, K(xk, z−k) = K(z), ∀ xk ≥ zm and (ii) for
all k = m + 1, . . . , n− 1, K(xk, z−k) = K(z), ∀ xk < zm.
Suppose (i) does not hold. That is, there exists a k ∈ {1, . . . , m− 1} and an x′k ≥ zm such
that K(x′k, z−k) 6= K(z). Consider the profile v such that v1 = x′k and v−1 = z. Therefore,
for all t = 1, . . . , n − 1, vt+1 = zt and so, by Theorem 2, d1(v) = dk+1(v) = 1. By NE,

8Note that any VARP mechanism satisfies AN, SP, NBD and IR.



10 CONAN MUKHERJEE

it must be that τ1(v) = τk+1(v)
9, which implies that −zm + K(z) = −zm + K(x′k, z−k)

and hence, contradiction. Now, suppose that (ii) does not hold. That is, there exists a
k ∈ {m + 1, . . . , n− 1} and an x′′k < zm such that K(x′′k , z−k) 6= K(z). As before, construct
a profile w such that w1 = x′′k and w−1 = z. Then, by Theorem 2, d1(w) = dk+1(w) = 0
implying that τ1(w) = τk+1(w) =⇒ K(z) = K(x′′k , z−k). Hence, contradiction.
Finally consider an arbitrary profile v̄ such that v̄(m + 1) ≥ r. Suppose w. l. o. g. that v̄k =
v̄(k) for all k = 1, . . . , n. By Theorem 2, dm(v̄) = 1, dm+1(v̄) = 0. NE for the pair of agents
{m, m + 1}implies that 0 ≤ K(v̄−{m+1}) − K(v̄−m) ≤ v̄m − v̄m+1. From the discussion
above, it follows that 0 ≤ f (v̄m)− f (v̄m+1) ≤ v̄m− v̄m+1. Since, the profile v̄ was arbitrarily
chosen, we have established that for all x ≥ y ≥ r, f (x) ≥ f (y). That is f (.) is a non-
decreasing function with a slope less than 1 over the interval [r, ∞). To establish continuity
of f (.), for any x ≥ r, consider any sequence {yt

x} ⊂ [r, ∞) such that lim
t→∞ yt

x = x. Then, for

all t, it must be that 0 ≤ | f (x)− f (yt
x)| ≤ |x− yt

x| implying that lim
t→∞ f (yt

x) = f (x). Since,

x ≥ r was arbitrarily chosen, continuity of f (.) follows. �

Proof of (B): As before, note that Theorem 2 implies that ∃ r ≥ 0 such that ∀ z ∈ Rn−1
+ ,

T(z) = max{z(m), r}. Define for any z ∈ Rn−1
+ , kz := |{zi : zi ≥ r}|. Also define for all

t = 0, . . . , n− 1, St := {z ∈ Rn−1
+ : kz = t}. Therefore, the set of all z ∈ Rn−1

+ such that
z(m) < r is S∗ := ∪t=m−1

t=0 St. In the following three steps, we show that for all z ∈ S∗,
K(z) = C where C is an arbitrary real constant.

STEP 1: For all z ∈ S0, K(z) = C where C is an arbitrary real constant.
Proof of Step: Suppose there exists z, z′ ∈ S0 such that K(z) 6= K(z′). Construct a sequence
of profiles {vt}n−1

t=1 such that v1
1 = z′1, v1

−1 = z, and for all 2 ≤ t ≤ n − 1, vt
t = z′t with

vt
−t = vt−1

−t . Since for all t, vt ∈ [0, r)n, by Theorem 2, di(vt) = 0 for all i ∈ N. Therefore,
by NE, for all i 6= j ∈ N, τi(vt) = τ j(vt) =⇒ K(vt

−i) = K(vt
− j). Therefore, K(v1

−1) =

K(v2
−2) = . . . = K(vn−1

−{n−1}). By definition v1
−1 = z and vn−1

−{n−1} = z′. Thus, we arrive at a
contradiction.

STEP 2: For any t = 1, . . . , m − 1 and any z ∈ St, K(z) = Ct where Ct is an arbitrary real
constant.
Proof of Step: Fix a t = 1 . . . , m − 1 and consider any z ∈ St. We first prove that (i)
for all k = 1, . . . , t, K(xk, z−k) = K(z), ∀ xk ≥ zk; and (ii) for all k = t + 1, . . . , n − 1,
K(xk, z−k) = K(z), ∀ xk < zk. Suppose that (i) is not true. Then there exists a k ∈ {1, . . . , t}
such that K(xk, z−k) 6= K(z) for some xk ≥ zk. Consider the profile v such that v1 = xk,
v2 = zk and v−1−2 = z−k. As before, from Theorem 2 and NE, it follows that τ1(v) =
τ2(v) =⇒ K(z) = K(xk, z−k) and hence, contradiction. Similarly, suppose that (ii) is not
true and so, there exists l ∈ {t + 1, . . . , n− 1} such that K(xl , z−l) 6= K(z) for some xl < zl.
As before, construct a profile v′ such that v′1 = xl, v′2 = zl and v′−1−2 = z−l. From Theorem
2 and NE, it follows that τ1(v′) = τ2(v′) =⇒ K(z) = K(xl , z−l) and hence, contradiction.
From the symmetry of the K(.) functions (implied by AN), the result follows.

9It is well known that in a quasilinear setting NE implies that any two agents receiving the same decision
also get the same transfer. This is because, for any profile v and any i 6= j ∈ N, NE implies that vi(di(v)−
d j(v)) ≥ t j(v)− ti(v) ≥ v j(di(v)− d j(v)).
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STEP 3: For all t = 1, . . . , m− 1, Ct = C.
Proof of Step: We accomplish this proof by induction. We first show that C1 = C. To see
this, consider any profile v such that v1 ≥ r > v2 ≥ . . . ≥ vn. Therefore, v−1 ∈ S0 and
for all j 6= 1, v− j ∈ S1. Therefore, by the earlier steps, K(v−1) = C and K(v− j) = C1

for all j 6= 1. Further, by Theorem 2, d1(v) = 1, d2(v) = 0. Therefore, NE implies that
v2 − r ≤ C1 − C ≤ v1 − r. Since v1 and v2 could have been chosen arbitrarily close to r
satisfying v1 > r > v2, it must be that C1 = C. Now, suppose that Ct = C for some t such
that 0 ≤ t ≤ m− 2. We shall then show that Ct+1 = C. To see this, consider the profile v
such that v1 ≥ . . . ≥ vt+1 > r > vt+2 ≥ . . . ≥ vn. By the earlier steps, v−{t+1} ∈ St =⇒
K(v−{t+1}) = Ct = C and v−{t+2} ∈ St+1 =⇒ K(v−{t+2}) = Ct+1. Also, by Theorem
2, dt+1(v) = 1, dt+2(v) = 0. Then, by NE, vt+2 − r ≤ Ct+1 − C ≤ vt+1 − r. Since, vt+1
and vt+2 can be chosen arbitrarily close to r satisfying vt+2 < r < vt+1, it must be that
Ct = C. �

The following proposition states the additional restrictions imposed by the axioms IR
and F, on the K(.) function specified by Theorem 3 above.

Proposition 1. If a regular mechanism (d, τ) satisfies NE, AN, SP, NBD, MI, IR and F, then
the following statements hold true.

(A): If r > 0, then for all i ∈ N and all v−i ∈ RN\{i}
+ ,

K(v−i) =

{
f (v−i(m)) if v−i(m) ≥ r
0 otherwise

where f (.) : [r, ∞) 7→ R is a continuous, non-decreasing function with slope not
exceeding 1 at all points in [r, ∞) such that f (x) ∈

[
0, mr

n−m
]

for all x ≥ r.

(B): If r = 0, then for all i ∈ N and all v−i ∈ RN\{i}
+ ,

K(v−i) = 0

(C): For all r ≥ 0, f (r) = 0.

Proof:
Proof of (A): To prove the statement, we need to show that IR and F imply the following
two restrictions on the results in Theorem 3: (i) C = 0 and (ii) f (x) ∈

[
0, mr

n−1

]
for all

x ≥ r > 0. To see (i), consider a profile v ∈ [0, r)n. Theorem 2 implies that di(v) = 0
and so u(di(v), τi(v); vi) = K(v−i) = C (since by construction, v−i(m) < r) for all i ∈ N.
Therefore, IR implies that C ≥ 0 for all i ∈ N and F implies that ∑i∈N K(v−i) = nC ≤ 0.
Thus, it must be that C = 0. To prove (ii), fix any x ≥ r and consider the profile vx such
that vx

1 ≥ . . . ≥ vx
m ≥ r > vx

m+1 ≥ . . . ≥ vx
n and vx

m = x. Theorem 3 implies that for all
i ∈ {1, . . . , m}, K(v−i) = C = 0 and for all i ∈ {m + 1, . . . , n}, K(v−i) = f (x). Further, by
Theorem 2 and IR, for all i ∈ {m + 1, . . . , n}, u(di(v), τi(v); vi) = K(v−i) = f (x) ≥ 0. F
implies that (n−m) f (x) + m(0− r) ≤ 0 =⇒ f (x) ≤ mr

n−m . �

Proof of (B): By Theorem 3, if r = 0 then for all v ∈ RN
+ and all i ∈ N, K(v−i) = f (v−i(m)).

Suppose there exists y > 0 such that f (y) > 0. Consider profile v where vk = v(k) for all
k = 1 . . . , n, vm = y and vm+1 = ε ∈

(
0, min

{
y, (n−m) f (y)

m

})
. Therefore, by Theorem 2,



12 CONAN MUKHERJEE

di(v) = 1 for all i = 1, . . . , m and di(v) = 0 for all i = m + 1, . . . , n. Note that, f (ε) ≥ 0
(or else IR is violated at the profile ε̄n), and so by the particular choice of ε, F is violated at
profile v. Further, it follows trivially from IR and F that f (0) = 0 when r = 0.10 Therefore,
it must be that f (y) = 0, ∀ y ≥ 0. Thus, the result follows. �

Proof of (C): The result trivially follows if r = 0. If r > 0 and f (r) > 0 then consider a profile
v such that for all k = 1, . . . , n, vk = v(k), vm = r and vm+1 = r−ε where ε ∈ (0, f (r)).
Note that by statement (A), K(v−m) = 0 since v−m(m) = vm+1 < r. Further, by Theorem 2,
dm(v) = 1 and dm+1(v) = 0. Therefore, u(dm(v), τm(v); vm) = ε < f (r) = K(v−{m+1}) =
u(dm+1(v), τm+1(v); vm+1) which violates NE and hence, contradiction. Therefore, as ar-
gued above, by IR, f (r) = 0. �

Define the class of mechanisms G = {(dr, τ r)}r≥0 such that,

(1) T(v−i) = max{v−i(m), r} for all i ∈ N and all v−i ∈ RN\{i}
+ .

(2) K(v−i)=


0 if v−i(m) ≤ r
v−i(m)− r if v−i(m) ∈

(
r, nr

n−m
)

mr
n−m if v−i(m) ≥ nr

n−m

for all v−i ∈ RN\{i}
+ .

(3) For any v ∈ RN such that ∃ i ∈ N with vi = r,

di(v) = 1 =⇒ i ∈ Tm

Using the definition above we state the following proposition.

Proposition 2. A mechanism (d, τ) is Pareto undominated in the class of regular mecha-
nisms satisfying NE, AN, SP, NBD, MI, IR and F if and only if,

(d, τ) ∈ G

Proof: The proof of sufficiency is easy to check. The proof of necessity is as follows. From
Proposition 2 and Theorems 2 and 3, it follows that any regular mechanism satisfying NE,
AN, SP, NBD, MI, IR and F; must satisfy conditions 1 and 3 in definition of G and have
K(v−i) = 0 as long as v−i(m) ≤ r for all i and all v. Consider a regular mechanism (d′, τ ′)
satisfying NE, AN, SP, NBD, MI, IR and F, such that there exists a z ∈ Rn−1

+ with z(m) ∈(
r, nr

n−m
)

and K(z) < z(m)− r. Define the set Pz := {v ∈ Rn
+ : ∃ i ∈ N such that v−i = z}.

Also define, for all v ∈ Pz, the set av
z := {i ∈ N : v−i = z}. Therefore, by Result 1, Pz is the

set of all possible profiles v such that all agents i in av
z are assigned a transfer

τ ′i (v) =
{

K(z) if d′i(v) = 0
K(z)−max{z(m), r} otherwise

by the mechanism (d′, τ ′).
Construct another regular mechanism (d′′, τ ′′) satisfying NE, AN, SP, NBD, MI, IR and F
such that (a) (d′′i (v), τ

′′
i (v)) = (d′i(v), τ

′
i (v)) for all i ∈ N and all v ∈ Rn \ Pz, (b) d′i(v) =

d′′i (v) for all i ∈ N and all v ∈ Pz, (c) τ ′i (v) = τ ′′i (v) for all i /∈ av
z and all v ∈ Pz, and (d) for

all i ∈ av
z and all v ∈ Pz,

τ ′′i (v) =
{

z(m)− r if d′′i (v) = 0
z(m)− r−max{z(m), r} otherwise

10By considering the profile 0̄n.
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Since by supposition, K(z) < z(m)− r, it can easily be seen that (d′′, τ ′′) Pareto dominates
(d′, τ ′). This implies that any Pareto undominated mechanism in the aforementioned class,
must have K(z) = z(m) − r for all z ∈ Rn−1 with z(m) ∈

(
r, nr

n−m
)
. Similarly, we can

argue that for all z ∈ Rn−1 with z(m) ≥ nr
n−m , any Pareto undominated mechanism in the

aforementioned class must have K(z) = mr
n−m . Hence, the result follows. �

Remark 4. It can easily be seen from Theorem 3 and Proposition 2 that G is also the class of
Pareto undominated mechanisms that satisfy IR and F; in the class of regular mechanisms
that satisfy NE, AN, SP, NBD and MI (described by Theorem 3). Further, in definition of
G, the condition 2 can be written as

K(v−i) = med
{

0, v−i(m)− r,
mr

n−m

}
, ∀ i ∈ N, ∀ v ∈ RN

where med{x, y, z} is defined as the median of any three real numbers x, y, z. Therefore,
when m = 1, every mechanism in G is Pareto equivalent to the maxmed mechanism of
Sprumont [17] having the same reserve price. Thus, Proposition 2, generalizes the maxmed
mechanisms on Sprumont [17] to the multiple objects setting.11

4. CONCLUSION

This paper provides an justification to reserve pricing at auctions using normative and
strategic axioms unrelated to revenue considerations. In particular, it provides a topologi-
cal interpretation of a reserve price as the infimum of the set of non-negative real numbers
satisfying the following property: if all agents bid the same number from this set, then at
least one object is allocated. Further, the paper shows how certain degree of efficiency is
necessary in mechanisms that satisfy certain ethical and strategic axioms. The two main
contributions of this paper are (i) axiomatization of VARP mechanisms in single as well as
multiple objects settings and (ii) generalization and axiomatization of maxmed mechanisms
of Sprumont [17] in the multiple homogeneous objects setting. Whether these results con-
tinue to hold in a multiple heterogeneous objects setting would be an interesting question
for future research.

5. APPENDIX

5.1. Preliminary Results. Recall that for all v ∈ RN
+ , W(v) is the set of agents who get

an object at the profile v. Since there are m objects to be allocated and not all objects are
allocated at all profiles, |W(v)| ≤ m, ∀ v ∈ RN

+ .
The following result establishes that the decision rule implicit in any strategy-proof

mechanism must be non-decreasing in nature. In particular, for any profile of valuations
v−i there must exist a threshold price Ti(v−i) such that agent i gets an object if vi strictly ex-
ceeds Ti(v−i) and fails to get an object if vi is strictly less than Ti(v−i). Further, the transfer
of agent i when getting the object, must exceed that when not getting the object, by Ti(v−i).

11However, when m = 1, G is actually a subset of the class of maxmed mechanisms characterized in
Sprumont [17]. This is because, we need to impose an additional restriction (to account for the additional
complications of multiple objects setting) which says that no agent other than the pre-fixed agent in whose favour
ties are broken, should get the object by reporting the reserve price.
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Result 1. Any mechanism (d, τ) satisfies SP only if ∀ i ∈ N and ∀ v−i ∈ RN\{i}
+ , there exist

real valued functions Ki : RN\{i}
+ 7→ R and Ti : RN\{i} 7→ R∪ {+∞} such that

di(v) =
{

1 if vi > Ti(v−i)
0 if vi < Ti(v−i)

and τi(v) =
{

Ki(v−i)− Ti(v−i) if di(v) = 1
Ki(v−i) if di(v) = 0

Proof: The results follow from Proposition 9.27 in Nisan [11] and Lemma 1 in Mukher-
jee [9]. �

Remark 5. Note that Result 1 allows for arbitrary tie breaking in case there exists a valu-
ation profile v ∈ RN

+ such that vi = Ti(v−i) for any i ∈ N. Thus, Result 1 establishes that
for any valuation profile v, di(v) = 1 implies that vi ≥ Ti(v−i) and di(v) = 0 implies that
vi ≤ Ti(v−i). Further, if the T(.) were independent of agent labels, then at any profile v
with di(v) = 1, d j(v) = 0 and vi = v j, T(v−i) = T(v− j) = vi for all i 6= j ∈ N.

The following proposition establishes that the threshold functions corresponding to any
anonymous and strategy-proof functions must be independent of respective agent labels.

Proposition 3. Any mechanism (d, τ) that satisfies AN and SP must satisfy the following
properties

(1) Ti(z) = T(z) for all z ∈ Rn−1
+ and all i ∈ N.

(2) Ki(z) = K(z) for all z ∈ Rn−1
+ and all i ∈ N.

Proof: Suppose there exists some z ∈ Rn−1
+ such that T1(z) 6= T2(z). W. l. o. g. suppose

that T1(z) > T2(z). Construct the profile v such that v−1 = z and v1 ∈ (T2(z), T1(z)).
Then, from Result 1 it follows that d1(v) = 0 since v1 < T1(v−1) = T1(z) by construction.
Now, consider the profile v′ = (v′1, v′2, v−1−2) where v′1 = v2 and v′2 = v1. Note that
v′−2 = v−1 = z. Therefore, d2(v′) = 1 since v′2 = v1 > T2(z) = T2(v′−2). Further, AN
requires that u(d1(v), τ1(v); v1) = u(d2(v′), τ2(v′); v′2). Then, from Result 1 it follows that
v1 + K2(z)− T2(z) = K1(z) for all v1 ∈ (T2(z), T1(z)). This leads to contradiction. Thus,
arguing in this manner we can show that Ti(z) = Ti+1(z) for all i = 1, . . . , n− 1 and all
z ∈ Rn−1

+ . Therefore, statement (1) follows.
To prove statement 2, we fix any x ∈ Rn−1

+ and show that K1(x) = K2(x). Consider the
profile v such that v1 = v2 and v−1 = v−2 = x. If d1(v) = d2(v) = 0 then by AN,
u(d1(v), τ1(v); v1) = u(d2(v), τ2(v); v2) implying K1(x) = K2(x). If d1(v) = 1, d2(v) = 0
then AN, Remark 5 and statement (1), imply that v1 + K1(x)− T(x) = K2(x) and T(x) =
v1 leading to the conclusion K1(x) = K2(x). Similarly, if d1(v) = 0, d2(v) = 1,we can
show that K1(x) = K2(x). Finally, if d1(v) = d2(v) = 1, then by AN and statement (1),
v1 + K1(x) − T(x) = v2 + K2(x) − T(x) implying K1(x) = K2(x). Thus, arguing in this
manner we can show that Ki(x) = Ki+1(x) for all i = 1, . . . , n − 1 and all x ∈ Rn−1

+ .
Therefore, statement (2) follows. �

It is well known that the notion of AN defined in Definition 3 is the same as that in the
following definition.

Definition 12. A mechanism (d, τ) satisfies AN if for all i ∈ N, all v ∈ Rn
+ and all bijections

π : N 7→ N,
u(di(v), τi(v); vi) = u(dπ i(πv), τπ i(πv); πvπ i)
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where πv :=
(

vπ−1(k)

)n

k=1
.

We use this definition of AN to state the following proposition.

Proposition 4. For any mechanism (d, τ) that satisfies AN and SP, the K(.) and the T(.)
functions must be symmetric.12

Proof: Suppose not. That is, there exists a z ∈ Rn−1
+ , an i ∈ N and a bijection π : N \

{i} 7→ N \ {i} such that T(z) 6= T(πz). W. l. o. g. assume that T(z) < T(πz) and fix any
x ∈ (T(z), T(πz)). Consider a bijection π ′ : N 7→ N such that π ′i = i and π ′ j = π j for all
j 6= i and the profile v such that vi = x and v−i = z. By Result 1, di(v) = 1 and di(π

′v) = 0
because (π ′v)−i = πz. By AN, u(di(v), τi(v); x) = u(di(π

′v), τi(π
′v); x) implying that

x + K(z)− T(z) = K(πz). Since x was chosen arbitrarily from the interval (T(z), T(πz)),
we get a contradiction.
To show the K(.) function to be symmetric, consider any i ∈ N, any profile v ∈ Rn

+ and
any bijection π̂ : N 7→ N such that π̂ i = i. Since T(.) function has already shown to be
symmetric above, T(v−i) = T((π̂v)−i) and so, di(v) = di(π̂v). By AN, u(di(v), τi(v); vi) =
u(di(π̂v), τi(π̂v); vi), which implies that K(v−i) = K((π̂v)−i). Hence, the result follows.

�

The following lemma states that any mechanism satisfying AN, SP and NBD must also
satisfy a weaker form of efficiency which requires that whenever objects are allocated, the
allocation must be efficient.

Lemma 2. A mechanism (d, τ) satisfies AN, SP and NBD only if ∀ v ∈ Rn
+, i 6= j ∈ N,

di(v) = 1 and d j(v) = 0 =⇒ vi ≥ v j

Proof: Fix any profile v ∈ Rn
+ and suppose w. l. o. g. that d1(v) = 0, d2(v) = 1, v1 > v2.

Consider the profile ṽ := (v1, v−2). By SP, d2(v) = 1 =⇒ d2(ṽ) = 1, and so, by NBD,
d1(v) = 0 =⇒ d1(ṽ) = 0. Therefore, by Remark 5, T(v−2) = v1. Arguing as before, by SP,
d1(v2, ṽ−1) = 0 and so, by AN, u(d1(v2, ṽ−1), τ1(v2, ṽ−1); v2) = u(d2(v), τ2(v); v2). There-
fore, K(v−2) = v2 + K(v−2)− T(v−2) =⇒ T(v−2) = v2 6= v1 and hence, contradiction.
Thus, the result follows. �

Remark 6. From Lemma 2 it follows that at any valuation profile v ∈ Rn
+, if di(v) = 0 for

some i ∈ N, then d j(v) = 0 for all agents j such that v j < vi. Similarly, if there exists an
i ∈ N with di(v) = 1, then d j(v) = 1 for all agents j such that v j > vi. Athanasiou [2]
and Sprumont [17] show the same result in the single object setting without the use of
NBD axiom. This is possible because in single object setting, any agent getting an object at
any profile implies that no other agent gets an object at that profile. However, in multiple
homogeneous objects setting, no such restriction is implicit. The NBD axiom is needed to
tackle this complexity.

The following lemma states the restriction imposed by AN, SP and NBD axioms on
the decision rule at profiles where all agents have bid the same value. It eastablishes the
existence of a non-negative real number η such that no objects are allocated at any profile

12A function of k ∈ N variables is said to be symmetric if the function value at any k-tuple of arguments is
the same as the function value at any permutation of that k-tuple.
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where (i) all agents have bid the same value and (ii) this value is less than η. Also, if all
agents bid the same value that is greater than η, at least one object must be allocated.

Lemma 3. A mechanism (d, τ) satisfies AN, SP and NBD only if ∃ η ≥ 0 such that ∀ x ≥ 0,

x < η =⇒ x̄n ∈ B0 and x > η =⇒ x̄n /∈ B0

Proof: Suppose there exist 0 ≤ x < y such that x̄n /∈ B0 and ȳn ∈ B0. W. l. o. g. suppose that
di(x̄n) = 1 for all i = 1, . . . , l where l ∈ {1, . . . , m} (that is, l objects are allocated at profile
x̄n). Define the sequence of profiles (pk)l

k=1 where p1 = (y, x̄n
−1) and for all 2 ≤ k ≤ l,

pk = (y, pk−1
−k ). By SP and NBD, for all 1 ≤ i ≤ l, di(x̄n) = 1 =⇒ di(p1) = 1 =⇒

di(p2) = 1 =⇒ . . . =⇒ di(pl) = 1 and so, pl /∈ B0. Similarly construct another sequence
of profiles (qk)n

k=l+1 such that ql+1 = (x, ȳn
−{l+1}) and for all l + 2 ≤ k ≤ n, qk = (x, qk−1

−k ).

By SP and NBD, yn ∈ B0 =⇒ ql+1 ∈ B0 =⇒ ql+2 ∈ B0 =⇒ . . . =⇒ qn ∈ B0. By
construction, qn = pl and hence, contradiction. Therefore, for any x ≥ 0, if x̄n /∈ B0 and
then ∀ y > x it must be that ȳn /∈ B0. Thus, if the set {x ≥ 0 : x̄n /∈ B0} is non-empty, then
the result follows from the choice of η := in f {x ≥ 0 : x̄n /∈ B0} . If {x ≥ 0 : x̄n /∈ B0} = ∅
then no objects are allocated at any profile where all agents have bid the same value. In
this case the result follows by assigning η := ∞. �

The following lemma shows that if η > 0 then no object is allocated at any profile where
the highest valuation is strictly less than η.

Lemma 4. A mechanism (d, τ) satisfies AN, SP and NBD only if ∀ v ∈ [0, η)n,

v ∈ B0

Proof: Fix any v ∈ [0, η)n. W. l. o. g. assume that v1 ≥ v2 ≥ . . . ≥ vn. By definition
M(v) = v1 < η, and so, by Lemma 3, v̄n

1 ∈ B0. Construct a sequence of profiles (pk)n−1
k=1

such that p1 = (v2, v̄n
1−2

) and for all 2 ≤ k ≤ n− 1, pk = (vk+1, pk−1
−{k+1}). By SP and NBD,

v̄n
1 ∈ B0 =⇒ p2 ∈ B0 =⇒ . . . =⇒ pn ∈ B0. Note that by construction, pn = v and

hence, the result follows. �

5.2. Proof of Theorem1. Since m = 1, by setting r := η (as defined in Lemma 3), from
Remark 6 and Lemma 4 it follows that for all v and all i, vi < max{v−i(1), η} =⇒ di(v) =
0. Therefore, we simply need to show that if vi > max{v−i(1), η}, then di(v) = 1 for all
possible choices of v and i.
Fix an arbitrary i ∈ N and a profile v ∈ Rn

+ such that vi > max{v−i(1), η}. Note that,
either vi = v(1) > v(2) > η or vi = v(1) > η ≥ v(2). We analyze each of the two cases
and show that in each case, di(v) = 1

Case 1: vi = v(1) > v(2) > η

By Lemma 3, v(2)
n
/∈ B0 and so, from Remark 5 and Proposition 3,it follows that T(v(2)

n−1
) =

v(2). Construct a sequence of profiles {pk}n
k=1 such that p1 = v(2)

n
, p2 = (vi, p1

−i) and
∀ 3 ≤ k ≤ n, pk = (vtk , pk−1

−tk
) where tk ∈ { j ∈ N|v j = v(k)} (by the tie-breaking rule,

this set is a singleton set). Further, T(p1
−i) = T(v(2)

n−1
) = v(2) and so under the suppo-

sition vi = v(1) > v(2), di(p2) = 1. Therefore, from the fact that m = 1 it follows that
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d j(p2) = 0, ∀ j 6= i. Further, by SP and NBD, for all j ∈ N, d j(p2) = d j(p3) = . . . = d j(pn).
Since, by construction, pn = v, we get that di(v) = 1 and d j(v) = 0 for all j 6= i.

Case 2: vi = v(1) > η ≥ v(2)
Consider the sequence of profiles {pk}n

k=0 where p0 = η+ε
n where ε ∈ (0, vi − η) and for

all 1 ≤ k ≤ n, pk = (vtk , pk−1
−tk

) where tk ∈ { j ∈ N|v j = v(k)} (as mentioned before, this set
is a singleton set by the tie-breaking rule). By Remark 5, Lemma 3 and Proposition 3, we
get that p0 /∈ B0 which implies that T(p0

− j) = η+ε for all j ∈ N. Further, by construction,
p1

i = vi and p0
−i = p1

−i. Therefore, p1
i > T(p1

−i) = η+ε and so, from Result 1 it follows
that di(p1) = 1. Since m = 1, we can then claim that d j(p1) = 0 for all j 6= i. Hence, by
SP and NBD, for all j ∈ N, d j(p1) = d j(p2) = . . . = d j(pn). By construction, pn = v which
implies that di(v) = 1. �

5.3. Proof of Theorem 3. We set r = η = in f {x ≥ 0 : x̄n /∈ B0} and fix any i ∈ N
and any v ∈ Rn

+. Then we consider the two possible cases v−i(m) ≥ η and v−i(m) < η.
In the former case we show that T(v−i) = v−i(m) while in the latter case we show that
T(v−i) = η. For economy of notation, henceforth, we denote vector v−i by z in the proof.
By Proposition 4, T(.) is symmetric and so, w. l. o. g. assume that z1 ≥ z2 ≥ . . . ≥ zn−1 and
so z(m) = zm. For simplicity of notation, define θ := zm.

Case 1: θ ≥ η
By Lemmas 3 and 1, θ̄n /∈ B0. Therfore, MI implies that d j(θ̄

n) = 1 for all j = 1, . . . , m and
d j(θ̄

n) = 0 for all j = m+ 1, . . . , n. Consider the sequence of profiles (qk)n−2
k=0 such that q0 =

θ̄n, for all 1 ≤ k ≤ m− 1, qk = (zk, qk−1
−{k}) and for all m ≤ k ≤ n− 2, qk = (zk+1, qk−1

−{k+2}).

From SP and NBD it follows that ∀ j ∈ N, d j(q0) = d j(q1) = . . . = d j(qn−2). Therefore,
we get that d j(qn−2) = 1, ∀ j = 1, . . . , m and d j(qn−2) = 0, ∀ j = m + 1, . . . , n. Also, by
construction, qn−2

m = qn−2
m+1 = θ and qn−2

−{m} = qn−2
−{m+1} = z. Thus, arguing as in Remark

5, the fact that dm(qn−2) = 1, dm+1(qn−2) = 0 can be used to infer that θ ≥ T(qn−2
−{m}) =

T(qn−2
−{m+1}) ≥ θ implying that T(z) = θ = zm.

Case 2: θ < η
Fix any x ≥ 0, define the profile px such that px

1 = x and px
−1 = z and construct the profile

p such that pk = px(k) for all k ∈ {1, 2, . . . , n}. Therefore, by construction, p1 ≥ p2 ≥
. . . ≥ pn. We consider two subcases: x > η and x < η. We shall show that d1(px) = 1 in
the former case while d1(px) = 0 in the latter case. This inference would then be used in
conjunction with Result 1 to conclude that T(px

−1) = T(z) = η.

Subcase 1. x > η
Define the agent g := { j ∈ N : p j ≥ η and p j+1 < η}. Since zm < η and x > η, agent
g is well defined and g ∈ {1, . . . , m}. Therefore, pg is the smallest coordinate of p greater
than or equal to η while pg+1 is the largest coordinate of p strictly less that η. Consider
a sequence of profiles {uk}n

k=0 such that u0 = η̄n and for all 1 ≤ k ≤ n, uk = (pk, uk−1
−k ).

By Lemma 1, η̄n /∈ B0 and so, arguing as in Case 1, we can claim from SP and NBD that
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for all j ∈ N, d j(u0) = d j(u1) = . . . = d j(ug). Therefore, d j(ug) = 1, ∀ j = 1, . . . , m and
d j(ug) = 0 and ∀ j = m + 1, . . . , n.
Note that by construction,

ug = (p1, p2, . . . , pg, η, η, η, η, . . . , η)

ug+1 = (p1, p2, . . . , pg, pg+1, η, η, η, . . . , η)

Clearly, ug+1
−{g+1}(m) ≥ η and so, from Case 1 it follows that T(ug+1

−{g+1}) = ug+1
−{g+1}(m).

Since, by construction, pg+1 = ug+1
g+1 < η ≤ T(ug+1

−{g+1}), it must be that dg+1(ug+1) = 0.

Now, if dg+1(ug) = 0 then by NBD, dg+1(ug+1) = 0 implies that d j(ug) = d j(ug+1) for all
j 6= g + 1. If dg+1(ug) = 1, then by regularity of the mechanism it follows that d j(ug) =

d j(ug+1) for all j 6= g + 1. In either case, we get that

d j(ug+1) =

{
1 ∀ j = 1, . . . , g
0 ∀ j = g + 1

Consider the next profile in sequence

ug+2 = (p1, . . . , pg, pg+1, pg+2, η, η, . . . , η)

Arguing as before, by regularity of (d, τ) and NBD, we get that pg+2 < η =⇒ d j(ug+1) =

d j(ug+2) for all j 6= g + 2. Therefore, dg+1(ug+2) = 0. Now, there arise two possibilities:
pg+1 > pg+2 or pg+1 = pg+2. If pg+1 > pg+2 then by Lemma 2, dg+1(ug+2) = 0 =⇒
dg+2(ug+2) = 0. If pg+1 = pg+2 and dg+1(ug+2) = 0 6= 1 = dg+2(ug+2), then AN and
SP imply that T(ug+2

−{g+1}) = T(ug+2
−{g+2}) = T(ug+1

−n ) = pg+1. Recall that by definition

pg+1 < η and so, Result 1 implies that dn(ug+1) = 1. Since we have already established
that d j(ug) = d j(ug+1) for all j 6= g + 1, it must be that dn(ug) = 1 which leads to a
contradiction. Therefore, we get that

d j(ug+2) =

{
1 ∀ j = 1, . . . , g
0 ∀ j = g + 1, g + 2

Arguing similarly for all {uk}n
k=g+3,we can show that for k = g + 3, . . . , n, d j(uk) = 1 for

all j = 1, . . . , g and d j(uk) = 0 for all i = g + 1, . . . , k. By construction, un = p and so we
have established that

(5.1) d j(p) =
{

1 ∀ j = 1, . . . , g
0 ∀ j = g + 1, . . . , n

Since, by supposition x ≥ η, x ∈ {p1, . . . , pg} and so the agent bidding x at profile p gets
an object. We claim that this implies that d1(px) = 1. This is because if d1(px) = 0, then
by AN, u(d1(px), τ1(px); x) = u(dl(p), τl(p); x) where l ∈ { j ∈ {1, . . . , g} : p j = x}. This
in turn implies that K(px

−1) = x + K(p−l)− T(p−l). By construction, px
−1 = p−l = z and

so, it follows that x = T(z). However, this leads to a contradiction because x was chosen
arbitrarily greater than η (with a fixed z vector) and T(.) is function.
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Subcase 2. x < η
If x < η, there arise two cases: p1 < η and p1 ≥ η. If p1 < η then, by construction,
px ∈ [0, η)n and so, from Lemma 4, px ∈ B0 implying that d1(px) = 0. If η ≤ p1 then
agent g is well defined as in possibility 1. Then we can conclude the equation (5.1), by
arguing as in case of possibility 1 above. Note that x < η =⇒ x ∈ {pg+1, . . . , pn} and
so any agent bidding x at profile p does not get an object. As before, we can claim from
this fact that d1(px) = 0. This is because if d1(px) = 1 then by AN, u(d1(px), τ1(px); x) =
u(dl(p), τl(p); x) where l ∈ { j ∈ {g + 1, . . . , n} : p j = x} implying that x + K(px

−1) −
T(px

−1) = K(p−l). Since, by construction, px
−1 = p−l = z, we get that x = T(z). Arguing as

in possibility 1, we arrive at a contradiction because x is arbitrarily chosen to be less than
η and T(.) is a function. �

REFERENCES

[1] I. Ashlagi and S. Serizawa. Characterizing vickrey allocation rule by anonymity. Social Choice and Welfare,
38:531–542, 2012.

[2] E. Athanasiou. A solomonic solution to the problem of assigning a private indivisible good. Games and
Economic Behavior, 82:369–387, 2013.

[3] L. Ausubel and P. Cramton. Vickrey auctions with reserve pricing. Economic Theory, 23:493–505, 2004.
[4] D. Foley. Resource allocation and the public sector. Yale Econ Essays, 7:45–98, 1967.
[5] K. Hashimoto and H. Saitoh. Strategyproof and anonymous rule in queueing problems: a relationship

between equity and efficiency. Social Choice and Welfare, 38:473–480, 2012.
[6] D. Lucking-Reiley. Vickrey auctions in practice: from nineteenth-century philately to twenty-first-

century e-commerce. The Journal of Economic Perspectives, 14:183–192, 2000.
[7] D. Mishra and A. Quadir. Non-bossy single object auctions. Economic Theory Bulletin, 2014. Forthcoming.
[8] H. Moulin. Characterizations of the pivotal mechanism. Journal of Public Economics, 31:53 – 78, 1986.
[9] C. Mukherjee. Fair and group strategy-proof good allocation with money. Social Choice and Welfare. forth-

coming.
[10] R. Myerson. Optimal auction design. Mathematics of Operations Research, 6:58–73, 1981.
[11] N. Nisan. Algorithmic game theory. Cambridge University Press, 2007.
[12] H. Saitoh and S. Serizawa. Vickrey allocation rule with income effect. Economic Theory, 35:391–401, 2008.
[13] T. Sakai. Second price auctions on general preference domains: two characterizations. Economic Theory,

37:347–356, 2008.
[14] T. Sakai. Axiomatizations of second price auctions with reserve price. International Journal of Economic

Theory, 9:255–265, 2013.
[15] T. Sakai. An equity characterization of second price auctions when preferences may not be quasilinear.

Review of Economic Design, 17:17–26, 2013.
[16] M. Satterthwaite and H. Sonnenschein. Strategy-proof allocation mechanisms at differentiable points.

The Review of Economic Studies, 48:pp. 587–597, 1981.
[17] Y. Sprumont. Constrained-optimal strategy-proof assignment: Beyond the groves mechanisms. Journal

of Economic Theory, 148:1102–1121, 2013.
[18] Lars-Gunnar Svensson. Strategy-proof allocation of indivisible goods. Social Choice and Welfare, 16:557–

567, 1999.
[19] H. Varian. Equity, envy, and efficiency. Journal of Economic Theory, 9:63–91, 1974.

E-mail address: conanmukherjee@gmail.com


