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Abstract 

Heterogeneity in patient populations is an important issue in health economic evaluations, as the 

cost-effectiveness of an intervention can vary between patient subgroups, and an intervention which 

is not cost-effective in the overall population may be cost-effective in particular subgroups. 

Identifying such subgroups is of interest in the allocation of healthcare resources. 

Our aim was to develop a method for cost-effectiveness analysis in heterogeneous chronic diseases, 

by identifying subgroups (phenotypes) directly relevant to the cost-effectiveness of an intervention, 

and by enabling cost-effectiveness analyses of the intervention in each of these phenotypes. 

We identified phenotypes based on healthcare resource utilization, using finite mixtures of 

underlying disease activity models: first, an explicit disease activity model, and secondly, a model of 

aggregated disease activity. They differed with regards to time-dependence, level of detail, and what 

interventions they could evaluate. We used them for cost-effectiveness analyses of two hypothetical 

interventions.  

Allowing for different phenotypes improved model fit, and was a key step towards dealing with 

heterogeneity. The cost-effectiveness of the interventions varied substantially between phenotypes. 

Using underlying disease activity models for identifying phenotypes as well as cost-effectiveness 

analysis appears both feasible and useful in that they guide the decision to introduce an intervention. 
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1. Introduction 

Heterogeneity in patient populations is an important general issue in health economic evaluations of 

health interventions. The level of cost-effectiveness is often not constant across the population, but 

varies between different patient subgroups. An intervention which is not cost-effective in the patient 

population as a whole may well be cost-effective in particular subgroups, and vice versa. Thus, it is of 

great interest to identify such subgroups in order to optimize allocation of health care resources. 

 

Typically, the cost-effectiveness of an intervention is evaluated in pre-specified subgroups of 

patients, divided for example by age group, gender, or disease severity. Such subgroups may 

influence the level of cost-effectiveness, and they fit well into a situation of decision-making over 

whether an intervention should be given to a specific patient subgroup. However, it could be that 

important aspects of heterogeneity are not discovered in such pre-specified subgroups. More 

relevant subgroups might, for instance, be described by combinations of different factors. We 

hypothesize that an approach to modeling disease activity may provide the means to identify such 

subgroups. Interventions can affect disease activity in many different ways, including avoidance of 

undesired events, slowing down irreversible disease progression, improvement of some function, 

shortening undesirable episodes, or postponing future episodes. Estimates of the relative value of 

interventions that differ in terms of how they affect disease activity can depend on model structure 

and design (Hoogendoorn, Feenstra et al. 2014). Depending on the nature of the intervention under 

study, different aspects may determine the level of cost-effectiveness, and so different aspects may 

be central for the subdivision of patients into subgroups. We will use a disease activity model 

designed to evaluate the intervention under study. Our subgroups will be defined on the basis of 

parameters to this model, and the subgroups will therefore automatically be related to the aspect of 

disease activity on which the intervention has an effect. 

 

The aim of the current work was to develop a method for studying cost-effectiveness of 

interventions in heterogeneous chronic diseases, by subdividing the patient population into 

subgroups directly relevant for the cost-effectiveness of an intervention, and by enabling cost-

effectiveness analysis of the intervention in each of the subgroups 

 

In order to address the issue of heterogeneity, this article considers latent classes of patients, here 

denoted phenotypes. While the term “phenotype” is often associated with genetics or with 

localization and clinical behavior of the disease, here we identify phenotypes straightforwardly using 
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disease activity defined in terms of health care resource utilization which may be a relevant basis for 

cost-effectiveness analysis. We use a finite mixture model to identify the phenotypes. This technique 

is used to study populations composed of groups of patients with different behavior, by modeling the 

population as a mixture of components. We let a disease activity model describe each phenotype, 

and thus we work with a finite mixture of disease activity models. Finite mixture and similar models 

have been used previously. The following three examples are concerned with healthcare resource 

utilization in the general population. Gerdtham and Trivedi studied equity in Swedish healthcare 

resource utilization (Gerdtham and Trivedi 2001), distinguishing between frequent and infrequent 

users with a finite mixture model. They assumed that a patient's resource utilization came from a 

mixture of components, each with a negative binomial distribution, and then fitted a regression 

model with a negative binomial error term to each component on the basis of cross-sectional data. 

The components of Gerdtham and Trivedi correspond to our phenotypes. Deb and Holmes used a 

finite mixture model to distinguish between different classes of healthcare users (Deb and Holmes 

2000). Like Gerdtham and Trivedi, they used cross-sectional data and assumed their observations 

were from a finite mixture of components with negative binomial distributions. Deb and Trivedi used 

a latent class model to distinguish between infrequent and frequent users (Deb and Trivedi 2002). 

They also used a finite mixture model with negative binomial components for annual total counts of 

utilization, using 3-year or 5-year periods. None of these studies attempted to develop any explicit 

disease activity models. Two studies quite similar to our work are those of Stull and Houghton in 

cardiovascular disease (Stull and Houghton 2013) and chronic obstructive pulmonary disease (Stull, 

Wiklund et al. 2011). These authors wanted to identify subgroups with different response to 

treatment. They used a linear growth model of individual longitudinal data on creatinine levels in 

cardiovascular disease and questionnaire scores in chronic obstructive pulmonary disease. They 

identified subgroups of patients which each had a common intercept and slope that was different 

from those in other subgroups. These subgroups correspond to our phenotypes, but neither of these 

studies examined the influence of phenotypes on the cost-effectiveness of an intervention. 

 

We examine our method as applied to Crohn's disease, which is a chronic relapsing-remitting 

inflammatory bowel disease with heterogeneous disease course, usually requiring life-long follow-up 

and often also surgical interventions and/or life-long medical treatment. An intervention in Crohn's 

disease typically shortens relapses or prolongs remission. These ways to express effectiveness work 

well in a disease activity model where the transitions between relapse and remission are explicitly 

modeled, and where a quicker return to remission or a longer time before the next relapse can easily 

be parameterized. The heterogeneity in Crohn's disease has been studied previously. For instance, 
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Munkholm et al. described the disease in terms of its disease course by level of activity (Munkholm, 

Langholz et al. 1995). Solberg et al. pre-defined four different disease patterns, of which two had 

changing intensity over time, and asked Norwegian patients to classify themselves into one of these 

patterns (Solberg, Vatn et al. 2007; Solberg, Lygren et al. 2009). Odes et al. classified patients using 

Montreal criteria in a study of resource consumption (Odes, Vardi et al. 2007). The Montreal 

classification is based on disease localization, clinical behavior, and age at diagnosis (Silverberg, 

Satsangi et al. 2005). Montreal classification in inflammatory bowel disease was described at 

diagnosis in a recent inception cohort from Europe (Burisch, Pedersen et al. 2013). These previous 

studies did not estimate any disease models for their phenotypes, nor did they study the influence of 

phenotypes on the cost-effectiveness of an intervention. In summary, there is heterogeneity in 

disease behavior between individual patients (Sachar and Walfish 2013) and also over time (Louis, 

Reenaers et al. 2008), such as increasing or decreasing level of activity (Munkholm, Langholz et al. 

1995; Solberg, Vatn et al. 2007). Thus it is relevant to use disease activity models that explicitly 

parameterize the transitions between relapse and remission, and models that can parameterize 

change over time. 

 

The remainder of this article is organized as follows. We first describe the data, the aggregated 

nature of which presents challenges when estimating models of the relapsing-remitting disease. We 

then describe our method for identifying phenotypes and the two disease activity models that we 

use. We define two hypothetical interventions that we will use to study cost-effectiveness by 

phenotype. We then present results on the number of phenotypes identified and the model fit, 

describe the phenotypes, and examine the cost-effectiveness by phenotype. The article ends with a 

discussion of the results, the methodology, and the potential for wider application. 
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2. Data 

We use data from the European Collaborative Study on Inflammatory Bowel Disease (EC-IBD) 

(Shivananda, Hordijk et al. 1989; Shivananda, Lennard-Jones et al. 1996; Wolters, Russel et al. 2006). 

Patients in a number of countries diagnosed with Crohn's disease or ulcerative colitis in 1991-1993 

were enrolled at diagnosis and followed for ten years until 2001-2003. Data were recorded as 

individual data on events such as relapse and surgery, aggregated over three-month periods. The 

relapse data comprise the number of relapses per period, with a relapse defined as a contact with a 

physician due to worsening of gastrointestinal symptoms that led to a new drug, an increased drug 

dose, or surgery. Surgery was recorded as present or absent in each relapse, and further by type of 

surgery, including resection, stricturoplasty, and fistulectomy (Wolters, van Zeijl et al. 2005; Hoie, 

Wolters et al. 2007).  

 

Data were extracted from Crohn's disease patients in Denmark, Greece, Ireland, Israel, Italy, 

Netherlands, Norway, and Spain, with at least two years of follow-up. The number of relapses and 

the number of surgical operations were extracted and aggregated into annual data. The resulting 

dataset contained 3776 patient-years of observation from 380 patients (Denmark: 54 patients, 546 

patient-years; Greece: 16, 126; Ireland: 29, 307; Israel: 16, 132; Italy: 54, 557; Netherlands: 75, 705; 

Norway: 104, 1067; and Spain: 32, 336).  

3. Methods 

We develop a phenotype estimator to identify the number of phenotypes that best describes the 

heterogeneity in the data. It is a finite mixture model based on the likelihood of an underlying 

disease activity model. At each moment, we consider a fixed number of different phenotypes, each 

with its own set of parameters to the underlying disease activity model. The likelihoods of the 

individual patients' data are weighted into an overall likelihood which is optimized to obtain an 

estimate of the global parameter vector, consisting of the disease model parameters for each 

phenotype and the probability of each patient belonging to each phenotype. The estimator 

alternately (1) determines the probabilities of belonging to the phenotypes based on the likelihoods 

and the model parameters of each phenotype, and (2) determines the parameter vector that best 

describes each of the phenotypes, as judged by likelihoods weighed by the probabilities. These two 

steps are iterated until a convergence criterion is reached. We identify increasing numbers of 

phenotypes until the number of different phenotypes that best explains the heterogeneity in the 

data is found (i.e. the model order). This is judged using the Bayesian Information Criterion (Hjorth 
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1994). The face validity of the estimated disease model parameters is judged by comparing observed 

disease activity to the disease activity predicted by the model. Further details on the estimator are 

given in the appendix. 

 

The phenotypes are defined by their model parameters; that is, these parameter estimates provide a 

description of the disease activity in the phenotype. The proportion of patients belonging to each 

phenotype is derived from the probabilities of each patient belonging to each phenotype. The 

probabilities are also used as weights in descriptive statistics of the phenotypes. Thus we classify 

patients into phenotypes using their probabilities of belonging there. 

 

We use two different underlying disease activity models. First, we use a previously developed 

Markov model of the relapsing and remitting disease (Borg, Persson et al. 2010), modified to use a 

separate parameter set for each phenotype. In the Markov model, the parameters are assumed to be 

fixed over time and it is extremely complicated to allow time-dependent parameters. Since disease 

activity patterns sometimes change over time, our second approach allows time-dependent 

parameters. Here we work directly with the aggregated data, assuming they come from a given 

distribution. We call this the count data model. We primarily consider the binomial distribution, but 

we also try the Poisson and negative binomial distributions. Our two underlying disease activity 

models are described below. 

3.1 The Markov model 

The Markov model is a simple disease activity model with four states: two for relapse and two for 

remission (Figure 1). The pair of relapse states represent the first month in relapse and the 

subsequent months in relapse, respectively. Each has a probability of remission (p1 and p2, 

respectively). The two remission states work correspondingly, with probabilities of relapse p3 and p4. 

In the relapse states, there is a probability of a surgical operation (p5), which is handled as an event 

within the states. In the original model, the model parameters θ=(p1, p2, ..., p5) were used to describe 

the entire patient population, and we estimated the parameters using an exact maximum likelihood 

estimator (Borg, Persson et al. 2010). Using the Markov model as the underlying disease activity 

model, we now estimate the model parameters for each phenotype. The mean number of relapses 

and surgical operations, the mean and median duration of a period of remission and the mean and 

median duration of a relapse were derived from the model parameters to describe the phenotypes. 

The parameters in this model are assumed to be constant over time, which motivates our second 

model with its time-dependent parameters. 
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3.2 The count data model 

Our count data model assumes that the number of relapses is binomially distributed as Bin(6, φ1) in 

year 1 and Bin(6, φ2 + t*φ3) in the following years; that is, the probabilities depend linearly on time t. A 

binomial distribution with six tries was chosen because we consider an underlying process that 

alternates between relapse and remission, with up to six relapses per year (by analogy with the 

Markov model). Similarly, the model assumes that the numbers of surgical operations are distributed 

as Bin(6, ψ1) and Bin(6, ψ2 + t*ψ3), respectively. The expected annual numbers of relapses and 

surgical operations are derived from the model parameters to describe the phenotypes, henceforth 

denoted binomial phenotypes. We also try alternative distributions: first the Poisson distribution 

with mean number of relapses and surgical operations parameterized as µ1 and γ1, respectively, in 

year 1, and µ2+tµ3 and γ2+tγ3, respectively, in the following years, by analogy with the 

parameterization above. Then, the negative binomial distribution is parameterized with the 

corresponding means µ'1 and γ'1, respectively, in year 1, and µ'2+tµ'3 and γ'2+tγ'3, respectively, in the 

following years, and a size common for all years, σ for the number of relapses and σ' for the number 

of surgical operations. The results using the binomial distribution are presented explicitly. The other 

two distributions are used to examine the influence of the choice of distribution. 

3.3 Cost-effectiveness 

To illustrate the influence of phenotypes on the cost-effectiveness of interventions, we consider two 

hypothetical interventions: one which shortens the duration of a relapse by 25%, and one which 

reduces the annual number of relapses by 25%. Both have an annual cost of 500 Euros, a 

hypothetical value chosen to not resemble any particular drug. We use the phenotypes identified in 

Denmark together with Swedish cost and quality-adjusted life year (QALY) weight estimates 

(Mesterton, Jonsson et al. 2009). Both interventions can be evaluated using the Markov model, but 

only the second intervention can be evaluated using the count data model. To evaluate the first 

intervention, we use the Markov model with relapse as starting point, and state costs and QALY 

weights of 277 Euros and 0.92 in remission, and 969 Euros and 0.82 in relapse (year 2013 Euros). A 

five-year time frame is used. For the second intervention, we derive the cost and QALY loss of a 

relapse lasting two months as 1 383 Euros and 0.0167, and use these to compute total costs and 

QALYs of the reduced number of relapses. The incremental cost-effectiveness ratios (ICERs) in each 

of the phenotypes are compared to the ICER corresponding to the situation where the patient 

population is not subdivided into phenotypes, to explore the influence of the phenotypes. An 

intervention with an ICER of around 50 000 Euros or less per QALY is judged cost-effective. 
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4. Results 

Below we identify phenotypes using different disease activity model specifications and compare the 

results across specifications in the area of Crohn’s disease. We then examine the influence of 

phenotypes on cost-effectiveness. 

4.1 Model order 

The best model fit using the Markov model is with four phenotypes in Denmark and two in each of 

the other countries (Table I). Using the count data model, the best fit is with five phenotypes in 

Denmark
1
; four in Ireland; three in Norway, Netherlands, Israel, Spain, and Italy; and two in Greece 

(Table II). The count data model's ability to allow time-dependent parameters appears to result in 

more phenotypes in e.g. Denmark, Netherlands and Italy than with time-independent parameters 

(Figure 2). Especially in Denmark and Italy, phenotypes differ in how the relapse intensity changes 

over time, i. e. whether it increases or decreases.  

4.2 Model fit 

Model predictions of the mean annual number of relapses and surgical operations over ten years are 

presented together with weighted averages in Table III. The predictions of mean are fairly similar, but 

there are larger discrepancies in the number of relapses in one Markov phenotype in Denmark and in 

one phenotype in Italy.  The predicted disease activity over time also appears similar to the weighted 

averages (Figure 2), with larger discrepancies for Markov phenotypes where activity varies more over 

time (Denmark, Italy). All these discrepancies are seen in the same two phenotypes. 

4.3 Disease activity 

The general pattern in the phenotypes is at least one relapse in the year of onset (year 1), followed 

by either zero/nearly zero relapses each subsequent year, or remaining on an active level (Figure 2). 

A visible time-dependence is seen in phenotypes in some countries, for instance Denmark and 

Netherlands. 

 

The mean duration of a period of remission ranges from 11 to 88 months (median 1-56 months), with 

a shorter duration seen in more active phenotypes (Table II). The mean duration of a relapse ranges 

between 1 and 14 months (median 1-8), and more active phenotypes often have longer duration 

(Table II). 

 

                                                           
1
 The same model order and parameter estimates resulting in very similar predicted annual counts were 

obtained when the Poisson and negative binomial distributions were used instead of the binomial distribution. 
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The distributions of the annual number of relapses and surgical operations in the populations of 

Denmark, Norway, Netherlands, and Italy according to the Markov and count data models, 

respectively, are presented in Figure 3. The Markov phenotypes appear to agree well with the 

binomial phenotypes in Denmark and Norway, but there are larger discrepancies in Netherlands and 

Italy.  

 

Without subdivision into phenotypes, the Markov model estimates the duration of a relapse as 1.1 

months, the duration of a remission as 28.5 months, and the mean rate of relapses per year in 

Denmark as 0.56. The binomial model estimates this rate as 0.54 relapses per year.  

4.4 Influence of phenotypes on cost-effectiveness 

We consider two hypothetical interventions, one which shortens the duration of relapses by 25% and 

one which reduces the annual number of relapses by 25%. The first of these can only be evaluated in 

the Markov phenotypes, since relapse duration is not modeled in the count data model.  

4.4.1 Shortening the duration of relapses 

In the population as a whole, the ICER is 292 000 Euros per QALY gained, and so the intervention is 

not cost-effective. However, when analyzing by phenotype, the ICER ranges from 17 000 to 604 000 

Euros per QALY gained, and the intervention is cost-effective in Markov phenotypes 2 and 4 (37% of 

the patients). 

4.4.2 Reducing the number of relapses 

In the population as a whole, the ICER is 132 000 Euros per QALY gained in the Markov model and 

140 000 Euros per QALY gained in the annual counts model. Thus, both indicate that the intervention 

is not cost-effective. However, the ICER ranges between 32 000 and 361 000 Euros in the Markov 

phenotypes, and between 27 000 and 517 000 Euros in the binomial phenotypes. This makes it cost-

effective in Markov phenotypes 3 and 4 (27% of the patients) and binomial phenotypes 2 and 5 (32% 

of the patients). 

5. Discussion 

In order to study cost-effectiveness in a heterogeneous disease, we separated the patients into 

different phenotypes. We then used two different disease activity models to determine how many 

phenotypes would best explain the heterogeneity of the patient population, and to estimate model 

parameters that describe the disease activity in these phenotypes. This was carried out in eight 

different countries. Under both models, two or more phenotypes improved the model fit in all 



11 

 

countries compared to just one phenotype. Thus the introduction of phenotypes improved our 

modeling of the population, regardless of our choice of model.  

 

The data we used were a patient's number of relapses and number of surgical operations aggregated 

over one-year periods. We used a count data model to model these aggregated data directly. We 

also used a Markov model of the explicit transitions between relapse and remission, and fitting this 

model to these aggregated data required an indirect estimation approach. The Markov phenotypes 

showed higher discrepancies than their binomial counterparts. This may be due to the challenge of 

aggregation over time that faces the Markov estimator, leading to less precision in the estimates. 

Another alternative explanation may be that the Markov model is not a very good model of the 

disease activity, whereas the annual counts model is a fair model of the aggregated data. Moreover, 

the two models suggest different phenotypes. The disease phenotypes that we can identify result 

from the discrimination ability of the underlying disease activity model. The count data model allows 

probabilities that change over time, and in Denmark, for example, it identified phenotypes that differ 

from those identified by the Markov model (Figure 2). Still, the distribution of annual relapse and 

surgery rates agree well, at least in Denmark and Norway (Figure 3). The Markov model gave some 

rather high estimates of the mean duration of remission. These may have been inflated by ongoing 

remission periods at the point of censoring, and in some cases because the estimates were based on 

small amounts of data. Still there is mostly a fair agreement between model predictions and 

observations (Figure 2, Table III). 

 

We identified different number of phenotypes in the different countries, with the highest number in 

Denmark. This is likely due to the different practices at the various centers, patient populations, and 

amounts of data available in the different countries. 

 

We used the model parameters to evaluate whether two hypothetical interventions were cost-

effective. Both interventions turned out to be cost-effective in part of the population if phenotypes 

were considered, whereas neither intervention would be cost-effective in the patient population as a 

whole. The introduction of these interventions is therefore dependent on phenotypes being 

considered. The identification of the phenotypes and evaluation of interventions in each phenotype 

can therefore guide how to optimize the use of healthcare resources.  
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While the work presented here has been fairly successful and potentially useful, several aspects 

deserve attention. The clinical relevance of our work to date is very limited, as we classify patients 

according to ten years of disease history. To become clinically useful, our method must provide 

results much sooner, for example by indicating the likely future path of the patient's disease. Ideally, 

this would occur close to diagnosis, but observations over some period of time would probably be 

needed to identify a patient's phenotype. Given the classification, one could decide on treatment 

according to the prognosis or the predicted future disease activity. The longer this period of time is, 

the more data there is for classifying the phenotype. The best length is a trade-off between the 

uncertainty of the classification, and the waiting time before a better-informed treatment choice can 

be made. Another aspect of the usefulness of our work is whether we can make good treatment 

choices for the phenotypes that we have identified. One could imagine that an aggressive treatment 

strategy would be cost-effective in patients with increasing disease activity, whereas a more modest 

treatment strategy would be a better choice for patients with decreasing or inactive disease activity. 

We found phenotypes with increasing as well as decreasing disease activity over time (Figure 2). 

 

Our work could be transferred to other applications or other types of data; the only requirement is a 

likelihood function of an underlying model of the data and a reasonable amount of data. We have 

used longitudinal data with only two variables over ten years, but one might consider data organized 

differently, for example many variables at fewer points in time. If that turns out well, it could provide 

a phenotype classification much sooner than after ten years of follow-up, which would obviously 

improve the clinical usefulness. It is uncertain whether this is feasible with resource utilization data, 

but it may be more likely with other types of variables. 

 

The phenotypes that we can identify are functions of the data we have and choose to use. Using data 

on resource consumption gives us a resource-oriented view of phenotypes which appears relevant 

for a health economic analysis. Others who have studied phenotypes have used data such as disease 

markers, genetic data, or data on clinical behavior, which give them different views of phenotypes.  

 

Would it be just as good to pre-define subgroups of patients according to disease activity, for 

instance using frequency of relapse? This would require choosing suitable thresholds to discriminate 

between subgroups. For example, in Denmark, three Markov phenotypes were relatively active, but 

neither of the examined interventions were cost-effective in all three; one intervention was cost-

effective in the two phenotypes with the highest relapse frequencies, and the other in the two 
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phenotypes with the longest relapses. Thus, it does not appear to be completely self-evident how to 

pre-define subgroups. Such pre-definition may have to rely on an amount of subjective judgment, 

whereas our method uses an objective identification algorithm (provided that the input data are 

objective, which in this case they are).  

 

The patients have been given different treatments at different times. Our disease behavior 

observations inevitably depend on each patient's underlying disease and the patient's response to 

whatever treatment was given at the moment. Therefore, one might not be able to identify a 

treatment effect using our approach. For example, it may not be possible to discriminate between a 

truly inactive phenotype and a phenotype which is well controlled by an ongoing treatment but 

which would be active otherwise. When considering our cost-effectiveness results, it must be asked 

whether a new treatment would actually accomplish the effect we assume on top of inherently 

existing treatment in the data.  

 

We could potentially extend the way in which our framework deals with time dependence. First, we 

could allow time-dependent probabilities in the Markov model. However, more parameters would 

then have to be estimated, so more data would be needed or the uncertainty in the estimates would 

increase. Moreover, the computational burden of the Markov estimator would increase. Second, we 

could allow patients to change phenotype over time. This might improve model fit to data from 

patients that do change behavior. On the other hand, fitting the additional parameters required for 

phenotypes to change over time would require more data and increase the computational burden. 

Importantly, these two aspects of time dependence may interfere. It may be hard to distinguish 

patients with a phenotype that changes over time from patients who move between phenotypes. 

Furthermore, it could make it even harder to discriminate a treatment effect from any of the above 

changes over time.  

 

We have not examined the uncertainty in our results. The most straightforward approach would be a 

bootstrap analysis, but our estimator has very long execution times and this makes bootstrap 

infeasible. The lack of uncertainty analysis is nonetheless a weakness of our study. 
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Conclusions 

Allowing for different phenotypes improves model fit, and is a key step towards dealing with 

heterogeneity. The cost-effectiveness of an intervention can vary between phenotypes, and 

identifying phenotypes and evaluating the intervention in each phenotype can guide the decision to 

introduce the intervention, though this is not without pitfalls. 
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Tables and Figures 

Table I: Model parameter estimates of the identified Markov phenotypes, and duration of remission 

and relapse, by country.  

Country 

Phenotype 

(proportion 

of patients) p1 p2 p3 p4 p5 

Duration of 

remission, 

mean (median) 

Duration of 

relapse, 

mean (median) 

Denmark 

N=54 

M1 (49%) 0.9900 0.9900 0.2473 0.0100 0.3796 76.3 (44.5) 1.0 (1.0) 

M2 (24%) 0.3223 0.1840 0.5307 0.0205 0.0272 23.9 (1.0) 4.7 (1.0) 

M3 (14%) 0.9625 0.9900 0.7228 0.0161 0.5767 18.2 (1.0) 1.0 (2.0) 

M4 (13%) 0.2224 0.8075 0.4713 0.0521 0.1804 11.1 (1.0) 2.0 (1.0) 

Greece 

N=16 

M1 (82%) 0.9900 0.9900 0.1316 0.0100 0.0813 87.8 (56.0) 1.0 (1.0) 

M2 (18%) 0.9900 0.7875 0.0100 0.0393 0.0100 26.2 (16.0) 1.0 (1.0) 

Ireland 

N=29 

M1 (59%) 0.0100 0.9653 0.2671 0.0100 0.0374 74.3 (40.0) 2.0 (1.0) 

M2 (41%) 0.5771 0.9304 0.4484 0.0453 0.2033 13.2 (2.0) 1.5 (1.0) 

Israel 

N=16 

M1 (50%) 0.9900 0.9900 0.2091 0.0436 0.0100 19.1 (11.0) 1.0 (1.0) 

M2 (50%) 0.0100 0.1959 0.4340 0.0100 0.0506 57.6 (12.0) 6.1 (4.0) 

Italy 

N=54 

M1 (92%) 0.0618 0.9152 0.1702 0.0142 0.0983 59.6 (33.0) 2.0 (1.0) 

M2   (8%) 0.1859 0.0626 0.7562 0.0100 0.0199 25.4 (1.0) 14.0 (8.0) 

Netherlands 

N=75 

M1 (55%) 0.9900 0.9900 0.2357 0.0106 0.4508 73.1 (42.0) 1.0 (1.0) 

M2 (45%) 0.6129 0.4236 0.1699 0.0325 0.0334 26.6 (15.0) 1.9 (1.0) 

Norway 

N=104 

M1 (86%) 0.0100 0.9900 0.1365 0.0100 0.1123 87.4 (55.5) 2.0 (1.0) 

M2 (14%) 0.0100 0.8678 0.1735 0.0393 0.0438 22.1 (13.0) 2.1 (1.0) 

Spain 

N=32 

M1 (92%) 0.0100 0.4236 0.2347 0.0123 0.0344 62.8 (37.0) 3.3 (2.0) 

M2   (8%) 0.9900 0.9900 0.0695 0.0708 0.1311 14.1 (9.0) 1.0 (1.0) 

Note: The parameters p1, p2, ..., p5 are transition probabilities (see Figure 1). 
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Table II: Model parameter estimates of the identified binomial phenotypes, by country.  

 Phenotype 

(proportion 

of patients) 

Probability p of relapse in 

annual count, Bin(6,p) 

Probability p of surgery in 

annual count, Bin(6,p) 

Country Year 1 Year 2 Year 10 Year 1 Year 2 Year 10 

Denmark 

N=54 

B1 (39%) 0.2628 0.0190 0.0052 0.1097 0.0000 0.0000 

B2 (24%) 0.4169 0.2665 0.0727 0.1628 0.1060 0.0289 

B3 (16%) 0.1914 0.1278 0.0349 0.0000 0.0293 0.0080 

B4 (12%) 0.5611 0.0005 0.0391 0.4275 0.0000 0.0133 

B5 (8%) 0.2405 0.0000 0.2724 0.0000 0.0000 0.0149 

Greece 

N=16 

B1 (52%) 0.2190 0.0000 0.0000 0.0201 0.0000 0.0000 

B2 (48%) 0.1970 0.0525 0.0468 0.0000 0.0000 0.0050 

Ireland 

N=29 

B1 (54%) 0.2718 0.0110 0.0231 0.0312 0.0000 0.0000 

B2 (24%) 0.3571 0.2200 0.0600 0.0234 0.0387 0.0106 

B3 (16%) 0.5470 0.0450 0.1079 0.1152 0.0000 0.0228 

B4 (7%) 0.6561 0.3069 0.1240 0.3228 0.2087 0.0569 

Israel 

N=16 

B1 (54%) 0.3560 0.1133 0.0599 0.0000 0.0000 0.0000 

B2 (39%) 0.2220 0.0085 0.0023 0.0526 0.0000 0.0000 

B3   (7%) 0.5021 0.1982 0.1338 0.0000 0.0968 0.0464 

Italy 

N=54 

B1 (52%) 0.2463 0.0941 0.0466 0.0386 0.0179 0.0097 

B2 (38%) 0.2159 0.0120 0.0033 0.0287 0.0000 0.0000 

B3 (10%) 0.2113 0.0000 0.0738 0.0929 0.0000 0.0000 

Netherlands 

N=75 

B1 (50%) 0.2667 0.0762 0.0266 0.0320 0.0097 0.0035 

B2 (26%) 0.2602 0.1345 0.0367 0.0918 0.0373 0.0102 

B3 (24%) 0.1808 0.0000 0.0007 0.0767 0.0000 0.0007 

Norway 

N=104 

B1 (45%) 0.2023 0.0309 0.0084 0.0140 0.0040 0.0011 

B2 (28%) 0.2465 0.0693 0.0811 0.0118 0.0118 0.0212 

B3 (27%) 0.2166 0.0000 0.0092 0.0674 0.0000 0.0000 

Spain 

N=32 

B1 (43%) 0.3149 0.0686 0.0187 0.0125 0.0130 0.0035 

B2 (41%) 0.1974 0.0000 0.0245 0.0122 0.0000 0.0000 

B3 (16%) 0.2083 0.1930 0.0658 0.0000 0.0000 0.0309 

Note: Our model assumes a linear relationship between probabilities in years 2 through 10. 
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Table III: Average annual number of relapses and surgical operations in ten years, predicted by the 

model (Model), and weighted observations (Observed)* (Markov, M, and binomial, B). 

   Markov phenotypes Binomial phenotypes 

Country   M1 M2 M3 M4 B1 B2 B3 B4 B5 

Denmark 

  

Relapses 
Model 0.27 0.56 0.89 1.04 0.20 1.09 0.52 0.43 0.97 

Observed 0.27 0.70 0.90 1.10 0.21 1.09 0.51 0.47 0.99 

Surgery 
Model 0.07 0.07 0.48 0.35 0.06 0.43 0.09 0.27 0.05 

Observed 0.10 0.06 0.52 0.36 0.06 0.43 0.09 0.29 0.02 

Greece 

Relapses 
Model 0.24 0.53 --- --- 0.12 0.38 --- --- --- 

Observed 0.20 0.49 --- --- 0.12 0.38 --- --- --- 

Surgery 
Model 0.01 0.00 --- --- 0.01 0.02 --- --- --- 

Observed 0.02 0.00 --- --- 0.01 0.02 --- --- --- 

Ireland  

Relapses 
Model 0.28 0.94 --- --- 0.25 0.90 0.74 1.47 --- 

Observed 0.30 0.98 --- --- 0.26 0.88 0.73 1.54 --- 

Surgery 
Model 0.02 0.26 --- --- 0.02 0.14 0.13 0.85 --- 

Observed 0.02 0.28 --- --- 0.02 0.14 0.13 0.85 --- 

Israel  

Relapses 
Model 0.70 0.32 --- --- 0.65 0.15 1.16 --- --- 

Observed 0.62 0.34 --- --- 0.62 0.14 1.09 --- --- 

Surgery 
Model 0.01 0.09 --- --- 0.00 0.03 0.37 --- --- 

Observed 0.00 0.08 --- --- 0.00 0.03 0.35 --- --- 

Italy  

Relapses 
Model 0.30 0.48 --- --- 0.50 0.16 0.34 --- --- 

Observed 0.32 0.85 --- --- 0.50 0.16 0.36 --- --- 

Surgery 
Model 0.05 0.12 --- --- 0.09 0.02 0.05 --- --- 

Observed 0.05 0.13 --- --- 0.09 0.02 0.05 --- --- 

Nether-  

lands 

Relapses 
Model 0.27 0.52 --- --- 0.41 0.58 0.10 --- --- 

Observed 0.27 0.52 --- --- 0.41 0.57 0.10 --- --- 

Surgery 
Model 0.09 0.03 --- --- 0.05 0.17 0.04 --- --- 

Observed 0.12 0.03 --- --- 0.05 0.17 0.04 --- --- 

Norway  

Relapses 
Model 0.24 0.59 --- --- 0.21 0.55 0.15 --- --- 

Observed 0.23 0.63 --- --- 0.21 0.55 0.15 --- --- 

Surgery 
Model 0.04 0.05 --- --- 0.02 0.10 0.04 --- --- 

Observed 0.04 0.06 --- --- 0.02 0.10 0.04 --- --- 

Spain  

Relapses 
Model 0.29 0.87 --- --- 0.39 0.18 0.78 --- --- 

Observed 0.32 0.87 --- --- 0.39 0.18 0.78 --- --- 

Surgery 
Model 0.03 0.11 --- --- 0.05 0.01 0.09 --- --- 

Observed 0.03 0.12 --- --- 0.05 0.01 0.10 --- --- 

Notes: --- = phenotype not identified. * Weighted according to individual probabilities of belonging to 

each phenotype 
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Figure 1: The Markov model of disease activity in Crohn's disease (Borg, Persson et al. 2010). 

 
There is a probability of surgery (p5) in the two states representing relapse.   
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Figure 2: Observed and predicted annual number of relapses and surgical operations, by country and 

Markov (M) and binomial (B) phenotype. 

 

  

 

  
Notes: The observed quantities are shown as weighted averages, with individual phenotype  

probabilities used as weights. Therefore the observed quantities shown here depend on which kind 

of phenotype is used for weighting (Markov/binomial). 
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Figure 3: Distribution of the annual number of relapses and surgical operations in the populations of 

four countries, estimated using Markov phenotypes (dotted line) and binomial phenotypes (solid 

line). 

 

Notes: Cumulative proportion of patients. 
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Appendix

3 November 2014

1 Data

We observe an individual i for ni years and obtain the annual number of surgical
operations Zi = (Zi1 , Zi2 , . . . , Zini

), and the annual number of relapses Vi =
(Vi1 , Vi2 , . . . , Vini

), during each observed year j = 1, 2, . . . , ni. We denote the
set of data from an individual as yi = (Zi, Vi).

2 The Phenotype estimator

We consider r different phenotypes. For each phenotype u = 1, 2, . . . , r, we have
the probability αu of a patient belonging to the phenotype, and the underlying
disease activity model parameters θu. We use κ = (α1, α2, . . . , αr, θ1, θ2, . . . , θr)
to denote the entire parameter vector, and yi to denote the data from patient
i. The likelihood for an individual i is Li(θ) = Pr{Zi = zi, Vi = vi|θ} The
likelihood for phenotype u is LF (θu) =

∏
i Li(θu)ziu . The likelihood Li(yi; θu)

of each individual i is weighted according to its probability ziu of belonging to
phenotype u.

We use an Expectation-Maximization algorithm with an initial starting point
(κ) generated randomly. The algorithm then iterates a number of steps for a
prespecified number of times (default 20).

In the first step, the probabilities wij of patient i belonging to phenotype u
are determined as

wiu = αu ∗ Li(yi; θu)/[

r∑
k=1

αk ∗ Li(yi; θk)]

In the second step, for each phenotype u with ziu = wiu, LF (θu) is maxi-
mized with regards to θu. We denote the updated parameter vector that results
in a new maximum, with θ′u.

Finally, new probabilities α′j are derived as α′j = Wj/
∑r

k=1Wk, where Wj =∑n
i=1 wij . The updated overall parameter set, κ′ = (α′1, α

′
2, . . . , α

′
r, θ
′
1, θ
′
2, . . . , θ

′
r)

is obtained and we carry on the iteration by setting κ = κ′, unless the difference
is small, i.e. if |κ′ − κ| < ε (default ε = 10−8), in which case the iteration is
terminated. A pre-defined number of starting points (default 50) are used, and
the resulting estimate with the highest overall likelihood Lr =

∏r
u=1 LF (θu) is

taken as the Maximum Likelihood estimate.

1



2.1 The Markov model

We used a previously developed Markov model, where the number of relapses
and the number of surgical operations are determined from an individual pa-
tient’s pathway through the model. The likelihood Li(θ) is a function of the
disease activity model parameters θ = (p1, p2, . . . , p5), and it is computed using
an exact likelihood estimator [1].

2.2 The Count data model

The aggregated number of relapses, and the number of surgical operations,
in any given year is modelled as a stochastic variable of a given distribution.
Our main choice was the binomial distribution, Bin(6, p). For the number of
relapses: p = φ1 in year 1, φ2 + tφ3 in years t = 2, 3, . . . This imposes obvious
boundaries on φ1 ∈ [0, 1] and on φ2, φ3 so that φ2 + tφ3 ∈ [0, 1]. For the number
of surgeries, p = ψ1 in year 1, ψ2 + tψ3 in years t = 2, 3, . . .

We also considered the Poisson and negative binomial distribution. For the
Poisson distribution the mean number of relapses was µ1 and surgical operations
γ1, year 1; and corresponding, relapses, µ2+µ3t and surgical operations γ2+γ3t,
year t = 2, 3, . . . For the negative binomial distribution the mean number of
relapses was µ′1 and surgical operations was γ′1, year 1; and corresponding,
relapses, µ′2 + µ′3t and surgical operations γ′2 + γ′3t, year t = 2, 3, . . . and a size
common for all years, σ for relapses and σ′ for surgical operations.

With this approach, we denote the parameter of phenotype u with Φu =
(φ1, φ2, φ3, ψ1, ψ2, ψ3) so that we have the likelihood of each individual’s data,
L′i(yi; Φu) based on the binomial probability function according to above. The
likelihood for the phenotype estimator was obtained by substituting Li(yi; θu)
with L′i(yi; Φu) and θ with Φ in LF (θu) wherever relevant. The estimator using
the Poisson or negative binomial distributions operates in analogy, except for
bounds for parameters being different in the numerical searches.

3 Model order

The model order is judged using the Bayesian Information Criterion, BICr =
−2 lnLr +m lnn, where Lr is the maximum likelihood (among the ones we have
obtained), m is the number of parameters with r phenotypes (m = r − 1 + 5r
with the Markov model, m = r − 1 + 6r with the Count data model), and n is
the number of observed patient-years. We prefer a model with r+1 phenotypes
over a model with r phenotypes, if BICr+1 < BICr.
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