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Abstract

Kidney transplants across the blood-group barrier are medically feasible even if blood-group
compatibility is preferred from a medical point of view. However, these types of transplants
are motivated by the fact that they help in increasing the number of kidney transplants with
living donors. This paper investigates priority matchings in a pairwise kidney exchange
problem where blood-group incompatibilities may be present. As a priority matching
not necessarily is unique, it is from a medical point of view natural to select a priority
matching where the number of blood-group compatible exchanges is maximized among all
priority matchings. The main result demonstrates that this can be achieved by solving an
appropriately defined maximum weight matching problem.

Keywords: pairwise kidney exchange, priority matchings, blood-group incompatibility.

JEL Classification: C78.

1. Introduction

In a pairwise kidney exchange, two patients obtain living and compatible donors by swap-
ping their own willing and living but incompatible donors. The key here is the notion
of compatibility. This notion usually refers to two different compatibilities; blood-group
(ABO) and tissue-type (HLA). Roth et al. (2005) discussed how to organize pairwise kid-
ney exchanges based on a priority mechanism. In such mechanism, each patient is assigned
a priority (e.g., based on “Panel Reactive Antibody” or “Match Probability”) and the basic
idea is to maximize the number of kidney exchanges subject to the priority-order.

In a recent paper, Okumura (2014) revisited the priority mechanism and noted that the
method introduced by Roth et al. (2005) is infeasible when the number of patient-donor
pairs is “large” as all possible matchings must be listed and as there is no known method
that achieves this task in polynomial time. To overcome this obstacle, Okumura (2014)
provided a polynomial time method for identifying a priority matching. More explicitly,
Okumura (2014) described the problem in terms of a graph where each vertex represents
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an incompatible patient-donor pair. Two vertices are connected in the graph if and only
if a pairwise exchange is possible. Moreover, each edge is assigned a weight that equals
the exact sum of the priorities of the two connected pairs. The situation is illustrated in
Figure 1 for the case of five patient-donor pairs (numbered 1 to 5). For example, pairs 1
and 5 are connected which means that the donor of pair 1 (pair 5) is compatible with the
patient of pair 5 (pair 1). Moreover, patient i (for i = 1, . . . ,5) is assumed to have priority
i, and, therefore, the weight attached to the edge connecting pairs 1 and 5 equals 1+5 = 6,
and so on. Given this graph structure, Okumura (2014) demonstrated that the problem of
finding a priority matching is identical to solving the maximum weight matching problem
associated to the graph. As any priority matching is Pareto efficient (Roth et al., 2005)
and as any Pareto efficient matching is a maximum matching (Bogomolnaia and Moulin,
2004; Roth et al., 2005), the polynomial time method provided by Okumura (2014) thus
generates a priority matching where, in addition, the maximum number of pairwise kidney
exchanges can be performed. However, a priority matching need not be unique. In Figure 1,
for example, there are two priority matchings; M = {(1,5),(2,4)} and M′ = {(1,4),(2,5)}.
Is there a good reason to select M or should M′ be chosen? In this paper, we will argue
that there are cases when one is better than the other.

It is well documented that blood-group incompatible kidney transplants are medically
feasible (see,e.g., Shin and Kim, 2011). In Sweden, for example, the normal practice is
to transplant kidneys across the blood-group barrier as long as there is no tissue-type
incompatibility. From a medical point of view, however, blood-group compatibility is pre-
ferred, e.g., to avoid various medical treatments and procedures. However, if blood-group
incompatible kidney transplants are performed, weakly more transplants will be conducted
compared to the case when both types of compatibilities must be take into considera-
tion (this follows trivially as any transplant that is feasible when requiring blood-group
and tissue-type compatibility also is feasible when only requiring tissue-type compatibility
but not vice versa).1 This is also the main argument for abandoning the requirement of
blood-group compatibility in kidney transplants with living donors.

When kidney exchanges across the blood-group barrier are conducted, it also becomes
important to distinguish between different priority matchings. More explicitly, suppose
that the aim of a pairwise kidney exchange program is to find a priority matching given
some priority-order. In this case, the method provided by Okumura (2014) can be adopted.
However, if there are several priority matchings, as in the above example, it is from a
medical point of view reasonable to select a priority matching where the number of blood-
group compatible exchanges is maximized among all priority matchings. Suppose, for
example, that only pairs 1 and 5 are blood-group compatible in the above example. It
is then natural to select the priority matching M over matching M′. This paper provides
a modification of the maximum weight matching problem proposed by Okumura (2014),

1If, for example, the compatibilities in Figure 1 only reflect tissue-type compatibility, we know from
the above that two pairwise exchanges can be performed, but if, for example, only pairs 1 and 5 are
blood-group compatible, and blood-group compatibility is a requirement, only one pairwise exchange can
be carried out.
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and demonstrates that this modification always generates a priority matching where the
number of blood-group compatible exchanges is maximized among all priority matchings.
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Figure 1: An example of a graph in a maximum weight matching problem.

2. The Model and Results

Let N = {1, . . . ,n} be a finite set of patients. Each patient i∈N has a living but incompatible
donor di. A donor d j is acceptable for patient i if and only if donor d j and patient i are
tissue-type compatible (HLA), i.e., we are initially not interested in blood-group (ABO)
compatibility. For any two patient-donor pairs, (i,di) and ( j,d j), patients i and j are
compatible if and only if donor d j is acceptable for patient i and donor di is acceptable for
patient j. As, e.g., Okumura (2014), we will present the problem as a graph g = (N,E)
comprising a set N of vertices together with a set E of edges. An edge i j belongs to the
graph g if and only if patients i and j are compatible. A subset of g is called a subgraph. A
matching M is a subgraph of g such that for all i, j ∈ N, if i j ∈M, then ik <M and jk <M
for all k ∈ N \{i, j}. Patient i is matched (unmatched) at matching M if i j ∈M (if i j <M)
for exactly one j ∈ N (for all j ∈ N). All matched patients at matching M are collected in
the set N∗(M)⊆ N. The set of all possible matchings is denoted by M . A matching M is
a maximum matching if |M| ≥ |M′| for any matching M′ ∈M .

The patients in N are ordered by a priority-order π. Patient i ∈ N have higher priority
than patient j ∈ N if π(i) > π( j). Throughout the paper, it is assumed that the priority

π(i) for patient i ∈ N is given by a fraction of type π(i) = p(i)
q for some p(i) ∈ {0,1, . . . , p}

and some p,q ∈ N++. The interpretation is that all patients are assigned a priority that
must take a value on a predetermined scale (note that p and q are fixed and equal for all
patients).2

The (responsive) priority preferences are denoted by % and are represented by a com-
plete and transitive binary relation on the set of matchings M . The corresponding strict

2All results are valid for any π(i) ∈R++ so the assumption on π(i) is made without loss of generality to
get a “non-messy” upper bound on ε that is defined later in this section. A real-life example is when the
priority is based on the PRA of the patients as PRA always is a fraction x/100 for some x∈ {0,1,2, . . . ,100}.
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and indifference relations are denoted by � and ∼, respectively. More precisely, M �M′ if
N∗(M′) is a strict subset of N∗(M) or:

N∗(M) = (N∗(M′)∪{i})\{ j} and π(i) > π( j). (1)

Moreover, M ∼ M′ if condition (1) holds for π(i) = π( j). A matching M is a priority
matching if M % M′ for any matching M′ ∈M . For a given graph g, all priority matchings
are gathered in the set M ∗(g)⊆M .3

Let wi j be a weight assigned to each i j ∈ g and w = (wi j)i j∈g, and define, for each
matching M ∈M , the function: λi j(M) = 1 if i j ∈ M and λi j = 0 if i j < M. Let now
S(M,w) = ∑i j∈g wi jλi j. Then, for any given (g,w), a matching M is a maximum weight
matching if and only if S(M,w)≥ S(M′,w) for any matching M′ ∈M .

Theorem 1. (Okumura, 2014, Theorem 2) Let wi j = π(i) + π( j) for all i j ∈ g. Then, for
any g and any π, M is a priority matching if and only if M is a maximum weight matching
in (g,w).

Recall now that only tissue-type compatibility was included in the definition of compatibil-
ity. However, as explained in Section 1, if the aim of a pairwise kidney exchange program is
to find a priority matching given some priority-order, it is natural from a medical point of
view to pick a priority matching where the number of blood-group compatible exchanges
is maximized. For this reason, define B(M) to be the number of pairwise blood-group
compatible edges at matching M. It is clear that B(M) ⊆M. Further, let M ∈M B(g) if
M ∈M ∗(g) and if B(M)≥ B(M′) for all M′ ∈M ∗(g). Hence, M B(g) is the set of priority
matchings where the number of blood-group compatible exchanges are maximized among
all priority matchings. Our main result demonstrates how the weights wi j = π(i)+π( j) can
be modified to identify a matching in the set M B(g). This modification will be based on
the edge weights and not on the priorities as the priorities are patient specific (i.e., vertex
specific) whereas the notion of blood-group (in)compatibility reveals something about the
relation between two patient-donor pairs (i.e., two vertices) in a pairwise exchange, i.e.,
blood-group (in)compatibility is edge related. Let now ∆≡ 1

q and 0 < ε < ∆/n. Define:

wε
i j =

{
π(i)+ π( j) if patients i and j are blood-group incompatible
π(i)+ π( j)+ ε if patients i and j are blood-group compatible,

and wε = (wε
i j)i j∈g. The following theorem states the result of this paper, i.e., by using the

weights wε in the maximum weight matching problem, the outcome will always result in
a priority matching where the number of blood-group compatible exchanges is maximized
among all priority matchings. We also note that this outcome is a maximum matching.

Theorem 2. Let wi j = π(i) + π( j) for all i j ∈ g, and let wε be defined as in the above.
Then for any g, M belongs to the set M B(g) if it is a maximum weight matching in (g,wε).

3This set may contain several matchings for a given g. This can be seen in the example in Section 1.
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Proof. Suppose that M is a maximum weight matching in (g,wε). We first demonstrate
that M is a maximum weight matching in (g,w). To obtain a contradiction, suppose that M
not is a maximum weight matching in (g,w). This means that there is some other matching
M′ ∈M , with λ ′i j defined accordingly, where S(M′,w) > S(M,w). By the construction of w,
it is clear that:

S(M′,w)−S(M,w)≥ ∆. (2)

We next note that wε
i j−wi j ∈ {0,ε} for all i j ∈ g by construction of w and wε . Hence:

S(M,wε)−S(M,w) < ∆. (3)

S(M′,wε)−S(M′,w) ≥ 0. (4)

Adding conditions (2)–(4) yield:

S(M,wε)−S(M′,wε) < 0,

which contradicts that M is a maximum weight matching in (g,wε), i.e., that S(M,wε) ≥
S(M′,wε). Hence, M is a maximum weight matching in (g,w) and, consequently, a priority
matching by Theorem 1. Hence, M ∈M ∗(g).

It remains to prove that M ∈M B(g). To obtain a contradiction, suppose that M <
M B(g). Consider now a matching M′ that belongs to M B(g). As M′ ∈M B(g) and
M B(g) ⊆M ∗(g), M′ is a maximum weight matching in (g,w) by Theorem 1. However,
as demonstrated in the above, M is also a maximum weight matching in (g,w). Hence,
S(M,w) = S(M′,w). Because, M′ ∈M B(g) and M <M B(g), by assumption, it is then clear
from the construction of wε that S(M,wε) < S(M′,wε) which contradicts the assumption
that M is a maximum weight matching in (g,wε). Hence, M ∈M B(g).

Corollary 1. Let wi j = π(i) + π( j) for all i j ∈ g, and let wε be defined as in the above.
Then for any g, M is a maximum matching if it is a maximum weight matching in (g,wε).

Proof. From the proof of Theorem 2, we know that M is a maximum weight matching in
(g,w). Consequently, M is a priority matching by Theorem 1, and, therefore, a maximum
matching by the results in Bogomolnaia and Moulin (2004) and Roth et al. (2005).
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