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Abstract

We address the issue of bidder ring formation in single and multi-unit Vickrey auctions. We address this

issue in a bargaining game set up under the assumption that valuation of bidders is commonly known only

amongst themselves. In the single unit case, we show that the equilibrium coalition structure can only be

an order preserving r-ring, that includes the winner and the top (r−1) losers. In the multiple units case,

we specify sufficient conditions for formation of an interesting class of equilibrium coalition structures,

which we call single winner ring with free riding, where exactly one winner colludes with all the losers

and generates maximum possible bidders’ surplus, and, depending on the protocol, the remaining winners

free ride either by staying alone or by colluding in pairs.

Keywords: Bidding rings, Bargaining games, Coalition formation, Auctions

JEL Classifications: C71, C72, C78, D44, L41.

1. Introduction

This paper adopts a bargaining approach to analyze the process of bidder ring formation in Vickrey

auctions in the absence of resale possibilities. It is an attempt to specify the issues that affect feasibility

of bidder collusion, even after elimination of valuation uncertainty within the ring. That is, we con-

sider the grand coalition bidding ring and presume that valuations have become common knowledge as a

consequence of some internal mechanism design.1 We ask whether this ring is immune to further disinte-

gration due to bargaining pressures inherent in the process of coalition formation. Thus we endogenously

determine the size and composition of the stable ring.

Avoiding external commitment devices, we presume that any bidding ring formed prior to the auc-

tion must settle on a self-enforcing bidding agreement, and then, (i) compute the proceeds that can be

IWe thank the Editor, the Associate Editor and one anonymous Referee for helpful comments and suggestions. We are
also thankful to Arijit Sen, Arunava Sen, the participants at 8th Annual Conference on Economic Growth and Development
(2012) and the participants at the Asian Meeting of the Econometric Society (2012), for their suggestions. The standard
disclaimer holds.
∗Corresponding author
Email addresses: kchatterjee@psu.edu (Kalyan Chatterjee), mmitra@isical.ac.in (Manipushpak Mitra),

conan.mukherjee@nek.lu.se (Conan Mukherjee)
1Such mechanisms have been studied in great detail in Graham and Marshall (1987), Marshall and Marx (2007), McAfee

and McMillan (1992), Mailath and Zemsky (1991), Hendricks et al. (1999).
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generated out of this agreement and (ii) decide how to divide these proceeds. Therefore, we first assume

that any ring uses a simple self-enforcing bidding rule that requires the losers participating in the ring

to maximize the joint payoff by making zero collusive bids. This ensures that agents’ bids constitute a

Nash equilibrium, irrespective of the ambient bidding ring structure.2 Then, we solve a sequential offer

pre-auction bargaining game to predict the final equilibrium bidder ring along with the relevant payoffs.3

We consider both the single unit and multiple units cases in which each potential bidder has unit

demand. Unlike other papers (see below), we do not assume that the game ends when the first coalition

forms. This is especially important in the multiple units setting in which subsequent coalition formation

will affect the payoffs to coalitions that have formed earlier. Thus it is important to endogenously

determine the bidding ring structure in our setting.

We assume a non-strategic seller who knows neither the true valuations of the bidders nor the dis-

tributions of the true valuations of the bidders. The seller simply sets the reservation price. Further,

we assume that agents can make offers and counteroffers as fast as possible.4 This allows us to visualize

an infinite horizon bargaining game with discounting, prior to a stipulated starting date of the Vickrey

auction. The discount factor δ ∈ (0, 1) simply specifies the probability (1 − δ) of being caught and the

consequent termination of the auction, in which case, all bidders get zero payoffs.5 We focus on the

asymptotic results as the probability of getting caught goes to 0, and use the notion of sub-game perfect

equilibrium in stationary strategies for the bargaining game.

In the single unit case, we provide the necessary and sufficient conditions for formation of any bidding

ring when the highest valuation bidder proposes first. We also characterize the equilibrium ring structure

corresponding to each possible first proposer, in this setting. In the multiple units case, we specify

sufficient conditions for the formation of an interesting class of coalition structures where (a) exactly

one winner (any one bidder out of those who would win a unit in the non-cooperative play) colludes

with all the losers (the bidders who would not win any unit in non-cooperative play) and, (b) depending

on the protocol, the remaining winners either stay alone or collude in pairs. Thus the conclusion that

exactly one winner will collude with all the losers is independent of the order of bidders in the protocol.

We present results for the single unit model and the multiple units model separately since there is a

qualitative difference between the two models arising due to the externality in the latter.

2Nash equilibrium bids in the first price auction allows no scope for prior collusion.
3To ensure commitment to the pre-auction cooperative arrangements, we suppose that the payoff payments are made

prior to the start of auction.
4That is, the time elapsed between an offer, consequent response, and the next offer; can be arbitrarily small. In fact,

it may also be endogenous as discussed in Perry and Reny (1993).
5Since collusion at auctions is illegal in general, we assume that negotiating agents get (a normalized) zero payoff upon

being discovered by regulatory authorities, probably because the auction itself would be scrapped.
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1.1. Relevant literature

The sequential bargaining approach, pioneered by Rubinstein (1982) for the two-player bargaining

problem was extended to incorporate coalition formation in characteristic function games by Chatterjee

et al. (1993). We use their method of analysis in the single unit model. While Chatterjee et al. (1993)

provide characterization results for strictly convex games, our game is convex but not necessarily strictly

convex. Ray and Vohra (1999) consider similar bargaining games but with externalities, where the entire

coalition structure determines a coalition’s payoff. However, our analysis differs from Ray and Vohra

(1999) in one crucial aspect and that is the absence of binding agreements on actions in the strategic-

form game that generates payoffs. They assume that any coalition can write binding agreements that

specify (i) the strategies that each member plays at the underlying strategic game and (ii) the contingent

payoffs that each member gets. This implies that the resultant strategy profile at the underlying strategic

game, after the coalitions have formed, is not necessarily a Nash equilibrium. In our case, no such binding

agreements can be enforced.

There is also the very different literature on internal mechanism design of a ring, such as Graham and

Marshall (1987), Marshall and Marx (2007), McAfee and McMillan (1992), Mailath and Zemsky (1991),

Hendricks et al. (1999). These papers analyze collusion in an ex-ante sense where, at the beginning of the

ring formation process, the bidders are yet to know the valuations of their colluding partners. Usually,

in these papers, once a coalition forms, the members play a direct mechanism within the coalition; those,

if any, outside the given coalition act as singletons. The nature of the coalition formed is therefore not

endogenously derived in these papers.

We note also that very few papers discuss collusion in multiple unit auctions, especially in the presence

of payoff externalities across coalitions.

As mentioned, coalition formation papers with incomplete information are rare. Okada (2012) does

adopt a sequential bargaining approach, but without discounting, so his paper is more akin to the pre-

Rubinstein bargaining literature.

The paper that comes closest to ours in approach is Cho et al. (2002). They analyze coalitional

bidding in first-price auctions of a single indivisible unit with identical budget constrained players. Cho

et al. (2002) too, assume complete information among bidders and pre-auction bargaining. They find

that unless the budget constraint is sufficiently acute, in the sense that budgets of all bidders put together

is less than the common value for the unit, the grand coalition forms. Note that they assume binding

agreements on bidding behavior. In our case, such binding agreements are considered infeasible unless

the agreements are self-enforcing.

The paper is organized in the following way. In section 2 we state the general unified structure under

which we analyze both the single unit model and the multiple units model. In Section 3 we present

our results and, in particular, in subsections 3.1 and 3.2 we state the results for the single unit and the
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multiple units case respectively. We conclude in Sections 4. The proofs of all the results are provided in

Section 5 that appears after Section 4.

2. The framework

We consider a model of formation of bidding rings in a multi-unit auction with unit demand where

N = {1, . . . , n} is the set of bidders and k ∈ {1, . . . , n− 1} is the number of identical indivisible units. In

the auction, as is usual, the seller announces a reserve price (non-strategically, so she announces her true

value) and bidders submit their bids simultaneously. The k highest bidders win and pay the (k + 1)th

highest bid, provided it is at least as high as the seller’s reserve price.

W. l. o. g. suppose that reserve price is 0 and the valuation vector v = (v1, v2, . . . , vn) is such that

v1 > v2 > . . . > vn > vn+1 := 0.6 We assume that v is common knowledge among bidders but the

seller has no information about it. Let K = {1, . . . , k} denote the set of bidders who win a unit at the

non-cooperative play of the auction; henceforth, called winners. Similarly, let L = {k + 1, . . . , n} denote

the set of bidders who do not win a unit at the non-cooperative play; henceforth, called losers. The

non-cooperative payoffs are vi − c for each i ∈ K (where c is the price in excess of the reservation price

zero), and 0 for each i ∈ L. Hence, N = K ∪ L with K ∩ L = ∅. For any S ⊆ N , let 2S := {S′ : S′ ⊆ S}

and define S(L) := {Sk(m)}m=n
m=k+1 where, for any given k = 1, . . . , n − 1, Sk(k + 1) := {k + 1} and

Sk(r) := {k + 1, . . . , r} for all integers r = k + 2, . . . , n. Also define m̄S and mS as the agents with

the highest and the lowest valuations in any set S ⊆ N , respectively.7 We now consider the coalition

formation phase, prior to the auction.

For each non-empty S ⊆ N (interpreted as a coalition), define the set of all possible partitions on S

as Π(S). Thus each πS ∈ Π(S) is a collection of mutually exclusive and exhaustive subsets of S. Pick

any πS ∈ Π(S) and define L(πS) := {T ∈ πS | T ∩K = ∅} and L̄(πS) := ∪T∈L(πS)T . Therefore, L̄(πS)

denotes the union of those members of πS that do not contain any winner.

The pre-auction ring formation is captured by a bargaining game G ≡ (N, w̄, p, δ) (see Ray and Vohra

(1999)). The function w̄ is a partition function that assigns coalitional worths to the members of each

possible partition in Π(N). The function p : 2N → N is a protocol function which assigns to each set of

active bidders (that is, bidders who are yet to form coalitions), a proposer from that set, who carries the

game forward. Therefore, p(T ) ∈ T for all T ⊆ N . A stage in G is given by a substructure (that is, a

partition defined on a strict subset of N) consisting of the coalitions that have formed and left the game.

Thus the game begins at the stage ∅. The set of all possible stages is P := ∪S⊂NΠ(S), which is the set

of all possible partitions of all possible strict subsets of N . Therefore, each possible non-terminal history

in the bargaining game corresponds to a particular stage in P. Define R(π) := N \ {∪T∈πT}, ∀π ∈ P.

6Allowing identical valuations would only lead to multiplicity of equilibria without adding to the qualitative analysis.
7Given the non-identical valuations, for any set S, the bidders m̄S and mS are well defined.

4



Therefore, R(π) is the set of remaining (active) bidders after coalitions in substructure π have formed

and left the game.

The pre-auction bargaining game G proceeds as follows. At any stage π ∈ P, the Bidder p(R(π))

makes a proposal. A proposal is a pair (T, z) with T ⊆ R(π), p(R(π)) ∈ T and z = {z(π′)}π′∈Π(R(π)\T )

such that: z(π′) ∈ <T+ with
∑
i∈T zi(π

′) = w̄(T ; (π, T, π′)) for all π′ ∈ Π(R(π) \ T ). The bidders in

T \ {p(R(π))} respond to the proposal sequentially according to the linear order 1 <0 2 <0 . . . <0 n

(that is, the order of valuations). If all bidders agree to the proposal, the coalition T forms and exits the

game (all remaining bidders can observe this and the game proceeds to the stage (π, T )). If some Bidder

j ∈ T \{p(R(π))} rejects the proposal, then the stage of the game remains unchanged and with probability

δ ∈ (0, 1) the game moves to the next period when j gets to make a proposal. With probability 1 − δ,

upon rejection, the game ends with all bidders getting zero payoff (due to termination of the auction upon

discovery of the collusive bargaining process). A given coalition structure forms when every individual

element of the structure has accepted the proposal made to it. If it forms in period t+ 1, then all bidders

get an expected payoff equal to δt times the agreed share of their respective coalitional worth.

In this paper, we focus on pure strategy equilibria. Further, we assume that bidders follow stationary

Markovian strategies that depend on a small set of state variables in a way that is insensitive to past

history. In particular, they depend on the current set of active bidders, coalition (sub)structure that has

already formed and, in case of response, the on-going proposal. Thus effectively, strategy of a Bidder

i assigns to each possible stage π ∈ P with i ∈ R(π): (i) a proposal and (ii) an acceptance threshold

ai(π) ∈ <+. The acceptance threshold signifies the response decision of i at stage π. That is, at stage π,

Bidder i would accept any proposal (T, z) with i ∈ T , only if zi(π
′) ≥ ai(π); where π′ is the anticipated

(by Bidder i) coalition structure among all the remaining bidders after coalition T forms and exits. At

any stage in G, we call a proposal acceptable, if all the responding members of the coalition proposed

would accept the proposal given their respective acceptance thresholds for that stage. We solve for the

stationary sub-game perfect equilibrium (SSPE) profile of strategies.

We also make the following assumptions.

Assumption 1. Non-singleton coalitions of worth zero do not form.

Assumption 2. Inter-agent payments required to obtain the payoff division agreed upon in the pre-

auction bargaining stage, are made prior to the start of the auction.

Assumption 1 is essentially a selection rule. Relaxing this rule would lead to several uninteresting

equilibria where losers form non-singleton coalitions and get the same zero payoff that they would have got

by staying alone. Assumption 2 eliminates the possibility of the winners reneging on their commitments

post-auction, after the gains from cooperation have accrued to the winners.8 This assumption is essential

8As pointed out by the referee, effectively, the game model has three timing points, t = 1, 2, 3. At time 1, the sequential

5



to our paper because we do not assume binding contracts (since such contracts are illegal in nature). It

ensures that the losers inside a coalition with winners have no incentive to bid anything other than 0.

Any analysis of pre-auction cooperative agreements involves detailing of bidding rings formed, bidding

behavior decided by each ring and division of resultant worth of these rings. As mentioned earlier, any

bidding agreement within a ring must be self-enforcing. That is, no agent should have any incentive to

deviate from her pre-auction decided bidding behavior at the actual auction. Therefore, a pre-auction

ring structure is stable only if the associated bids constitute a Nash equilibrium at the Vickrey auction.

We assume that each coalition S specifies an intra-coalition bidding behavior according to the following

rule R.

R: For any i ∈ S,

bi =

 vi if i ∈ K or |S| = 1

0 otherwise.
(1)

Observe that any coalition structure could, in principle, be associated with several bid profiles. How-

ever, a coalition structure would be self-enforcing (in absence of any external device of enforcing illegal

contracts) if and only if the associated bid profile constitutes a Nash equilibrium at the consequent Vick-

rey auction. There can be several such Nash equilibrium bid profiles corresponding to each possible

coalition structure. We choose the bid profile implied by rule R to be the focal point for three reasons.

First, it is simple and intuitive. Second, for any coalition structure, there does not exist any bid pro-

file other than the one specified by R, that constitutes a Nash equilibrium at the Vickrey auction and

generates greater coalitional worth for at least one member of the coalition. Third, in the single good

case, the bidding rule R gives the maximum worth to any coalition, irrespective of what other agents

outside the coalition are bidding. Finally, we can relax the restriction of bidding rule R to consider a

pre-auction bargaining game that determines intra-coalition bidding arrangements too. This can be done

by modifying the proposal in the bargaining game to not only consist of a coalition and relevant payoff

division, but also the bidding arrangement for that coalition (however, these bidding arrangements would

not be public information and so, would not enter the state space at any stage). It can be proved that

the set of equilibrium coalition structures will remain unchanged.9

In Ray and Vohra (1999), the assumption of binding contracts ensures that no member of any coalition

plays differently at the underlying game than the play agreed upon by the coalition (that is, cheating

is ruled out). In our work, bidding rule R takes care of this issue, by ensuring that any deviation from

the agreed upon strategy of a coalition, gives the same payoff to an individual as that resulting from any

baragaining game of ring formation is played. At time 2, the agreement of payment, determined in the bargaining game,
is implemented. At time 3, Vickrey auction is played under bidding rule R. The agreement of payment is binding in the
sense that it is perfectly implemented in time 2.

9The proof is available from the authors on request.

6



non-cooperative strategy. That is, bidding rule R implies that irrespective of the ring structure formed,

the bid profile at the underlying auction is always a Nash equilibrium.

Using R, we define the following partition function which assigns a worth to each S ∈ πN , ∀ πN ∈

Π(N),

w̄(S;πN ) =
∑

j∈S∩K

{
vj − max

l∈L̄(πN )
vl

}
. (2)

This function specifies the payoff to any member coalition S of any partition πN of the set N of bidders.

The particular functional form of the partition function in this setting, follows from the desire of the

winners to manipulate the price that they end up paying for the unit. That is, winners want to collude

with losers to persuade them to bid lower than their true valuations; and thereby, ensure procurement

of the unit at a lower price, in the auction. The extra payoff that accrues to the winner out of this

enterprise, is used to compensate the losers suitably. Hence, any worthwhile collusive venture must

involve at least one winner, while the losers that are not included in any such venture, cannot benefit by

forming coalitions amongst themselves, and so, play non-cooperatively. So, for any πN ∈ Π(N), members

of L̄(πN ) bid their true valuations. Therefore, the going price at the auction, when a coalition structure

πN has formed, turns out to be max
l∈L̄(πN )

vl. The coalitional worth of each coalition in πN , then, is simply

the sum of the payoffs of the winners in that coalition. The following example illuminates on this.

Example 1. Consider N = {1, 2, 3}, k = 2. Given v1 > v2 > v3, we have K = {1, 2} and L = {3}.

Then, w̄({1}; {1}, {2, 3}) = v1 and w̄({2, 3}; {1}, {2, 3}) = v2; w̄({1, 2}; {1, 2}, {3}) = v1 + v2 − 2v3 and

w̄({3}; {1, 2}, {3}) = 0; w̄({1, 3}; {1, 3}, {2}) = v1 and w̄({2}; {1, 3}, {2}) = v2; w̄({1, 2, 3}; {1, 2, 3}) =

v1+v2 and the non-cooperatively play yields w̄({1}; {1}, {2}, {3}) = v1−v3, w̄({2}; {1}, {2}, {3}) = v2−v3

and w̄({3}; {1}, {2}, {3}) = 0.

For all i ∈ K and S ⊆ L ∪ {i}, define wi(S) to be the maximum worth that coalition S can attain in

a single unit Vickrey auction with the bidder set L ∪ {i}. It is easy to see that

wi(S) =


vi − max

l∈L\S
vl if i ∈ S,

0 otherwise.
(3)

3. Results

3.1. The single unit case: k = 1

There is a single winner, and so, K = {1} and L = N \{1}. Note that the worth or partition function

reduces to a characteristic function w1(.), that is,

w̄(S;S, πN\S) = w1(S) =


v1 − max

l∈N\S
vl if 1 ∈ S

0 otherwise.
(4)

∀ S ⊆ N, ∀ πN\S ∈ Π(N \ S).
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Definition 1. A partition πr ∈ Π(N) is an order preserving r-ring if

πr =


{{1}, {2}, . . . , {n}} for r = 1,

{{1, . . . , r}, {r + 1}, . . . , {n}} for r = 2, . . . , n− 1,

{{1, . . . , n}} for r = n.

Observe that an order preserving 1-ring is a coalition structure with all singleton coalitions and an

order preserving n-ring is the grand coalition. For any other r, an order preserving r-ring includes the

top (r − 1) losers {2, . . . , r} along with Bidder 1 who is the only winner. In particular, if Bidder l(> 2)

with valuation vl is included in the non-singleton member coalition of any order preserving r-ring, then

Bidder 1 to Bidder (l − 1) with respective valuations v1 to vl−1 (all greater than vl) are all included in

that coalition. It is in this sense that an r-ring is order preserving in Definition 1. The following lemma

states that an equilibrium outcome in the pre-auction bargaining game must necessarily induce an order

preserving r-ring.

Lemma 1. For any G = (N,w1, p, δ), if π∗ is an SSPE outcome, then π∗ is an order preserving r-ring.

At any stage of the game G = (N,w1, p, δ), no active bidder makes an unacceptable proposal and

hence, there can be no delay on the equilibrium path. The reason is provided in the next two paragraphs.

The w1(.) function implies that a coalition S generates positive payoff only if S includes Bidder 1.

Therefore, if at any stage where Bidder 1 is not active, then, from Assumption 1, all the active bidders

stay alone. Consider any stage where Bidder 1 is active and the proposal power is with some l ∈ L. Bidder

l will never make an unacceptable proposal because any such proposal, given stationarity, does not change

the stage of the game. It simply passes the power of proposal to some other active bidder (because the

rejector proposes in our bargaining game). This rejector can either make an acceptable proposal (which

must contain Bidder 1 to have a positive worth) and leave the game; or propose unacceptably, in which

case, the stage of the game remains unchanged even after two periods of delay. The latter possibility is

undesirable to Bidder l as it causes delay without changing the stage of the game. The former possibility

gives Bidder l zero payoff if Bidder l is not one of the members to whom an acceptable proposal is

made. Even if Bidder l is one of the members of such an acceptable proposal, Bidder l could have always

proposed the same thereby saving the cost of delay.

Now, consider the stage where Bidder 1 has the proposal power. Suppose Bidder 1 can get a payoff of x

by making an acceptable proposal. As before, Bidder 1 observes that given stationarity, an unacceptable

proposal will not change the stage of the game and will only pass the proposal power to some Bidder

l ∈ L in the present stage. By the previous argument Bidder l will never propose unacceptably. Moreover,

Bidder l will never leave the game alone (as it will give 0 payoff). Therefore, Bidder l must propose (and

have accepted) a coalition containing Bidder 1. This can be done by offering at least δx to Bidder 1. Thus

we see that an unacceptable proposal by Bidder 1 gives δ2x < x. Hence making an acceptable proposal

8



strictly dominates any unacceptable proposal. Therefore, at any SSPE outcome, for any G = (N,w1, p, δ),

there is no delay.

So far we have argued that for any G = (N,w1, p, δ), an SSPE outcome π∗ is an order preserving

r-ring and that at any SSPE outcome π∗ there is no delay. Therefore, the next question is what is

the order preserving r-ring that will form and what will be the resulting payoffs to the bidders in that

ring. We prove this formally in the next theorem for the case where Bidder 1 is the first proposer in

the pre-auction bargaining protocol. Here we try and provide an intuitive argument. Assuming δ = 1 it

can be shown that any order preserving r-ring that forms in equilibrium must divide its worth equally

among all its members. This is because, (i) with δ = 1 agents are no longer averse to delay in resolution

of negotiations and (ii) any agent may reject a proposal, obtain the proposal power, and then propose

the same proposal. By continuity of the maximization problem faced by each agent at a proposal stage,

it follows that the largest average worth maximizing order preserving r-ring continues to be the optimal

(acceptable) proposal for δ values sufficiently close to unity. Thus if Bidder 1 is the first proposer, then for

sufficiently high δ values the equilibrium ring structure consists of the largest average worth maximizing

order preserving r-ring with all other agents playing non-cooperatively. Before stating the theorem we

define AV (i, l) := (vi − vl)/(l − k) where i = 1, 2, . . . , k and l = k + 1, k + 2, . . . , n+ 1. Observe that for

the single unit game G = (N,w1, p, δ), k = 1 and hence w1({1, . . . , t}) = v1− vt+1 = tAV (1, t+ 1) for all

t = 2, . . . , n. Moreover, AV (1, t+ 1) = limδ→1

[
w1({1, . . . , t})/(1 + δ(t− 1))

]
.

Theorem 1. For any G = (N,w1, p, δ) with p(N) = 1, there exists δ′ ∈ (0, 1) such that for all δ ∈ (δ′, 1)

the SSPE outcome is an order preserving r-ring without any delay, if and only if

1. AV (1, r + 1) ≥ AV (1, t+ 1), ∀ t ∈ {1, 2, . . . , r − 1} and

2. AV (1, r + 1) > AV (1, t+ 1), ∀ t ∈ {r + 1, r + 2, . . . , n}.

Theorem 1 applies when the highest valuation agents makes the first proposal, that is, p(N) = 1.

When bidders’ valuations are common knowledge, this order of valuations is a natural protocol.10 Still,

the implication of p(N) 6= 1 is explained informally using the following example.

Example 2. Suppose N = {1, 2, 3} and K = {1} where v ≡ (v1 = 70, v2 = 65, v3 = 20). Note that

AV (1, 2) < AV (1, 3) > AV (1, 4). It can be shown that ∀ δ ∈
(

2
3 , 1
)
, bidders 1 and 2 propose {1, 2}, while

Bidder 3 proposes {1, 2, 3} at stage ∅.11 Therefore, if p(N) ∈ {1, 2}, then the SSPE outcome is an order

preserving 2-ring and, if p(N) = 3, then the SSPE outcome is an order preserving 3-ring.

The intuition in the above example can easily be generalized to obtain Corollary 1 that follows.

Corollary 1 states that the largest average worth maximizing order preserving r-ring forms in equilibrium,

10We are thankful to an anonymous referee for pointing this out.
11In particular, invoking the strategy Σ in the sufficiency proof of the Theorem 1, at the stage ∅ (that is, at the beginning

of the game), we see that H̄1(∅) = H̄2(∅) = {2} and H̄3(∅) = {2, 3}.
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if the first proposer p(N) is a member of that ring. If not, the smallest order preserving r-ring containing

the first proposer forms in equilibrium.

Corollary 1. For any G = (N,w1, p, δ), there exists δ′ ∈ (0, 1) such that for all δ ∈ (δ′, 1), the SSPE

outcome π∗ is an order preserving t-ring where t = max{r, p(N)} and r ∈ {2, . . . , n} satisfies the property

that AV (1, 2) ≤ . . . ≤ AV (1, r) ≤ AV (1, r + 1) > AV (1, r + 2) ≥ . . . ≥ AV (1, n+ 1).

It is important to note that Corollary 1 holds irrespective of the protocol function. The next corollary

specifies a restriction on valuations that leads to formation of the grand coalition N (that is, the order

preserving n-ring) without any delay. It shows that if the agents’ valuations are sufficiently close to each

other, then the grand coalition forms in equilibrium.

Corollary 2. For any G = (N,w1, p, δ), if n/(n − l) ≥ v1/vl+1 for all l = 1, 2, . . . , n − 1, then there

exists δ′ ∈ (0, 1) such that for all δ ∈ (δ′, 1) the SSPE outcome is the order preserving n-ring.

3.2. The multiple units case: k ∈ {2, . . . , n− 1}

Consider the sub-games with the set of active bidders as T such that L ⊆ T . For all such sub-games,

the substructure formed by the departed bidders (who have formed coalitions and left the game) does not

affect the worth of any coalitions that remaining bidders may form in future. That is, at such a stage with

active bidder set T with L ⊆ T ; w̄(S;πN\T , S, π̂T\S) = w̄(S;π′N\T , S, π̂T\S), ∀ πN\T , π′N\T ∈ Π(N \ T ),

∀ S ⊆ T , ∀ π̂T\S ∈ Π(T \ S). At these sub-games, we refer to the stage in the game by the set of active

bidders, instead of the substructure consisting of coalitions who have (formed and) left the game.

At any such stage T (with L ⊆ T ), define Cδi (T ) to be the set of coalitions (that is, the non-empty

subsets of T containing i) that Bidder i proposes acceptably, in equilibrium, at that stage.12 Also define

T i := {i} ∪ L, ∀ i ∈ K. Further, for all j ∈ K, define C∗i (T j) to be the set of coalitions that any Bidder

i ∈ T j proposes acceptably in equilibrium at stage T j ; as δ goes to 1 in the limit.13

Lemma 2. For any i, j ∈ K such that vi > vj, there exists δ′ ∈ (0, 1) such that for all δ ∈ (δ′, 1); if

[{k + 1, . . . ,m} ∪ {i}] ∈ Cδi (T i), then there exists m′ ≥ m such that [{k + 1, . . . ,m′} ∪ {j}] ∈ Cδj (T j).

Lemma 2 states that when δ is sufficiently high and vi > vj , if winners i and j separately find

themselves at a stage where the remaining set of bidders are T i and T j respectively and if i picks a

coalition [{k + 1, . . . ,m} ∪ {i}] as a best acceptable proposal, then there exists an m′ ∈ {m, . . . , n} such

that the coalition [{k + 1, . . . ,m′} ∪ {j}] is a best acceptable proposal for j.

12For economy of notation, whenever the set Cδi (T ) set is a singleton, containing only one subset T ′ (say) of T ; we write

Cδi (T ) = T ′ instead of Cδi (T ) = {T ′}.
13Loosely speaking, for all j ∈ K and all i ∈ T j , as δ goes to unity, the set of coalitions Cδi (T j), that Bidder i proposes

acceptably in equilibrium at stage T j , goes to C∗i (T j).
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Remark 1. It also follows from Lemma 2 that at the stage T i (for any i ∈ K); the game G = (N, w̄, p, δ)

reduces to a single unit/single winner bargaining game Gi = (T i, wi, pi, δ) where pi(.) is the restriction

of the original protocol function p(.) to the set 2T
i

. As mentioned earlier, in the bargaining game with

single winner, at any stage, no active bidder makes an unacceptable proposal on the equilibrium path.

Therefore, Cδj (T i) is the set of coalitions that Bidder j proposes in equilibrium at stage T i, in game G;

∀ j ∈ T i, ∀ i ∈ K.

Therefore, from Theorem 1 it follows that at any such single winner stage T i, in the limit, winner i

chooses an average worth maximizing coalition containing itself. That is, for all i ∈ K,

C∗i (T i) = argmaxS∈S(L)

[
wi(S ∪ {i})/(1 + |S|)

]
Lemma 3. If n/(n− l) ≥ v1/vl+1 for all l = 1, 2, . . . , n− 1, then Cδi (T i) = T i for all δ ∈ (0, 1) and all

i ∈ K \ {1}.

Lemma 3 is an obvious consequence of Corollary 2 and Lemma 2. It states that if the winner

with highest valuation finds it optimal to collude with all the losers at stage T 1 in the limit (that is,

T 1 ∈ C∗1 (T 1)); then, irrespective of the value of δ, all other winners i ∈ K \ {i} would find it optimal to

collude with all the losers at stage T i.

For any x, let [x] denote the highest integral value of x not exceeding x. Given N = K ∪ L with

k ≡ |K| ≥ 1, we define the weak winner set K̄(⊆ K) in the following way.

K̄ =

 K if |K| ∈ {1, 2},

K \ {1, . . . , [(k − 1)/2]} otherwise.

Therefore, when k ∈ {1, 2} we have K̄ = K, when k ∈ {3, 4} we have K̄ = K \ {1}, when k ∈ {5, 6} we

have K̄ = K \ {1, 2} and so on. For any weak winner j ∈ K̄, let Π′(K \ {j}) be the set of all possible

partitions σ−j of winners in K \ {j}, satisfying the following two properties: (i) if a coalition S ∈ σ−j ,

then |S| ∈ {1, 2} and (ii) |{j∗ ∈ K \ {j} : {j∗} ∈ σ−j , vj∗ < vj}| ∈ {0, 1}.

Definition 2. A partition π(σ−j) ∈ Π(N) is a single winner ring with free riding partition or simply an

SWRFR partition if π(σ−j) = {σ−j , T j} where j ∈ K̄ and σ−j ∈ Π′(K \ {j}).

Therefore, an SWRFR partition has the property that any one winner j from the weak winner set

forms a coalition with all the losers; each remaining winner j′ ∈ K \ {j} either stays alone or forms

a two member coalition by including another member from the remaining winner set K \ {j, j′}; and

finally, at most one winner from the set of winners with valuation less than vj can stay alone. Let

Π̄ :=
(

(π(σ−j))σ−j∈Π′(K\{j})

)
j∈K̄

denote the set of all possible SWRFR partitions.

Theorem 2. If n/(n− l) ≥ v1/vl+1 for all l = 1, 2, . . . , n− 1, then there exists δ′ ∈ (0, 1) such that for

all δ ∈ (δ′, 1):

11



(i) For any G = (N, w̄, p, δ) the SSPE outcome π∗ ∈ Π̄.

(ii) For every π∗ ∈ Π̄, there exists a protocol p∗ such that π∗ is the unique SSPE outcome of G =

(N, w̄, p∗, δ).

Theorem 2 (i) specifies the if the valuations are such that n/(n− l) ≥ v1/vl+1 for all l = 1, 2, . . . , n−1,

and if δ is sufficiently high, then, irrespective of the protocol function, the only possible partition that can

form in any SSPE is an SWRFR partition. In fact, this result continues to hold for any set of valuations

such that T 1 ∈ C∗1 (T 1). The proof of the theorem uses an inductive argument to solve the game. In

particular, the equilibrium SWRFR is a consequence of the optimal proposal strategy of the winners and

the losers. The optimal proposal strategy of the winners is the following.

W(1) If the set of active agents in a sub-game contains one winner and all losers, then the winner

acceptably proposes to all active agents.

W(2) If the set of active agents in a sub-game contains any two winners and all losers, then each winner

would choose to stay alone and free ride thus leading to sub-game W(1).

W(3) If the set of active agents in a sub-game contains more than two winners and all losers, then the

highest valuation winner stays alone while the other winners acceptably propose to the highest

valuation winner and form a two member coalition. This process continues till we are in a sub-

game corresponding to either W(1) or W(2). For example, if the set of active winners is {1, 3, 4},

then Bidder 1 would choose to stay alone and free ride leading to sub-game W(2). And if either

Bidder 3 or Bidder 4 propose, then each would propose a coalition with Bidder 1 which Bidder 1

accepts thus leading to W(1).

The specification of the optimal proposal decisions of the losers in Theorem 2 is a little more subtle.

L(1) If the set of active agents in a sub-game consists of one winner and all losers, then any loser makes an

acceptable proposal. Such an acceptable proposal must include all active agents in that sub-game.

L(2) At all other sub-games where all losers are active along with at least two winners, losers would make

an optimal unacceptable proposal addressed to the winner k∗(W 0; p) ∈W 0 (given by the recursion

(*) in the Appendix) where W 0 is the set of active winners in the sub-game.

The optimal choice of the winner k∗(W 0; p) at whom an unacceptable proposal is addressed; is

made in such a way that, given the optimal proposal decisions of the winners (W(1)-W(3)), the

game reaches a sub-game with T j
∗

= {j∗}∪L players where j∗ ∈ K̄ is a single winner with highest

possible valuation who is active along with all the losers. At this sub-game with T j
∗

agents, an

acceptable proposal will be made (irrespective of the identity of the proposer at this sub-game) that

includes all agents in T j
∗
.

As a result of optimal proposal strategies W(1)-W(3) and L(1)-L(2), the only equilibrium structure
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available is an SWRFR partition. This establishes statement (i) of Theorem 2.14 The statement (ii) of

Theorem 2 is proved by suitable design of protocol function p∗ for each possible π∗ ∈ Π̄. We provide

an example to show that different protocol functions gives rise to different kinds of equilibrium SWRFR

partitions.

Example 3. Suppose N = {1, 2, 3, 4, 5}, and let Bidder 1, Bidder 2 and Bidder 3 be the set of winners so

that K = {1, 2, 3}. Let the protocol function p(S) = min
j∈S
{<o}, ∀S ⊆ N for some linear order “<o” defined

on the bidder set N . For δ sufficiently close to 1, if
{
v2
4 ,

v3
3 ,

v4
2 , v5

}
≥ v1

5 then T 1 = {1, 4, 5} ∈ C∗1 (T 1).

And so, we have the following.

1. If 1 <o 2 <o 3 <o 4 <o 5, then the equilibrium SWRFR partition is {{1}, {2}, {3, 4, 5}}. Since

p(N) = 1, Bidder 1 wants to stay alone given the optimal strategy W(1) so that the singleton

coalition {1} forms in the first stage. Given, p(N \{1}) = 2, Bidder 2 wants to stay alone given the

optimal strategy W(1) so that the singleton coalition {2} forms in the second stage. Finally, given

T 1 ∈ C∗1 (T 1), from Lemma 3 it follows that in the third stage it is optimal for Bidder 3 to collude

with all the losers to form the coalition {3, 4, 5}.

2. If 3 <o 2 <o 5 <o 4 <o 1, then the equilibrium SWRFR partitions {{1, 3}, {2, 4, 5}}. Since

p(N) = 3, Bidder 3 wants to collude with Bidder 1 given the optimal strategy W(3) so that the

coalition {1, 3} forms in the first stage. Finally, given T 1 ∈ C∗1 (T 1), from Lemma 3 it follows that

in the second stage it is optimal for Bidder 2 to collude with all the losers to form the coalition

{2, 4, 5}.

3. If 4 <o 1 <o 5 <o 2 <o 3, then the equilibrium SWRFR partition can either be {{1}, {3}, {2, 4, 5}}

or it can be {{1, 3}, {2, 4, 5}}. Since p(N) = 4, the loser (that is, bidder with fourth highest val-

uation) gets to propose and given the optimal strategy L(2) wants to unacceptably propose to a

winner k∗({1, 2, 3}; p) ∈ {1, 2, 3}. Can k∗({1, 2, 3}; p) = 2? The answer is no. This is because

if k∗({1, 2, 3}; p) = 2, then, given that the rejector gets to propose in the next stage, by apply-

ing the optimal strategies of the winners it follows that the resulting coalition structure will be

{{1, 2}, {3, 4, 5}} and the payoff of any loser (in the limit as δ goes to 1) is v3/3. One can easily

check that: if k∗(K ∪L; p) = 1 then the resulting coalition structure will be {{1}, {3}, {2, 4, 5}}, and

if k∗(K ∪L; p) = 3 then the resulting coalition structure will be {{1, 3}, {2, 4, 5}}. In both cases, the

payoff of any loser (in the limit as δ goes to 1) is v2/3 > v3/3. Therefore, in the first stage with

p(N) = 4, the optimal non-unique unacceptable proposal is addressed to k∗(K; p) ∈ {1, 3} so that

the resulting equilibrium structure is either {{1, 3}, {2, 4, 5}} or {{1}, {3}, {2, 4, 5}}.

It is important to note that in any equilibrium SWRFR partition {T j , σ−j}, a weak winner j ∈ K̄

colludes with all losers L to form T j and ensures that all the losers bid zero at the auction, thereby

14Note that Theorem 2 (i) does not claim uniqueness of the SSPE outcome.
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reducing the (k + 1)th price to zero. One can show that, in the limit, the other winners K \ {j} get at

least their own valuations by forming a coalition of size two or less. However, Bidder j who colludes with

the losers gets vj/(n− k + 1) (which is strictly less than vj) in the limit. In other words, a weak winner

j generates the gains from cooperation by colluding with all the losers while the other winners free ride.

One special case of this kind of free ride is the one where the lowest valuation winner k colludes with all

the losers in L while all other winners stay alone. The following proposition provides the restriction on

the protocol function that characterizes formation of this SWRFR partition in equilibrium.

Proposition 1. For any G = (N, p, w̄, δ), if n/(n − l) ≥ v1/vl+1 for all l = 1, 2, . . . , n − 1, then ∀ δ ∈

(δ′, 1)15; the SSPE outcome is the SWRFR partition {{{i}}i∈K\{k}, T k} if and only if the protocol function

p(.) satisfies the property

p(N) = 1, p (N \ {1, . . . , i}) = i+ 1,∀ i ∈ K \ {k − 1, k} (5)

Finally, note that Theorem 2 and Proposition 5 continue to hold for any valuations such that the

highest valuation winner 1 finds it optimal to collude with all the losers at stage T 1 (that is, T 1 ∈ C∗1 (T 1)).

The difficulty of relaxing this restriction is addressed in the following example.

Example 4. Consider the simplest multiple units case where there are two units, that is, K = {1, 2} and

suppose that N = {1, 2, 3, 4, 5, 6}. Assume that (a) vi−v5
3 > max

{
vi − v3,

vi−v4
2 , vi−v64 , vi5

}
, for i = 1, 2

and (b) p(N) = 1, p(N \ {1}) = 2. Therefore, for sufficiently high δ, by Theorem 1, Cδi ({i, 3, 4, 5, 6}) =

{i} ∪ {3, 4}, for i = 1, 2.

If Bidder 1 stays alone at the stage N , then at the next stage Bidder 2 acceptably proposes {2, 3, 4}

leading to the coalition structure {{1}, {2, 3, 4}, {5}, {6}} which gives Bidder 1 a payoff of v1−v5. However,

if Bidder 1 forms {1, 6} at stage N , then Bidder 1’s payoff is

v1−v3
2 if Bidder 2 stays alone at the next stage {2, 3, 4, 5},

v1−v4
2 if Bidder 2 forms {2, 3} at the next stage {2, 3, 4, 5},

v1−v5
2 if Bidder 2 forms {2, 3, 4} at the next stage {2, 3, 4, 5}, and

v1
2 if Bidder 2 forms {2, 3, 4, 5} at the next stage {2, 3, 4, 5}.

(6)

Therefore, for Bidder 1 to make the optimal proposal choice at stage N (that is, to evaluate the proposal

{1, 6} at stage N), Bidder 1 needs to know the proposal choice of Bidder 2 at stage {2, 3, 4, 5}. Note

that our assumption (a) puts no restriction on the ranking of average worths of subsets of {2, 3, 4, 5},

that Bidder 2 can propose acceptably (keeping in mind that Bidder 6 has already colluded with Bidder 1

and so will bid zero at the auction) at stage {2, 3, 4, 5}. That is, (a) does not impart any ranking of the

numbers v2 − v3,
v2−v4

2 , v2−v53 (payoffs from forming {2}, {2, 3} and {2, 3, 4} respectively) with respect to

15The δ′ is taken from Theorem 2.
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v2
4 (payoff from forming {2, 3, 4, 5}). Hence the problem becomes fairly intractable, even with two units,

once we allow Cδi (T i) to be strict subset of T i for all (or some) i ∈ K.

Moreover, in such a case the final coalition structure may or may not have one winner colluding with

all the losers, depending upon the protocol function. That is, if we use the protocol function p(N) =

1, p(N \ {1}) = 6; then it is optimal for Bidder 1 to stay alone at stage N since, in the next stage, a

loser (Bidder 6) proposes (but has no choice other than to acceptably propose) {2, 3, 4, 5, 6}, leading to

formation of the coalition structure {{1}, {2, 3, 4, 5, 6}} giving Bidder 1 a payoff of v1 (which is the best

that Bidder 1 can get). Therefore, with such a protocol function, irrespective of the valuations, the unique

SSPE outcome is {{1}, {2, 3, 4, 5, 6}}.

4. Conclusions

In this paper, we study how bargaining pressures inherent in the process of coalition formation impact

the structure of bidding rings in a Vickrey auction. For the single unit auction, we completely charac-

terize the bidding ring formation and show that the equilibrium coalition structure can only be an order

preserving r-ring, that consists of the winner and the top (r−1) losers in one coalition with all other losers

staying alone. Depending on the valuations of all the bidders, the value of r can vary from one to the

total number of bidders. In the multiple units case, we specify the sufficient conditions for formation of

the class of equilibrium coalition structures, which we call single winner ring with free riding (SWRFR),

where exactly one winner colludes with all the losers and generates maximum possible bidders’ surplus,

and, depending on the protocol, the remaining winners free ride either by staying alone or by colluding

in pairs. Our work could also be viewed as a complete information benchmark with regard to collusion

at such auctions. Of course, further research needs to be done to extend this line of coalition formation

to the incomplete information case.

5. The proofs

Proof of Lemma 1: Let π∗ be an SSPE outcome and suppose that it is not an order preserving r-ring.

Therefore, π∗ must not be an order preserving 1-ring. Hence, there exists X ∈ π∗ such that |X| > 1.

Now, if X does not include Bidder 1, then w1(X) = w1(X \ {i}) = 0 for any i ∈ X, that is, the marginal

contribution of any Bidder i to the coalition X \{i} is zero. But, given Assumption 1, X ∈ π∗ implies that

in equilibrium Bidder i gets a positive payoff. Therefore, w1(X) > 0, and so, we have a contradiction.

Therefore, 1 ∈ X and so, by supposition, there exist l, l′ ∈ N \ {1} such that l > l′, l ∈ X and l′ /∈ X.

As before, w1(X) = w1(X \ {l}), and so, the marginal contribution of Bidder l to the coalition X \ {l}

is zero. However, by Assumption 1, equilibrium payoff to l must be positive. This is clearly suboptimal

and hence, a contradiction. So for any l > 2, if l ∈ X then {1, 2, . . . , l − 1} ⊂ X. Also, by definition,

w1(S) = 0 for all S ⊆ N \X. Hence, from Assumption 1 it follows that, all bidders in N \X must stand

alone. Thus π∗ = {X, {{i}}i∈N\X} is an order preserving r-ring, and so, we have a contradiction. �
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Proof of Theorem 1: We first prove the only if part. Consider a stage π in the game such that Bidder

1 ∈ R(π). Since there can be no delay in equilibrium (since no active bidder at any stage proposes

unacceptably), the equilibrium acceptance threshold of any i ∈ R(π) must be the one period discounted

payoff that i can generate by making the equilibrium proposal, at stage π itself. Therefore, for a given δ;

from Lemma 1 it follows that the equilibrium acceptance thresholds {aδi (π)}i∈R(π) must be such that

aδi (π)

δ
= max
T∈[2R(π)∩S(L)],i∈T

w({1} ∪ T )−
∑

j∈[{1}∪T ]\{i}

aδj(π)

 , ∀i 6= 1

and,

aδ1(π)

δ
= max
T∈[2R(π)∩S(L)]

w({1} ∪ T )−
∑
j∈T

aδj(π)

 .16

From Chatterjee et al. (1993), it follows that ∀ π ∈ P with 1 ∈ R(π); the acceptance thresholds are

obtained by the following recursion;

(i) aδ1(π) = max
T∈[2R(π)∩S(L)]

δw1({1}∪T )
1+δ|T | and aδi (π) = aδ1(π) for all i ∈ H̄δ

1 (π) where H̄δ
1 (π) :=

[
∪T∈Hδ1 (π)T

]
with Hδ

1 (π) := argmaxT∈[2R(π)∩S(L)]
δw1({1}∪T )

1+δ|T | .

(ii) Suppose (H̄δ
1 , H̄

δ
2 , . . . , H̄

δ
q ) is well defined. If R(π) \ [{1} ∪ H̄δ

q (π)] 6= ∅, then define

Hδ
q+1(π) := argmaxT∈[2R(π)∩S(L)],H̄δq (π)⊂T

δ

{
w1({1} ∪ T )−

∑
j∈H̄δq (π)

aδj(π)− aδ1(π)

}
1 + δ(|T | − |H̄δ

q (π)| − 1)
(7)

As before, H̄δ
q+1(π) :=

[
∪T∈Hδq+1(π)T

]
. For all i ∈ H̄δ

q+1(π), aδi (π) is the maximized value in the

definition of Hδ
q+1(π).

Note that H̄δ
q (π) ⊂ Hδ

q (π), ∀ q in the recursion above. This follows from the particular structure of

the problem reflected in Lemma 1. The proposal decision at any stage π with 1 ∈ R(π) is as follows.

Each i ∈ R(π) must belong to some H̄δ
q (π) and therefore proposes any Mi ∪ {1} such that Mi ∈ Hδ

q (π)

with i ∈Mi.

Now, recall that any coalition not containing Bidder 1 has a zero worth. Therefore, at all other stages

π′ with 1 6∈ R(π′), all proposers propose singleton coalitions of themselves and aδi (π
′) = 0, ∀ i ∈ R(π′).

We, now, make the following claim that for sufficiently high discount factor, Hδ
1 (π) consists of a single

member set and that set is the largest average worth maximizer among the sets in {{1}, {1, 2}, {1, 2, 3}, . . . , N}.

Claim (a): ∃ δ̄ ∈ (0, 1) such that ∀ δ ∈ (δ̄, 1), Hδ
1 (π) contains only the largest member of

argmaxT∈[2R(π)∩S(L)]AV (1, |T |+ 2)

16In case the feasible set of maximizers in the following optimization problem is empty, aδi (π) := 0.
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for all π ∈ P with 1 ∈ R(π).

Proof of Claim (a): Define H1(π) := argmaxT∈[2R(π)∩S(L)]AV (1, |T | + 2). Note that lim
δ→1

δw1({1}∪T )
1+δ|T | =

AV (1, |T | + 2). Therefore, it follows that for values of δ sufficiently close to 1, Hδ
1 (π) ⊆ H1(π). Now

suppose ∃ T, T ′ ∈ H1(π). Therefore (A) w1({1}∪T )
1+δ|T | −

w1({1}∪T ′)
1+δ|T ′| = 0 with δ value fixed at 1. Given the

structure of the game, it must be that |T | 6= |T ′|; say |T | > |T ′|. From (A), |T | > |T ′| implies that

w1({1}∪T ) > w1({1}∪T ′) (because we use non-identical valuations). Also, for a “slight” fall in δ value;

in the left hand side of (A), the denominator of the first term decreases by more than the second term

(since |T | > |T ′|). Hence, the ‘equals to’ sign in (A), changes to ‘greater than’ for δ values sufficiently close

to 1. Therefore, proposal choice of the largest coalition in H1(π) dominates that of the other members

of H1(π), for δ sufficiently close to 1. This proves Claim (a).

Since p(N) = 1, an order preserving r-ring is formed only if Bidder 1 proposes {1, 2, . . . , r} acceptably

on the SSPE path. This will happen, for sufficiently high δ, only if S1(r) ∪ {1} is the largest coalition

in H1(∅), that is, S1(r) ∪ {1} is the largest average worth maximizing coalition. This implies that

AV (1, r+ 1) ≥ AV (1, t+ 1),∀ t < r and AV (1, r+ 1) > AV (1, t+ 1),∀ t > r. These two conditions imply

results (1) and (2) respectively.

We now prove the if part. Define the following strategy Σ in game G:

• At any stage π with 1 6∈ R(π), all proposers choose to stay alone, and set an acceptance threshold

of 0.

• Recall that for any stage π with 1 ∈ R(π), H1(π) := argmaxT∈[2R(π)∩S(L)]AV (1, |T | + 2). For

all such π, let H̄1(π) be the largest coalition in H1(π). Then, at any stage π with 1 ∈ R(π), all

i ∈ [H̄1(π)∪{1}] propose [H̄1(π)∪{1}] and set their acceptance thresholds to be δw1(H̄1(π)∪{1})
1+δ|H̄1(π)| . If

the sequence (H̄1, H̄2, . . . , H̄q) is well defined and R(π) \ [H̄q(π) ∪ {1}] 6= ∅; then

Hq+1(π) := argmaxT∈[2R(π)∩S(L)],H̄q(π)⊂T
w1({1} ∪ T )− w1({1} ∪ H̄q(π))

|T | − |H̄q(π)|
(8)

with H̄q+1(π) is defined as before to be the largest coalition in Hq+1(π). Then all j ∈ [H̄q+1(π)∪{1}]
propose [H̄q+1(π) ∪ {1}] and set their acceptance thresholds to be

δw1(H̄q+1(π) ∪ {1})− δw1(H̄q(π) ∪ {1})
1 + δ(|H̄q+1(π)| − |H̄q(π)| − 1)

It can easily be seen that the recursion in strategy Σ is simply the limit version of the recursion

given by (i) and (ii) in the proof of necessity. Then, arguing as in Claim (a), for each round q of this

recursion; we see that for δ values very close to 1, Σ is SSPE. Therefore, we can find a δ′ ∈ (δ̄, 1) such

that ∀ δ ∈ (δ′, 1), Σ is SSPE. Then from conditions (1) and (2) in the statement of the theorem it follows

that; when p(N) = 1, strategy Σ will lead to formation of an r-ring. Thus the sufficiency is established.

�
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Proof of Corollary 2: If n/(n− k) ≥ v1/vk+1 for all k = 1, 2, . . . , n− 1, then v1/n ≥ (v1 − vk+1)/k for

all k = 1, 2, . . . , n − 1. Therefore, AV (1, n + 1) ≥ AV (1, k) for all k = 1, 2, . . . , n − 1 implying that the

grand coalition {N} is an average worth maximizing coalition in the set {{1}, {1, 2}, . . . , {N}} and the

result follows. �

Proof of Lemma 2: Observe that at any stage T i, the sub-game becomes equivalent to a single unit

auction where the only winner is Bidder i. This is because the worth of any subset of T i, irrespective of the

substructure formed amongst the bidders who have departed from the game, is given by the wi(.) function.

Hence, using Lemma 1 we infer that for all i ∈ K, if X ∈ Cδi (T i) and X 6= {i}, then X \ {i} ∈ S(L), for

all δ ∈ (0, 1) where the collection S(L) = {{k + 1}, {k + 1, k + 2}, . . . , {k + 1, k + 2, . . . , n}}.

Now, from the continuity of the objective functions in the maximization programs of (i) and (ii) in

the necessity proof of Theorem 1, it follows that for δ sufficiently close to 1, any Bidder i ∈ K proposes

acceptably the average worth maximizing coalition (containing i) at stage T i. So, for δ sufficiently close

to 1, {k + 1, . . . ,m} ∪ {i} ∈ Cδi (T i) implies that {k + 1, . . . ,m} ∪ {i} is the average worth maximizing

coalition among all subsets of T i. Therefore, when vj < vi, it easily follows that: (vi − vm+1)/(1 +

|{k + 1, . . . ,m}|) ≥ (vi − vm−l+1)/(1 + |{k + 1, . . . ,m − l}|) for all l = 0, 1, . . . ,m − k − 1 implies

(vj−vm+1)/(1+ |{k+1, . . . ,m}|) ≥ (vj−vm−l+1)/(1+ |{k+1, . . . ,m− l}|) for all l = 0, 1, . . . ,m−k−1.

Now, for suitably high δ, any j ∈ {i+ 1, . . . , k} must also choose the average worth maximizing coalition

containing j among the subsets of T j . Hence, it follows that; for a sufficiently high δ (that is, there exists

some δ′ ∈ (0, 1) such that for all δ ∈ (δ′, 1)), there exists an m′ ≥ m with [{k+1, . . . ,m′}∪{j}] ∈ Cδj (T j).

�

Proof of Lemma 3: Note that if n/(n−k) ≥ v1/vk+1 for all k = 1, 2, . . . , n−1, then {k+1, . . . , n}∪{1}] =

T 1 ∈ C∗1 (T 1). Since v1 > vi, from the arguments of Lemma 2 it follows that, for all i ∈ K \ {1},

wi({k + 1, . . . , n} ∪ {i})/(1 + |{k + 1, . . . , n}|) ≥ wi(S ∪ {i})/(1 + |S|) for all S ∈ S(L) and for all

i ∈ K \ {1}. For any S ∈ S(L) \ {k + 1, . . . , n} and any i ∈ K \ {1}, define the function di(S, δ) =[
wi({k + 1, . . . , n} ∪ {i})/(1 + δ|{k + 1, . . . , n}|)

]
−
[
wi(S ∪ {i})/(1 + δ|S|)

]
. By applying proof by con-

tradiction it follows that for any i ∈ K \{1}, di(S, δ) > 0 for all δ ∈ (0, 1) and all S ∈ S(L)\{k+1, . . . , n}.

Hence {k + 1, . . . , n} = argmaxS∈S(L)w
i(S ∪ {i})/(1 + δ|S|) for any i ∈ K \ {1} and hence, by Theorem

1, the result follows. �

Proof of Theorem 2: Proof of Theorem 2 (i): To prove the statement 2(i), we first design the following

recursion (*). Then we use this recursion to identify a winner k∗(T ; p) for any T ⊆ K with |T | > 2 and

any protocol function p, and finally establish Theorem 2 (i). Recall that m̄S (as mS) is defined as the

bidder with the highest (the lowest) valuation in any set S ⊆ N .

We now define the recursion (*) that is used to optimize the proposal decision of any loser at any

stage T ∪L such that T ⊆ K. The recursion, essentially, generates the final coalition structure (for a given
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protocol function) subject to the choice of a set of winners (one winner from each possible set T ′ where

T ′ ⊆ T ⊆ K). This choice is done under the assumption that at each such stage T ′ ∪ L with |T ′| > 2; if

any winner j ∈ T ′ gets to propose, she must propose {m̄T ′} if j = m̄T ′ and {m̄T ′ , j} otherwise.

Recursion (*): For any T ⊆ K with |T | > 2, define b(T ; p(.)) ≡ {b(T ′; p(.))}T ′⊆T to be a sequence of

members of T such that (i) b(T ′; p(.)) = mT ′ if |T ′| = 2 and (ii) b(T ′; p(.)) ∈ T ′ if |T ′| 6= 2. To simplify the

notations, henceforth we ignore the argument for the protocol function when writing the b(.) expression.

For any such b(T ; p) define the sequence of sets {Bt}ht=1 such that

• {Bt}ht=1 is a partition of T ∪ L.

• B1 =

 {m̄T } if b(T ; p) = m̄T

{m̄T , b(T ; p))} otherwise

• Suppose the sequence of sets (B1, B2, . . . , Bq−1) is well defined. Then, define D1 := T ∪ L and

Dq := [T ∪ L] \ [∪q−1
t=1Bt], ∀ q > 1.

Bq =



Dq if |Dq ∩K| = 1

{mDq∩K} if p(Dq) 6= m̄Dq∩K

{m̄Dq∩K} otherwise
if |Dq ∩K| = 2

{m̄Dq∩K} if p(Dq) = m̄Dq∩K

{m̄Dq∩K} if p(Dq) ∈ L and b(Dq ∩K) = m̄Dq∩K

{m̄Dq∩K , b(Dq ∩K; p)} if p(Dq) ∈ L and b(Dq ∩K; p) 6= m̄Dq∩K

{m̄Dq∩K , p(Dq)} otherwise

if |Dq ∩K| > 2

(9)

• Bh = T j(b(T ;p)) for some j(b(T ; p)) ∈ T .

The last term of the recursion Bh should be a set of all the losers and any one winner j from T . The

identity of this winner would depend on the choice of the sequence b(T ; p). That is, for any choice of

sequence b(T ; p) we would get a j(b(T ; p)) ∈ T such that Bh = T j(b(T ;p). Define b∗(T ; p) to be that

sequence of winners that maximizes the (valuation of) winner j(b(T ; p)) and let k∗(T ; p) := b∗(T ; p), that

is, the winner in sequence b∗(T ; p) corresponding to the set T .17

Note that if n/(n − l) ≥ v1/vl+1 for all l = 1, 2, . . . , n − 1, then T 1 ∈ C∗1 (T 1). We now state the

following Claim that will help prove the result.

Claim 1: For any G = (N, w̄, p, δ), if T 1 ∈ C∗1 (T 1), then there exists δ′ ∈ (0, 1) such that for all

δ ∈ (δ′, 1), the SSPE strategies of G are such that ∀ T ⊆ K we have the following:

1. if |T | = 1, then Cδt (T ∪ L) = T ∪ L for all t ∈ T ∪ L, and all agents in T ∪ L propose acceptably.

2. if |T | = 2, then Cδt (T ∪ L) = {t} if t ∈ T , and all winners in T propose acceptably while all losers

in L propose unacceptably to mT .

17It may so happen that we have multiple k∗(T ; .) for a given protocol function. In that case, we choose any one.
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3. if |T | > 2, then

Cδt (T ∪ L) =


{mT , t} if t ∈ T \ {mT }

{t} if t = mT (10)

and all winners in T propose acceptably while all losers in L propose unacceptably to k∗(T ; p) where

k∗(T ; p) follows from Recursion (*).

Proof of Claim 1: Pick any i ∈ K and consider the stage T i. At this stage the only winner i and all

the losers are active. From Theorem 1, Lemma 2 and Lemma 3 it follows that if T 1 ∈ C∗1 (T 1) then

∃ δ(i) ∈ (0, 1) such that ∀ δ ∈ (δ(i), 1); Cδj (T i) = T i, ∀ j ∈ T i, and all agents in T i propose acceptably.

Define δ(1) := max{δ(i)}i∈K . Therefore, ∀ δ ∈ (δ(1), 1), Cδj (T i) = T i, ∀ j ∈ T i, ∀ i ∈ K; and thus result

1 of this claim follows.

Consider any stage T ′ = {i, j} ∪ L, for any i, j ∈ K. Pick any δ ∈ (δ(1), 1). Then Cδt (T j) = T j ,

∀ t ∈ T jand Cδt (T i) = {T i}, ∀ t ∈ T i. W.l.o.g. assume vi > vj . If i has the proposal power then the first

possibility is that she chooses to stay alone, so that in the next stage with T j bidders, the coalition T j

forms (since Cδl (T j) = {T j} for all l ∈ T j) and i gets a payoff of vi. The remaining possibilities do not

give Bidder i any more than
vi+vj
1+δ .18 For all δ ∈

(
vj
vi
, 1
)

, vi >
vi+vj
1+δ and so Bidder i will find it optimal

to stay alone. Hence ∀ δ ∈
(

max
{
δ(1),

vj
vi

}
, 1
)

, Bidder i stays alone (that is, Cδi (T ′) = {i}). Pick any

δ ∈
(

max
{
δ(1),

vj
vi

}
, 1
)

. As before, if j has the proposal power and she chooses to stay alone then

she gets vj . Otherwise, knowing that winner i can reject any proposal and get a payoff of δvi, the best

Bidder j can achieve, by proposing some coalition that includes i, is no more than
vj+(1−δ)vi

1+δ . Also any

non-singleton coalition excluding i gives j less than
vj+(1−δ)vi

1+δ . There is also the possibility that Bidder

j proposes {i, j} acceptably to get (1− δ)vi + vj − 2vk+1. Note that if vj ≤ 4vk+1, then ∃ ¯̄δ ∈ (0, 1) such

that ∀δ ∈ (¯̄δ, 1),
vj+(1−δ)vi

1+δ > (1−δ)vi+vj−2vk+1. If vj > 4vk+1, then ∃ δ ∈ (0, 1) such that ∀δ ∈ (δ, 1),

vj+(1−δ)vi
1+δ < (1− δ)vi + vj − 2vk+1. Let

˜̃
δ := max

{
δ(1), ¯̄δ, δ, vi−2vk+1

vi
,
vj
vi
, vi
vi+vj

}
. Therefore ∀ δ ∈

(
˜̃
δ, 1
)

,

Ct(T
′) = {t}, ∀ t = i, j. Thus none the winners in T ′ propose unacceptably at the stage T ′ ∪ L.

We now consider the possible proposals of any loser for δ ∈
(

˜̃
δ, 1
)

. If any loser l ∈ L has the proposal

power, then she has two choices, (i) to make an acceptable proposal and (ii) to make an unacceptable

proposal. If she chooses the former, then Cδl (T ′) = {i ∪ j ∪ Sk(t)} for some t = l, . . . , n. This is because

(i) leaving any loser with greater valuation than l out of Cδl (T ′) makes the marginal contribution of l

to coalition Cδl (T ′) amount to 0; and (ii) for any t ≥ l, it is better to include both winners along with

the set of losers {k + 1, . . . , t} in Cδl (T ′) than including only one winner. Further, note that for each

t ∈ {l, l + 1, . . . , n}, the loser can attain a payoff of
(1−δ)(vi+vj)−2vt+1

1+δ(t−k−1) . If δ ∈
(

1− 2vn
vi+vj

, 1
)

, then the

18Note that this payoff is the outcome of two member bargaining over vi+vj . Such a payoff will never materialize if both
winners form a coalition and exit the game (because the losers have not colluded with any winner and so will bid their true
valuations leading to a price equal to the third highest valuation).
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maximum attainable payoff (and also the only positive payoff) is
(1−δ)(vi+vj)
1+δ(n−k−1) , resulting from a proposal

T ′ = {i, j} ∪ L. If Bidder l makes an unacceptable proposal, it may either be directed at a winner

or a loser. If it is directed at a winner, the winner (say i) would get the proposer power in the next

period and given our restriction on δ, would stay alone and exit the game. This would drive the game

to the stage T j where, as mentioned above, the coalition T j would form giving l a payoff
δvj

1+δ(n−k) in

the next period. Observe that given vi > vj , the loser will never unacceptably propose to i, because

she could do better by unacceptably proposing to j and getting a payoff δvi
1+δ(n−k) in the next period.

If the unacceptable proposal is directed at a loser l′, the stage of the game would not change, there

would be a period of delay, and in the next period the proposal power would be with loser l′ who faces

the same options as l with one period delay. Therefore, unacceptable proposal directed to a loser is

suboptimal. Thus given δ ∈
(

1− 2vn
vi+vj

, 1
)

, loser l has two options: either propose T ′ acceptably and

get a payoff
(1−δ)(vi+vj)
1+δ(n−k−1) or propose unacceptably to j and get one-period discounted payoff δ2vi

1+δ(n−k) .

Define F (δ) := δ2vi
1+δ(n−k) −

(1−δ)(vi+vj)
1+δ(n−k−1) . Note that F (δ) is strictly increasing and continuous in δ and

limδ→1 F (δ) = vi
n−k+1 > 0. Therefore, ∃ δ̄ ∈ (1 − 2vn

vi+vj
, 1) such that ∀ δ ∈ (δ̄, 1); F (δ) > 0, and hence,

given the restriction on δ, making unacceptable proposal strictly dominates making acceptable proposal

for the loser l at the stage T ′ ∪ L. Define δ(i, j) := max
{

˜̃
δ, 1− 2vn

vi+vj
, δ̄
}

. Therefore, ∀ δ ∈ (δ(i, j), 1),

Cδt (T ′) = {t}, ∀t = i, j and any loser proposing at stage T ′ unacceptably proposes to j (the lower valuation

winner). Hence, for all δ ∈ (δ(2), 1) condition 2 of this claim follows where δ(2) := max{δ(i, j)}i,j∈N,i6=j .

Consider the stage in the game where the set of active agents is T ′′ = {i, j, k} ∪ L for any i, j, k ∈ K.

W. l. o. g. suppose that vi > vj > vk. Fix any δ ∈ (δ(2), 1). It can easily be seen from the discussion of

proposal decisions of agents in stages where two or three winners are active along with all the losers that;

(i) the minimum payoff that i can get by proposing {i} is δvi and (ii) the maximum payoff that i can get

by proposing acceptably to any other agent in T ′′ is
vi+vj
1+δ . Clearly, there exists a δ3(i) ∈ (δ(2), 1) such

that for all δ ∈ (δ3(i), 1), the best acceptable proposal of i at stage T ′′, Cδi (T ′′) = {i}.

Fix any δ ∈ (δ3(i), 1) and consider the agent j. Agent j gets the payoff vj by staying alone and

gets the payoff vj + (1 − δ)vi by making the acceptable proposal {i, j}. Any other collusive venture by

j will give at most the payoff
(1−δ)vi+vj+vk

1+δ . Note that the expression
{
vj + (1− δ)vi − (1−δ)vi+vj+vk

1+δ

}
is continuous in δ and has positive the limit as δ → 1. Therefore, there exists δ3(j) ∈ (0, 1) such that

∀ δ ∈ (δ3(j), 1), vj + (1 − δ)vi > (1−δ)vi+vj+vk
1+δ implying that Cδj (T ′′) = {i, j}. In the same manner,

we can generate a δ3(k) ∈ (δ3(j), 1) such that ∀ δ ∈ (δ3(k), 1), Cδk = {i, k}. Thus for all δ ∈ (δ3(k), 1),

aδt (T
′′) = δ[vt + (1 − δ)vi] for both t = j, k. Note that ∀ δ ∈

(
max{δ3(k),

vj
vi
}, 1
)

, aδt (T
′′) > vt for both

t = j, k. This means that for these values of δ, the acceptance threshold of any agent t ∈ {j, k} exceeds

the maximum possible marginal contribution that t can make to any coalition containing t (which is t’s

own valuation vt). Therefore, ∀δ ∈ (δ3, 1) where δ3 = max{δ3(k),
vj
vi
}: (i) Cδi (T ′′) = {i}, Cδj (T ′′) = {i, j},

Cδk(T ′′) = {i, k}, and (ii) no acceptable proposal can be directed at any t = j, k in equilibrium.
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Fix a δ ∈ (δ3, 1). We now show that at stage T ′′, no winner would make an unacceptable proposal.

Recall that, given stationarity, an unacceptable proposal is beneficial only if the new proposer (the

rejecting agent) makes an acceptable proposal. Consider the agent i who could make an unacceptable

proposal either at another winner t ∈ {j, k} or at any loser l ∈ L. In the former case, any acceptable

proposal by t ∈ {j, k} must contain i (since Cδt (T ′′) = {i, t} for both t = j, k). Consider the other

possibility where i makes an unacceptable proposal directed some l ∈ L. Clearly, any acceptable proposal

by l upon getting the proposal power (since the rejector proposes) must include i (since, as shown in the

previous paragraph, no acceptable proposal can be directed j and k). Thus in both cases, an unacceptable

proposal by i leads to an acceptable proposal being made to i at stage T ′′. But then i could have made

the same acceptable proposal in the first place at stage T ′′; and thus, could have saved a period of delay.

Thus i would never make an unacceptable proposal. Now, consider the possibility that any t = j, k makes

an unacceptable proposal. As before, such a proposal is optimal only if it leads to the rejector making

an acceptable proposal. If such an unacceptable proposal is directed at i, she would use the proposer

power to choose to stay alone. If the unacceptable proposal is directed at a loser, for δ > vi−vn
vi

, the

only acceptable proposal giving positive payoff to any such loser is {i, k + 1, k + 2, . . . n} (recall that no

acceptable proposal can include either j or k). In the former case, the game moves to a stage where the

set active agents consists of two winners and all losers, where the maximum payoff that can be obtained

is vt. In the latter case too, the payoff obtained is vt. Thus for all δ ∈
(

max
{
δ3,

vi−vn
vi

}
, 1
)

, no winner

makes an unacceptable proposal at stage T ′′.

Now consider the proposal decision of any loser l ∈ L. Fix a δ > max
{
δ3,

vi−vn
vi

}
. Then, as argued

above, Cδl (T ′′) = {i, k + 1, . . . , n} and so l gets maximum payoff (1−δ)vi
1+(n−k−1)δ . On the contrary, if l

makes an unacceptable proposal to any t 6= i, she acceptably propose {i, t} and leave the game. As a

result, the game would move to a stage with single winner and all losers, where as shown in the first

paragraph of the proof, all agents would collude giving l a minimum payoff of δvk
1+(n−k)δ . Since, the

difference δvk
1+(n−k)δ −

(1−δ)vi
1+(n−k−1)δ is continuous in δ and positive in the limit as δ → 1, there exists a

δ(3) ∈
(

max
{
δ3,

vi−vn
vi

}
, 1
)

such that ∀ δ ∈ (δ(3), 1), any loser with proposer power in stage T ′′ makes

an unacceptable proposal directed at some other winner t. The exact identity of t can be obtained from

the Recursion (*).

Suppose that at the stage T ′′′∪L with T ′′′ ⊂ K and 3 ≤ |T ′′′| ≤ m−1 result (3) holds ∀δ ∈ (δm−1, 1).

Consider the stage T ∪ L where |T | = m. Define the winners {jt}mt=1 in T , where j1 = m̄T and jt =

m̄T\{j1,j2,...,jt−1}. Fix a δ ∈ (max{δ(3), δm−1}, 1). The following STEPS 1 and 2 describe the proposal

choice of j1 and the winners other than j1, respectively; when they propose acceptably at stage T ∪ L.

STEP 3 establishes that no winner in T proposes unacceptably at stage T ∪L. Finally, STEP 4 describes

the proposal choice of the losers at stage T ∪ L.

STEP 1: Pick the Bidder j1 ∈ T (j1 = m̄T ). Now, by staying alone j1 can get at least δm−2vj1 . This

is because, from our hypothesis (and the specified range of δ) it follows that at all the later stages
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(consequent to j1 staying alone) other than the single winner stage; only the winners make acceptable

proposals, and all these acceptable proposals are either directed at themselves (that is, they stay alone)

or at exactly one active winner (that is, forming a two bidder coalition). This implies that after j1 has

stayed alone, the game must arrive at a single winner stage. From Theorem 1 and Lemma 2 and Lemma

3; it follows that given T 1 ∈ C∗1 (T 1), all the active bidders in this single winner stage collude amongst

themselves (irrespective of the identity of that single winner) and the game ends. Therefore, the final

coalition structure yields j1 a payoff of vj1 . 19 Given our hypothesis, delay can occur along this path if

(and only if) at some intermediate stage, an active loser gets to propose. There can be at most m − 2

such stages; and so staying alone yields j1 at least δm−2vj1 .

The maximum that Bidder j1 can get by colluding with any other active bidder is given by the number

max
{
vj1+vj2

1+δ , . . . ,
∑m−1
t=1 vjt

1+(m−2)δ

}
.20 For any t′ = 2, . . . ,m−1, the difference

[
δm−2vj1 −

∑t′
t=1 vjt

1+(t′−1)δ

]
is contin-

uous and strictly increasing in δ with the δ → 1 limit being positive. Therefore, for δ sufficiently close to

1, this difference is positive. Thus ∃ δ1 ∈ (max{δ(3), δm−1}, 1) such that δm−2vj1 > max

{ ∑t′
t=1 vjt

1+(t′−1)δ

}m−1

t′=2

∀ δ ∈ (δ1, 1). Hence, Cδj1(T ∪ L) = {j1}, ∀ δ ∈ (δ1, 1), if agent j1 proposes acceptably at the stage T ∪ L.

STEP 2: Fix a δ ∈ (δ1, 1) and consider the bidder j2. For such a δ, our hypothesis implies that if

j2 stays alone, then the maximum payoff (attained if no delay occurs in the intermediate stages) she

can get is vj2 and the minimum payoff (attained if there is delay at each of the intermediate stages)

that she can get is δm−3vj2 . If j2 acceptably proposes {j1, j2}, she gets at least, δm−3 [vj2 + (1− δ)vj1 ].

Any other collusive venture gives j2 a maximum possible payoff of max

{
(1−δ)vj1+

∑t′
t=2 vjt

1+(t′−2)δ

}m−1

t′=3

. Like

in the previous case, there exists a δ̄2 ∈ (δ1, 1) such that ∀ δ ∈ (δ̄2, 1), δm−3 [vj2 + (1− δ)vj1 ] >

max

{
vj2 ,max

{
(1−δ)vj1+

∑t′
t=2 vjt

1+(t′−2)δ

}m−1

t′=3

}
. The reason is the following. For any t′ = 3, . . . ,m − 1, the

difference δm−3vj2 −
(1−δ)vj1+

∑t′
t=2 vjt

1+(t′−2)δ is continuous and strictly increasing in δ with a positive value in

the limit (tends to 1). Therefore for δ sufficiently close to 1, the difference is always positive. Hence

for δ sufficiently close to 1, the difference

[
δm−3vj2 −max

{
(1−δ)vj1

∑t′
t=2 vjt

1+(t′−2)δ

}m−1

t′=3

]
is positive and so

staying alone strictly dominates formation of any coalition other than {j1, j2}. However, the difference

δm−3[vj2 + (1− δ)vj1 ]− vj2 = (1− δ)
[
δm−3vj1 −

(
1 + δ + δ2 + . . .+ δm−4

)
vj2
]

is positive if and only if

H(δ) >
vj2
vj1

where H(δ) := δm−3

1+δ+δ2+...+δm−4 . Since
vj2
vj1
∈ (0, 1) and H(δ) is a strictly increasing function

of δ, once again the for sufficiently high δ, the difference δm−3[vj2 + (1− δ)vj1 ]− vj2 is positive. Thus a

δ̄2 can indeed be found. That is, Cδj2(T ∪ L) = {j1, j2} if j2 proposes acceptably at the stage T ∪ L, and

aδj2(T ∪ L) ≥ δm−2[vj2 + (1− δ)vj1 ].21

19This follows from our worth of partition function; where any singleton (winner) member of a partition gets her valuation
as payoff, if that partition contains another member set where all the losers collude with one or more winners.

20Bidder j1 attains the payoff of
vj1+...+vjt
1+(t−1)δ

, for any t < m; when j1 acceptably proposes {j1, j2, . . . , jt} at this stage

and the remaining winners (or winner) colludes with all the losers in the next stage.
21Recall that j2 can always reject a proposal, incur a period of delay, and then acceptably propose {j1, j2}.
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Note that we can also find a δ2 ∈ (δ̄2, 1) such that ∀ δ ∈ (δ2, 1), δm−2[vj2 + (1 − δ)vj1 ] > vj2 . This

means that for this range of discount factor; any acceptable proposal directed at j2 must give him at

least a payoff greater than vj2 (which is the maximum possible marginal contribution that j2 can make

to any coalition containing it). This is always suboptimal and therefore, for this range of δ, no acceptable

proposal directed at j2 is ever made in equilibrium. In this manner we can generate a sequence {δt}mt=3

such that δ3 ∈ (δ2, 1) and δt+1 ∈ (δt, 1), ∀ t with the property that if all active winners in stage T ∪ L

propose acceptably, then (i) Cδt (T ∪L) = {j1, jt}, ∀ δ ∈ (δt, 1), ∀t ≥ 3; and (ii) no acceptable proposal will

be directed to any member in {j2, . . . , jt} in equilibrium (since their acceptance thresholds exceed their

valuation which is the maximum marginal contribution that they can make to any coalition containing

them), if the discount factor exceeds δ̄2.22

STEP 3: Fix a δ ∈ (δm, 1). In this step, we show that every winner in T proposes acceptably at the stage

T ∪ L. Consider any j ∈ T \ {j1} and suppose that j makes an unacceptable proposal. This is optimal

only if, this leads to transfer of proposal power to some other active Bidder j′ ∈ T ∪ L who makes an

acceptable proposal Sj
′

excluding j.

If j′ ∈ L, then from (ii) in STEP 2, Sj
′ ∈ {{j1}∪Sk(t)}nt=j′ .23 For any t ∈ {j′, . . . , n}, the acceptable

proposal [{j1} ∪ Sk(t)] gives j′ a maximum possible payoff
(1−δ)vj1−vt+1

1+(t−k−1)δ . Observe that if δ >
vj1−vn
vj1

,

then only acceptable proposal giving j′ a positive (and hence, maximum possible) payoff
(1−δ)vj1

1+(n−k−1)δ is

[{j1}∪Sk(n)]. Then ∀ δ ∈
(

max
{
δm,

vj1−vn
vj1

}
, 1
)

, Cδj′(T ∪L) = [{j1}∪Sk(n)] for all j′ ∈ L. But then, if

loser j′ does acceptably propose [{j1}∪Sk(n)], then the game goes to stage T \{j1}, where the maximum

possible payoff that j (the original winner in T \ {j1}, who made the unacceptable proposal directed at

the loser j′) can get is δ[vj + (1− δ)vm̄T\{j1} ].24 It can be easily seen that ∃ δ′m ∈
(

max
{
δm,

vj1−vn
vj1

}
, 1
)

such that ∀ δ ∈ (δ′m, 1), δm−2[vj2 + (1− δ)vj1 ] > δ[vj + (1− δ)vm̄T\{j1} ] (since vj1 > m̄T\{j1}). Therefore,

making an acceptable proposal dominates making an unacceptable proposal directed at a loser in L; for

any winner j ∈ T \ {j1} at the stage T ∪ L.

Fix any δ ∈ (δ′m, 1) and consider the other possibility that agent j 6= j1 makes an unacceptable proposal

to a fellow active winner j′ ∈ T \{j} (who in turn makes an acceptable proposal Sj
′
). If j′ ∈ T \{j}, then

either j′ = j1 or j′ 6= j1. If j′ = j1, then from STEP 1, Sj
′

= Cδj1(T ∪L) = {j1}, and so the game goes to

the stage [T \{j1}]∪L with m−1 winners. Then from the induction hypothesis, j must propose acceptably

in the stage [T \ {j1}] ∪ L, and this acceptable proposal is given by Cδj ([T \ {j1}] ∪ L) =
{
m̄T\{j1}, j

}
.

Recall that for the given the range of δ, from STEP 2, the best proposal for agent j (in case she chooses

to propose acceptably in stage T ∪ L) is given by Cδj (T ∪ L) = {j1, j}. Therefore, the payoff to j from

proposing {j1, j} acceptably at stage T ∪L exceeds that from proposing
{
m̄T\{j1}, j

}
acceptably at stage

22This is because the expression δm−2[x+ (1− δ)vj1 ]− x is decreasing in x.
23Recall that Sk(t) := {k + 1, k + 2, . . . , t}.
24As in STEP 2, we can show that it is suboptimal for j to acceptably propose to any other winner in T \

{
j1, m̄T\{j1}

}
,

at stage T \ {j1}.
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T ∪L (which, in turn, is weakly greater than doing the same at stage [T \ {j1}]∪L). Therefore, making

an acceptable proposal dominates making an unacceptable proposal directed at the highest valuation

winner j1; for any agent j ∈ T \ {j1} in stage T ∪ L. Consider the other possibility where an agent

j ∈ T \ {j1} makes an unacceptable proposal directed at some fellow winner j′ 6= j1. From STEP 2,

Sj
′

= Cδj′(T∪L) = {j1, j′} and so, the game proceeds to the next stage [T \{j1, j′}]∪L with m−2 winners.

Then, from induction hypothesis, Cδj ([T \ {j1, j′}] ∪ L) =
{
m̄T\{j1,j′}]∪L, j

}
. Given the range of δ, from

STEP 2, Cδj (T ∪L) = {j1, j}; and so, arguing as before, for any winner j ∈ T \{j1}, making an acceptable

proposal dominates making an unacceptable proposal directed to any other winner in T \ {j1, j} at stage

T ∪ L.

Finally, consider the possibility that j = j1. Then, j′ 6= j1. Therefore, ∀ δ ∈ (δ′m, 1), as mentioned

before, j′ ∈ L⇒Cδl (T ∪ L) = [{j1} ∪ Sk(n)] and j′ ∈ T \ {j1} ⇒Cj′(T ∪ l) = {j1, j′}. But for both these

cases, j1 could have proposed the same coalition acceptably, in the first place; thereby saving a period

of delay (and getting the (higher) proposer’s share out of the worth of [{j1} ∪ Sk(n)], in case of j′ ∈ L).

Hence, proposing unacceptably turns out to be sub-optimal for j1 at stage T ∪L. Therefore, ∀δ ∈ (δ′m, 1),

no winner in T makes an unacceptable proposal at stage T ∪ L.

STEP 4: If any loser l proposes acceptably at stage T ∪L, then, from STEP 3, ∀δ ∈ (δ′m, 1), Cδl (T ∪L) =

[{j1} ∪ Sk(n)] and l gets a maximum possible payoff of
(1−δ)vj1

1+(n−k−1)δ is [{j1} ∪ Sk(n)]. On the other hand,

like in the two winner stage {i, j} ∪ L, given the specified range of δ and our induction hypothesis, an

unacceptable proposal by l to some winner, yields at least
δvjm

1+(n−k)δ in the final single winner stage, at

most m− 1 periods later. That is, the least l gets by making an unacceptable proposal when δ ∈ (δ′m, 1)

is
δmvjm

1+(n−k)δ . The difference
δmvj1

1+(n−k)δ −
(1−δ)vj1

1+(n−k−1)δ is continuous and strictly increasing in δ and this

difference is positive in the limit. Therefore, ∃ δ ∈ (δ′m, 1) such that for all δ ∈ (δ, 1) the difference

is positive, that is, making unacceptable proposal is the optimal action. The particular identity of the

winner in T to whom any l must unacceptably propose is given Recursion (*).

Define δm := max
{
δ′m,

vj1−vn
vj1

, δ
}

. Then, ∀ δ ∈ (δm, 1); at the stage T ∪ L such that |T | = m, all

losers make an unacceptable proposal at some active winner (given by Recursion (*)), all winners make

acceptable proposals and Cδt (T ∪ L) = {j1, t} = {m̄T , t}, ∀ t 6= j1 = m̄T with Cδm̄T (T ∪ L) = {m̄T }.

We can continue such a recursion to get a sequence of {δm}nm=4 such that result (3) follows by simply

choosing δ′m}nm=4. This completes the proof of Claim 1.

Claim 1 implies that for sufficiently high values of δ, if n/(n− k) ≥ v1/vk+1 for all k = 1, 2, . . . , n− 1,

then the SSPE outcome ring structure π∗, irrespective of the protocol function, must be such that (a) all

losers collude with any one weak winner, and (b) all other winners either stay alone or form pairs. That

is, π∗ = {T j , σ−j} for some j ∈ K̄ and some σ−j ∈ Π′(K \ {j}). To complete the proof of Theorem 2 (i)

we have to show that π∗ = {T j , σ−j} must also satisfy the property that |{t ∈ K \ {j} : {t} ∈ σ−j , vt <

vj}| ∈ {0, 1}. Suppose not. That is, there exists a set of weak winners K̃ ⊂ K̄ such that |K̃| ≥ 2 and for
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all j′ ∈ K̃, vj′ < vj and {j′∗.25 From Claim 1 it follows that coalition T j forms at stage T j , that is, the

single winner stage (after which the game ends). This means that there exists j′, j′′ ∈ K̃ such that either

{j′} or {j′′} must have formed at some stage T ′ such that {{j} ∪ {j′} ∪ {j′′}} ⊆ T ′. In either case, this

is in contradiction to the equilibrium proposal decisions in Claim 1 for the specified range of δ. Hence if

π∗ is an equilibrium coalition structure, then (c) |{t ∈ K \ {j} | {t} ∈ σ−j , vt < vj}| ∈ {0, 1}. From (a),

(b) and (c) it follows that the equilibrium coalition structure π∗ must be an SWRFR partition, that is,

π∗ ∈ Π̄.

Proof of Theorem 2 (ii): Fix an arbitrary π∗ ∈ Π̄. W. l. o. g. suppose that π∗ = {T1, T2, . . . , Tr} where

Tr = T j
π∗

= [{jπ∗} ∪ L] for some jπ
∗ ∈ K̄. Therefore, for all h = 1, . . . , r − 1, |Th| ∈ {1, 2} and

∪r−1
h=1Th = K \ {jπ∗}. Further define the ordered set A(π∗) := (a1, a2, . . . , ar) such that ar := jπ

∗
and

for all 1 ≤ h ≤ r − 1, ah := mTh . Finally, define the protocol function p∗ such that p(N) = a1 and for

all 1 < h ≤ r − 1, p(N \ {a1, . . . , ah}) = ah+1. From Claim 1 it follows that for all δ ∈ (δ′, 1), π∗ is the

unique SSPE outcome ring structure in G = (N, w̄, p∗, δ). �

Proof of Proposition 1: The sufficiency of condition 5 follows quite easily. To establish the necessity,

consider the member T k = {k, k + 1, . . . , n}. For T k to have formed; on the equilibrium path, at some

stage T̂ (such that T k ⊆ T̂ ), some member i ∈ T k must have acceptably proposed T k. Now if |T̂ ∩K| ≥ 2

then, given the specified range of δ, irrespective of whether i = k or i ∈ L, we get a contradiction to the

equilibrium strategies defined in Theorem 2. Hence T̂ = T k.

Now consider the singleton coalition {k − 1}. Since T k must have formed at the stage T k itself,

{k − 1} must have formed at a stage T̄ such that {{k − 1} ∪ T k} ⊆ T̄ . Given the range of δ, the only

possibility where Bidder k − 1 would choose to stay alone without contradicting our findings in Claim

1 in Appendix; is when T̄ = {{k − 1} ∪ T k}. Now if p(T̄ ) ∈ L, then it must unacceptably propose to

the lower value winner k, who would then stays alone. If p(T̄ ) = k, then it is optimal for k to stay

alone so that T k−1 forms in the next stage. Therefore in either case we have a contradiction. Therefore,

p({k− 1} ∪ T k) = k− 1⇒ p(N \ {1, . . . , k− 2}) = k− 2 + 1 = k− 1. Continuing in this manner, for the

rest of the singleton coalitions, {k − 2}, {k − 3}, . . . , {1}; the result follows.26 �
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