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Abstract: 

Decomposition of a bivariate rank dependent index, such as the concentration index, 

is commonly used to explain socioeconomic inequalities in health. We introduce a 

new decomposition technique based on the recentered influence function that yields 

the marginal effects of covariates on the bivariate rank dependent index. This 

technique is simple to estimate and interpret. We show that our method, compared to 

the current standard procedure, relies on the imposition of fewer conditions and is 

therefore preferable both in a descriptive setting and in the estimation of causal effects 

given a suitable identification strategy. In an empirical application using Swedish 

Twin Registry data, we illustrate that this result bears out in practice. The two 

methods yield contradicting results due to differences in the conditions imposed. 

Using a within twin pair fixed effects identification strategy, our new method finds no 

evidence of a causal effect of education on income-related health inequality.
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1. Introduction 

Socioeconomic differences in health are well documented across the western world 

(Deaton, A.S. 2003; Mackenbach et al. 2008, 2015). This awareness has led to a 

rapidly growing interest in the measurement and analysis of socioeconomic related 

inequality in health. In terms of measurement, the dominant family of measures are 

the various versions of the concentration index (CI) – a family of bivariate rank 

dependent indices that relate an individual’s level of health to her socioeconomic rank 

(Wagstaff et al. 1991; Fleurbaey and Schokkaert 2009). Policymakers’ and 

researchers’ interest in health inequality also extends to explaining and understanding 

the underlying causes of the observed socioeconomic related health inequality. 

 

One way to examine what determines socioeconomic related health inequality is to 

decompose a measure of inequality into a function of its (potential) causes. The 

dominant decomposition procedure to decompose a bivariate rank dependent index is 

the technique developed by Wagstaff et al.
 
(2003) (WDW, onwards).

1
 The 

interpretation of such an exercise is (at least) two-fold: it may be interpreted as how 

much of the index is due to cause X, what we will refer to as percentagewise 

contributions; or it may be interpreted as how much the index will change due to a 

shift in the distribution of cause X, what we will call marginal contributions. 

Subsequent research has used the WDW decomposition method extensively as a tool 

to analyse the potential sources of the socioeconomic related health inequality using 

data from different countries and various health measures, income definitions, and 

                                                        
1 Gravelle (2003) is acknowledged for developing the same method although the explicit aim of his 

paper was not to decompose, but to standardise, the concentration index. The resulting methodology is 

nevertheless the same as that of WDW decomposition. 
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determinants (e.g. Leu and Schellhorn, 2004; Gomez and Nicholas, 2005; Lauridsen 

et al. 2007; Hosseinpoor et al. 2006; McGrail et al. 2009; Morasae et al. 2012). 

 

Within the field of labour economics, Fortin et al. (2011) have criticised existing 

decomposition procedures for being unclear as to what the parameters of interest are 

and the conditions necessary to uncover these parameters. This criticism is equally 

applicable to the area of health inequality and in particular the WDW decomposition 

method. The health inequality literature has also highlighted that the WDW 

decomposition approach relies upon a set of implicit and restrictive conditions (Van 

Doorslaer et al. 2004; Erreygers and Kessels 2013; Gerdtham et al. 2015). To the best 

of our knowledge, all the conditions that underpin WDW decomposition have never 

been stated explicitly in one place, either in its application or otherwise. We set out 

the conditions imposed by the WDW decomposition method, highlight that these 

conditions are often not met in common empirical applications and derive an 

alternative decomposition method that requires less stringent conditions to be 

imposed in order to derive the parameters of interest. 

 

In order to help contextualise the conditions the WDW decomposition method 

imposes note that: first, a rank dependent index (I) equals the covariance between 

health and fractional rank multiplied by a weighting function; and second, the WDW 

decomposition method is based on a linear health regression. The conditions imposed 

by WDW decomposition are:  

I. Health can be modelled as a function linear in variables X and an error term. 

II. Exogeneity: The errors from the health regression have zero conditional mean. 

III. The determinants of health do not determine rank (rank ignorability). 
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IV. The determinants of health do not determine the weighting function 

(weighting function ignorability). 

 

If all the conditions above hold, WDW decomposition identifies both percentagewise 

and marginal contributions yielding results of great empirical interest.
2
 However, 

these conditions are unlikely to hold and instead WDW decomposition is generally 

viewed as a “simple descriptive accounting exercise” based on some correlations from 

an OLS regression (Gerdtham et al. 2015). That is, condition II – which OLS requires 

for causal interpretation – is not seen as a necessary condition. WDW decomposition 

is therefore generally thought of as yielding descriptive percentagewise contributions. 

Even as an accounting exercise however, this still requires the results to be interpreted 

in light of conditions I, III & IV that are in empirical practice often not reasonable to 

impose and this muddies the interpretation of the results. 

 

Condition I requires health to be modelled as a function linear in variables, yet there 

are very few health outcomes that can be validly modelled this way, thus violating the 

condition. It is common to find non-linear health functions: outcomes may be 

categorical (Underweight, normal, overweight, obese), censored at zero (doctor visits) 

or two-part decisions (quantity smoked) all of which are non-linear. However, 

relaxing the linearity assumption is not easily achievable within the WDW 

decomposition framework.
3
 The restrictiveness of rank ignorability (Condition III) 

                                                        
2 It is worth noting that percentagewise contributions is a global parameter and requires the assumption 

that under large changes in the covariate there will be no (unaccounted for) general equilibrium effects. 
3 Van Doorslaer et al. (2004) relax this assumption for the health measure - number of doctor visits. 

However, non-linear estimates need to be translated back to the linear setting for WDW decomposition 

to work. To do this the authors had to choose which marginal effects to use, which requires untestable 

assumptions to be made and the resulting decomposition performed in this way is also still only a local 

approximation. It should also be noted that the decomposition requires the underlying health regression 
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has been pointed out by Erreygers and Kessels (2013), who label the WDW 

decomposition approach as a univariate decomposition (of a bivariate index) because 

it only decomposes one part of the covariance. Ignoring the association between the 

covariates and rank means that for any causal explanation of changes in covariates the 

income rank is assumed to remain the same even after the change. The assumption of 

weighting function ignorability is similarly restrictive because the weighting function 

can include a random variable that in turn can be affected by changes in the 

covariates. For example the concentration index is the absolute concentration index 

weighted by the inverse of the mean of health. This weighting function will by design 

be correlated with our covariates, as our covariates are predictors of health. However, 

weighting function ignorability requires the assumption that the weighting function is 

unaffected by a change in these covariates.
4
 In most health based empirical 

applications, one or more of these three conditions are violated, and therefore the 

usefulness of WDW decomposition can be questioned even as a descriptive exercise: 

the violation of these conditions encumbers both interpretation of the results and its 

translation into policy. 

 

Contributing to this literature, we derive and empirically illustrate an alternative 

regression based decomposition method for rank dependent indices that does not 

necessitate these restrictive conditions. Our object of interest is the effect of a small 

shift in the distribution of a covariate on the level of inequality: that is, the marginal 

effect on the bivariate rank dependent index. This is less ambitious than estimating 

percentagewise contributions as in a WDW decomposition, but this new method is 

                                                                                                                                                               
to be linear in variables, not just in parameters, in order to allow clear interpretation of the 

percentagewise contributions. 
4 That the weighting function is not decomposed also explains why the percentagewise contributions in 

the WDW decomposition are the same for all forms of I. 
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more likely both in theory and in practice to yield our parameter of interest. This 

alternative approach uses a regression of a recentered influence function (RIF). The 

RIF is a concept that originates from the robustness literature of statistics. It is a first 

order linear approximation of the rank dependent index that yields a vector of each 

individual’s (recentered) influence on the index. We decompose the index by 

regressing the RIF of a chosen form of bivariate rank dependent index on a set of 

covariates yielding our object of interest, the marginal effects of the covariates on the 

inequality index.
5
 Firpo et al. (2007, 2009) introduced the concept of RIF regression 

and applied this approach in an income inequality context, estimating and 

decomposing RIFs for univariate measures such as the variance and the Gini index. 

Highlighting the potential use of this method, Essama-Nssah and Lambert (2012) 

calculated the RIFs for a number of different inequality and poverty measures. In a 

key step forward for the health inequality literature, we show that RIFs can also be 

calculated for bivariate inequality measures. We derive the RIF for a general bivariate 

rank dependent index and also the RIFs for some familiar versions such as the 

concentration index and adjustments suggested by Erreygers (2009) and Wagstaff 

(2005) and directly compare this approach to that of the WDW decomposition 

approach. 

A key advantage of the RIF regression approach in comparison to WDW 

decomposition is that the method captures the impact of the covariates on the full 

statistic – remember that the rank dependent index is a weighted covariance of both 

health and rank. It therefore addresses Erreygers and Kessels’ (2013) criticism of the 

WDW decomposition method. Another key advantage of RIF regression 

decomposition is that, unlike WDW decomposition, it is not conditional on a 

                                                        
5
 marginal is interpreted here as the effect of a small change in the covariate(s) 
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functional form for health linear in variables. In fact, it allows for any possible form 

of regression function including non-linear methods. Importantly, RIF based 

decomposition is straightforward to estimate and the results are familiar in their 

interpretation: Assuming a linear relationship means the RIF is the dependent variable 

in an OLS regression whose coefficients equal our parameters of interest: the 

marginal effect of covariates X on the rank dependent index. This is analogous to the 

interpretation of OLS regression of a random variable. Indeed, a RIF decomposition 

of the mean (assuming a linear function of the dependent variable) is simply OLS 

(Firpo et al. 2009). The less stringent conditions imposed by RIF regression of a 

bivariate rank dependent index make it a preferable descriptive decomposition tool in 

comparison to WDW decomposition, In addition, it is also well suited to policy 

evaluation. RIF regression allows the effect of a policy to be evaluated across a wide 

range of statistics, highlighting its potential in the field of program evaluation. 

 

From a program evaluation viewpoint another advantage of RIF decomposition is that 

it can distinguish the effect of a covariate on the different forms of a bivariate rank 

dependent index that exist in the literature. Given the lack of consensus as to which 

index is preferred, and therefore the value judgements that these indices represent, it 

is important that any decomposition analysis is able to encompass as broad a view as 

possible. We show that this is important in our empirical example where the choice of 

index has bearing on whether education has an association. Our empirical illustration 

also highlights that the restrictive conditions imposed by the WDW decomposition 

method may be misleading not just in theory but in practice too. Having illustrated the 

method we go one step further and attempt to isolate the causal effect of education on 

socioeconomic related heath inequality using a twin differencing strategy. Our 
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estimates using data from the Swedish Twin Registry suggest there is no causal effect 

of education on any common choice of bivariate rank based measure of health 

inequality. 

 

To help the reader understand why RIF regression based decomposition is a useful 

step forward for the analysis of bivariate rank dependent indices we present in the 

next section a brief description of rank dependent indices, the WDW decomposition 

method and the conditions WDW decomposition imposes. In section 3 we introduce 

the RIF concept and derive the RIF for a general bivariate rank dependent index, 

before we describe RIF decomposition in section 4. In section 5 we present an 

empirical example of a RIF decomposition, alongside results obtained by the WDW 

decomposition approach, highlighting the differences in interpretation and how RIF 

decomposition is well suited to causal effect analysis. Finally, in section 6 we discuss 

the relative merits of this new approach, before concluding in section 7. 

 

2. Preliminaries 

A rank dependent index 

Let us define 𝐻 ∈ [0, +∞) as a random variable of health with mean denoted as 𝜇𝐻 

and rank each individual by a random variable for socioeconomic status, Y. The CDF 

of Y, 𝐹𝑌, corresponds to the fractional rank for each individual and by definition has 

mean 1/2. A general form for a rank dependent index is then given by:  

 

(1) 𝐼(𝐻, 𝐹𝑌) = 𝜔𝐼(𝐻)𝐴𝐶(𝐻, 𝐹𝑌), 
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where 𝜔𝐼(𝐻) is a weighting function specific to a particular form of rank dependent 

index, and the absolute concentration index (AC) is given by twice the covariance 

between 𝐻 and 𝐹𝑌: 

 

(2) 𝐴𝐶(𝐻, 𝐹𝑌) = 2𝑐𝑜𝑣(𝐻, 𝐹𝑌),  

 

We refer to this as the absolute concentration index as it is invariant to the addition or 

subtraction of an equal amount of health for all individuals in the population.
6
 The 

relative counterpart is the standard concentration index (CI), which is invariant to 

equi-proportional changes in health. The weighting functions for these common forms 

of rank dependent index are:  

Absolute concentration index:  

(3) 𝜔𝐴𝐶(𝐻) = 1 

Concentration index: 

(4) 𝜔𝐶𝐼(𝐻) =
1

𝜇𝐻
 

 

Different choices of weighting function imply different value judgements, in this case 

a preference for absolute or relative inequality. The choice of index, and therefore the 

choice of weighting function, is more complex when the health variable of interest 

has both an upper and lower bound denoted as 𝑏𝐻 and as 𝑎𝐻 respectively, i.e. 

𝐻 ∈ [𝑎𝐻, 𝑏𝐻] (Wagstaff 2005; Erreygers, 2009; Erreygers and van Ourti 2011; 

Kjellsson and Gerdtham 2013a,b; Kjellsson et al. 2015). For such a variable, health 

can be represented as both attainments (𝐻 − 𝑎𝐻) and shortfalls (𝑏𝐻 − 𝐻), and the 

                                                        
6 In the literature the absolute concentration index is sometimes called the generalised concentration 

index, although it is not a generalisation of the concentration index. We label it the absolute 

concentration index because it is an absolute measure of socioeconomic-related health inequality (it is 

not affected by the addition or subtraction of a certain amount of health). 
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choice of which affects the value of the concentration index. One set of indices 

adjusted for bounded variables assures that the level of inequality is the same 

irrespective of this representation. The weighting functions for these rank dependent 

indices are: 

Erreygers index: 

(5) 𝜔𝐸𝐼(𝐻) =
4

𝑏𝐻−𝑎𝐻
 

Wagstaff index: 

(6) 𝜔𝑊𝐼(𝐻) =
𝑏𝐻−𝑎𝐻

(𝑏𝐻−𝜇𝐻)(𝜇𝐻−𝑎𝐻)
 

The Erreygers Index (EI) is an absolute index adjusted for a bounded variable, 

whereas the underlying value judgment of Wagstaff Index (WI) is more complex 

(Wagstaff 2005; Kjellsson and Gerdtham 2013a,b; Allanson and Petrie 2014). We 

may also define a concentration index that is invariant to either proportional changes 

in attainment or shortfalls. Following Kjellsson et al. (2015), we denote these as: 

Attainment-relative concentration index (ARCI) 

(7) 𝜔𝐴𝑅(𝐻) =
1

(𝜇𝐻−𝑎𝐻)
 

Shortfall-relative concentration index
7
 (SRCI) 

(8) 𝜔𝑆𝑅(𝐻) =
1

(𝑏𝐻−𝜇𝐻)
 

There exists no actual consensus as to which index is preferred, but the literature 

stresses that any choice of index represents a value judgement (Allanson and Petrie 

2014; Kjellsson et al. 2015). Given this lack of consensus it is arguably important that 

any decomposition analysis is able to encompass as broad a view as possible.  

 

The standard decomposition 

                                                        
7 An index using this weighting function is equivalent to the applying the (attainment-relative) 

concentration index representing the health variable in terms of shortfalls, or ill health. 
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The leading decomposition method applied to I is the WDW decomposition method 

based on a linear regression of health. Assuming health, represented by h, a n x 1 

vector, is observed alongside covariates X, and that health can be expressed as a linear 

in variables model in X, yields the following regression equation: 

(9) ℎ = 𝛼 + 𝑋′𝛽 + 𝑒, 

 

where X is a k x n matrix, α is an intercept, 𝛽 is a k x 1 vector of regression 

coefficients, and e is a n x 1 vector of error terms. Following Wagstaff et al. (2003), I 

can then be decomposed by substituting equation (7) into (1), yielding the following 

formula: 

(10) 𝐼(𝐻, 𝐹𝑌) = 𝜔𝐼(𝐻) ∑ 𝛽𝑘
𝐾
𝑘=1 2𝑐𝑜𝑣(𝑋𝑘, 𝐹𝑌) + 𝜔𝐼(𝐻)2𝑐𝑜𝑣(𝑒, 𝐹𝑌) , 

where 𝛽𝑘 is the regression coefficient corresponding to the k
th

 regressor from the 

linear regression equation (7), 2𝑐𝑜𝑣(𝑋𝑘, 𝐹𝑌) is the absolute concentration index of the 

k
th

 covariate 𝑋𝑘 and 2𝑐𝑜𝑣(𝑒, 𝐹𝑦) is the absolute concentration index of e. The first part 

of the WDW decomposition formula, given by equation (10), expresses the change in 

𝐼(𝐻, 𝐹𝑌) predicted by a change in either 𝑐𝑜𝑣(𝑋𝑘, 𝐹𝑌) or 𝛽𝑘. The first part of equation 

(10) has also been used to express I as the proportion explained by X, “the explained 

part” (percentage wise contributions), plus the second part of equation (10), as “the 

unexplained part”.  

The WDW decomposition method shows that a bivariate rank dependent index is 

decomposable under certain conditions. However, in empirical practice we are often 

not willing to accept conditions I-IV or some combination thereof. For example, 

holding rank constant results in a health focussed decomposition, but as equations (1) 
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and (2) highlight, I captures the weighted covariance between health and 

socioeconomic rank. Therefore, it is the weighted covariance between health and 

socioeconomic rank that should be decomposed, not just health. WDW decomposition 

also conditions on exogeneity and that the functional form for health is linear in 

variables. Equation (10) also shows that the weighting function is not decomposed, 

even though variants of I such as the CI and the WI include a function of health (the 

mean) in the weighting function. As we discussed in the introduction, these conditions 

are often restrictive leaving us with results that are hard to interpret – even in a non-

causal descriptive setting. In the next section we derive a completely different 

approach to regression-based decomposition of a bivariate rank dependent index that 

requires less stringent conditions and is therefore more likely to uncover the 

parameters of interest. 

  

3. The RIF for a general bivariate rank dependent index  

The RIF is derived from the influence function (IF) and has the same properties as the 

IF with the singular exception that the RIF has a different expected value to that of the 

IF. The IF originates from the robustness literature of statistics, where Hampel (1974) 

introduced the concept with the original purpose to explore how various statistics are 

affected (or influenced) by particular observations, hence the name, influence 

function. A relevant example to the topic of this paper is that of Monti (1991) who 

assessed the robustness of the Gini using an IF. She found that observations at the 

extremes of the (income) distribution have much greater influence on the value of the 

index than other observations towards the middle of the distribution. Firpo et al. 

(2009) developed the concept of the RIF, RIF regression and hence RIF 
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decomposition. In this section we introduce the concept of the IF and RIF and derive 

the RIF for a general bivariate rank dependent index.  

The influence function and the recentered influence function 

The influence function is a specific form of a directional derivative (or Gâteaux 

derivative). A directional derivative is used to find the influence of a shift in a 

distribution, from F towards a new distribution Gh, on a statistic. The general term for 

a statistic, such as the mean, variance or the Gini for example, is a functional, 𝑣(𝐹) 

where 𝐹 is a probability measure for which 𝑣(𝐹)  is defined. Let Gh, the distribution 

we are moving towards, be a mixture probability measure of F: 

 

(11) 𝐺ℎ = (1 − 𝜀)𝐹 + 𝜀𝛿ℎ,  

 

where 𝛿ℎ is a cumulative distribution function for a probability measure that puts 

mass 1 at h: 

 

 𝛿ℎ(𝑙) = {
0 𝑖𝑓  𝑙 < ℎ
1 𝑖𝑓 𝑙 ≥ ℎ

, 

 

where l is a drawing from H and 𝜀 ∈ (0,1) is a probability, or a weight, representing 

the relative change in the population through the addition of 𝛿ℎ. The IF of 𝑣(𝐹) finds 

the limiting influence of a small location shift of F towards Gh: 

 

(12) 𝐼𝐹(ℎ; 𝑣) =
𝑑𝑣((1−𝜀)𝐹+𝜀𝛿ℎ)

𝑑𝜀
|

𝜀=0
=  𝑙𝑖𝑚𝜀→0

𝑣(𝐺ℎ)−𝑣(𝐹)

𝜀
, 
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if this limit is defined for every point ℎ ∈ ℝ, where ℝ is the real line.
8
 Intuitively 

speaking, the IF captures the (limiting) influence of an individual observation on the 

functional 𝑣(𝐹) (Wilcox, 2005). In practice, calculating an IF yields an influence 

function value for each individual in the sample.  

 

Having defined the IF we can now define the RIF. We can think of the RIF in two 

ways: one is as a linear approximation of the functional and the other is as a minor 

transformation of the IF. In terms of the former, the RIF consists of the first two 

leading terms of a Von Mises linear approximation. It may be helpful to think of a 

Von Mises linear approximation as the equivalent to a Taylor series expansion of a 

non-linear function, but instead for a functional. In terms of the latter, the RIF is 

obtained from the IF by adding back the original functional 𝑣(𝐹): 

(13) 𝑅𝐼𝐹(ℎ; 𝑣) = 𝑣(𝐹) + 𝐼𝐹(ℎ; 𝑣), 

 

An important property of an IF is that its expectation is zero (e.g. an observation equal 

to the mean has no influence on the mean) (Monti 1991). The minor transformation of 

the IF into a RIF recenters the IF so that its expectation is equal to the original 

distributional statistic 𝑣(𝐹) (Firpo et al. (2009).
9
  

(14) 𝐸[𝑅𝐼𝐹(ℎ; 𝑣)] = ∫ 𝑅𝐼𝐹(ℎ; 𝑣) ∙ 𝑑𝐹
∞

−∞
=  𝑣(𝐹) 

 

The RIF for a general (bivariate) rank dependent index 

 

                                                        
8
 Another way of checking whether the IF exists is to check if the functional is continuous (has no 

jumps or spikes) and the differential is bounded. 
9 This characteristic implies that the mean value of the RIF is equal to the statistic. This facilitates the 

interpretation of the intercept term in RIF regression as the intercept is interpreted as the (unweighted) 

functional value for the reference group. This is important when considering Oaxaca-blinder type 

decompositions as it is desirable to be able to identify and interpret the intercept and changes in the 

intercept. 
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The RIF for a univariate rank dependent index, e.g., the Gini, has been derived and 

applied in previous work (Monti, 1991; Essama-Nssah and Lambert, 2012, Firpo et al. 

2007). We expand this to a general bivariate rank dependent index for socioeconomic 

related health inequality in proposition 1, leaving the proof to Appendix A.  

 

Proposition 1: Let 𝐼(𝐻, 𝐹𝑌) = 𝜔𝐼(𝐻)𝐴𝐶(𝐻, 𝐹𝑌) be a general rank dependent index, 

the AC be defined as 𝐴𝐶(𝐻, 𝐹𝑌) = 2𝑐𝑜𝑣(𝐻, 𝐹𝑌) and 𝐹𝐻,𝐹𝑌
 be the joint CDF of H and 

𝐹𝑌 with corresponding pdf denoted as 𝑓𝐻,𝐹𝑌
. Then the RIF for 𝐼(𝐻, 𝐹𝑌) is given by: 

 

𝑅𝐼𝐹(ℎ, 𝐹𝑌(𝑦); 𝐼) = 𝐼(𝐻, 𝐹𝑌) + 𝐼𝐹(ℎ; 𝜔𝐼) ∗ 𝐴𝐶(𝐻, 𝐹𝑌) + 𝜔𝐼(𝐻) ∗ 𝐼𝐹(ℎ, 𝐹𝑌(𝑦); 𝐴𝐶), 

 

where 𝐼𝐹(ℎ; 𝜔𝐼) denotes the IF of the weighting function for I and 

𝐼𝐹(ℎ, 𝐹𝑌(𝑦); 𝐴𝐶) = −2𝐴𝐶 + 𝜇𝐻 − ℎ + 2ℎ𝐹𝑌(𝑦) − 2 ∫ ∫ ℎ𝑓𝐻,𝐹𝑌

+∞
𝑑ℎ𝑑𝐹𝑌(𝑧)

𝑦
 

denotes the IF for AC. 

 

 

Proposition 1 shows that for any general rank dependent index the RIF of I is a 

function of the weighting function, AC, and their respective IFs. As the IF for the AC 

is given in the proposition, the RIF of any I follows from calculating the IF of the 

weighting function for the particular I in question and then slotting this into the 

formula for the RIF given in proposition 1. Corollary 1 presents the RIF for the 

common forms of I that appear in the health inequality literature, again leaving the 

proof to Appendix A.
10

 

 

Corollary 1: The RIFs for the AC, EI, CI, ARCI, SRCI and the WI are given by: 

 

𝑅𝐼𝐹(ℎ, 𝐹𝑌(𝑦); AC) = AC + 𝐼𝐹(ℎ, 𝐹𝑌(𝑦); AC) 

𝑅𝐼𝐹(ℎ, 𝐹𝑌(𝑦); EI) = 𝐸𝐼 +
4

𝑏𝐻 − 𝑎𝐻
𝐼𝐹(ℎ, 𝐹𝑌(𝑦); AC) 

                                                        
10 The formula for the RIF for the CI is very similar to the RIF for the univariate Gini. Indeed we show 

in Appendix B that if we derive the RIF for the univariate Gini from the covariance formula, as we 

have done in the proof of proposition 1, this is the same as presented in Firpo et al. (2007) where the 

RIF for the Gini has been derived from a formula for the Lorenz curve. 
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𝑅𝐼𝐹(ℎ, 𝐹𝑌(𝑦); CI) = 𝐶𝐼 +
(𝜇𝐻 − ℎ)

𝜇𝐻
2 ∗ AC +

1

𝜇𝐻
𝐼𝐹(ℎ, 𝐹𝑌(𝑦); AC) 

𝑅𝐼𝐹(ℎ, 𝐹𝑌(𝑦); 𝐴𝑅CI) = 𝐴𝑅𝐶𝐼 +
(𝜇𝐻 − ℎ)

(𝜇𝐻 − 𝑎𝐻)2
AC +

1

𝜇𝐻 − 𝑎𝐻
𝐼𝐹(ℎ, 𝐹𝑌(𝑦); AC) 

𝑅𝐼𝐹(ℎ, 𝐹𝑌(𝑦); 𝑆𝑅CI) = 𝑆𝑅𝐶𝐼 +
(−𝜇𝐻 + ℎ)

(𝑏𝐻 − 𝜇𝐻)2
∗ AC +

1

𝑏𝐻 − 𝜇𝐻
𝐼𝐹(ℎ, 𝐹𝑌(𝑦); AC) 

𝑅𝐼𝐹(ℎ, 𝐹𝑌(𝑦); WI) =

𝑊𝐼 +
−(𝑏𝐻−𝑎𝐻)[(𝑏𝐻+𝑎𝐻−2𝜇𝐻)(ℎ−𝜇𝐻)]

((𝑏𝐻−𝜇𝐻)(𝜇𝐻−𝑎𝐻))2 AC +
𝑏𝐻−𝑎𝐻

(𝑏𝐻−𝜇𝐻)(𝜇𝐻−𝑎𝐻)
𝐼𝐹(ℎ, 𝐹𝑌(𝑦); AC). 

 

The RIF formulas appear more complicated than the formulas for the original index. 

They are however just a linearisation of the statistic and in practice are 

straightforward to estimate. The empirical estimator of the population RIF for I is 

estimated using sample data: 

(15)  

𝑅𝐼𝐹̂(ℎ, 𝐹𝑌(𝑦); 𝐼)

= 𝐼(𝐻, 𝐹𝑦) + 𝐼𝐹̂(ℎ; 𝜔𝐼) ∗ 𝐴𝐶̂(𝐻, 𝐹𝑦)

+ 𝜔𝐼̂(𝐻) [−𝐴𝐶̂(𝐻, 𝐹𝑦) + 𝜇𝐻̂ − ℎ + 2ℎ𝐹𝑌̂(𝑦)

− 2 ∫ ∫ ℎ𝑓𝐻,𝐹𝑌
̂

+∞

0

𝑑ℎ𝑑𝐹̂𝑌(𝑧)
𝑦

0

] 

 

To empirically estimate the RIF, the data of N observations is first ordered using the 

ranking variable, Y, so that y1 ≤ y2 ≤…≤ yi ≤ ... ≤ yN. Then estimates of 𝐼(𝐻, 𝐹𝑌), 

𝐴𝐶̂(𝐻, 𝐹𝑌), 𝜔𝐼̂(𝐻), and 𝜇𝐻̂ are obtained using the formulas in Section 2. The estimate 

of the 𝐹𝑌̂ and the absolute concentration curve coordinate, ∫ ∫ ℎ𝑓𝐻,𝐹𝑌
̂+∞

0
𝑑ℎ𝑑𝐹̂𝑌(𝑧)

𝑦

0
 

can be calculated as follows: 

(16) 𝐹𝑌̂ =
∑ 1𝑖

𝑗=1

𝑁
 

(17) ∫ ∫ ℎ𝑓𝐻,𝐹𝑌
̂+∞

0
𝑑ℎ𝑑𝐹̂𝑌(𝑧)

𝑦

0
=

∑ ℎ𝑗
𝑖
𝑗=1

𝑁
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where the orderings of the i values of h are considered in the numerators.
 11

 For 

decomposition analysis (RIF regression) the empirical RIF is then used as a 

dependent variable in a regression. We now turn to the concept of RIF regression. 

 

4. RIF regression decomposition 

 

RIF regression is a method that allows us to decompose a RIF of any functional into a 

function of the sources of its variation, the covariates, X. Our focus is decomposition 

of I and hence RIF of I regression decomposition. RIF regression is based on one of 

the key insights in Firpo et al. (2009). They show that the law of iterated expectations 

can be applied to a RIF allowing us to express I as a conditional expectation of the 

RIF given X. Firpo et al. (2009) further identify two parameters of interest and show 

how RIF regression, the estimation of the conditional expectation of the RIF, can be 

used to obtain them. These parameters are the marginal effect of covariate Xk on a 

functional (evaluated at a particular part of the distribution); and the average partial 

effect.
12

 That is, RIF regression estimates marginal contributions (not percentagewise 

contributions as WDW decomposition results are often presented). In this section we 

show how these parameters are calculated for I. We first consider the marginal effect 

of covariates X on I, holding the conditional distribution of I given X constant. The 

definition of an IF given by equation (12) states that an IF is the limiting influence of 

a small shift in the distribution of H, 𝐹𝐻, towards a new distribution, 𝐺ℎ, on the 

functional. Now the interest lies in the limiting influence on the (R)IF of a small shift 

                                                        
11The absolute concentration curve is a mapping of cumulative health and fractional rank (Wagstaff et 

al. 2003). 
12

 We use the term marginal to mean the effect of small changes 
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in the distribution of the determining covariates.
13

 We denote the original distribution 

of covariates as FX and the new distribution of X after an infinitesimal shift in the 

distribution as GX. The effect of an infinitesimal shift in the distribution of X on the 

functional is obtained by integrating up the conditional expectation of the RIF with 

respect to a shift in the distribution of covariates, d(FX – GX ) whilst holding the 

conditional distribution given X constant (Firpo et al. 2009): 

(18) lim𝜀→0
𝑣(𝐺ℎ)−𝑣(𝐹𝐻)

𝜀
= ∫ 𝐸[𝑅𝐼𝐹(ℎ; 𝑣)|𝑋 = 𝑥] ∙ 𝑑(𝐺𝑋  −  𝐹𝑋)(𝑥).

+∞

−∞
 

 

This is the marginal effect of a shift in the distribution of X on the functional 

assuming the conditional distribution given X does not change. Using the RIF for AC 

as an example (as it is the simplest from of I and therefore helps illustration), we 

obtain the marginal effects for AC by using regression methods to estimate the 

following conditional expectation: 

(19) 𝐸[−𝐴𝐶 + 𝜇𝐻 − ℎ + 2ℎ𝐹𝑌 − 2 ∫ ∫ ℎ𝑓ℎ,𝐹𝑌

+∞

0
𝑑ℎ𝑑𝐹𝑌(𝑧)

𝑦

0
|𝑋 = 𝑥] =

𝐸[𝜆(𝑋, 𝜖)|𝑋 = 𝑥]  

 

where 𝜆(𝑋, 𝜖) is a function of covariates X and an error term 𝜖. The marginal effect 

with respect to Xk is given by the partial derivative of our regression estimates of (18): 

(20) 
𝑑𝐸[𝑅𝐼𝐹(ℎ,𝐹𝑌(𝑦);𝐴𝐶)|𝑋=𝑥]

𝑑𝑋𝑘
=

𝑑𝐸[𝜆(𝑋,𝜖)|𝑋=𝑥]

𝑑𝑋𝑘
 

 

The potential choice of regression methods we could use to estimate the marginal 

effects is limitless but the eventual choice will depend on the form one is willing to 

assume for the function 𝜆(. ). The second parameter of interest Firpo et al. (2009) 

                                                        
13 The phrase a small shift in the distribution of the determining covariates can mean both or either a 

location sift in the distribution or a change in the shape in the distribution. 
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highlight is the average I partial effect (AIPE). This captures the response of I to 

small location shifts in a continuous covariate (unconditional on the other covariates), 

and the response of I to marginal changes in the conditional distribution of a binary 

covariate given the other covariates. The vector of average I partial effects (AIPE), 

denoted as 𝛾(𝐼), is just a vector of average partial derivatives. For the AC, 𝛾(𝐴𝐶)may 

be expressed as: 

(21) 𝛾(𝐴𝐶) = ∫
𝑑𝐸[𝑅𝐼𝐹(ℎ,𝐹𝑌(𝑦);𝐴𝐶)|𝑋=𝑥]

𝑑𝑥

∞

−∞
∙ 𝑑𝐹(𝑥) 

 

Assuming a linear in parameters functional form for the regression model for the RIF 

of AC, we may rewrite equation (19) as: 

(22) 𝐸[𝑅𝐼𝐹(ℎ, 𝐹𝑌(𝑦); AC)|𝑋 = 𝑥] = 𝐸[𝑋′𝜓 + 𝜇|𝑋 = 𝑥] 

 

To be clear, assuming a linear functional form for the AC involves the assumption 

that the sum of: health, the product of health and fractional rank, and the individuals 

position on the absolute concentration curve ∫ ∫ ℎ𝑓𝐻,𝐹𝑌

+∞

0
𝑑ℎ𝑑𝐹𝑌(𝑧)

𝑦

0
 can be modeled 

as linear in parameters.
14

 As is the case for standard OLS, linearity implies that the 

marginal effects are constant along the distribution of X and the derivative of equation 

(22) with respect to the k
th

 covariate Xk equals the coefficient 𝜓𝑘: 

(23) 
𝑑𝐸[𝑅𝐼𝐹(ℎ,𝐹𝑌(𝑦);𝐴𝐶)|𝑋=𝑥]

𝑑𝑋𝑘
=

𝑑𝐸[𝑋′𝜓+𝜇|𝑋=𝑥]

𝑑𝑋𝑘
= 𝜓𝑘 

 

which also means that the AIPE equals 𝜓𝑘: 

(24) 𝛾𝑘(𝐴𝐶) = ∫
𝑑𝐸[𝑅𝐼𝐹(ℎ,𝐹𝑌(𝑦);𝐴𝐶)|𝑋=𝑥]

𝑑𝑋𝑘

∞

−∞
∙ 𝑑𝐹(𝑥) = 𝜓𝑘 

 

                                                        
14The absolute concentration curve is a mapping of cumulative health and fractional rank (Wagstaff et 

al. 2003). 
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Under the linearity assumption, RIF regression is optimally estimated using OLS. We 

refer to this estimator as RIF-I-OLS. The procedure first involves estimating the 

empirical RIF, as we outlined in the final part of section three. This yields empirical 

estimates of each individual’s recentered influence on I. Then, using the empirical 

RIF as the dependent variable in an OLS regression we yield the AIPEs. Although 

other regression methods are possible, we illustrate in the next section RIF regression 

of I using OLS because it is both simple and attractive from an operational 

perspective. Even though we are restricting our illustration to a linear in parameters 

functional form, this still allows for a fairly flexible functional form by inclusion of 

non-linear or higher order transformations of the covariates. 

 

5. An empirical illustration of WDW decomposition and 

RIF-I-OLS 

In this section we aim to empirically illustrate what the RIF function is, and how 

WDW decomposition and RIF-I-OLS compare in their interpretation. We also show 

how RIF-I-OLS is both a well-suited method for determining the causal effect of a 

covariate on I given a suitable identification strategy, and preferable to WDW 

decomposition even as a descriptive decomposition method when no causal inference 

can be made. The illustrative example presented here focuses on the effect of 

education on income-related health inequality and uses data on monozygotic 

(“identical”) twins. The data is a replica of the data used in Gerdtham et al. (2015). 

Performing a WDW decomposition, Gerdtham et al. (2015) find education to be 

significantly associated with a higher level of health and to significantly contribute to 

the level of inequality, but that this all but disappears when controlling for family and 

genetic fixed effects common to twin pairs using a twins differencing strategy. To see 
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if these results hold subject to a theoretically less restrictive decomposition method, 

we extend the analysis by decomposing income-related health inequality using RIF-I-

OLS across twins. As in Gerdtham et al. (2015), we first apply a naïve selection on 

observables identification strategy using OLS and then a twin fixed effects 

identification strategy.
15

 We use the latter primarily to illustrate the difference in the 

interpretation of the results of the two methods. First, however, we introduce the data 

and illustrate the empirical RIF of I (focusing on EI in particular). 

Data material 

The data used in this empirical example is a subset from the Swedish Twin Registry 

consisting of respondents that took part in a telephone interview, including a question 

on self-assessed health, called Screening Across the Lifespan Twin study (SALT) 

conducted between the years 1998–2002. The final sample size includes 3,328 twin 

pairs born between the years 1931 to 1958. The survey data is matched with registers 

from Statistics Sweden on annual taxable gross income (income from earnings, own 

business, parental leave benefits, unemployment insurance and sickness benefits) and 

education level. Register data should have relatively small measurement error, which 

is very important as measurement errors are magnified when differencing between 

twins, as we do here in the final part of this section. Income is measured as an average 

of gross income over ages 35-39 years.
16

 The education variable is measured as years 

of schooling and ranges between 8 and 20 years of schooling.
17

 To obtain a health 

measure appropriate for a rank dependent index, we cardinalise the categorical self-

                                                        
15 We refer the reader to Gerdtham et al. (2015) for both an up-to-date discussion on the merits of twin 

design based studies in revealing the treatment effect of education and for more detailed discussion of 

the dataset and the twin based fixed effects methodology. 
16 This point is discussed further in Gerdtham et al. (2015). 
17 Years of schooling is imputed from register data using the highest educational degree obtained in the 

year 1990 as outlined in the appendix in Gerdtham et al. (2015). 
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rated health measure using a linear algorithm from Burström et al. (2013) (model 3, 

supplementary table 8) that transforms self-rated health to a time trade-off (TTO) 

quality of life utility value (See table I).
18

 Summary statistics are also presented in 

table I.
19

  

Table I – Variable descriptions, 1
st
 moments and algorithm weights 

Variable Description Mean 

Algorithm 

weight 

Health Health utility from TTO algorithm 0.916 

 
Health1 1 = Very Good Health (self assessed) 0.379 (reference) 

Health2 1 = Good Health (self assessed) 0.37 -0.0315 

Health3 1 = Fair Health (self assessed) 0.169 -0.1414 

Health4 1 = Poor Health (self assessed) 0.064 -0.3189 

Health5 1 = Very Poor Health (self assessed) 0.018 -0.4817 

Age4044 1= aged between 40 and 44 years 0.083 0.0109 

Age4554 1= aged between 45 and 54 years 0.427 0.0179 

Age5564 1= aged between 55 and 64 years 0.449 0.0235 

Age6567 1= aged between 65 and 67 years 0.042 0.0193 

Female 1 = female, 0=male 0.551 0.0058 

Schooling Number of years in education 11.571 

 
Income Gross income (35-39 years)*  199,145  

 
Constant   1 0.9589 

Notes: * Income is in 2010 prices, SEK. 

 

Empirical estimation of the RIF 

 

                                                        
18

 Health economists often value health states of people by the TTO method where respondents value 

quality of life in relation to length of live; respondents are asked to imagine living in a given state of 

health for (typically) ten years, and then to state the shorter amount of time in full health which makes 

them indifferent between the two options (Drummond et al. 2005). Reference categories are very good 

self rated health, age 18-24 years and female. 
19 Gerdtham et al. (2015) show that the Swedish Twin Registry data used here is fairly representative 

of Sweden’s population more widely, which otherwise may be a concern for twin based datasets. 
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The EI for estimated health utility scores ranked by income is 0.03 (table II) 

indicating that higher health utility is more concentrated amongst the rich. The 

empirical RIF for EI of health utility score ranked by income is calculated as 

explained in Section 3 and the result is shown in a scatter plot in Figure 1. Each 

scatter point in Figure 1 is an individual’s recentered influence value plotted against 

their income rank. If an individual were to be removed from the sample, the influence 

on the statistic would be minus that individual’s RIF value weighted by the inverse of 

the sample size. The figure shows that those at the extreme ends of the income 

distribution have greatest influence on the EI. This is similar to the findings in Monti 

(1991) for the Gini (a univariate rank dependent index): individuals whose income 

value is at the extremes of the income distribution have greatest influence on the Gini. 

As the EI is a bivariate index, health, in addition to the ranking variable, affects the 

degree of influence an individual has on EI. In this particular example those with very 

poor health (black squares) and income levels at the extreme ends of the distribution 

are the ones with the greatest influence on EI. This result is important to note for 

researchers and policy makers. Researchers estimating a rank dependent index as a 

measure of socioeconomic related health inequality need to be sure that the 

observations with the largest influence on the statistic are not miss-codings. Policy 

makers may want to focus attention towards those individuals they can help with most 

influence on inequality – the extreme poor with poor health in this instance.  

 

Figure 1 – Scatter plot of individual RIF of EI values plotted against individual’s 

fractional income rank 
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Figure notes: Each scatter point represents an individual’s recentered influence on EI plotted against 

their fractional income rank by health value. 

 

Interpretation of RIF decomposition and comparison with WDW decomposition 

To provide more information of the characteristics of the individuals that are 

influencing the statistic, either positively or negatively and to a greater or lesser 

extent, we may plot the RIF against another variable or turn to the RIF regression 

method.
20

 Table II reports descriptive decomposition results of WDW decomposition 

of E, and RIF-EI-OLS decomposition, in addition to results for RIF-I-OLS for AC, 

CI, and WI alongside standard mean regression. In a descriptive RIF-I-OLS 

decomposition the estimated coefficients 𝜓̂ may be interpreted as an association 

between the covariate and the influence on I, providing valuable information as to 

which groups of individuals influence the inequality index. If we (naively) assume the 

error term, 𝜖, and covariates, X, are independent having controlled for selection on 

observables then the RIF-I-OLS parameter 𝜓̂ identifies the (causal) marginal effects 

                                                        
20 One could for example plot a Lowess curve of the RIF and explanatory variable to visually assess a 

potential relationship and any functional form assumption. We did this for education but there was no 

real relationship by years of education and therefore do not report the results here.  
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of a shift in the distribution of X on I. Thus, interpretation of 𝜓̂ is similar to the 

interpretation of the coefficients in standard mean regression (the results of which are 

shown in column (1) of Table II). Indeed, RIF decomposition of the mean of health, 

assuming a health function linear in parameters, is standard OLS (Firpo et al. 2009). 

 

In the decomposition analysis, years of schooling enters the model as an explanatory 

variable alongside age, gender and interview year dummies (because each twin was 

not necessarily interviewed at the same time). The coefficient estimates from RIF-EI-

OLS in column (3) of table II suggest, if interpreted as the average I partial effect, 

that if we made a marginal increase in the distribution of the number of years of 

education in the population, this would have no discernible effect on EI. There also 

appears to be no age profile regarding EI. 

 

Importantly and in contrast to the contribution estimates of WDW decomposition, the 

RIF-I-OLS identifies the effect of the covariates X on the full statistic. That is, the 

parameter estimate 𝜓̂ captures both the effect of the covariates on AC (which is two 

times the covariance of health and fractional rank) and the effect of the covariates on 

the weighting function 𝜔𝐼(ℎ). The parameter estimates 𝜓̂ presented in Columns 2-6 

of table II also vary between rank dependent indices depending on the weighting 

function. Education is found to be significantly associated with the RIF of WI and 

SRCI, but not with the RIF of AC, EI, or ARCI. That is, more educated individuals 

have larger influence on the inequality index when measured as WI and SRCI, but not 

when the AC, EI, or ARCI are considered. This highlights an important issue. The 

differences in weighting functions, and hence value judgements, among the inequality 

indices can also lead to important differences in the decomposition results. In this 
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particular example the judgement of whether to consider attainment relative 

inequality or shortfall relative inequality has bearing on whether education has a 

potential impact.
21

 It is worth noting that it is possible to identify the effect of a 

particular weighting function by comparing decomposition results for I with 

decomposition results for AC: AC has a constant weighting function, so any 

differences in the (standardised) decomposition results compared to those for the AC 

will be due to the weighting function. 

 

The last two columns in Table II report the results from WDW decomposition of E. 

The interpretation is different to any standard form of mean decomposition and to 

RIF-I-OLS decomposition: The procedure summarises I as a summation of the 

contribution of each covariate, where these are the covariate-rank covariances 

weighted by a linear health-covariate correlation. Following the standard practice, we 

report the WDW decomposition results as contributions from the covariates in levels 

and percentagewise contributions of the total index. The results suggest that about 

29% of the income-related inequalities in health is due to income-related inequalities 

in education. The contribution is statistically significant suggesting that eliminating 

income-related inequalities in education might reduce the EI of health, assuming no 

change in the ranking variable and a linear health function.
22

 As the procedure 

ignores the potential impact of the covariates on the weighting function 𝜔𝐼(ℎ), the 

percentagewise “contributions” are the same no matter the choice of I (only levels 

vary with the weighting function). That is, WDW decomposition of any inequality 

measure decomposes an absolute index (such as EI or AC) as it implicitly assumes a 

                                                        
21

 Note that the results divide the indices into two groups. On the one hand EI, AC, ARCI, and on the 

other hand WI and SRCI. This is a consequence of the high mean of the health utility index.  
22

 In the case of EI, the weighting function is a constant and therefore the condition that the weighting 

function is constant is not binding in this case. However WDW decomposition of CI and WI would 

also assume that the weighting function is a constant, which it is not. 
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constant weighting function. Bearing that in mind, the results of the two methods are 

contradicting: WDW decomposition finds a significant contribution due to education 

whereas RIF for the EI or AC finds no significant effect of education. The WDW 

result is conditional on the health utility function being linear and education having no 

impact on the ranking variable. We can possibly ignore the first former but not the 

latter; the body of evidence showing a causal effect of education on income is now 

well accepted (Card 1999). The results of the WDW decomposition appear to be 

misleading in this example and this is likely to be because of the stringent conditions 

it imposes.
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Table II – RIF-I-OLS and WDW decomposition estimates of effect of education, age and gender on rank dependent index of health  

 

MZ OLS estimation WDW - OLS 

  RIF-mean-OLS RIF-AC-OLS RIF-EI-OLS RIF-ARCI-OLS RIF-SRCI-OLS RIF-WI-OLS Contribution % contribution 

  (1) (2) (3) (4) (5) (6) (7) (8) 

Years Schooling 0.005*** 0.000 0.001 0.000 0.009*** 0.010*** 0.008*** 0.282*** 

 

(0.000) (0.000) (0.001) (0.000) (0.003) (0.003) (0.001) (0.035) 

Age -0.000* 0.000 0.001 0.000 0.002 0.003 0.001 0.022 

 

(0.000) (0.000) (0.001) (0.000) (0.002) (0.002) (0.000) (0.014) 

Male 0.009*** 0.003*** 0.014*** 0.004** 0.051*** 0.054*** 0.006*** 0.212*** 

 

(0.002) (0.001) (0.005) (0.001) (0.016) (0.017) (0.002) (0.050) 

Constant 0.930*** -0.016 -0.066 -0.018 -0.181 -0.199     

 

(0.018) (0.015) (0.058) (0.016) (0.167) (0.183)     

 

  
   

 

      

Statistic Mean of h AC EI ARCI SRCI WI EI   

Mean of RIF 0.916 0.007 0.030 0.008 0.089 0.098 0.030   

Observations 6,656 6,656 6,656 6,656 6,656 6,656 6,656 6,656 

WTP FE NO NO NO NO NO NO NO NO 

Table notes: Each column represents a separate decomposition. Column 1 is simply OLS of the health variable, because the RIF of the mean is h and RIF regression of the 

mean assuming linearity in parameters is optimally estimated using OLS. All decompositions control for year of interview fixed effects. Robust standard errors in parenthesis 

for RIF-mean-OLS and bootstrap standard errors in parenthesis for RIF-I-OLS, 999 repetitions with replacement. Bootstrap standard errors are calculated by bootstrapping 

the whole procedure (Both for RIF and WDW procedures). Testing null of the coefficient/contributions/% contribution: *** p<0.01, ** p<0.05, * p<0.1. 
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The causal effect of education on income-related health inequality 

In the previous section, our identification of the average partial effects did not use 

twin fixed effects but instead (naïvely) relied on selection on observables to satisfy 

the assumption that the errors are independent of the covariates. To highlight the 

importance of causal inference in decomposition analysis we now apply a twins 

differencing strategy that allows unobserved heterogeneity common between twins to 

be differenced out. That is, we control for factors such as innate ability and early life 

factors common to both twins, which may invalidate the exogeneity assumption and 

yield biased parameter estimates. In the case of income-related health inequality the 

concern is specifically that this unobserved heterogeneity may be correlated with 

education and the weighted covariance of health and income rank.  

 

To formally derive the within twin pair fixed effect decomposition, we denote the RIF 

values of the jth twin pair, 𝑅𝐼𝐹(ℎ, 𝐹𝑌(𝑦); 𝐼)1j and 𝑅𝐼𝐹(ℎ, 𝐹𝑌(𝑦); 𝐼)2j. Further, we let 

uj denote unobserved factors that vary between twin pairs but not within pairs, such as 

genetic characteristics and certain early life environmental factors and e1j and e2j 

denote unobserved factors specific to each twin. Assuming a linear functional form 

for the RIF, we may write these as: 

 

(25) 𝑅𝐼𝐹(ℎ, 𝐹𝑌(𝑦); 𝐼)1j = 𝑋1𝑗
′𝜓 + 𝑢𝑗 + 𝑒1𝑗 

(26) 𝑅𝐼𝐹(ℎ, 𝐹𝑌(𝑦); 𝐼)2j = 𝑋2𝑗
′𝜓 + 𝑢𝑗 + 𝑒2𝑗 

 

where 𝑋1𝑗 is a k x n matrix of covariates for the first twin in the twin pair j, 𝑋2𝑗 is for 

the second twin in the twin pair and 𝜓 is a k x 1 vector of marginal effects. Taking the 

difference yields the WTP estimator: 
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(27) 𝑅𝐼𝐹(ℎ, 𝐹𝑌(𝑦); 𝐼)1j − 𝑅𝐼𝐹(ℎ, 𝐹𝑌(𝑦); 𝐼)2j = (𝑋1𝑗 − 𝑋2𝑗)
′

𝜓𝑊𝑇𝑃 + 𝑒1𝑗 − 𝑒2𝑗 

 

where 𝜓𝑊𝑇𝑃 is the Within-Twin-Pair estimator of the effect of education. The 

unobserved factors that are common to both twins such as genetic or environmental 

form captured by uj will be differenced out of the equation yielding an unbiased OLS-

estimator of 𝜓̂ (given that these are the only sources of unobserved heterogeneity)
23

. 

Applying the WTP approach to the RIF of EI using OLS yields the RIF-EI-FE 

estimator. 

 

Table III reports the WTP results for EI, AC, CI, and WI alongside standard mean 

fixed effects regression and WDW decomposition. The results for the RIF-I-FE 

decomposition suggest that if we made a marginal increase in the number of years of 

education in the population, this would have no discernible effect on any measure of I, 

nor the mean. It therefore appears that either education has no effect on income-

related health inequality, or possibly better put: the variation in education that exists 

under an extensive egalitarian education system cannot explain the observed income-

related health inequality in Sweden.
24

                                                        
23 For a further discussion of potential sources of unobserved heterogeneity see Gerdtham et al. (2015). 
24 Gerdtham et al. (2015) show that the variation between twins is still fairly representative of the 

variation in education of the wider population and it is therefore not a reduction in variation that is 

causing this finding. 
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Table III – RIF-I-FE and WDW-WTP decomposition estimates of effect of education on rank dependent index of health  
  MZ WTP estimation WDW - WTP 

 

RIF-mean-OLS RIF-AC-OLS RIF-EI-OLS RIF-ARCI-OLS RIF-SRCI-OLS RIF-WI-OLS Contribution % contribution 

  (1) (2) (3) (4) (5) (6) (7) (8) 

Years Schooling 0.001 -0.000 -0.002 -0.000 -0.004 -0.004 0.001 0.05 

 

(0.001) (0.001) (0.002) (0.001) (0.009) (0.007) (0.002) (0.058) 

Constant 0.930*** 0.020 0.081 0.022 0.256 0.277     

 

(0.034) (0.029) (0.117) (0.032) (0.452) (0.401)     

  

      

  

 Statistic mean of h AC EI ARCI SRCI WI EI   

 Mean of RIF  0.916 0.007 0.030 0.008 0.089 0.098 0.030   

Observations 6,656 6,656 6,656 6,656 6,656 6,656 6,656 6,656 

WTP FE YES YES YES YES YES YES YES YES 

 

Table notes: Each column represents a separate decomposition. Column 1 is simply OLS with FE of the health variable.  All decompositions control for year of interview 

fixed effects. Robust standard errors in parenthesis for RIF-mean-FE and bootstrap standard errors in parenthesis for RIF-I-FE, 999 repetitions with replacement. Bootstrap 

standard errors are calculated by bootstrapping the whole procedure (Both for RIF and WDW procedures). Testing null of the coefficient/contributions/% contribution: *** 

p<0.01, ** p<0.05, * p<0.1.  
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6. Discussion 

Having introduced and illustrated both the WDW decomposition and RIF-I-OLS 

decomposition, we now compare the two approaches by summarising the underlying 

conditions and differences in interpretation. For clarity, we start by giving a side-by-

side comparison of the conditions of the two approaches.  

 
WDW conditions: RIF-I-OLS Conditions: 

I. Health can be modelled as a function 

linear in variables X and an error 

term. 

I. RIF(ℎ, 𝐹𝑌(𝑦); I) can be modelled as 

a linear in parameters function of X 

and an error term. 

II. Exogeneity: The errors from the 

health regression have zero 

conditional mean. 

II. Exogeneity: The errors from the 

RIF regression have zero 

conditional mean. 

III. The determinants of health do not 

determine rank. 

III. I is differentiable and the 

differential is bounded. 

IV. The determinants of health do not 

determine the weighting function. 

 

 
It is clear from the comparison that RIF-I-OLS imposes fewer conditions than WDW 

decomposition. The third condition for RIF-I-OLS holds as shown in the proof. The 

first condition for RIF-I-OLS is not necessary, is testable and any form of regression 

method can be used including non-linear and semi-nonparametric methods. Still, OLS 

permits very flexible formulation through inclusion of interactions and higher order 

polynomials, which is not possible in the WDW framework. Exogeneity is of huge 

importance for causal inference and is common to both methods – but both methods 

may be used as descriptive exercises without this assumption. The conditions of 
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WDW decomposition, as discussed in the introduction are often restrictive, and RIF-I-

OLS is therefore more likely to uncover the (causal) parameters of interest and is 

easier to interpret even as a descriptive exercise. 

 

The different conditions of the decomposition methods also affect the interpretation of 

the parameters as illustrated in the empirical example. The results in Tables II and III 

highlight how education’s effect on income-related health inequality as estimated by 

RIF-I-OLS can be shown alongside its effect on mean health in a consistent manner. 

Similar to mean OLS regression coefficients, the RIF-I-OLS coefficients should be 

interpreted as how a marginal change in a covariate, e.g. education, influences the 

inequality index – or if the exogeneity assumption must be relaxed, how the influence 

on the index varies by education. Under some restrictive assumptions, the WDW 

decomposition yields an interpretation in terms of both marginal and percentagewise 

(global) contributions. That is, WDW decomposition has ambitious claims on 

explaining inequality globally by dividing the index into contributions from the 

covariates potentially causing inequality. Relaxing the exogeneity assumption reduces 

these claims making WDW decomposition a descriptive exercise. Even descriptively, 

however, interpretation is blurred when the conditions of a functional form for health 

linear in variables, no change in either rank or the weighting function do not hold in 

practice. In this situation it is not clear what WDW decomposition based descriptive 

contributions measure. Thus, even if the interest of the decomposition is reduced to 

descriptively highlighting potentially important covariates that may drive inequality, 

RIF-I-OLS is preferable to WDW decomposition in most empirical applications 

because it imposes fewer implausible conditions. 
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As a result of not imposing weighting function ignorability, RIF-I-OLS, has an 

additional benefit in that it allows the analyst to assess the impact of covariates on 

different forms of I. RIF-I-OLS includes the impact of the covariates on the weighting 

function and therefore the importance of the covariates may differ between particular 

indices– in the illustrative example based on the full sample (not WTP), education 

had no association with the AC, EI and ARCI, but a significant association with WI 

and SRCI. RIF-I-OLS allows researchers to explore how the policy impacts on the 

level of inequality and how this differs depending on the particular value judgment 

and hence particular inequality index policy makers sympathise with. 

 

There is a limitation to the RIF approach. As RIF-I-OLS estimates are a first-order 

approximation of the effect of X on 𝐼(𝐻, 𝐹𝑌), the marginal effects is a local effect 

estimate of a small change in X.
25

 That RIF-I-OLS is a local estimate implies that it 

should only be considered for relatively small changes. It is therefore not reasonable 

to calculate percentagewise contributions using RIF regression. The usefulness of a 

local estimate should, however, be placed into the larger context of the overall aims of 

decomposition analysis. Fleurbaey and Schokkaert (2011) convincingly make the case 

for a structural model approach to be used for analysing fair and unfair inequalities in 

health. As a road map for the health inequality literature this may very well be the 

goal or ideal we should be aiming for. However, we are often unable to specify a 

complete structural model of health but it may still be of huge interest how a policy 

change (which is most often a marginal one) impacts both average health and health 

inequality. RIF of I regression allows this reduced form type of analysis to be made 

                                                        
25 The marginal effect estimate assumes that the joint conditional distribution of h and FY given X 

remains the same after a small change in the distribution of X (similarly for mean OLS where it is 

assumed that the conditional distribution is not affected by changes in X, i.e. what economist usually 

refer to as no general equilibrium effects). 
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without the need for restrictive assumptions making it a useful addition to a health 

economist’s toolkit.  

 

7. Conclusion 

In this paper we have illustrated that the conditions required by WDW decomposition 

do not hold in most common applications and therefore the estimated parameters are 

not easily interpreted. This makes causal analysis difficult. It is also a concern even 

when WDW decomposition is interpreted as a descriptive accounting exercise. We 

have introduced an alternative rank dependent index decomposition method that 

requires less stringent conditions, and is therefore more likely to yield the parameters 

of interest. This alternative is based on a RIF regression. We have extended these 

concepts from a univariate setting to a general bivariate rank dependent index, 

providing a method that yields the marginal effect of a shift in the distribution of X on 

the inequality index and has strong links to the program evaluation literature. This 

new decomposition approach is simple to estimate and the interpretation resembles 

that of standard conditional mean analysis. Supported by our application using the 

Swedish Twin Registry, we also claim that even as descriptive exercise the RIF 

champions the WDW decomposition: the discrepancy between the results of the two 

methods is plausibly explained by the conditions imposed by WDW decomposition 

being too restrictive in this empirical example. In an attempt to illustrate RIF-I-OLS’s 

close link to the program evaluation literature, we use linear WTP fixed effects and 

find little evidence that (twin differences) in education causally impact income-related 

health inequality in Sweden. 
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Finally, it is worth noting that the usefulness of the RIF regression goes beyond the 

estimation of marginal effects using OLS. One can for example use instrumental 

variables techniques, or control functions as per Rothe (2010), to solve endogeneity 

issues. RIF regression also allows Oaxaca-blinder type decompositions of between 

group/time differences to be decomposed for statistics other than the mean (Firpo et 

al. 2011). We have not discussed these in any great detail but they highlight the 

potential of our suggested decomposition method and its applicability to a wide range 

of empirical questions. 
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Appendix A – Derivation of the RIF for a general rank dependent index (I), the 

IF for the AC and the RIFs for AC, EI, CI, ARCI, SRCI and WI. 

Proposition 1: Let 𝐼(𝐻, 𝐹𝑌) = 𝜔𝐼(𝐻)𝐴𝐶(𝐻, 𝐹𝑌) be a general rank dependent index, 

the AC be defined as 𝐴𝐶(𝐻, 𝐹𝑌) = 2𝑐𝑜𝑣(𝐻, 𝐹𝑌) and 𝐹𝐻,𝐹𝑌
 be the joint CDF of H and 

𝐹𝑌 with corresponding pdf denoted as 𝑓𝐻,𝐹𝑌
. Then the RIF for 𝐼(𝐻, 𝐹𝑌) is given by: 

 

𝑅𝐼𝐹(ℎ, 𝐹𝑌(𝑦); 𝐼) = 𝐼(𝐻, 𝐹𝑌) + 𝐼𝐹(ℎ; 𝜔𝐼) ∗ 𝐴𝐶(𝐻, 𝐹𝑌) + 𝜔𝐼(𝐻) ∗ 𝐼𝐹(ℎ, 𝐹𝑌(𝑦); 𝐴𝐶), 

 

where 𝐼𝐹(ℎ; 𝜔𝐼) denotes the IF of the weighting function for I and 

𝐼𝐹(ℎ, 𝐹𝑌(𝑦); 𝐴𝐶) = −2𝐴𝐶 + 𝜇𝐻 − ℎ + 2ℎ𝐹𝑌(𝑦) − 2 ∫ ∫ ℎ𝑓𝐻,𝐹𝑌

+∞
𝑑ℎ𝑑𝐹𝑌(𝑧)

𝑦
 

denotes the IF for AC. 

 

Proof: To show 𝑅𝐼𝐹(ℎ, 𝐹𝑌(𝑦); 𝐼) = 𝐼(𝐻, 𝐹𝑌) + 𝐼𝐹(ℎ; 𝜔𝐼) ∗ 𝐴𝐶(𝐻, 𝐹𝑌) + 𝜔𝐼(𝐻) ∗

𝐼𝐹(ℎ, 𝐹𝑌(𝑦); 𝐴𝐶), we first apply the definition of the IF given by (12) to I yielding: 

A(1) 𝐼𝐹(ℎ, 𝐹𝑌(𝑦); 𝐼) =
𝑑

𝑑𝜀
[𝜔𝐼(𝐻)𝐴𝐶(𝐻, 𝐹𝑌)]|𝜀=0 

 

Applying the product rule to A(1) yields: 

A(2) 𝐼𝐹(ℎ, 𝐹𝑌(𝑦); 𝐼) = 𝐼𝐹(ℎ; 𝜔𝐼) ∗ 𝐴𝐶(𝐻, 𝐹𝑌) + 𝜔𝐼(𝐻) ∗ 𝐼𝐹(ℎ, 𝐹𝑌(𝑦); 𝐼) 

 

As per equation (13), adding 𝐼(𝐻, 𝐹𝑌) to A(2) yields the RIF for 𝐼(𝐻, 𝐹𝑌). 

 

To show that 

𝐼𝐹(ℎ, 𝐹𝑌(𝑦); 𝐴𝐶) = −2𝐴𝐶 + 𝜇𝐻 − ℎ + 2ℎ𝐹𝑌(𝑦) − 2 ∫ ∫ ℎ𝑓𝐻,𝐹𝑌

+∞
𝑑ℎ𝑑𝐹𝑌(𝑧)

𝑦
, we 

first note that the absolute concentration index can be written as: 

A(3) 𝐴𝐶(𝐻, 𝐹𝑌) = 2𝑐𝑜𝑣(𝐻, 𝐹𝑌) = 2 ∫ ℎ𝐹𝑌𝑑𝐹𝐻,𝐹𝑌
− 2 ∫ ℎ𝑑𝐹𝐻,∞ ∫ 𝐹𝑌𝑑𝐹∞,𝐹𝑌

  

 

Equation A(3) states that AC is a functional of the joint probability distribution 𝐹𝐻,𝐹𝑌
 

and the probability distribution 𝐹𝑌. Let 𝐺ℎ,𝐹𝑌(𝑦) be a bivariate distribution function 

obtained by an infinitesimal contamination of 𝐹𝐻,𝐹𝑌
 in both h and 𝐹𝑌(𝑦), 
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A(4) 𝐺ℎ,𝐹𝑌(𝑦) = (1 − 𝜀)𝐹𝐻,𝐹𝑌
+ 𝜀𝛿ℎ,𝐹𝑌(𝑦)  

 

We define 𝛿ℎ,𝐹𝑌(𝑦) as a joint cumulative distribution function for a joint probability 

measure that gives mass 1 to (h, 𝐹𝑌(𝑦)) jointly: 

 

A(5) 𝛿ℎ,𝐹𝑌(𝑦)(𝑙, 𝑟) = {
0 𝑖𝑓  𝑙 < ℎ 𝑜𝑟   𝑟 < 𝐹𝑌(𝑦)
1 𝑖𝑓  𝑙 ≥ ℎ 𝑎𝑛𝑑 𝑟 ≥ 𝐹𝑌(𝑦)

 

 

where l and r are drawings from 𝐻 and 𝐹𝑌 respectively. Note that if this were a 

covariance of two random variables, H and Y say, then we could go directly to 

deriving the IF. However, the ranking variable, 𝐹𝑌, is not a random variable but a 

function of a random variable. This function is also affected by the infinitesimal 

contamination. Let 𝐺𝑦 also be a distribution function obtained by an infinitesimal 

contamination of 𝐹𝑌 in y: 

A(6) 𝐺𝑦 = (1 − 𝜀)𝐹𝑌 + 𝜀𝛿𝑦 

 

where 𝛿𝑦 is defined a cumulative distribution function for a probability measure that 

gives mass 1 to y: 

A(7) 𝛿𝑦(𝑝) = {
0 𝑖𝑓  𝑝 < 𝑦
1 𝑖𝑓  𝑝 ≥ 𝑦

; 

 

where p is a drawing from Y. Then, note that the IF of AC, which we can define as a 

function of two probability measures, 𝐴𝐶(𝐹𝐻,𝐹𝑌
, 𝐹𝑌), is the Gâteaux derivative of AC 

in the direction of the distribution functions 𝐺ℎ,𝐹𝑦(𝑦) and 𝐺𝑦: 

A(8) 𝐼𝐹(ℎ, 𝐹𝑌(𝑦); 𝐴𝐶) =  𝑙𝑖𝑚𝜀→0

𝐴𝐶(𝐺ℎ,𝐹𝑦(𝑦),𝐺𝑦)−𝐴𝐶(𝐹𝐻,𝐹𝑌
,𝐹𝑌) 

𝜀
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if this limit is defined for every point ℎ ∈ ℝ and 𝑦 ∈ ℝ, where ℝ denotes the real line. 

By substitution for 𝐴𝐶(𝐺ℎ,𝐹𝑦
, 𝐺𝑦) and 𝐴𝐶(𝐹𝐻,𝐹𝑌

, 𝐹𝑌) in the formula for the IF we 

have: 

A(9) 𝐼𝐹(ℎ, 𝐹𝑌(𝑦); 𝐴𝐶) =  𝑙𝑖𝑚𝜀→0

2 ∫ ℎ𝐺𝑦𝑑𝐺ℎ,𝐹𝑌(𝑦)−∫ ℎ𝑑𝐺ℎ,∞ ∫ 𝐺𝑦𝑑𝐺∞,𝐹𝑌(𝑦)−𝑐𝑜𝑣(𝐻,𝐹𝑌)

𝜀
 

 

Substituting A(4) and A(6) into A(9) yields: 

 

A(10) 𝐼𝐹(ℎ, 𝐹𝑌(𝑦); 𝐴𝐶) =  𝑙𝑖𝑚𝜀→02[∫ ℎ((1 − 𝜀)𝐹𝑌 + 𝜀𝛿𝑦)𝑑((1 − 𝜀)𝐹𝐻,𝐹𝑌
+

𝜀𝛿ℎ,𝐹𝑌(𝑦)) − ∫ ℎ𝑑((1 − 𝜀)𝐹𝐻,∞ + 𝜀𝛿ℎ,∞) ∫((1 − 𝜀)𝐹𝑌 + 𝜀𝛿𝑦)𝑑((1 − 𝜀)𝐹∞,𝐹𝑌
+

𝜀𝛿∞,𝐹𝑌(𝑦)) − 𝑐𝑜𝑣(𝐻, 𝐹𝑌)]/𝜀 

 

 

Which after taking the limit and re-arranging yields: 

A(11) 𝐼𝐹(ℎ, 𝐹𝑌(𝑦); 𝐴𝐶) = 2 [−2(∫ ℎ𝐹𝑌𝑑𝐹𝐻,𝐹𝑌
− ∫ ℎ𝑑𝐹𝐻,∞ ∫ 𝐹𝑌𝑑𝐹∞,𝐹𝑌

) +

∫ ℎ𝑑𝐹𝐻,∞ ∫ 𝐹𝑌𝑑𝐹∞,𝐹𝑌
− ∫ ℎ𝑑𝛿ℎ,∞ ∫ 𝐹𝑌𝑑𝐹∞,𝐹𝑌

+ ∫ ℎ𝐹𝑌𝑑𝛿ℎ,𝐹𝑌(𝑦) −

∫ ℎ𝑑𝐹𝐻,∞ ∫ 𝐹𝑌𝑑𝛿∞,𝐹𝑌(𝑦) + ∫ ℎ𝛿𝑦𝑑𝐹𝐻,𝐹𝑌
− ∫ ℎ𝑑𝐹𝐻,∞ ∫ 𝛿𝑦𝑑𝐹∞,𝐹𝑦

] 

 

Term by term A(11) is equal to:  

A(12) −2 ∫ ℎ𝐹𝑌𝑑𝐹𝐻,𝐹𝑌
+ 2 ∫ ℎ𝑑𝐹𝐻,∞ ∫ 𝐹𝑌𝑑𝐹∞,𝐹𝑌

= −𝐴𝐶, 

A(13) ∫ ℎ𝑑𝐹𝐻,∞ ∫ 𝐹𝑌𝑑𝐹∞,𝐹𝑌
=

𝜇𝐻

2
, 

A(14) − ∫ ℎ𝑑𝛿ℎ,∞ ∫ 𝐹𝑌𝑑𝐹∞,𝐹𝑌
= −

ℎ

2
, 

A(15) ∫ ℎ𝐹𝑌𝑑𝛿ℎ,𝐹𝑌(𝑦) = ℎ𝐹𝑦(𝑦), 
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A(16) − ∫ ℎ𝑑𝐹𝐻,∞ ∫ 𝐹𝑌𝑑𝛿∞,𝐹𝑌(𝑦) = −𝜇𝐻𝐹𝑦(𝑦), 

A(17) − ∫ ℎ𝑑𝐹𝐻,∞ ∫ 𝛿𝑦𝑑𝐹∞,𝐹𝑌
= −𝜇𝐻 ∫ ∫ 𝛿𝑦𝑓∞,𝐹𝑌

+∞+∞
𝑑ℎ𝑑𝐹𝑌(𝑦) =

−𝜇𝐻 ∫ ∫ 1𝑓∞,𝐹𝑌

+∞+∞

𝑦
𝑑ℎ𝑑𝐹𝑌(𝑧) = −𝜇𝐻 ∫ ∫ 1𝑓∞,𝐹𝑌

+∞+∞
𝑑ℎ𝑑𝐹𝑌(𝑦) +

𝜇𝐻 ∫ ∫ 1𝑓∞,𝐹𝑌

+∞𝑦
𝑑ℎ𝑑𝐹𝑌(𝑦) = −𝜇𝐻 + 𝜇𝐻𝐹𝑌(𝑦), 

A(18) ∫ ℎ𝛿𝑦𝑑𝐹𝐻,𝐹𝑌
= ∫ ∫ ℎ𝛿𝑦𝑓𝐻,𝐹𝑌

+∞
𝑑ℎ𝑑𝐹𝑌(𝑦)

+∞
= ∫ ∫ ℎ𝑓𝐻,𝐹𝑌

+∞
𝑑ℎ𝑑𝐹𝑌(𝑧)

+∞

𝑦
=

∫ ∫ ℎ𝑓𝐻,𝐹𝑌

+∞
𝑑ℎ𝑑𝐹𝑌(𝑦)

+∞
− ∫ ∫ ℎ𝑓𝐻,𝐹𝑌

+∞
𝑑ℎ𝑑𝐹𝑌(𝑧)

𝑦
=

𝜇𝐻 − ∫ ∫ ℎ𝑓𝐻,𝐹𝑌

+∞
𝑑ℎ𝑑𝐹𝑌(𝑧)

𝑦
. 

 

Together these yield: 

A(19) 𝐼𝐹(ℎ, 𝐹𝑌(𝑦); 𝐴𝐶) = −2𝐴𝐶 + 𝜇𝐻 − ℎ + 2ℎ𝐹𝑌(𝑦) −

2 ∫ ∫ ℎ𝑓𝐻,𝐹𝑌

+∞
𝑑ℎ𝑑𝐹𝑌(𝑧)

𝑦
,  

This completes the proof. 

 

 

Corollary 1: The RIFs for the AC, EI, CI, ARCI, SRCI and the WI are given by: 

 

𝑅𝐼𝐹(ℎ, 𝐹𝑌(𝑦); AC) = AC + 𝐼𝐹(ℎ, 𝐹𝑌(𝑦); AC) 

𝑅𝐼𝐹(ℎ, 𝐹𝑌(𝑦); EI) = 𝐸𝐼 +
4

𝑏𝐻 − 𝑎𝐻
𝐼𝐹(ℎ, 𝐹𝑌(𝑦); AC) 

𝑅𝐼𝐹(ℎ, 𝐹𝑌(𝑦); CI) = 𝐶𝐼 +
(𝜇𝐻 − ℎ)

𝜇𝐻
2 ∗ AC +

1

𝜇𝐻
𝐼𝐹(ℎ, 𝐹𝑌(𝑦); AC) 

𝑅𝐼𝐹(ℎ, 𝐹𝑌(𝑦); 𝐴𝑅CI) = 𝐴𝑅𝐶𝐼 +
(𝜇𝐻 − ℎ)

(𝜇𝐻 − 𝑎𝐻)2
AC +

1

𝜇𝐻 − 𝑎𝐻
𝐼𝐹(ℎ, 𝐹𝑌(𝑦); AC) 

𝑅𝐼𝐹(ℎ, 𝐹𝑌(𝑦); 𝑆𝑅CI) = 𝑆𝑅𝐶𝐼 +
(−𝜇𝐻 + ℎ)

(𝑏𝐻 − 𝜇𝐻)2
∗ AC +

1

𝑏𝐻 − 𝜇𝐻
𝐼𝐹(ℎ, 𝐹𝑌(𝑦); AC) 

𝑅𝐼𝐹(ℎ, 𝐹𝑌(𝑦); WI)

= 𝑊𝐼 +
−(𝑏𝐻 − 𝑎𝐻)[(𝑏𝐻 + 𝑎𝐻 − 2𝜇𝐻)(ℎ − 𝜇𝐻)]

((𝑏𝐻 − 𝜇𝐻)(𝜇𝐻 − 𝑎𝐻))2
AC

+
𝑏𝐻 − 𝑎𝐻

(𝑏𝐻 − 𝜇𝐻)(𝜇𝐻 − 𝑎𝐻)
𝐼𝐹(ℎ, 𝐹𝑌(𝑦); AC) 
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Proof: To show the result of Corollary 1, Proposition 1 states the IFs for the 

weighting functions for the AC, EI, CI, ARCI, SRCI and WI need to be calculated. 

The weighting functions for both the AC and EI are constants, therefore the IFs for 

their weighting functions will be zero and we can plug in straight away the functions 

we need into the formula for the RIF of I. The IF for the CI weighting function is: 

A(20) 𝐼𝐹(ℎ; 𝜔𝐶𝐼) =
𝑑

𝑑𝜀

1

[(1−𝜀) ∫ ℎ𝑑𝐹𝐻+𝜀ℎ]
−

1

− ∫ ℎ𝑑𝐹𝐻
|𝜀=0. 

 

Differentiating A(20), taking the limit with respect to 𝜀 𝜀 and noting that ∫ ℎ𝑑𝐹𝐻 =

𝜇𝐻 gives us: 

A(21) 𝐼𝐹(ℎ; 𝜔𝐶𝐼) =
∫ ℎ𝑑𝐹𝐻−ℎ

∫ ℎ𝑑𝐹𝐻 ∫ ℎ𝑑𝐹𝐻
=

(𝜇𝐻−ℎ)

𝜇𝐻
2  

 

Substituting A(21) into the formula for the RIF for I yields the RIF for CI: 

A(22) 𝑅𝐼𝐹(ℎ, 𝐹𝑌(𝑦); CI) = 𝐶𝐼 +
(𝜇𝐻−ℎ)

𝜇𝐻
2 ∗ AC +

1

𝜇𝐻
𝐼𝐹(ℎ, 𝐹𝑌(𝑦); AC) 

 

The IF for the ARCI weighting function is: 

A(23) 𝐼𝐹(ℎ; 𝜔𝐴𝑅𝐶𝐼) =
𝑑

𝑑𝜀

1

[(1−𝜀) ∫(ℎ−𝑎𝐻)𝑑𝐹𝐻+𝜀(ℎ−𝑎𝐻)]
−

1

− ∫(ℎ−𝑎𝐻)𝑑𝐹𝐻
|𝜀=0 

 

Differentiating A(23) and taking the limit with respect to 𝜀 gives us: 

A(24) 𝐼𝐹(ℎ; 𝜔𝐴𝑅𝐶𝐼) =
∫(ℎ−𝑎𝐻)𝑑𝐹𝐻−(ℎ−𝑎𝐻)

∫(ℎ−𝑎𝐻)𝑑𝐹𝐻 ∫(ℎ−𝑎𝐻)𝑑𝐹𝐻
=

(𝜇𝐻−ℎ)

(𝜇𝐻−𝑎𝐻)2 

 

Substituting A(24) into the formula for the RIF for I yields the RIF for ARCI: 

A(25) 𝑅𝐼𝐹(ℎ, 𝐹𝑌(𝑦); 𝐴𝑅CI) = 𝐴𝑅𝐶𝐼 +
(𝜇𝐻−ℎ)

(𝜇𝐻−𝑎𝐻)2
AC +

1

𝜇𝐻−𝑎𝐻
𝐼𝐹(ℎ, 𝐹𝑌(𝑦); AC) 
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Following a similar argument as for ARCI, the IF for the SRCI is given by: 

A(26) 𝐼𝐹(ℎ; 𝜔𝑆𝑅𝐶𝐼) =
∫(𝑏𝐻−ℎ)𝑑𝐹𝐻−(𝑏𝐻−ℎ)

∫(𝑏𝐻−ℎ)𝑑𝐹𝐻 ∫(𝑏𝐻−ℎ)𝑑𝐹𝐻
=

(−𝜇𝐻+ℎ)

(𝑏𝐻−𝜇𝐻)2
 

 

Substituting A(26) into the formula for the RIF for I yields the RIF for SRCI: 

A(27) 𝑅𝐼𝐹(ℎ, 𝐹𝑌(𝑦); 𝑆𝑅CI) = 𝑆𝑅𝐶𝐼 +
(−𝜇𝐻+ℎ)

(𝑏𝐻−𝜇𝐻)2 ∗ AC +
1

𝑏𝐻−𝜇𝐻
𝐼𝐹(ℎ, 𝐹𝑌(𝑦); AC). 

 

The IF for the WI weighting function is given by: 

A(28) 𝐼𝐹(ℎ; 𝜔𝑊𝐼) =

𝑑

𝑑𝜀
[

𝑏𝐻−𝑎𝐻

(𝑏𝐻−∫ ℎ𝑑((1−𝜀)𝐹𝐻+𝜀𝛿))(∫ ℎ𝑑((1−𝜀)𝐹𝐻+𝜀𝛿)−𝑎𝐻)
−

𝑏𝐻−𝑎𝐻

(𝑏𝐻−𝜇𝐻)(𝜇𝐻−𝑎𝐻)
] |𝜀=0 

 

Expanding gives us: 

A(29) 𝐼𝐹(ℎ; 𝜔𝑊𝐼) =

𝑑

𝑑𝜀
[

𝑏𝐻−𝑎𝐻

(𝑏𝐻(1−𝜀)𝜇𝐻+𝑏𝐻𝜀ℎ−𝑏𝐻𝑎𝐻−(1−𝜀)2𝜇𝐻
2 −(1−𝜀)𝜀ℎ𝜇𝐻+(1−𝜀)𝑎𝐻𝜇𝐻−(1−𝜀)𝜀ℎ𝜇𝐻−𝜀2ℎ2+𝜀𝑎𝐻ℎ)

−

𝑏𝐻−𝑎𝐻

(𝑏𝐻−𝜇𝐻)(𝜇𝐻−𝑎𝐻)
] |𝜀=0 

 

Differentiating with respect to 𝜀 and taking the limit w.r.t 𝜀 yields: 

A(30) 𝐼𝐹(ℎ; 𝜔𝑊𝐼) =
−(𝑏𝐻−𝑎𝐻)[(𝑏𝐻+𝑎𝐻−2𝜇𝐻)(ℎ−𝜇𝐻)]

((𝑏𝐻−𝜇𝐻)(𝜇𝐻−𝑎𝐻))2  

 

Substituting A(30) into the formula for the RIF for I yields the RIF for WI: 

A(31) 𝑅𝐼𝐹(ℎ, 𝐹𝑌(𝑦); WI) =

𝑊𝐼 +
−(𝑏𝐻−𝑎𝐻)[(𝑏𝐻+𝑎𝐻−2𝜇𝐻)(ℎ−𝜇𝐻)]

((𝑏𝐻−𝜇𝐻)(𝜇𝐻−𝑎𝐻))2 AC +
𝑏𝐻−𝑎𝐻

(𝑏𝐻−𝜇𝐻)(𝜇𝐻−𝑎𝐻)
𝐼𝐹(ℎ, 𝐹𝑌(𝑦); AC), 

This completes the proof.
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Appendix B - Linking proposition 1 and corollary 1 to Essama-Nssah and 

Lambert (2012) and Firpo et al. (2007) 

The (R)IF for a univariate rank dependent index, the Gini index (a measure of the 

concentration of one variable), has been derived in Essama-Nssah and Lambert 

(2012) and Monti (1991) and reported in Firpo et al. (2007). If a univariate setting is 

assumed, where individuals are ranked by health instead of income (i.e. 𝐹𝐻 is 

substituted for 𝐹𝑌), our derivation of the RIF of the concentration index coincides 

with previous derivations of the (R)IF of the Gini. As Essama-Nssah and Lambert 

(2012) show that their result is the same as shown in Firpo et al. (2007), we only need 

to link our results to the latter. 

 

The IF for the AC is given by proposition 1: 

(B1) 𝐼𝐹(ℎ, 𝐹𝑌(𝑦); 𝐴𝐶) = −2𝐴𝐶 + 𝜇𝐻 − ℎ + 2ℎ𝐹𝑌(𝑦) − 2 ∫ ∫ ℎ𝑓𝐻,𝐹𝑌

+∞
𝑑ℎ𝑑𝐹𝑌(𝑧)

𝑦
 

 

If in deriving (B1) we had used 𝐹𝐻 as the ranking variable instead of 𝐹𝑌 we would 

have got the IF for the absolute Gini index (AG): 

(B2) 𝐼𝐹(ℎ, 𝐹𝑌(𝑦); 𝐴𝐺) =

−2𝐴𝐺 + 𝜇𝐻 − ℎ + 2ℎ𝐹𝐻(ℎ) − 2 ∫ ∫ ℎ𝑓𝐻,𝐹𝐻

+∞
𝑑ℎ𝑑𝐹𝐻(𝑧)

ℎ
. 

 

Similarly to how the RIF of CI was derived in Appendix A, we find the RIF of the 

Gini index (GI) equals: 

(B3) 𝑅𝐼𝐹(ℎ; GI) = −
ℎ−2𝜇𝐻

𝜇𝐻
GI +

1

𝜇𝐻
𝐼𝐹(ℎ; AG). 

 

Rearranging yields 
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(B4) 𝑅𝐼𝐹(ℎ; GI) =

−
ℎ−2𝜇𝐻

𝜇𝐻
GI +

1

𝜇𝐻
[−2AG + 𝜇𝐻 − ℎ + 2ℎ𝐹𝐻 − 2 ∫ ∫ ℎ𝑓𝐻,𝐹𝑧

+∞
𝑑ℎ𝑑𝐹𝑧

ℎ
] =

−
ℎ−2𝜇𝐻

𝜇𝐻
GI + −2GI + 1 −

ℎ

𝜇𝐻
+

2

𝜇𝐻
ℎ𝐹𝐻 −

2

𝜇𝐻
∫ ∫ ℎ𝑓𝐻,𝐹𝑧

+∞
𝑑ℎ𝑑𝐹𝑧

ℎ
 

 

Note: Firpo et al. (2007) denote the Lorenz ordinate as: 

(B5) 
1

𝜇𝐻
∫ ∫ ℎ𝑓𝐻,𝐹𝑧

+∞
𝑑ℎ𝑑𝐹𝑧

ℎ
=

1

𝜇𝐻
𝑞(𝛼, 𝐹𝐻) 

 

Where 𝛼 is the fractional rank. Firpo et al. (2007) also denote the area under the 

Lorenz curve as: 

(B6) 𝑅(𝐹𝐻) =  ∫ 𝑞(𝛼, 𝐹𝐻)
1

0
𝑑𝛼 

 

The Gini index equals the area between the line of equality and the Lorenz curve: 

(B7) GI = 1 − 2𝑅(𝐹𝐻) 

 

Substituting for (B6)-(B8) into (B5) yields: 

(B8) 𝑅𝐼𝐹(ℎ; GI) = −
(ℎ−2𝜇𝐻)(1−2𝑅(𝐹𝐻))

𝜇𝐻
− 2 + 4𝑅(𝐹𝐻) + 1 −

ℎ

𝜇𝐻
+

2

𝜇𝐻
(ℎ𝐹𝐻 −

𝑞(𝛼, 𝐹𝐻))] 

 

Which after re-arranging yields the expression presented in Firpo et al. (2007): 

(B9) 𝑅𝐼𝐹(ℎ; GI) = 1 +
2ℎ𝑅(𝐹𝐻)

𝜇𝐻
−

2

𝜇𝐻
(ℎ(1 − 𝐹𝐻) + 𝑞(𝛼, 𝐹𝐻))]  

 
  



 46 

References 

 

Allanson, P., Petrie, D. Understanding the vertical equity judgements underpinning 

health inequality measures. Health Economics 2014;23; 1390-1396. 

Burström, K., Sun, S., Gerdtham, U. G., Henriksson, M., Johannesson, M., Levin, L. 

A. & Zethraeus, N. Swedish experience-based value sets for EQ-5D health 

states. Quality of Life Research 2014;23; 431-442. 

Card, D. 1999. The Causal effect of education on earnings. In Ashenfelter, O. and 

Card, D. Handbook of Labor Economics. Volume 3, Part A. 1999 p. 1801-1863. 

Deaton, A.S., Health, inequality and economic development. Journal of Economic 

Literature 2003; 41; 113-158. 

Drummond, M., Sculpher, M., Torrance, G., O.Brien, B. & Stoddart G. Methods for 

the economic evaluation of health care programmes. Oxford: Oxford University 

Press; 2005. 

Erreygers, G. Correcting the Concentration Index. Journal of Health Economics, 

2009; 28; 504-515. 

Erreygers, G., Kessels, R. Regression based decompositions of rank-dependent 

indicators of socioeconomic inequality in health. In J. Bishop and J.G. 

Rodriguez, Research on Economic Inequality. 2013. 

Erreygers, G & Van Ourti, T, Measuring socioeconomic inequality in health, health 

care and health financing by means of rank-dependent indices: A recipe for 

good practice. Journal of Health Economics 2011; 30(4); 685-694. 

Essama-Nssah, B. & Lambert, P, J. Influence functions for policy impact analysis. In 

J. Bishop. Research on Economic Inequality 2012; 135-159. 

Firpo, S., Fortin, N. M. & Lemieux, T. Decomposing wage distributions using 

recentered influence function regressions. 2007. Working paper. 

Firpo, S., Fortin, N. M. & Lemieux, T. Unconditional Quantile Regressions. 

Econometrica 2009;77; 953-973. 

Fortin, N. M., Lemieux, T. & Firpo, S. Decomposition Methods in Economics. In 

Ashenfelter, O. and Card, D. Handbook of Labor Economics. Volume 4a, 2011; 

1-102. 

Fleurbaey, M. & Schokkaert, E. Unfair inequalities in health and health care. Journal 

of Health Economics 2009;28; 73-90. 

Gerdtham, U-G., Lundborg, P., Lyttkens, C.h., Nystedt, P. Do socioeconomic factors 

really explain income-related inequality in health? Applying twin design to 

standard decomposition analysis. Scandinavian Journal of Economics 2015. In 

press. 

Gomez, P.M., Lopez-Nicholas, A. Socio-economic inequalities in health in Catalonia. 

Hacienda Pública Española / Revista de Economía Pública 2005;175; 103-121 

Gravelle, H. Measuring income related inequality in health: standardisation and the 

partial concentration index. Health Economics 2003;12; 803-819. 

Hampel, F. R. Influence Curve and Its Role in Robust Estimation. Journal of the 

American Statistical Association 1974;69; 383-393. 

Hosseinpoor, A. R., Van Doorslaer, E., Speybroeck, N., Naghavi, M., Mohammad, 

K., Majdzadeh, R., Delavar, B., Jamshidi, H. & Vega, J. Decomposing 

socioeconomic inequality in infant mortality in Iran. International Journal of 

Epidemiology 2006;35; 1211-1219. 

Kjellsson, G, Gerdtham, U-G. On correcting the concentration index for binary 

variables. Journal of Health Economic 2013a;32; 659-670.  

http://ideas.repec.org/a/eee/jhecon/v30y2011i4p685-694.html
http://ideas.repec.org/a/eee/jhecon/v30y2011i4p685-694.html
http://ideas.repec.org/a/eee/jhecon/v30y2011i4p685-694.html
http://ideas.repec.org/s/eee/jhecon.html


 47 

Kjellsson, G, Gerdtham, U-G. Lost in Translation: Rethinking the Inequality 

Equivalence Criteria for Bounded Health Variables, in Pedro Rosa Dias, Owen 

O’Donnell, Health and Inequality (Research on Economic Inequality, Volume 

21), Emerald Group Publishing Limited, 2013b. p.3-32 

Kjellsson, G, Gerdtham, U-G, Petrie D. Lies, damned lies, and health inequality 

measurements: Understanding the value judgments. Epidemiology. 2015. 

(forthcoming)  

Lauridsen J, Christiansen T, Gundgaard J, Häkkinen U, Sintonen H. Decomposition 

of health inequality by determinants and dimensions. Health Economics 

2007;16; 97-102. 

Leu, R.E, Schellhorn, M. The Evolution of Income-Related Health Inequalities in 

Switzerland over Time. IZA Discussion Paper Series No. 1346. 2004. 

Mackenbach, J. P., Stirbu, I., Roskam, A. J., Schaap, M. M., Menvielle, G., Leinsalu, 

M., Kunst, A. E. & European Union Working Group on Socioeconomic 

Inequalities in Health. Socioeconomic inequalities in health in 22 European 

countries. New England Journal of Medicine 2008;358; 2468-81. 

Mackenbach, J. P., Kulhanova, I., Menvielle, G., Bopp, M., Borrell, C., Costa, G., 

Deboosere, P., Esnaola, S., Kalediene, R., Kovacs, K., Leinsalu, M., 

Martikainen, P., Regidor, E., Rodriguez-sanz, M., Strand, B. H., Hoffmann, R., 

Eikemo, T. A., Ostergren, O., Lundberg, O., et al. Trends in inequalities in 

premature mortality: a study of 3.2 million deaths in 13 European countries. 

Journal of Epidemiology and Community Health 2015;69; 207-217. 

McGrail, K.M, van Doorslaer, E, Ross, N.A, Sanmartin, C. Income-related health 

inequalities in Canada and the United States: A decomposition analysis. 

American Journal of Public Health 2009; 99; 1856-1863. 

Monti, A. C. The study of the gini concentration ratio by means of the influence 

function. Statistica 1991; 51; 561-577 

Morasae, E.K, Forouzan, A.S, Majdzadeh, R, Asadi-Lari, M, Noorbala, A.A, 

Hosseinpoor, A.R. Understanding determinants of socioeconomic inequality in 

mental health in Iran's capital, Tehran: a concentration index decomposition 

approach. International Journal for Equity in Health 2012.11:18 

Rothe, C. Identification of unconditional partial effects in nonseparable models. 

Economics Letters 2010; 109; 171-174. 

Van Doorslaer, E., Koolman, X. & Jones, A. M. Explaining income-related 

inequalities in doctor utilisation in Europe. Health Economics, 2004;13; 629-

647.  

Wagstaff, A., Paci, P. & Van Doorslaer, E. On the measurement of inequalities in 

health. Social science and Medicine 1991; 33; 545-57 

Wagstaff, A. The bounds of the concentration index when the variable of interest is 

binary, with an application to immunization inequality. Health Economics 2005; 

14; 429-432  

Wagstaff, A., Van Doorslaer, E. & Watanabe, N. On decomposing the causes of 

health sector inequalities with an application to malnutrition inequalities in 

Vietnam. Journal of Econometrics 2003;112; 207-223. 

Wilcox, R. R. (2005). Introduction to robust estimation and hypothesis testing (2nd 

ed). Amsterdam: Elsevier. 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Lauridsen%20J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Christiansen%20T%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Gundgaard%20J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22H%C3%A4kkinen%20U%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Sintonen%20H%22%5BAuthor%5D

