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Abstract

We present a polynomial time method for identifying the maximal set in excess
demand at a given payoff vector. This set can be used in“large”partnership formation
problems to identify the minimum element in the set of individually rational payoff
vectors at which there is no overdemanded set of agents. This minimum element
corresponds to the minimum Walrasian equilibrium price vector in a special case of
the partnership formation problem.

JEL Classification: C61; C62.
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1 Introduction

Several recent papers have investigated the partnership formation problem.1 This problem
involves a set of agents who can stay independent or form a partnership with some other
agent if it is in their mutual interest to do so. Agents that stay independent generate a
value for themselves whereas a cooperating pair must agree upon how to split their jointly
generated value. A prominent special case of this problem is the assignment game (Shapley
and Shubik, 1971), where the agents are split into two disjoint groups (e.g., buyers and
sellers) and the roles of the agents are fixed.

In contrast to the assignment game, equilibrium may fail to exist for a partnership
formation problem due to its one-sided nature. A more positive result is due to Andersson

∗Andersson would like to thank the Ragnar Söderberg Foundation for financial support. Andersson,
Erlanson and Gudmundsson would like to thank the Jan Wallander and Tom Hedelius foundation for
financial support.

†Department of Economics, Lund University, Box 7082, SE–220 07 Lund, Sweden. Corresponding
author: Tommy Andersson, E-mail: tommy.andersson@nek.lu.se.

1See Alkan and Tuncay (2013), Andersson et al. (2013b), Chiappori et al. (2012), and Talman and
Yang (2011).
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et al. (2013b) who show that the set of individually rational payoff vectors at which there
is no overdemanded set contains a unique minimum element pmin that can be used to
determine whether an equilibrium exists or not.2 Their proof is constructive as it is based
on an algorithm for identifying pmin. Each iteration of the algorithm determines whether
there is an overdemanded set or not. If so, a minimal such set is identified.3 However, for
their algorithm to terminate, an exhaustive search through all subsets of agents is required
which makes the algorithm computationally infeasible for problems involving many agents.

The main innovation of this note is to present a polynomial time method for identifying
a maximal set in excess demand at a given payoff vector. By construction, this set shares
an important property with the minimal overdemanded sets examined by Andersson et
al. (2013b).4 It turns out that a maximal set in excess demand, therefore, can be used
as a termination criterion and to update payoffs in a modified version of the algorithm in
Andersson et al. (2013b) without altering its nice convergence properties. Furthermore,
there is a unique maximal set in excess demand, making the path – the sequence of payoff
vectors traversed from the start payoffs to pmin – unique. This is important as there
are typically billions of different paths connecting these two payoff vectors even for “small”
problems. An advantage is hence that no additional selection rule is needed for determining
the exact path. In addition, we show through simulations that the algorithm typically
converges in fewer iterations when using the maximal set in excess demand rather than an
arbitrary set in excess demand. In roughly 96 percent of the investigated instances, the
algorithm terminates weakly faster when based on the maximal set. Moreover, it requires
on average 16 to 21 percent fewer iterations than if the set is chosen arbitrarily among the
sets in excess demand.

Related to this note, Alkan and Tuncay (2013) present a polynomial time algorithm
for identifying an equilibrium for the partnership formation problem. Their equilibrium
notion is, however, not identical to the one used by Andersson et al. (2013b). Alkan
and Tuncay (2013) introduce the opportunity for agents to form half-partnerships (i.e.,
agents are allowed to have two half-partners as an alternative to having one full partner).
Additionally, their algorithm generally does not converge to pmin. Andersson et al. (2013a)
and Sankaran (1994) have provided different polynomial time methods for identifying the
maximal set in excess demand for assignment games.

This note is organized as follows. Section 2 contains the model and some basic defini-
tions. Section 3 describes the polynomial time method for identifying the maximal set in
excess demand. Section 4 presents the results of the simulation study.

2A set of agents S is overdemanded at a payoff vector if the number of agents demanding only agents
in the set S is strictly greater than the number of agents in the set S.

3An overdemanded set S is minimal if no proper subset of S is overdemanded.
4The notion of a set in excess demand is weaker than the notion of a minimal overdemanded set as

demonstrated by van der Laan and Yang (2008) and Andersson et al. (2013a).
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2 The Model and Basic Definitions

The finite set of agents is denoted N = {1, 2, . . . , n}. Each i ∈ N can stay independent
and generate a value of vii = 0 or form a partnership with some other agent j �= i. In the
latter case, agents i and j generate the joint value vji = vij ∈ Z. Let v be the symmetric
n × n matrix containing vij as its (i, j)th entry. The pair (N, v) is called a problem.5

A matching μ : N → N satisfies μ(i) = j if and only if μ(j) = i. A payoff vector is
p = (p1, p2, . . . , pn) ∈ R

n, and it is said to be individual rational if pi ≥ 0 for all i ∈ N .
Agents are assumed to have quasilinear preferences, i.e., the demand correspondence for
agent i ∈ N at payoff vector p is

Di(p) = {j ∈ N : vij − pj ≥ vik − pk for all k ∈ N}.

The agents who demand only agents in S ⊆ N at p are O(S, p) = {i ∈ N : Di(p) ⊆ S}.
The set S is overdemanded at p if |O(S, p)| > |S|. The set of individually rational payoff
vectors at which there are no overdemanded sets is given by:

H = {p ∈ R
n : pi ≥ vii for all i ∈ N and |O(S, p)| ≤ |S| for all S ⊆ N}.

A payoff vector pmin ∈ H is minimum if pmin ≤ p for all p ∈ H. As shown by Andersson
et al. (2013b) there exists a unique minimum payoff vector pmin ∈ H for each problem
(N, v). For the assignment game, this payoff vector corresponds to the unique minimum
Walrasian equilibrium price vector (Demange and Gale, 1985).

The agents who demand some agent in S ⊆ N at p are U(S, p) = {i ∈ N : Di(p)∩ S �=
∅}. A set S ⊆ N is in excess demand at p if, for all non-empty T ⊆ S, the following
condition is satisfied:

|U(T, p) ∩O(S, p)| > |T |. (1)

As demonstrated by Andersson et al. (2013a) and Mo et al. (1988), there exists a unique
(possibly empty) maximal set in excess demand for any given payoff vector.

3 A Method for Identifying the Unique Maximal Set

in Excess Demand

Andersson et al. (2013b) demonstrate that pmin can be identified using a simple algorithm
where the payoffs in each step are increased for agents in an arbitrary minimal overde-
manded set. Importantly, this algorithm still converges to pmin if the payoff increases and
the termination criterion instead is based on the maximal set in excess demand, as this set
by construction satisfies a condition examined by Andersson et al. (2013b, see Lemma 1).
As discussed in the introduction, there are several benefits to making this modification.

5A special case of this model is the assignment game (Shapley and Shubik, 1971) where the roles of
the agents are given, and all agents in N are exogenously split into two disjoint groups, N1 and N2 (with
N1 ∪N2 = N), where agents in the same group cannot be partners. See Talman and Yang (2011).
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Of vital importance for larger problems is what is demonstrated next: the maximal set in
excess demand can be found in polynomial time.

To identify the set, we use a directed bipartite graph G constructed from an artificial
problem (N ∪N ′, w). Interpret each i′ ∈ N ′ = {1′, 2′, . . . , n′} as the “clone” of agent i ∈ N ,
and let

wj′i = wij′ =

{
vij if i ∈ N and j′ ∈ N ′ is the clone of j ∈ N

−1 otherwise.

With some abuse of notation, extend p such that pi′ = pi for each clone i′ ∈ N ′ of i ∈ N .
Note that Di(p) ⊆ N ′ for all i ∈ N in (N ∪ N ′, w) as wii′ = 0 > wij for all j ∈ N .
In particular, j ∈ Di(p) in (N, v) if and only if the corresponding clone j′ ∈ Di(p) in
(N ∪N ′, w). Hence, a set S is in excess demand in (N, v) if and only if the corresponding
clones S ′ are in excess demand in (N ∪N ′, w).

A matching that satisfies demand is χ : N → N ′ ∪ {∅}, where, for all i ∈ N such that
χ(i) �= ∅, χ(i) ∈ Di(p). Let χ−1(T ′) ≡ {i ∈ N : χ(i) ∈ T ′} be the agents matched to the
clones in T ′ ⊆ N ′. Assume throughout that χ is maximal in the sense that χ−1(N ′) �⊂
χ̃−1(N ′) for each matching that satisfies demand χ̃. Collect the unmatched agents in
U ≡ {i ∈ N : χ(i) = ∅}.

Next, we construct the graph G = (V,E). The vertex set V is N ∪N ′. The edge set E
contains an arc from i ∈ N to j′ ∈ N ′ whenever j′ ∈ Di(p) and χ(i) �= j′ and an arc from
j′ ∈ N ′ to i ∈ N whenever χ(i) = j′. In G, t ∈ V is reachable from s ∈ V through vk ∈ V
if there exists a sequence (s = v0, v1, . . . , vm = t) such that vk is adjacent to vk+1 for all
k = 0, 1, . . . , m− 1. Let

R′ ≡ {j′ ∈ N ′ : j′ is reachable from some i ∈ U}.

Collect their matches in R ≡ χ−1(R′). Note that Di(p) ⊆ R′ for all i ∈ U , hence U ⊆
O(R′, p).

We remark that χ can be found in polynomial time, for instance by using the tech-
niques in Edmonds (1967). In addition, it is possible to check if t is reachable from s in
polynomial time (breadth first search or iterative deepening depth-first search algorithms).
Consequently, if the method for identifying the maximal set in excess demand is based on
the notion of reachable vertices in G, it will have polynomial time complexity. This is the
case for the method described in the following theorem. We show that R′ is the maximal
set in excess demand for (N ∪N ′, w). Hence, the maximal set in excess demand for (N, v)
is exactly the agents whose clones are in R′.

Theorem 1. Fix a problem (N, v) and a payoff vector p. Construct R′ as described above.
Then the set of agents whose clones are R′ is the maximal set in excess demand at p
whenever some set is in excess demand.

Proof. If U = ∅, then χ(i) ∈ Di(p) for all i ∈ N . Then, for all T ′ ⊆ N ′, O(T ′, p) ⊆ χ−1(T ′),
as for all i �∈ χ−1(T ′), χ(i) ∈ Di(p) and χ(i) �∈ T ′, and hence i �∈ O(T ′, p). In other words,
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the agents matched to the clones T ′, χ−1(T ′), are the only ones who can demand clones
exclusively in T ′, as each other agent i �∈ χ−1(T ′) must demand her match χ(i) �∈ T ′.
Hence, |O(T ′, p)| ≤ |χ−1(T ′)| = |T ′|. Therefore no set is in excess demand (nor is any set
overdemanded).

Assume instead U �= ∅. We first demonstrate that R ⊆ O(R′, p). For each i ∈ R, χ(i) ∈
R′. Hence, i is reachable from some j ∈ U through χ(i). But then each k′ ∈ Di(p) \ {χ(i)}
is reachable by j through i, and therefore each such k′ ∈ R. Hence, Di(p) ⊆ R′ for all
i ∈ R.

Next, we show that R′ is in excess demand. Take an arbitrary non-empty set T ′ ⊆ R′

and agent i ∈ χ−1(T ′) ⊆ χ−1(R′) = R. As just shown, i ∈ O(R′, p). Additionally,
χ(i) ∈ Di(p)∩T ′, and hence i ∈ U(T ′, p). By inspecting two cases, we will show that there
always exists an agent m �∈ χ−1(T ′) such that condition (1) is satisfied for T ′ (and hence
R′ is in excess demand):

|U(T ′, p) ∩ O(R′, p)| ≥ |χ−1(T ′) ∪ {m}| = |T ′|+ 1 > |T ′|.

Case 1: There exists i ∈ U such that Di(p) ∩ T ′ �= ∅. As noted before, U ⊆ O(R′, p). Let
m ≡ i.
Case 2: For all i ∈ U , Di(p) ∩ T ′ = ∅. As T ′ is reachable from some i ∈ U , there exists
j ∈ R such that χ(j) �∈ T ′ and Dj(p) ∩ T ′ �= ∅. Let m ≡ j.

Finally, we demonstrate that R′ is the maximal set in excess demand. Suppose, to
obtain a contradiction, there exists S ′ �⊆ R′ in excess demand. Define T ′ ≡ S ′ \ R′ �= ∅.
By contradiction, suppose there exists i �∈ χ−1(T ′) such that i ∈ U(T ′, p) ∩ O(S ′, p). As
i ∈ U(T ′, p) and T ′ ∩ R′ = ∅, i �∈ O(R′, p). Therefore, i �∈ U , and hence χ(i) �= ∅; also,
i �∈ R, so χ(i) �∈ R′. As i ∈ O(S ′, p), χ(i) ∈ S ′. But then χ(i) ∈ S ′\R′ = T ′, a contradiction
to i �∈ χ−1(T ′). Therefore

|U(T ′, p) ∩ O(S ′, p)| ≤ |χ−1(T ′)| = |T ′|.

Condition (1) is then not satisfied for T ′ ⊆ S ′, contradicting S ′ being in excess demand.

4 Simulations

To conclude, we report the results of a simulation study based on modifying the algorithm
of Andersson et al. (2013b). We contrast always increasing payoffs for agents in the
maximal set in excess demand (MaxED Path) with always increasing payoffs for a randomly
selected set in excess demand (Random Path). For each problem size, we examine 1,000
instances with uniformly distributed values, and for each instance, we compare MaxED Path

with 1,000 random paths. The findings are summarized in Table 1 for problems containing
10 to 15 agents.

On the top rows of Table 1, the average number of payoff increases needed to converge
to pmin is presented for MaxED Path and Random Path. The bottom rows contain percent-
ages describing how often MaxED Path requires weakly and strictly fewer iterations than
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Random Path. Notable is that MaxED Path is weakly faster than between 95.7 and 96.8
percent of the random paths. It also requires on average 16 to 21 percent fewer iterations
to converge to pmin.

Problem size (number of agents) 10 11 12 13 14 15

Average number of iterations MaxED Path 7.30 9.59 9.07 11.1 10.4 12.2

Average number of iterations Random Path 8.73 11.2 11.2 13.4 13.2 15.2

MaxED Path weakly faster than Random Path (%) 96.5 95.7 95.9 95.8 96.6 96.8

MaxED Path strictly faster than Random Path (%) 63.5 66.6 76.1 77.4 83.9 84.5

Table 1: Summary statistics for the simulation study.
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