
Norkute, Milda

Working Paper

A Monte Carlo Study of a Factor Analytical Method for
Fixed-Effects Dynamic Panel Models

Working Paper, No. 2014:7

Provided in Cooperation with:
Department of Economics, School of Economics and Management, Lund University

Suggested Citation: Norkute, Milda (2014) : A Monte Carlo Study of a Factor Analytical Method
for Fixed-Effects Dynamic Panel Models, Working Paper, No. 2014:7, Lund University, School of
Economics and Management, Department of Economics, Lund

This Version is available at:
https://hdl.handle.net/10419/260105

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/260105
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 
Working Paper 2014:7 
 
Department of Economics 
School of Economics and Management 

 
 

 

A Monte Carlo Study of a Factor 
Analytical Method for Fixed-Effects 
Dynamic Panel Models 
 
 
 
Milda Norkute 
 
February 2014 



A MONTE CARLO STUDY OF A FACTOR ANALYTICAL

METHOD FOR FIXED-EFFECTS DYNAMIC PANEL MODELS∗

Milda Norkute†

Lund University

Sweden

February 17, 2014

Abstract

In a recent article Bai (Fixed-Effects Dynamic Panel Models, A Factor Analytical

Method. Econometrica 81, 285–314, 2013a) proposes a new factor analytical method (FAM)

for the estimation of fixed-effects dynamic panel data models, which has the unique and

very useful property that it is asymptotically bias free. In this paper we provide Monte

Carlo evidence of the good small-sample performance of FAM, that complement Bai’s

theoretical study.

JEL Classification: C13; C33.
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1 Introduction

It is well known that the within-groups (WG) estimator of the autoregressive coefficient in

dynamic panel data models is subject to an incidental parameter bias, typically referred to as

the “Nickell bias”. This bias, which occurs because the number of fixed-effects parameters

grows without bound, is of order 1/T, indicating that the WG estimator is inconsistent in

panels where T is small even if N goes to infinity (see, for example, Baltagi, 2008). This

problem has led to increased interest in generalized method of moments (GMM), see Baltagi,

(2008) for an overview of this literature. However, although estimation methods based on

∗Corresponding address: Department of Economics, Lund University, P.O. Box 7082, S-220 07 Lund, Sweden.
Tel.: +46 46 222 7919. E-mail address: Milda.Norkute@nek.lu.se.

†The author would like to thank Joakim Westerlund, David Edgerton and Fredrik N. G. Andersson for con-
structive comments and suggestions.
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GMM will successfully remove the incidental parameter bias, they are instead biased of

the order 1/N. This means that they are inconsistent in panels where N is small even if

T goes to infinity (see Alvarez and Arellano, 2003). GMM approaches are also known to

suffer from problems of small-sample inefficiency (see, for example, Kiviet, 1995), and weak

instrumentation (see Roodman, 2009). Another possibility is to use bias correction methods,

which have the advantage of not being reliant on instrumental variables (see, for example,

Kiviet, 1995; Hahn and Kuersteiner, 2002). These methods are, however, still biased in panels

where T is small due to the approximation error in the asymptotic bias term. To the best of

our knowledge, FAM is the only existing estimation method for dynamic panel data models

that is bias free under a wide range of conditions (see, for example, Moon et al., 2013).

In a recent paper, Bai (2013a, b) proposes a factor analytical method (FAM) to estimate

fixed-effects dynamic panel data models. One of the main features of this method is that

there is no need for consistent estimation of the fixed-effects themselves but only their vari-

ance, which means that with this approach there is no “Nickell bias”. Indeed, as Bai (2013a,

b) shows one can even allow for heteroscedasticity and still there is no bias. In contrast to

other approaches, FAM therefore allows for asymptotically unbiased inference regardless

of whether the incidental parameters are in the mean or in the variance. Of course, as is

well known, asymptotic results need not provide accurate approximations in small samples.

Thus, while certainly very promising, the usefulness of FAM from an applied point of view is

yet to be proven since its small-sample properties are still unknown. The aim of the present

paper is to fill this gap in the literature.

2 FAM

The data generating process (DGP) considered in the present paper is the same as in Bai

(2013a), and is given by

yit = ρyit−1 + µi + δt + ε it, (1)

where i = 1, ..., N, t = 1, ..., T, µi and δt are individual- and time-specific fixed-effects, re-

spectively, y10 = ... = yN0 = 0, |ρ| < 1, and ε it is an error term that is assumed to be

independently distributed with E(ε it) = 0, E(ε2
it) = σ2

t > 0 and E(ε4
it) < ∞. It is further

assumed that Sµ = (N − 1)−1 ∑N
i=1(µi − µ̄)2 > 0, where µ̄ = N−1 ∑N

i=1 µi. Equation (1) can
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be written in a matrix form as

yi = Γ1Tµi + Γδ + Γε i, (2)

where yi = (yi1, ..., yiT)
′, ε i = (ε i1, ..., ε iT)

′, δ = (δ1, ..., δT)
′ and 1T = (1, ..., 1)′ are all T × 1

vectors. The matrix Γ is T × T and is given by

Γ =


1 0 0 . . . 0
ρ 1 0 . . . 0
ρ2 ρ 1 . . . 0
...

. . . . . . . . .
...

ρT−1 . . . ρ2 ρ 1

 .

The sample covariance matrix of yi is given by Sy = (N − 1)−1 ∑N
i=1(yi − ȳ)(yi − ȳ)′,

where ȳ = N−1 ∑N
i=1 yi. Under the above assumptions, it can be shown that

E(Sy) = Σ(θ) = Γ(1T1′TSµ + Ψ)Γ′, (3)

where Ψ = diag(σ2
1 , ..., σ2

T) and θ = (Sµ, ρ, σ2
1 , ..., σ2

T)
′ is the vector containing the parame-

ters of interest. The model in (2) can be seen as a common factor model with factor load-

ing Γ1T and score µi, suggesting that the estimation can be carried out using methods de-

signed for such models (see, for example, Anderson and Amemiya, 1988). FAM is based on

quasi-maximum likelihood whereby θ is estimated by minimizing the following “discrep-

ancy function”

Q(θ) = log(|Σ(θ)|) + tr (SyΣ(θ)−1). (4)

Denote by ρ̂ the resulting estimator of ρ. As Bai (2013a, Theorem 1) shows, as N, T → ∞

with NT−3 → 0,

√
NT(ρ̂− ρ)→d N(0, γ−1), (5)

where→d signifies convergence in distribution and γ = limT→∞ T−1 ∑T
t=2 σ−2

t (σ2
t−1 + ρ2σ2

t−2 +

. . . + ρ2(t−2)σ2
1 ).

1 Hence, under the above conditions, there is no asymptotic bias and the es-

timator is asymptotically efficient. Moreover, the condition NT−3 → 0 is not necessary if we

are only concerned with consistency (this condition is only imposed to ensure a simple form

for the limiting distribution). In fact, consistency only requires N → ∞.

1Under homoscedasticity, γ = (1− ρ2)−1 (see Bai 2013b, Theorem S.2).
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Remark 1. Note that θ only contains Sµ, not µ1, ..., µN , and also how the time-specific fixed-

effects are removed by subtracting ȳ in Sy. This means that the incidental parameter prob-

lem caused by the growing dimension of θ does not arise. The way in which the inciden-

tal parameter problem is treated in FAM is therefore very different from the conventional

approach of either performing the within transformation or by taking first differences. Of

course, the dimension of θ is still growing in T; however, the estimation of σ2
1 , ..., σ2

T does not

affect the consistency of ρ̂ (see Bai, 2013a, for an explanation).

Remark 2. While under the above assumptions ε it is homoskedastic in i, this is not necessary.

If ε it is heteroskedastic in both i and t, then the estimation can proceed in exactly the same

way as in the above, but then σ2
1 , ..., σ2

T only capture the average variances over cross-sections

(and not the variances themselves). This removes the incidental parameter problem, as the

dimension of θ does not depend on N.

3 Monte Carlo results

The DGP used in this section is given by (1) with ε it ∼ N(0, σ2
it), µi ∼ U(1, 2) and ρ ∈

{0, 0.5, 0.95}. We run four distinct experiments2:

A. σ2
it = 1, δt = 0;

B. σ2
it = 1 if i < bN/2c and σ2

it = 2 otherwise, δt = 0;

C. σ2
it = 1 if t < bT/2c and σ2

it = 1/3 otherwise, δt = 0;

D. σ2
it = 1, δt ∼ U(1, 2).

In experiment A ε it is homoscedastic, whereas in experiments B and C heteroscedas-

ticity is permitted by allowing for two distinct variance regimes. In experiments A–C the

time-specific effects are absent, while in experiment D this is no longer the case. In each ex-

periment the data are generated for 5, 000 panels with T ∈ {5, 10, 50} and N ∈ {10, 50, 100}.

The small-sample performance of FAM is compared to the performance of four other

estimators (of ρ); WG, the bias-corrected ordinary least squares (OLS) estimator of Hahn

and Kuersteiner (2002), the Anderson and Hsiao (1981) instrumental variables (IV) estimator

using lagged levels as instruments3, and the GMM estimator of Arellano and Bond (1991),

2All computational work is performed in GAUSS 11 and the BFGS algorithm is used for constrained opti-
mization with non-negativity constraints imposed on the variance parameters.

3We use level rather than first-differenced instruments, as the IV estimator based on the latter instruments
has a singularity point and exhibits high variance over a wide range of parameter values (see Arellano, 1989).
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where the last three are henceforth denoted bcOLS, AHl and abGMM, respectively. A large

number of results were produced, but due to space constraints we focus here on the bias and

root mean squared error (RMSE). Estimation using abGMM is computationally intensive, so

for this estimator we only report results for the case when T = 5.

The results for experiment A are presented in Table 1. We see that the bias of FAM is

close to zero for all the sample sizes considered. In fact, in terms of bias FAM outperforms

the other estimators. We also see that the bias becomes smaller in absolute value as T and

N increases, a finding that is in line with the
√

NT-consistency of FAM (irrespective of the

relative rate of expansion of N and T). As expected, with T fixed, WG is seriously biased

and there is no improvement as N increases. abGMM is also noticeable biased when N

is small; however, the performance improves as N increases. Similarly, although severely

biased when N and T are small, the performance of bcOLS improves when T increases. We

also see that the performance of bcOLS is much worse when ρ = 0.95 than for ρ = 0.5 or

ρ = 0, which is in agreement with the findings in the previous literature. The performance

of AHl is quite good and is only dominated by that of FAM.

FAM is superior, not only in terms of bias, but also in terms of RMSE. The RMSE of FAM

is decreasing in both T and N. The fact that RMSE is also decreasing in ρ is in agreement with

the theoretical result that the asymptotic variance of FAM is inversely related to the absolute

value of ρ. One can also observe, that except for the case when ρ = 0.95, the RMSE of bcOLS

and FAM are quite comparable, which is consistent with the fact that the both estimators

are asymptotically efficient. The results provided in Table 1 further suggest that the least

efficient estimator is AHl, which exhibits the highest RMSE.

Tables 2 and 3 contain the results for experiments B and C. We see that the bias and RMSE

of FAM remain small, thus supporting the theoretical result that ρ̂ is asymptotically unbiased

and consistent even in the presence of heteroscedasticity. Note in particular how the absolute

bias is decreasing in T, suggesting that the estimation of time-specific variances does not

result in incidental parameter bias. We also see that for FAM the results for experiments B

and C are very similar to those for experiment A, and that the differences in results become

less apparent as N and T increase. In fact, none of the estimators considered seem to much

affected by the presence of heteroscedasticity, at least not for larger values of N and T. The

relative performance of the estimators in experiments B and C is therefore the same as in

experiment A.
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The results for experiment D are not reported but we briefly describe them. First, FAM

continues to perform well even in the presence of time-specific fixed-effects, which is again in

line with our expectations. The only difference in comparison to experiments A–C is that the

removal of time effects seem to result in increased RMSE. Second, the relative performance

of the estimators is roughly the same as in experiments A–C with FAM leading to the best

performance by far.
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FAM WG bcOLS AHl abGMM
T N Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

ρ = 0
5 10 0 0.147 -0.251 0.294 -0.102 0.21 0.036 0.879 -0.132 0.343

50 -0.001 0.061 -0.249 0.259 -0.099 0.13 0.009 0.19 -0.028 0.167
100 -0.001 0.041 -0.25 0.255 -0.1 0.117 0.003 0.134 -0.016 0.116

10 10 0.001 0.101 -0.11 0.151 -0.021 0.116 0.014 0.189 - -
50 0 0.043 -0.11 0.119 -0.021 0.055 0.004 0.088 - -
100 0 0.03 -0.111 0.116 -0.022 0.043 0.001 0.064 - -

50 10 0 0.045 -0.02 0.049 0 0.046 0.004 0.067 - -
50 0 0.02 -0.02 0.028 0 0.02 0.001 0.03 - -
100 -0.001 0.014 -0.02 0.025 -0.001 0.015 0 0.022 - -

ρ = 0.5
5 10 -0.004 0.119 -0.294 0.334 -0.053 0.197 0.278 64.44 -0.283 0.491

50 -0.002 0.044 -0.245 0.254 0.006 0.079 0.012 0.261 -0.041 0.16
100 -0.001 0.03 -0.242 0.246 0.01 0.057 0.005 0.172 -0.022 0.107

10 10 -0.004 0.082 -0.15 0.179 -0.015 0.108 -0.452 21.586 - -
50 -0.001 0.031 -0.129 0.135 0.008 0.045 0.244 37.221 - -
100 0 0.022 -0.128 0.131 0.009 0.033 0.066 25.761 - -

50 10 -0.001 0.037 -0.031 0.051 -0.002 0.041 0.003 0.102 - -
50 0 0.016 -0.029 0.034 0 0.018 0.001 0.051 - -
100 0 0.011 -0.029 0.032 0 0.013 0.001 0.037 - -

ρ = 0.95
5 10 0.004 0.069 -0.097 0.126 0.274 0.29 0.016 0.14 -0.019 0.114

50 0 0.024 -0.072 0.078 0.303 0.306 0.001 0.047 -0.003 0.04
100 0 0.017 -0.071 0.074 0.305 0.306 0 0.033 -0.002 0.027

10 10 0.001 0.026 -0.028 0.04 0.164 0.167 0.004 0.059 - -
50 0 0.009 -0.02 0.023 0.173 0.173 0 0.021 - -
100 0 0.007 -0.02 0.021 0.173 0.174 0 0.015 - -

50 10 0 0.005 -0.004 0.007 0.035 0.036 0 0.022 - -
50 0 0.002 -0.002 0.003 0.037 0.037 0 0.008 - -
100 0 0.001 -0.002 0.003 0.037 0.037 0 0.006 - -

Table 1: Simulation results from experiment A.
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FAM WG bcOLS AHl abGMM
T N Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

ρ = 0
5 10 0.003 0.175 -0.252 0.298 -0.102 0.218 0.043 0.704 -0.129 0.329

50 -0.001 0.07 -0.249 0.26 -0.099 0.133 0.01 0.172 -0.029 0.165
100 -0.001 0.048 -0.25 0.255 -0.1 0.118 0.004 0.122 -0.015 0.116

10 10 0.001 0.112 -0.11 0.155 -0.021 0.121 0.016 0.185 - -
50 0 0.048 -0.11 0.121 -0.021 0.058 0.004 0.086 - -
100 0 0.034 -0.111 0.116 -0.022 0.044 0.002 0.062 - -

50 10 0 0.047 -0.02 0.051 0 0.048 0.004 0.069 - -
50 0 0.021 -0.02 0.029 0 0.022 0.001 0.031 - -
100 0 0.015 -0.02 0.026 -0.001 0.016 0.001 0.022 - -

ρ = 0.5
5 10 -0.001 0.16 -0.339 0.38 -0.107 0.231 -0.093 62.515 -0.432 0.634

50 -0.002 0.055 -0.289 0.298 -0.047 0.099 -0.205 15.635 -0.092 0.252
100 -0.001 0.037 -0.285 0.289 -0.042 0.075 0.035 1.046 -0.048 0.163

10 10 -0.006 0.096 -0.166 0.197 -0.033 0.12 -0.04 6.621 - -
50 -0.001 0.036 -0.145 0.151 -0.009 0.049 0.192 11.651 - -
100 0 0.026 -0.143 0.147 -0.008 0.036 -0.114 8.698 - -

50 10 -0.002 0.041 -0.032 0.053 -0.003 0.043 0.003 0.096 - -
50 0 0.017 -0.03 0.035 0 0.019 0.001 0.047 - -
100 0 0.012 -0.03 0.033 -0.001 0.013 0.001 0.034 - -

ρ = 0.95
5 10 0.009 0.103 -0.144 0.175 0.218 0.248 0.03 0.203 -0.039 0.156

50 0 0.031 -0.104 0.11 0.266 0.269 0.002 0.061 -0.006 0.051
100 0 0.021 -0.101 0.105 0.268 0.27 0.001 0.042 -0.003 0.035

10 10 0.001 0.034 -0.044 0.056 0.147 0.152 0.007 0.081 - -
50 0 0.012 -0.03 0.032 0.162 0.163 0 0.027 - -
100 0 0.008 -0.029 0.03 0.163 0.164 0 0.019 - -

50 10 0 0.007 -0.006 0.009 0.033 0.034 0 0.03 - -
50 0 0.002 -0.003 0.004 0.035 0.036 0 0.01 - -
100 0 0.002 -0.003 0.004 0.036 0.036 0 0.007 - -

Table 2: Simulation results from experiment B.
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FAM WG bcOLS AHl abGMM
T N Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

ρ = 0
5 10 0.009 0.17 -0.173 0.221 -0.007 0.165 0.008 1.409 -0.128 0.33

50 0 0.054 -0.167 0.178 0 0.075 0.007 0.187 -0.028 0.164
100 0 0.037 -0.167 0.173 -0.001 0.054 0.002 0.128 -0.016 0.114

10 10 0.002 0.108 -0.101 0.146 -0.011 0.116 0.013 0.197 - -
50 0.001 0.041 -0.102 0.113 -0.012 0.054 0.004 0.095 - -
100 0 0.029 -0.102 0.108 -0.013 0.04 0.002 0.069 - -

50 10 0.001 0.05 -0.019 0.053 0.001 0.051 0.005 0.074 - -
50 0 0.02 -0.02 0.03 -0.001 0.022 0.001 0.033 - -
100 0 0.014 -0.02 0.026 -0.001 0.016 0 0.024 - -

ρ = 0.5
5 10 0.003 0.136 -0.154 0.196 0.115 0.186 0.035 0.813 -0.125 0.3

50 -0.002 0.037 -0.118 0.127 0.159 0.169 0.001 0.105 -0.015 0.089
100 -0.001 0.025 -0.115 0.12 0.162 0.167 0 0.073 -0.008 0.06

10 10 -0.001 0.09 -0.13 0.162 0.007 0.106 -1.273 56.908 - -
50 0 0.029 -0.107 0.114 0.032 0.054 -0.007 0.298 - -
100 0 0.02 -0.106 0.11 0.034 0.046 -0.001 0.188 - -

50 10 -0.001 0.041 -0.03 0.053 -0.001 0.044 0.005 0.119 - -
50 0 0.016 -0.028 0.034 0.001 0.019 0 0.061 - -
100 0 0.011 -0.028 0.031 0.002 0.014 0 0.045 - -

ρ = 0.95
5 10 0.004 0.057 -0.035 0.061 0.348 0.354 0.006 0.075 -0.005 0.064

50 0 0.017 -0.026 0.032 0.359 0.359 0 0.026 -0.001 0.022
100 0 0.012 -0.026 0.029 0.359 0.36 0 0.019 -0.001 0.015

10 10 0.001 0.023 -0.02 0.031 0.173 0.175 0.002 0.036 - -
50 0 0.008 -0.015 0.017 0.179 0.179 0 0.013 - -
100 0 0.005 -0.014 0.016 0.179 0.179 0 0.009 - -

50 10 0 0.005 -0.003 0.005 0.036 0.037 0 0.013 - -
50 0 0.002 -0.002 0.002 0.037 0.037 0 0.005 - -
100 0 0.001 -0.002 0.002 0.037 0.037 0 0.003 - -

Table 3: Simulation results from experiment C.
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Figure 1: The bias and RMSE for all estimators and varying ρ from experiment A.
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Figure 2: The bias and RMSE for all estimators and varying ρ from experiment B.
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Note: See Figure 1 for an explanation.
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Figure 3: The bias and RMSE for all estimators and varying ρ from experiment C.
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Note: See Figure 1 for an explanation.
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