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Communication and Coordination in Teams

INTRODUCTION

When tasks are specialized and interdependent, coordination becomes important for orga-

nizations and the ability to facilitate coordination is often put forward as a reason for their

existence (e.g., Simon, 1991; Grant, 1996; Kogut and Zander, 1996). Understanding why

groups may or may not be able to coordinate their actions, and how coordination mecha-

nisms should be designed, is thus key to explaining and improving organizational efficiency.1

Coordination problems may have their greatest impact in organizational settings where

the lowest quality of individual inputs disproportionably affects the output quality for the

whole team or organization. This feature is a hallmark of cross-functional teams in which

each function is essential for the team’s overall success. Examples of such teams include

product development in which several departments, or firms, are involved (e.g., Ancona and

Caldwell, 1992; Pinto, Pinto and Prescott, 1993; Keller, 2001), surgery teams (Lingard et al.,

2004), cancer care teams (Fennell et al., 2010), and research teams (Wildman et al., 2012).

It is also reminiscent of services such as security and safety, data collection and other general

quality assurance activities. Camerer (2003) mentions the joint production of documents in

banks, law and accounting firms, as well as airline departures.

One obvious way to coordinate teams is via communication among team members; that

is, by transferring information about what each member intends to do. However, when agents

act strategically, voluntary communication does not straightforwardly translate into efficient

coordination (e.g., Cooper et al., 1992; Weber et al., 2001; Andersson and Holm, 2013; Kriss,

Blume and Weber, 2016). Members of cross-functional teams are also often assigned from

different organizational units, which may result in limited work experience with one another.

And as a project passes through different stages and requires the input from different units,

team membership may blur, shortening work relationships and creating uncertainty with

1 See, for example, Lawrence and Lorsch (1967), Sinha and Van de Ven (2005), Grandori and Soda (2006)
and Sherman and Keller (2011) for evidence of the difficulties in choosing efficient coordination mechanisms.
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whom to communicate. Finally, the rise of virtual or global teams with declining levels of

co-location of team members adds another layer that increases the need but also the costs for

communication and coordination (e.g., Hertel, Geister and Konradt, 2005; Mesmer-Magnus

et al., 2011; Daim et al., 2012; Miloslavic, Wildman and Thayer, 2015). A team leader may

bring relief, but as cross-functional teams often involve several organizational units, team

members may have “double loyalties” as they answer to other managers besides the team

leader. Because the composition of such teams may also be in a constant state of flux, leaders

may be left with little time to build up the necessary authority or influence (Hackman and

Wageman, 2005; Daim et al., 2012).

A large empirical literature documents that team processes in general (e.g., Cohen and

Bailey, 1997; Lepine et al., 2008; Mathieu et al., 2008), and internal team communication

and information sharing in particular (e.g., Mesmer-Magnus and DeChurch, 2009; Buljac-

Samardzic et al., 2010; Sivasubramaniam, Liebowitz and Lackman, 2012) are strongly related

to team performance. There are however, to the best of our knowledge, no established best

practices for how teams should use communication to solve difficult coordination problems.

On the contrary, the findings in the meta-analysis of Mesmer-Magnus and DeChurch (2009)

indicate that teams fail to share information in situations in which it is most needed, for

example when there are high levels of task interdependence.2 The absence of best prac-

tices is perhaps not surprising given that researchers and practitioners are confronted with

a plethora of organizational parameters on task characteristics, team characteristics, and

potential routines to facilitate and structure communication.

In this article we develop a parsimonious model to explore the mechanisms behind coor-

dination problems in teams of common interest with costs to communication. Our goal is to

examine when and to which extent communication can help alleviate coordination problems

in situations in which communication is most crucial, that is when a team’s output dis-

2 Similarly, Fehr (2017) describes results from a lab experiment in which subjects can choose to implement
a costly communication technology. Despite communication being necessary to prevent coordination failure
in the experiment, only about half the participants are willing to pay the small fee. Participants hence seem
to overestimate their ability to coordinate, and underestimate the value of communication.
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proportionally depends on the lowest quality input of a single member. Our modeling and

simulation choices are inspired by Hollenbeck, Beersma and Schouten (2012) who argue that

team performance can be classified into three underlying constructs: skill differentiation, the

degree to which members have specialized functional capacities that make it more difficult to

substitute members; authority differentiation, the degree to which decision-making respon-

sibility is vested in individual members or subgroups of the team; and temporal stability,

the degree to which team members have a history of working together. Skill differentiation

motivates the use of the weakest-link game at the core of our model (further described below)

as this game reflects the notion that each agent is not easily replaceable in the team’s output

function. Authority differentiation motivates our analysis of communication routines that

vary the degree to which decision-making power lies within the team: voluntary communi-

cation, several initial rounds of mandatory communication, or a team leader with varying

degree of authority. Finally, temporal stability motivates our analysis of both simulated

short-run outcomes and analytical long-run equilibria.

We use a weakest-link game as the core of the model because in this game the payoff for

all participants depends on the lowest level of costly effort chosen by any one participant.

In this game, all agents profit from everyone else choosing a high level of effort; hence, if

all agents believe that everyone else will provide high effort, the optimal choice is to also

contribute high effort, leading to a productive equilibrium. However, choosing high effort is

risky because effort is costly and payoff is low if a single player contributes at a lower effort

level. As a result, low-effort beliefs breed low-effort actions and a low productivity outcome

for the group (Knez and Camerer, 1994).

We embed this game in a repeated framework with recurring interactions between players

because this allows us to analyze the dynamics of organizational learning and the speed of

convergence toward a steady state under various communication routines. Following the

literature on coordination in organizations (e.g., March and Simon, 1958; Cyert and March,

1963; Heath and Staudenmeyer, 2000; Aggarwal, Siggelkow and Singh, 2011), we only require
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our agents to be boundedly rational: They have limited foresight and information processing

capabilities, and may occasionally experiment or make mistakes. As cross-functional teams

often exist only for a brief duration, we run simulations to establish the determinants of

efficiency gains when agents have only a few rounds of interaction. We also solve our model

analytically to learn why short-term outcomes occur and to pin down the determinants for

efficiency gains or losses in teams with stable membership.3

We have three major findings. First, costly voluntary communication is unlikely to solve

coordination problems, unless teams are very small, incentives to coordinate on efficient

actions are extremely strong, or the costs of communication are negligible. The reason is

that communication costs, even very small ones, imply that agents have to consider whether

their message will change their colleagues’ course of action. There is thus a trade-off between

lowering the strategic uncertainty for the team and an agent’s private costs of communication.

Second, simulations that analyze the transition to the long-run outcome paint a similarly

gloomy picture: The low-efficiency states that emerge in the long run have considerable

explanatory power also in the short term. This dampens hopes that team coordination may

be sustainable at least for a short while before starting to unravel. Encouraging agents to

occasionally experiment — that is, allowing them to communicate a higher message or choose

a higher action to disrupt a low equilibrium — helps briefly, but only when experiments

occur in the messaging (rather than action) phase. Unsurprisingly, coordination unravels

more quickly in larger groups, but, remarkably, even teams as small as four subjects are

3 Lab experiments have so far tested only the short-run with typically 8-12 rounds. Formal game-
theoretical models of communication have used a variety of games and assumptions about communication
costs, information and rationality. Cheap talk models examine the effects of pre-play costless communication
on outcomes in a variety of games (e.g., Crawford and Sobel, 1982; Farrell and Rabin, 1996). Closest to our
model, Ellingsen and Östling (2010) model cheap talk by agents using level-k models of strategic thinking.
They find that as long as truth-telling is lexicographically preferred to lying, costless communication facil-
itates coordination in games with common interest, positive spillovers and strategic complementarities like
the weakest-link game. Models of costly communication however mostly analyze sender-receiver games with
perfectly rational agents and examine how outcomes vary with private information and conflicts of interest
between sender and receiver (e.g., Austen-Smith, 1994; Dewatripont and Tirole, 2005; Gossner, Hernandez
and Neyman, 2006; Calvo-Armengol, De Marti and Prat, 2009; Wilson, 2014). In a team setting though,
members commonly share a basic interest in achieving a joint goal (e.g., Hertel, Geister and Konradt, 2005)
and hence conflicts of interest is an unlikely explanation for the coordination difficulties observed in practice
and experiments.
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typically unable to coordinate on efficient outcomes.

Third, we analyze a number of communication routines. First, mandating communication

in each round or fully compensating agents for communication costs removes the adverse

incentives and makes the team coordinate efficiently. Forcing agents to communicate for only

several initial rounds improves outcomes, however only marginally. A team leader handling

communication may improve efficiency, but not unambiguously so: She must expect agents to

choose the communicated action and must have enough authority for efficient coordination

to occur. These results matter for the efficiency of cross-functional teams in which team

leaders lack the authority to command workers from different units or lack the time to build

up authority when membership is fluid.

Throughout the article we compare our model’s predictions to findings from the organiza-

tional design and the experimental literature on team coordination. For example, our model

proposes a microfoundation for the frequent coordination failures documented in new and

inter-organizational collaborations where communication routines are often missing (e.g.,

Hoopes and Postrel, 1999; Heath and Staudenmeyer, 2000; Zollo, Reuer and Singh, 2002).

Our model’s predictions also match key findings from the experimental literature on team

coordination and communication: For example, we provide an explanation to the striking

differences documented between experiments with costly and costless communication, and

why making communication mandatory or fully compensating the costs of communication

is much more effective than providing large, partial subsidies (Blume and Ortmann, 2007;

Kriss, Blume and Weber, 2016). Our results also shed light on why letting a team leader

handle communication may improve outcomes over a no-communication situation but should

not be expected to fully solve the coordination problem, and why “lead by example” and

letting a team leader communicate voluntarily have similar results (Cartwright, Gillet and

Van Vugt, 2013; Sahin, Eckel and Komai, 2015; Dong, Montero and Possajennikov, 2017).

Our model rationalizes and provides support for a number of communication routines:

First, mandating communication in every round or fully compensating agents for communi-
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cation costs solves the coordination problem. Compulsory checklists or other communication

protocols are practical implementations thereof.4 Second, bolstering the authority of tem-

porary leaders and avoiding double loyalties by team members helps team communication

and coordination.5 In contrast, keeping temporary teams small or providing large subsidies

to communication is unlikely to achieve the same benefits. Moreover, once a team is stuck

in a low-productive equilibrium, it is unlikely to escape this situation by itself but may need

external intervention. Our model suggests that the promise from mandating such techniques

for only a few rounds to reach a productive equilibrium before reverting to voluntary com-

munication is limited. Yet, this may be driven by our assumption of bounded rationality

that includes occasional mistakes and limited recall; hence, testing such a routine in the lab

or the field seems like an important undertaking.

We next describe the model and its analytical solution. This is followed by a description of

the simulation and its results under a few rounds of play and when organizational routines

are used to structure agents’ communication. The final section summarizes and provides

a brief outlook for promising communication routines in coordination settings with costly

communication.

A MODEL OF COMMUNICATION AND COORDINATION IN TEAMS

In this section we propose a simple game-theoretic model which embeds a weakest-link

game into a repeated framework that allows for organizational learning across periods by

boundedly rational agents. We choose the weakest-link game (as opposed to other order

4 For example, surgery teams use checklists for communication before and during operations (Lingard
et al., 2004; Wahr et al., 2013), and the airline industry makes use of crew resource management proto-
cols (Salas et al., 2015). Pentland (2012) describes manipulations in the same spirit as our mandatory
communication routines, for example scheduling lunch breaks so that teams have to eat at the same time.

5 Team leader authority can be improved for example by choosing leaders with more expertise (Wageman
and Fisher, 2014), with more supervisory experience (Bonet and Salvador, 2017), or by having members
choose their own leader (Brandts, Cooper and Weber, 2014). Graebner (2004) finds that leaders from
acquired businesses can help unlock synergies via communication efforts with their departments during the
acquisition process. In strictly hierarchical teams (e.g., in surgery, assembly lines, or the military), building
strong norms that enforce this hierarchy is another suggestion (Wageman and Fisher, 2014).
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statistic coordination games) because it both embodies a very difficult team coordination

problem and it is widely used in lab experiments. This in turn facilitates the comparison of

the model’s outcomes with existing results from the laboratory setting.

The Weakest-Link Game

Suppose a finite set of N agents I = {1, 2 . . . , N} and of K actions A = {1, 2 . . . , K}.6 The

agents play an infinitely repeated game with the stage game consisting of two simultaneous-

move phases: the communication phase and the action phase. The rules of the game are

fixed, so we describe an arbitrary round.

First, in the communication phase, each agent either sends a message m ∈ A or abstains

from communicating (denoted m = ∅). Let M ≡ A∪{∅} denote the set of feasible messaging

choices, and the vector of sent messages be denoted in bold-face as m ∈MN . Second, after

observing m, each agent chooses in the action phase an action a ∈ A (bold-faced a ∈ AN

denotes the vector of carried-out actions). Finally, all agents learn the lowest-ranked played

action, the minimum action denoted as a ≡ mini∈N ai ∈ A, but do not observe individual

actions and the payoff of the stage game is realized.7

The payoff in the weakest-link game increases in the minimum action and decreases in

the agent’s own action. While communicating (sending a message) is costly, c(m) = γ > 0,

it is costless to abstain from communicating, that is c(∅) = 0, and to receive messages. The

function u : A × A ×M → R determines the agent’s payoff (or utility) when the minimum

action played is a, she plays ai, and she sends message m: u(a, ai,m) = λa− ai− c(m). The

parameter λ > 1 quantifies the strength of the incentives to choose a higher-ranked (but also

more costly) action: A greater λ increases all agents’ payoffs from a higher minimum action

6 An alternative interpretation is that actions represent effort levels.
7 The information available to agents resembles the one available to participants in most weakest-link

game based lab experiments.
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and thus from a more productive equilibrium.8

Bounded Rationality and Belief Formation

Following a long line of organizational and strategy literature (e.g., March and Simon, 1958;

Cyert and March, 1963; Heath and Staudenmeyer, 2000; Aggarwal, Siggelkow and Singh,

2011), we assume agents to be boundedly rational. That is, agents are limited forward-

looking as they anticipate the effect of sending a message on the other agents’ choices in the

action phase but ignore that current choices can also affect play far into the future. Agents

are also boundedly rational in that they may occasionally make mistakes, or experiment

with play that is not optimal. Below, we show results both with and without mistakes and

experiments.

One core feature of the weakest-link game is that low-effort beliefs about others’ intended

actions lead to low actions and hence are self-fulfilling. As a result, the way in which

agents form beliefs in our framework is of great consequence. We assume that beliefs can

be represented by probabilities, and denote an agent’s subjective probability that action a

will be the minimum action chosen by all agents when she sends message m as q(a,m) ≥ 0.

In the action phase, p(a) ≥ 0 is the corresponding probability that action a ∈ A will be the

minimum action chosen by the other agents. We make three substantive modeling choices

about the formation of these beliefs:

1. To keep our model tractable, we assume homogeneity in the way in which our agents

derive their beliefs. That is, agents interpret the history of play in the same way, and

update their beliefs in the same manner.9

2. (Communication phase) No communication is interpreted as support for the status

8 Most lab experiments using the weakest-link game use two incentive parameters, α and β (with α >
β > 0), and a payoff function equal to αa − βai − c(m) (e.g., Kriss, Blume and Weber, 2016). We prefer
our formulation with λ = α/β as it embodies the equivalent incentives and yields simpler expressions. Note
that the level of message costs is only high or low in relation to the incentive parameters.

9 Homogenous belief formation is a common assumption in many game-theoretic models. Here, since
agents share the history of the game and payoff function, they also share beliefs and derive the same optimal
choices. Note that we do not assume that agents know that they are homogenous, or that the details of the
decision-making process are common knowledge.
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quo in the following situations: Suppose that all agents sent messages indicating the

minimum action, or that all agents chose not to communicate, in the previous period.

Then the agents believe that either sending a message in the current period that

indicates the previous period’s minimum action or not communicating will result in

the same minimum action also in the current period. Should an agent in either of these

two situations instead choose to indicate another action than the previous period’s

minimum, then this action is believed to have a positive probability (denoted π) of

being the new minimum action, while the only other action with a positive probability

is the previous period’s minimum. The implication of the positive probability is that

agents do not rule out communication as ineffective. Formally, if m−1 = (a−1, . . . , a−1)

or m−1 = (∅, . . . , ∅), then q(a−1, ∅) = q(a−1, a−1) = 1. Further, q(a, a) ≡ π > 0, ∀a ∈

A \ {a−1} and q(a−1, a) = 1− π.10

3. (Action phase) If all agents send (and hence receive) identical messages then the agents

will choose that sole indicated action. Similarly, if all agents send the empty message,

then this is again interpreted as supporting the previous period’s minimum action.11

Should one agent send a message indicating a different action than the minimum of

the previous period, then there is a chance (again denoted π) that this action becomes

the new minimum. Formally, if m = (a, . . . , a), then p(a) = 1. If m = (∅, . . . , ∅), then

p(a−1) = 1. For a 6= a−1, if m = (a, ∅, . . . , ∅), then p(a) = π > 0 and p(a−1) = 1− π.

These assumptions allow for a large number of ways in which agents can form beliefs

and react to messages. Note in particular that we place no restrictions on how agents use

information from the history of play or on the interpretation of the empty message in other

situations than those described in Conditions 2 and 3. While this generality is a benefit to

10 Play in the previous round is marked with superscript −1.
11 This assumption is analogous to other learning models with boundedly rational agents where agents’

beliefs are based on the empirical frequencies of past play (e.g., Young, 1993; Kandori, Mailath and Rob, 1993;
Robles, 1997). It also appears in learning models with fully rational agents, e.g., in fictitious play (Fudenberg
and Levine, 2009). Our results are however also qualitatively similar when relaxing this assumption by
allowing for small positive subjective probabilities for actions that are not indicated by messages or the
previous minimum action (results available upon request).
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the model, our later simulations will require a more definite formulation of beliefs.

We assume that beliefs respond to single messages indicating a different action than

the previous period’s minimum in the same way in both phases; that is, π is the same. It

seems reasonable that agents are consistent in how they form their beliefs in the two phases,

particularly in the long run. Furthermore, allowing π to vary between the action and com-

munication phases does not lead to results that add any intuition about why communication

may or may not help team coordination, but it complicates the analysis (such results are

available on request).

Next, we present our analytical results. We start by discussing agents’ optimal responses

in the communication and action phases of the stage game. We then introduce the concepts

of absorbing and stochastically stable states — the states where we are most likely to find

the team — as solution concepts that help us determine long run outcomes.

Optimal Responses in the Stage-Game

In the communication phase of the stage game, the optimal message is determined by es-

timating play in the action phase. We formulate an agent’s expected utility of sending

message m and then choosing action a as Eu(a,m) = λ
∑

b∈A q(b,m) min{a, b} − a − c(m).

Incorporating that a is chosen optimally given m, her indirect expected utility is then

Ev(m) = maxa∈A Eu(a,m). She hence chooses a message to maximize Ev. Second, in the

action phase, her expected utility of choosing action a is Eu(a) = λ
∑

b∈A p(b) min{a, b}− a.

She hence chooses an action to maximize Eu. Note that in the action phase, incurred message

costs are sunk and irrelevant for the choice of action.

For simplicity, but inconsequential to our main results, we assume that ties in the com-

munication stage are broken in favor of communicating, and then in favor of higher-ranked

messages. Likewise, in the action phase, ties are broken in favor of higher-ranked actions.

Long-Run Outcomes

Play in any round of the stage game is described by a vector of messages m and actions

10
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a that we refer to as a state: ω = 〈m,a〉 ∈ MN × AN ≡ Ω. For a ∈ A, let ωa =

〈(∅, . . . , ∅), (a, . . . , a)〉 ∈ Ω, and for m 6= ∅, let ωma = 〈(m, . . . ,m), (a, . . . , a)〉 ∈ Ω. Let

ΩC = {ωa | a ∈ A} be coordinated states. Any state ω ∈ Ω transitions into state T (ω) ∈ Ω

through optimal play; that is, when all agents play their best responses and do not make

mistakes or experiments. Fixed points of T are states that “best respond to themself”; they

are “absorbing”. Let ΩA = {ω ∈ Ω | T (ω) = ω} be called the absorbing states.

In the appendix, we first show that all absorbing states are also coordinated, ΩA ⊆ ΩC .

Furthermore, ωK is always absorbing, and any state transitions into an absorbing state in a

finite number of transitions. Next, we show that the set of absorbing states has a specific

structure. Namely, there is a lowest-ranked coordinated state ω` ∈ ΩC that is absorbing as

are all higher-ranked coordinated states: ΩA = {ω`, . . . , ωK}. These results are summarized

in Theorem 1. We provide all proofs in the appendix.

Theorem 1. The set of absorbing states is described as follows.

1. If (K − 1)(λπ − 1) < γ, then all coordinated states are absorbing: ΩA = ΩC.

2. If λπ − 1 < γ ≤ (K − 1)(λπ − 1), then ΩA = {ω`, . . . , ωK} for ` = bK − γ
λπ−1 + 1c.12

3. If λπ − 1 ≥ γ, then ωK is the unique absorbing state: ΩA = {ωK}.

Theorem 1 shows the potential of communication to improve efficiency: If the cost of

sending a message (γ) is not too high in relation to incentives (λ) and beliefs (π), then the

least efficient coordinated states are not absorbing, and thus not a long-run outcome of the

game. In particular, if the incentives and beliefs of agents’ that a message will sway the

others are high enough, then the most efficient state in which everyone plays K is the only

absorbing state.

Note that by the definition of absorbing states, the only way to break out of one is if an

agent makes a mistake or experiments with messages and actions that are not best replies. In

practice, efficiency may increase if team members occasionally experiment by, for example,

sending a message indicating the highest action in the communication stage to unsettle a

12 bxc denotes the greatest integer not larger than x.
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team stuck in an inefficient state. On the other hand, mistakes may also cause a previously

efficient team to fail. Our model formalizes mistakes and experiments in the following way:

Agents choose a best response message or action according to the above procedure with

probability 1 − ε, and with a small non-zero probability ε chooses a message or action by

randomizing uniformly between them.13

To derive results when mistakes and experiments are possible we use a solution concept

that builds on the idea that some absorbing states are easier to transition into than others,

in the sense that the transition requires fewer mistakes. Let a state be called stochastically

stable if — among all the absorbing states — it requires the fewest mistakes to move into

this state.14 Let ΩS ⊆ ΩA denote the stochastically stable states.

Moving from a higher-ranked to a lower-ranked absorbing state requires only one mistake

in the weakest-link game, namely, that an agent chooses the lower-ranked action in the action

phase. Thus, moving “down” is always easy, and hence we can reach the lowest-ranked

absorbing state ω` in a single mistake. Therefore, ω` is always stochastically stable. In

contrast, moving “up” through mistakes in the action phase is hard: it often requires all

agents to make mistakes simultaneously. However, with certain combinations of beliefs and

message costs, all that is needed is again just a single mistake in the communication phase.

When message costs are high enough so that not communicating is a best response, but one

agent sends a message by mistake and messages are influential enough in the action stage,

13We use the uniform distribution here for simplicity but relax this restriction and analyze efficiency
changes also for other distributions (e.g., experiments that always send the highest message) in the simulation
section. See Bergin and Lipman (1996), van Damme and Weibull (2002), and Blume (2003), for discussions
about this assumption and when it is appropriate. In our simulations, we further allow ε to vary between
the communication and action stages.

14 Alternatively, we could use the solution concept for stochastic stability developed by Foster and Young
(1990), Kandori, Mailath and Rob (1993), and Young (1993), and further discussed in Young (1998) and
Ellison (2000). Using this alternative solution concept yields the same results for Theorem 2; as their concept
is considerably more complex, we prefer to use our simpler one.
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play can also transition with a single mistake into higher-ranked absorbing states.

Theorem 2. The set of stochastically stable states is described as follows.

1. If λπ − 1 < 0, then ω1 is the unique stochastically stable state: ΩS = {ω1}.

2. If λπ − 1 ≥ 0, then all absorbing states are stochastically stable: ΩS = ΩA.

Similar to our first theorem, Theorem 2 indicates that voluntary communication may

enhance long-run efficiency. If we keep the model exactly the same but disallow communica-

tion, it is straightforward to show that the least efficient state, ω1, is the unique stochastically

stable state regardless of the parameters.15 With voluntary communication, other states are

possible long-run outcomes, and if condition 3 in Theorem 1 holds (which implies condition

2 in Theorem 2), then the efficient absorbing state ωK is the unique stochastically stable

state.

Theorem 2 is however more pessimistic about the potential of communication to improve

efficiency. For a large range of parameters, the least efficient absorbing state is the only

stochastically stable one, and thus the state in which we would expect to find teams most of

the time. In particular, with the incentive strength typically used in lab experiments of the

weakest-link game — e.g., the implied λ in Kriss, Blume and Weber (2016) is 2 — π must

be 0.5 or higher to avoid the least efficient state. It seems unlikely that agents would believe

that the chance of a single message persuading all other agents to change their actions was

50 percent or more, even in relatively small groups.

While offering a theoretical benefit, practically, mistakes and experiments seem likely to

worsen the potential for communication to solve team coordination problems, but the results

above also suggest that they play a different role in the communication and the action phases.

It is also evident from Theorem 1 and 2 that for a large range of beliefs, the exact level of

message costs is not important. For example, if λπ − 1 < 0, then the least efficient state is

15 See Robles (1997) or Riedl, Rohde and Strobel (2012) for similar results in models without communica-
tion. While this result is in line with much of the experimental evidence for larger groups, it holds regardless
of the number of players and the incentives to choose the payoff-dominant action. This seems intuitively less
convincing and two-player experimental groups often manage to achieve efficient coordination (Van Huyck,
Battalio and Beil, 1990; Camerer, 2003).
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stochastically stable regardless of the level of message costs γ — as long as there is a cost.

Communication routines

Theorem 2 indicate that voluntary communication is not enough to create efficient team

coordination in many situations. This section explores simple communication routines that

may improve efficiency. We focus on the case where mistakes and experiments are possible,

as this seems the most plausible scenario both in the lab and in the field.

Proposition 1 states that making communication mandatory, or fully compensating agents

for their communication costs (conceptualized by setting γ = 0), makes the team coordinate

on the highest ranked action.

Proposition 1. If communication is mandatory or fully compensated, then the unique

stochastically stable state is ωKK = 〈K, ...,K,K, ...,K〉.

The intuition for this result is that once abstaining from communication is not an option,

or message costs cease to matter because agents are fully compensated, the trade-off between

lowering the strategic uncertainty for the group and costs of sending messages that exists

when communication is voluntary disappears. This finding is in line with the experimental

results of Blume and Ortmann (2007) and Kriss, Blume and Weber (2016), in which a

pronounced majority of players both indicate by message and subsequently choose the highest

ranked action when messages are mandatory or costless.

An alternative way to coordinate agents is to elevate a single agent to become the

team leader. We model the team leader routine in a similar way as in the experiments

of Cartwright, Gillet and Van Vugt (2013), Dong, Montero and Possajennikov (2017), and

Sahin, Eckel and Komai (2015): let agent 1 be the team leader and let the communication

stage consist of agent 1 sending a message while no other agent can communicate. We use

the same conditions on beliefs as before; in the communication phase, π now represents the

team leader’s belief that a message will change other team members decisions about which

actions to take. In the action phase, π represents the subjective probability placed by all
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agents that the action indicated by the team leader will be the minimum action.

Prior lab experiments have varied the routine in two ways: in one, the team leader can

voluntarily choose whether or not to communicate. This is very similar to our voluntary

communication situation, except that only the team leader can communicate. In the second,

the team leader is “leading by example” by being the first to choose an action which is

communicated to the rest of the team. The latter translates naturally to our model by

forcing the team leader to communicate as well as to choose the action that he/she has

indicated by message.

Our model predicts that the two versions of the routine will end up having a very similar

effect. The only substantive difference is that the leading by example routine has just two

possible stochastically stable states — either the team coordinates on the least efficient or on

the most efficient state. The reason is that the routine forces the team leader to communicate.

Unlike the mandatory communication routine, which also forces communication, leading by

example does not necessarily lead to the most efficient outcome. The cost of a potential mis-

match between a sent message and the minimum action chosen by the other agents explains

the difference.

Proposition 2. With communication restricted to a team leader that either 1. can com-

municate voluntarily, or 2. leads by example, the stochastically stable states are

1. If λπ − 1 < 0, then ω1 is the unique stochastically stable state. If 0 ≤ λπ − 1 < γ,

then the stochastically stable states are ΩS = {ω`, . . . , ωK} for ` = bK − γ
λπ−1 + 1c.

If λπ − 1 ≥ γ, then ωK is the unique stochastically stable state.

2. If λπ−1 < 0, then ω = 〈1, ∅, ..., ∅, 1, ..., 1〉 is the unique stochastically stable state. If

λπ − 1 ≥ 0, then ω = 〈K, ∅, ..., ∅, K, ...,K〉 is the unique stochastically stable state.

Proposition 2 is in line with the results of the three lab experiments. Sahin, Eckel

and Komai (2015) investigate two team leader routines: one leader, who leads by example,

and one who communicates an action to the team before everyone takes action (but the
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leader does not have to follow his/her own suggestion). Both routines substantially improve

outcomes in the weakest-link game, but are not significantly different from one another.

Dong, Montero and Possajennikov (2017) examine the same two routines, but find that

neither leading by example, nor pre-action communication by the team leader is enough to

escape coordination failure, although teams do slightly better under both routines than in

a no-communication treatment. The difference between the two experiments lies primarily

in the incentive structure as the incentives are weaker in Dong, Montero and Possajennikov

(2017).16 Cartwright, Gillet and Van Vugt (2013) examine only leading by example, and

occupy a middle ground in the game’s parameters. They find a clear improvement over the

no-communication benchmark, but only few teams coordinate on the efficient equilibrium.

Our model suggests that having a team leader may improve efficiency compared to allow-

ing voluntary communication for the whole team, if the team leader’s own expectations are

high enough and the team leader has enough authority or credibility; that is, if π is higher

with than without a team leader. There are no experiments varying team leader authority or

credibility that exactly match our set up, but credibility influences the impact of communi-

cation in the weakest-link experiments of Brandts, Cooper and Weber (2014) and Kriss and

Eil (2012). In the latter study, expectations are also shown to be important for efficiency:

team leaders sometimes fail to use costly communication that would help their groups.

Our model predicts long-term outcomes. In many organizational settings, team members

do not work with each other for extended time periods but are instead called upon from

different business units to serve for specific functions and for a short work spell only. Like-

wise, lab experiments on team efficiency are usually performed for only a restricted number

of rounds (typically 8-12). Our model outcomes may hence differ from organizational and

lab outcomes as teams may not yet have arrived at their equilibrium when their work spell

ends. To further facilitate the comparison of our model to short-run results from the lab and

the field, we therefore run simulations of our model in the next section. Besides establishing

16 Dong, Montero and Possajennikov (2017) use groups of four, and Sahin, Eckel and Komai (2015) groups
of six, suggesting that the incentives are more important in these short-run cases.
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the short-run results of our model, this exercise allows us try out new routines with manda-

tory communication in some early rounds of the game. Such routines would not change

the outcome in the very long-run but may be important for short-run team coordination.

Furthermore, we can also examine the effect of team size and test the results’ sensitivity to

relaxing some of the assumptions.

SIMULATION

We start by discussing the version of the model used in the simulation. We then describe the

simulation setup, the way in which we relax some of the prior assumptions, and its results.

Lastly, we examine the model at a more general level and relate it to experimental results.

Simulation model

The three conditions on agents’ belief formation admit a large number of ways in which

agents can form beliefs and react to messages. To run simulations, we require a more precise

functional form for how agents reason about how a message will affect other agents and

how agents react to messages. We strive for a simple formulation and therefore let agents

use the empirical frequencies of prior signals indicating action a in both the communication

and action phases.17 This then leads to the following functional forms of the beliefs first

introduced on page 8.

Communication stage: Let qij(a,m) denote i’s expectation over j’s subjective prob-

ability of action a becoming the minimum in period t > 1 in case i sent message

m. Formally, using the empirical frequency of prior messages, this gives qij(a,m) =

1
N

(
1 (m = a) +

∑
j∈I\{i} 1

(
m−1j = a

)
+ |∅| × 1(a−1 = a)

)
.18 Unless agent i contemplates to

17 Using empirical frequencies of past play also occurs in learning models by Young (1993); Kandori,
Mailath and Rob (1993); Robles (1997) and Fudenberg and Levine (2009).

18 1(·) is the indicator function equal to 1 whenever the condition in parentheses holds. Note that this

formulation constrains
∑K

a=1 qij(a,m) to be 1 for each m ∈ M , except for during the initial period when
there are no messages from a prior stage. In the initial period, we uniformly randomize a vector of non-empty
messages.

17



Communication and Coordination in Teams

make a change from communication to no-communication or the other way around, the term

|∅| is just the number of empty messages sent in the previous period. If i does contemplate a

change from sending a substantive to the empty message (or from the empty to a substantive

message), |∅| decreases (increases) by one.

Action stage: Next, in the action stage, agent i chooses a ∈ A in order to maximize her

expected utility Eui(a). Let agent i’s expectation over agent j playing action a be denoted

pij(a). This expectation is again determined by whether the action has been indicated by

messages, or indicated by the combination of the empty message and being the minimum

action in the previous period. Put formally, if mj = a or (mj = ∅ and a−1 = a) then pij(a) =

1, else 0. Agent i then use the frequency by which an action has been indicated to derive the

subjective probability of a ∈ A to be the minimum action as: pi(a) = 1
N

∑
j∈I pij(a). Having

done that for all actions, agent i then uses pi(a) to compute, for each possible action a, her

expected utility Eui(a) = λ
∑

b∈A pi(b) min{a, b} − a, and subsequently chooses the action

that maximizes her expected payoff.

Simulation setup

To facilitate the comparison of our results to those from the lab, our simulation uses eight

periods of play in each parameter configuration (the same as in, e.g., Kriss, Blume and Weber

(2016)). Weakest-link games in the lab typically set incentives as λ = 2.19 We therefore let

λ vary around this midpoint, λ ∈ {20
12

; 20
11

; 20
10

; 20
9

; 20
8
}. We further allow the number of agents

and the number of actions to vary between 2 and 10 (in increments of two) and the level of

message costs to vary between 1 and 9 (in increments of two).

We introduce three levels of mistake/experiment probabilities in the communication and

action stages — 0, 10, and 20 percent — and, relaxing an earlier model assumption, let those

probabilities differ between the communication and action stages.20 We repeat configurations

19 Recall that λ = α/β when writing the payoff function as αa−βai−c(m). A lower β (higher λ) increases
the incentives to choose a higher ranked action. Most weakest-link games in the lab use α = 20 and β = 10.

20 The experimental literature examining the relationship between stated beliefs and strategic choices
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with non-zero probabilities for mistakes or experiments in our simulation 100 times, and use

the average of these configurations in the tests below.

The earlier modeling choice to use a uniform distribution to determine a new message or

action when a mistake or experiment occurs need not be innocuous, as discussed by Bergin

and Lipman (1996) and van Damme and Weibull (2002). For example, agents may be inten-

tionally experimenting with higher messages and may prefer to do so in the communication

rather than the action stage as the potential payoff loss of trying higher ranked actions

is much greater than of trying higher ranked messages. Consistent with this, the highest

ranked message is (by a wide margin) also the most common non-empty message in the lab

experiment of Kriss, Blume and Weber (2016). Alternatively, unintentional mistakes should

affect both the communication and action stages and not emphasize any message other than,

perhaps, the intended one.

We therefore extend our analysis to repeat all simulations using four alternative distri-

butions for mistakes and experiments: First, as in the analysis of the long-run, we use a

uniform distribution such that — if a mistake or experiment occurs — each message or

action is equally likely to be played, as it may be the case for an unintentional slip-up.

Second, we use a distribution that is centered on the intended message or action but that

has also non-zero probabilities for surrounding realizations: in this distribution (henceforth

abbreviated as DoubleDist), the probability for any surrounding action or message halves as

the distance from the intended one doubles. This relates to the idea of inattention affecting

an agent’s communication or action, leading to a choice that is similar yet distinct from the

intended one. Third, motivated by observations in the lab, another distribution (abbreviated

as HighestMsg) captures intentional experiments and puts all weight on the highest ranked

message. Finally, we use a distribution (abbreviated as Exponential) in which higher ranked

messages become increasingly more likely, formalized via an (inverted) Exponential distri-

often find frequencies of choices that are not best reply responses to stated beliefs at least as high as these
probabilities (e.g Nyarko and Schotter, 2002; Costa-Gomes and Weizsäcker, 2008; Manski and Neri, 2013).
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bution with a rate parameter of 1 and rescaled to cumulate to 100 percent.21 With some

positive support also on some lower-ranked messages, this occupies middle ground between

unintentional mistakes and intentional experimenting.

We also expand the range of communication routines in our simulation by adding routines

that mandate communication only for the first period, or for the first two periods. Those

communication protocols are a blend of the complete mandatory and complete voluntary

communication protocols examined in the model section and may be in line with managerial

attempts to enforce a greater level of communication in the early days of a team.22

The above parameter ranges and choice of distributions yield 135,000 distinct configura-

tions and — when adding the 100 simulations for each configuration with non-zero mistake

probabilities — over 11 million simulations.

Simulation Results

We start by comparing our model and its simulation results to findings from an experimental

study that is close in its setup to ours, namely that of Kriss, Blume and Weber (2016).

Since experiments in the lab use specific parameters for incentives, group sizes, messaging

costs and number of rounds, we then proceed to discuss our simulation output for a wider

parameter range. We also describe the changes in coordination outcomes when introducing

specific team communication routines.

Comparison to experimental results

Kriss, Blume and Weber (2016) use incentive parameters α and β equal to 20 and 10 (λ = 2

in our formulation), 9 agents, 7 actions and 8 rounds. Further, the authors vary message

costs across two treatments and set them equal to either 1 or 5. In Figure 2 we show the

empirical distributions of minimum actions in round 8 of our simulations when limiting the

21 That is, Pr(x) = 1/(γexp(−γx))
)

with γ = 1 and then rescaled to sum up to 100 percent for all
messages. For example, in the case of seven messages, the probabilities for messages 1 to 7 (should an
experiment or mistake occur) are respectively 0.2%, 0.4%, 1.2%, 3.2%, 8.6%, 23.3% and 63.3%.

22 We thank Peter Kriss for suggesting these routines.
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number of agents, actions and message costs to those in the experiment, and when allowing

for non-zero mistake probabilities in both the communication and action stages. We show

results separately for the four mistake distributions of the communication stage.

Figure 2 shows that all seven actions are represented among the minimum actions, but

it is clear that in all specifications the lowest action is the most frequent outcome for the

minimum action of round 8. Note also that the distributions are very similar regardless of

the level of message costs — this matches the experimental finding by Kriss, Blume and

Weber that a large change in messaging costs is not enough to fully induce coordination on

the efficient outcome.23

[INSERT FIGURE 1 ABOUT HERE]

Table 1 contains the means and standard deviations for the minimum action in round

8 of the simulations. Notably, comparing results across rows shows that a reduction in

the likelihood of large mistakes in the action stage (that is, moving from a Uniform to a

DoubleDist mistake distribution in the action stage) improves average outcomes in the final

stage. Similarly, mistake distributions that allow for a greater number of high experiments in

the communication stage (HighestMsg and Exponential) also improve final-round outcomes.

Comparing those results to Kriss, Blume and Weber, under low messaging costs of 1 in the

lab, the average minimum action in round 8 is 2.75. This lies firmly within the range of

the simulated outcomes across the mistake distributions whose averages range from 1.66 to

3.36. As our averages are however very similar for message costs equal to 5, those are further

away from the experimental mean where all six groups end up with a minimum action of

1 in round 8. The simulation results in Table 1 reflect a feature also seen in the analytical

solution to the model and confirmed in the results that use a wider range of parameters (see

23 In their treatment with message costs equal to 5, all six of their groups have a minimum action of 1 in
the final round. When message costs are reduced to 1, four groups (or 50 percent of the eight groups in the
second treatment) still end up with action 1, two more groups (or 25 percent) end with action 3, and one
group each (12.5 percent) end with action 5 and action 7. This is not unlike our simulation results in which
agents are more likely to experiment with higher ranked messages in Panels C and D: averaged across those
two distributions, actions 1, 3, 5, 7 are the minimum actions in the final period in 44, 10, 7, and 9 percent
of the simulated groups.

21



Communication and Coordination in Teams

next section): With the range of parameters commonly used in experiments, our estimates

are not very sensitive to increases in the cost of messages. In summary, we conclude that

the simulation results from our model broadly match the experimental results from the lab.

[INSERT TABLE 1 ABOUT HERE]

Results for the full parameter range and alternative communication routines

To be able to separate the effects of individual parameters on the simulated actions in the final

round of the game, Table 2 reports the output of an OLS regression that uses the minimum

action of the team in the final round of each simulation as the dependent variable.24 Our

independent variables include indicator variables for each increment of the variables used

to determine the configurations, using the category with the lowest value as the reference

category throughout.

[INSERT TABLE 2 ABOUT HERE]

The simulations yield five findings. First, increasing the payoff incentives from co-

ordinating on a higher action (that is, a higher λ) increases the minimum team action

in the final period. Second, we would expect that larger groups should make it more

difficult to use communication to break out of inefficient states, but to also increase the

number of occasions where some agent makes a mistake or experiment to help the group

get “unstuck” from a low equilibrium. The first effect should imply lower average minimum

actions, while the direction of the second effect should depend on the distribution. We find

that larger groups, overall, have greater difficulties to coordinate on high outcomes, with

negative coefficients that increase linearly with team size. However, these results occur

after controlling for the presence of communication routines, whereas communication is

24 For configurations with positive mistake or experiment probabilities, we use only the average of the
final round’s action across the 100 repeated simulations as a single observation. While included, we omit the
output for the indicator variables for the different number of actions, as - unsurprisingly - the magnitude of
the final round action increases mechanically when more actions are available.
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most advantageous for coordination in larger teams. We further explore below the interplay

between communication routines and group size.

Third, similar to the long-run analytical results, differences in message costs — unless

very high — seem to not matter to the final outcome in the short-run: while costless com-

munication allows for efficient coordination, we find no differences when message costs range

between 1 and 7. Hence, even message costs as small as 1 entail private costs from commu-

nication that overwhelm the expected benefit from being able to sway colleagues’ actions.

Fourth, the coefficients on the probability of mistakes or experiments in the action stage

are large and negative, with a larger probability reducing minimum actions by more. This

unequivocally shows that experimenting in the action stage is detrimental to team coordi-

nation. In contrast, mistakes and experiments in the communication stage have a positive

influence on final team outcomes, with larger probabilities having also a larger positive im-

pact.

Compared to the uniform distribution (the omitted category in the regression), using the

DoubleDist mistake distribution in the action stage makes it less likely that play drops all

the way to a lower ranked action by just one mistake. This is sensible since any mistake

tends to be closer to the intended action than under the uniform distribution where a far

lower action played by mistake is quickly followed by far lower play of other agents. On

the other hand, in the communication stage, the DoubleDist distribution makes it less likely

that a mistaken message indicates a much higher ranked action than the intended one; as

a result, it is also less helpful in elevating the group’s action once it becomes “stuck” at

a lower equilibrium. Further, experimentation with higher messages in the communication

stage under the HighestMsg and Exponential distributions increase the minimum action in

the final period.

Finally, making communication mandatory in the first round increases the minimum

action in the final period. Adding a second round of initial mandatory communication yields

a further increase in the final outcome. Yet, at first glance, the short-run effect seems fairly
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modest when compared to potential gains from changing the incentives to coordinate, or

from reducing team size.

Team size ranks among the greatest determinants of coordination but is often pre-

determined by the size of the task or the diversity of skills required for the task. For example,

manpower needed in security and safety services or for data collection scales proportionally

to the size of the task, and product development may require a certain number of workers

with specialized skills from different business units. We are therefore interested in how team

size affects the effectiveness of the tested communication routines and experiments.

Table 3 shows output from an OLS regression with the the simulated minimum action

in the final round as the dependent variable, and interaction terms of team size with the

communication routines, with experiment probabilities and with experiment distributions

as independent variables.25 There are two major findings. First, mandating communication

in early rounds improves coordination outcomes for all team sizes (rows 1 and 2, column

1) and the effect is not limited to small groups only (interaction terms in columns 2-5 of

rows 1 and 2). Second, allowing for experiments to occur in the action phase decreases

coordination, and this further worsens as team size grows (rows 3 and 4). In contrast,

experiments in the communication phase support efforts to coordinate on higher actions but

its effectiveness decreases for larger teams (rows 5 and 6). The coefficients for the experiment

distributions corroborate this further: The two distributions that encourage high-messages

in the communication stage benefits all the groups, but their benefit decrease again as teams

grow in size (rows 7 and 8). As in Table 2, the DoubleDist distribution in the communication

stage worsens outcomes relative to the uniform distribution but the effect is small in larger

teams.

[INSERT TABLE 3 ABOUT HERE]

In sum, our simulations suggest that coordination problems are more serious for larger

25The regression also contains all the other variables shown in Table 2 but their output is suppressed for
expositional ease.
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teams, and such teams are more unlikely to talk their way out of inefficient equilibria, even

if team members are trying to communicate a more efficient course of action. Mandating

some communication does help, also when teams are large, but does not solve the coordi-

nation problem. The simulations further suggest that organizations should rather target

the incentives to coordinate than the costs of communication, as the effect of strengthening

the incentives is considerably larger. For the design of lab experiments, it is interesting to

note that although coordination problems grow with team size, even teams as small as four

subjects are typically unable to coordinate on efficient outcomes. Implementing experiments

with smaller groups would enable an increase in the number of teams for the same cost, an

important benefit when examining coordination, which is a group level phenomena.

CONCLUDING REMARKS

This article develops a model to examine how costly communication affects team coordi-

nation in situations when outcomes are determined by the lowest quality input from any

one member. The results imply that efficient coordination is difficult to achieve: for a wide

range of parameters, including those used in lab experiments, our model predicts that the

least efficient coordinated state is the most likely long-run outcome. The explanation is that

communication costs introduce a trade-off for agents between lowering the strategic uncer-

tainty for the team and the private costs of communication. The model has considerable

explanatory power also in the short run; the difficulties experienced by experimental subjects

to coordinate efficiently when communication is costly is clearly mirrored by our simulations.

The coordination problems grow with team size, but even teams as small as four subjects

are typically unable to coordinate on efficient outcomes.

These results suggest that organizations may improve the efficiency of teams by reducing

the costs of communicating, but short of fully compensating team members for communica-

tion costs, such reductions are often not enough to achieve efficient coordination. Targeting

the incentives to coordinate and structuring communication by imposing routines may there-
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fore be more important and, under certain conditions, necessary for efficient coordination.

Making communication mandatory in every round or fully compensating team members for

communication costs makes agents coordinate on the action with highest payoff. Using one

and two rounds of mandatory communication improves outcomes in the simulations, but

does not fully solve the coordination problem in the short run. A team leader may also

induce efficient coordination but only when he or she has enough authority or credibility,

and expects to be able to persuade the group to choose the communicated action. Finally,

encouraging team members to experiment by sending higher messages in the communication

stage can raise team outcomes.

Although our model is broadly consistent with recent experimental results, it is of course

in some aspects a drastic simplification of human decision-making. Still, we think that

the modeling of costly communication is a step towards richer game-theoretical models of

organizational coordination; models that allow for more general ways of communication

and are informative about how communication routines can be designed to achieve efficient

coordination.
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APPENDIX: PROOFS

Theorem 1

The theorem is a corollary to Proposition 4; the two cases are obtained by solving for ` ≤ 1

and ` ≥ K.

Lemma 1. (Action phase) If there is a ∈ A such that p(a) = 1, then a is optimal.

Proof. Let b ∈ A. If a < b, then Eu(b) = λa − b < λa − a = Eu(a). If a > b, then

Eu(b) = λb− b < Eu(a).

Lemma 2. (Communication phase) If m ∈ M is optimal, then there is a ∈ A such that

Ev(m) = Eu(a,m) and q(a,m) > 0.

Proof. To obtain a contradiction, suppose that q(a,m) = 0. If a = 1, then Eu(a + 1,m) =

Eu(a,m) + λ − 1 > Eu(a,m), so Ev(m) > Eu(a,m). We derive the same contradiction if

a = K: then Eu(a− 1,m) = Eu(a,m) + 1 > Eu(a,m). For 1 < a < K,

Eu(a,m)− Eu(a− 1,m) = λ
∑
b∈A

q(b,m) (min{a, b} −min{a− 1, b})− (a− (a− 1))

= λ
∑
b<a

q(b,m)(b− b) + λ
∑
b≥a

q(b,m)(a− (a− 1))− 1

= λ
∑
b≥a

q(b,m)− 1 = λ
∑
b≥a+1

q(b,m)− 1 = Eu(a+ 1,m)− Eu(a,m).

The final equality is derived along the same lines as the first ones. Hence, Eu(a,m) ≥
Eu(a − 1,m) ⇐⇒ Eu(a + 1,m) ≥ Eu(a,m). If equality, then the tie is broken in favor of

a+ 1.

Lemma 3. Let a−1 = a and m−1 = (a, . . . , a). If message m is optimal, then Ev(m) =

Eu(m,m).

Proof. By Lemma 2, the action b ∈ A that is optimal having sent m has positive probability:

q(b,m) > 0. Hence, b ∈ {a,m}. If m = a, then b = m, so Ev(m) = Eu(m,m). If b = a 6= m,

then sending ∅ is better, contradicting that m is optimal: Ev(m) = Eu(a,m) = Eu(a, ∅)−γ <
Eu(a, ∅). Hence, b 6= a, so b = m.

Proposition 3. Absorbing states are coordinated, ΩA ⊆ ΩC.

Proof. Starting from an arbitrary ω ∈ Ω, we show that the possible transitions are as in

Figure 1. A state is absorbing if it loops back to itself. A consequence is that ωK always

is absorbing, and that any state transitions into an absorbing state in a finite number of

transitions.

Part 1 : For ω ∈ Ω, T (ω) = ωaa for some a ∈ A or T (ω) = ω
a
−1 .
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ω ωa

ω
a
−1

ωaa

ωKK ωK

Figure 1: Dotted lines refer to Part 1. Dashed lines refer to Part 2. Remaining lines refer to Part
3.

By condition 1, all agents derive the same optimal message m ∈ M . Let a = m if m 6= ∅
and a = a−1 otherwise. By condition 3, p(a) = 1 in both cases. By Lemma 1, all agents

choose a. Hence, T (ω) = ωaa or T (ω) = ω
a
−1 .

Part 2 : For a ∈ A, T (ωaa) = ωa or T (ωaa) = ωKK .

First, suppose that the agent abstains from communicating. By condition 2, q(a, ∅) = 1.

By Lemma 2, Ev(∅) = Eu(a, ∅) = (λ − 1)a. Second, suppose that the agent sends message

m 6= ∅. By condition 2, q(m,m) = π and q(a,m) = 1 − π. By Lemma 3, Ev(m) =

Eu(m,m) = λ (πm+ (1− π) min{a,m})−m− γ. Message m ≤ a is not optimal: Ev(m) =

(λ− 1)m− γ < (λ− 1)a = Ev(∅). Therefore, T (ωKK) = ωK . For a < K and m > a:

Ev(m) = λ (πm+ (1− π)a)−m− γ = (λπ− 1)m+λ(1−π)a− γ = (λπ− 1)m+Ev(∅)− γ.

For m to be optimal, Ev(m) ≥ Ev(∅), so λπ − 1 > 0. But then Ev is increasing in m, so

m = K is optimal. Hence, T (ωaa) = ωa or T (ωaa) = ωKK .

Part 3 : For a ∈ A, T (ωa) = ωa or T (ωa) = ωKK .

This is solved as ωaa in Part 2.

Proposition 4. There is ` ∈ A such that ΩA = {ω`, . . . , ωK}.

Proof. Suppose that ωa ∈ ΩC was played in the previous round. By Lemma 3, Ev(a) =

Eu(a, a) and Ev(K) = Eu(K,K). By Part 3 of the proof of Proposition 3, T (ωa) = ωa or

T (ωa) = ωKK . Hence, ωa is absorbing whenever Ev(a) > Ev(K):

Ev(a)− Ev(K) = (λ− 1)a− [λ (πK + (1− π)a)−K − γ] = (λπ − 1)(a−K) + γ. (?)

If λπ − 1 ≤ 0, then ? is positive for each a ∈ A, so each ωa is absorbing. Thus, ΩC = ΩA

and ` = 1. If λπ − 1 > 0, then ? is increasing in a. Therefore, if ? is positive for a, so ωa is

absorbing, then ? is positive for a+ 1, so ωa+1 is absorbing. This yields the desired structure
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on ΩA. Let ω` ∈ ΩA and ω`−1 6∈ ΩA. Then

(λπ − 1)(`− 1−K) + γ ≤ 0 < (λπ − 1)(`−K) + γ ⇐⇒ `− 1 ≤ K − γ

λπ − 1
< `

⇐⇒ ` = bK − γ

λπ − 1
+ 1c.

Theorem 2

Proof. The intuition for why moving “down” is easy should be clear enough from the text.

All that remains is to check when moving “up” also is easy.

Let a−1 = a ∈ A \ {K} and m > a. Suppose that the only (non-empty) message is m, so

m = (m, ∅, . . . , ∅). Then

Eu(m)− Eu(a) = λ(πm+ (1− π)a)−m− (λ− 1)a = (λπ − 1)(m− a).

As m > a, Eu(m) ≥ Eu(a) whenever λπ − 1 ≥ 0. In conclusion, suppose that λπ − 1 ≥ 0.

Starting from ωa ∈ ΩA, if one agent mistakenly sends message m > a, then play transitions

into ωm. Thus, moving up is as easy as moving down, so any absorbing state is reachable from

any other in a single mistake. Therefore, all absorbing states are stochastically stable.

Proposition 1

Proof. Mandatory communication: Part 2 of Proposition 3 showed that either m = ∅ or

m = K is optimal. Mandatory communication rules out m = ∅, and therefore m = K is

optimal for each agent. If all agents send m = K, a = K is the optimal action by Condition 3.

Consequently, ωKK = 〈K, ...,K,K, ...,K〉 is the only absorbing and therefore also the only

stochastically stable state.

Fully compensated communication: If γ = 0, Lemma 1 and 2 still holds. Part 1 of Propo-

sition 3 therefore still holds, so T (ω) = ωaa for some a ∈ A or T (ω) = ω
a
−1 . If the process is

in ωaa or ω
a
−1 , m = ∅ is never optimal, as m ≥ a yields Ev(m) = Eu(a,m) ≥ Eu(a, ∅)− γ =

Eu(a, ∅) and ties are broken by sending messages. Furthermore, as Eu(a,K) ≥ Eu(a,m)

and ties are broken by sending higher ranked messages, m = K is optimal, regardless of π.

By Condition 3, when all agents send K, p(K) = 1 and all agents choose K. Once in ωKK ,

K continues to be the optimal message and action by the same reasoning, and is therefore

the only absorbing and stochastically stable state.

Proposition 2

Proof. Part 1 : We start by showing that absorbing states are coordinated when the team

leader can voluntarily choose whether to communicate or not. Note that Lemma 1 and 2

holds also when a single agent communicates. Furthermore, a slightly modified version of

Lemma 3 also hold: let a−1 = a and m−1 = (a, ∅ . . . , ∅). The proof of the statement that if
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message m is optimal, then Ev(m) = Eu(m,m) follows the exact same steps laid out in the

proof of Lemma 3.

To show that absorbing states are coordinated, assume a−1 = a. The team leader chooses

m optimally. First, suppose the team leader contemplates abstaining from communicating.

Then q(a, ∅) = 1. By Lemma 2, Ev(∅) = Eu(a, ∅) = (λ − 1)a. Second, suppose that

the team leader contemplates sending message m 6= ∅. Message m ≤ a is not optimal:

Ev(m) = (λ − 1)m − γ < (λ − 1)a = Ev(∅). For m > a, by Condition 2, q(m,m) = π and

q(a,m) = 1− π. By Lemma 3, Ev(m) = Eu(m,m) = λ (πm+ (1− π) min{a,m})−m− γ.

For a < K and m > a:

Ev(m) = λ (πm+ (1− π)a)−m− γ = (λπ− 1)m+λ(1−π)a− γ = (λπ− 1)m+Ev(∅)− γ.

For m to be optimal, Ev(m) ≥ Ev(∅), so λπ − 1 > 0. But then Ev is increasing in m, so

m = K is optimal. That is, the team leader sends either the empty message or m = K, but

m = K is never optimal if a−1 = K. This implies that all absorbing states are coordinated.

Showing that there is ` ∈ A such that ΩA = {ω`, . . . , ωK} follows by noting that π is the

same for all agents by Condition 1 and then Proposition 4 holds for the team leader by the

same reasoning as in that proof. This proposition gives us the result in Theorem 1. As the

least number of mistakes needed to move from one absorbing state to another is not different

with a team leader (i.e., it is always 1), Theorem 2 also holds, which proves the first part of

the proposition.

Part 2 : The leading by example routine rules out not communicating for the team leader,

so absorbing states cannot be coordinated according to our definition, but Lemma 1, 2, and

the modified version of Lemma 3 presented above holds. Assume a−1 = a. Then, for m to

be optimal, Ev(m) > Ev(m′)∀m ∈ A. Message m < a is not optimal: Ev(m) is at most

(λ− 1)m− γ < (λ− 1)a− γ = Ev(a). Message m > a is optimal when

Ev(m)− Ev(a) = [λ (πm+ (1− π)a)−m− γ]− (λ− 1)a+ γ = (λπ − 1)(m− a) ≥ 0.

Again, Ev is increasing in m, so m = K is optimal whenever this holds. The inequality

does not need to be strict as ties are broken in favor of higher ranked messages. Hence,

the team leader either sends a message indicating the previous period’s minimum action,

or K. The absorbing states are therefore of the types ω = 〈a, ∅, ..., ∅, a, ..., a〉. The least

number of mistakes needed to move between the absorbing states then follows the the proof

of Theorem 2, which proves Part 2.
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Figure 2: Message costs and mistake distributions

This figure shows the simulated minimum team actions after round 8 when following the lab
specification in Kriss, Blume and Weber (2016) (λ = 2, 9 agents, 7 actions, and message costs
either low (1) or high (5)). We show results for simulations with non-zero mistake probabilities
in both communication and action stages.
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Table 1: Descriptive statistics of final round minimum action

This table displays descriptive statistics of the the final round action in the simulations with
eight rounds. With the non-zero mistake probabilities, each minimum action is averaged
over 100 repetition of the same configuration. Results are horizontally separated by the
mistake probability in the communication stage (uniform, double-distance-half-as-likely,
highest message and exponential) and vertically separated by the mistake probability in the
action stage (uniform, double-distance-half-as-likely). Panel A shows results when message
costs are low (1) and Panel B shows results when message costs are high (5). Shown are the
means and the standard deviation in parentheses of the minimum actions in the final round.

Panel A: Low message costs

Distribution Uniform DoubleDist HighestMsg Exponential

Uniform 1.74 1.66 2.21 2.16
(0.141) (0.043) (0.473) (0.423)

DoubleDist 2.35 2.16 3.36 3.03
(0.515) (0.346) (0.839) (0.690)

Panel B: High message costs

Distribution Uniform DoubleDist HighestMsg Exponential

Uniform 1.70 1.67 2.23 2.17
(0.164) (0.114) (0.621) (0.430)

DoubleDist 2.35 2.00 3.09 2.96
(0.338) (0.202) (0.727) (0.709)
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Table 2: Determinants of coordination outcome

This table shows the determinants of the minimum action and the average action in the final round of the
simulations as obtained from OLS regressions. In specifications with non-zero mistake probabilities, each
minimum action and average action is averaged over 100 repetitions of the same configuration. Omitted
categories are specifications with 2 agents, message costs of 1, zero communication and action stage
mistake probabilities, uniform mistake distributions in the communication and action stages, and zero
initial rounds with mandatory communication. Indicator variables for the number of available actions
and an intercept term are included in all specifications but omitted to conserve space. Robust standard
errors are shown in parentheses; statistical significance is indicated with *** p<0.01, ** p<0.05, * p<0.10.

Minimum Action in
Dependent variable Final Period

λ = 20/12 0.093*** (0.010)

λ = 20/11 0.907*** (0.010)

λ = 20/10 1.190*** (0.011)

λ = 20/9 1.193*** (0.011)

Group of 4 agents -0.690*** (0.011)

Group of 6 agents -1.184*** (0.011)

Group of 8 agents -1.570*** (0.011)

Group of 10 agents -1.889*** (0.012)

Message costs of 3 -0.008 (0.010)

Message costs of 5 -0.002 (0.010)

Message costs of 7 -0.002 (0.010)

Message costs of 9 -0.045*** (0.010)

Communication routines

First round with mandatory communication 0.397*** (0.008)

First two rounds with mandatory communication 0.572*** (0.008)

Mistake/Experiment Probabilities

Action mistake probability of 10% -1.521*** (0.008)

Action mistake probability of 20% -1.977*** (0.009)

Communication mistake probability of 10% 0.302*** (0.008)

Communication mistake probability of 20% 0.555*** (0.008)

Mistake/Experiment Distributions

Double-Distance-Half-as-Likely (action stage) 0.479*** (0.007)

Double-Distance-Half-as-Likely (comm. stage) -0.148*** (0.010)

Exponential (comm. stage) 0.444*** (0.009)

Highest Message (comm. stage) 0.540*** (0.009)

Observations/Number of Simulations 135,000
R-squared 0.769
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