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Abstract: Several central banks have adopted inflation targets. The implementation of these targets is flexible; the 
central banks aim to meet the target over the long term but allow inflation to deviate from the target in the short-term 
in order to avoid unnecessary volatility in the real economy. In this paper, we propose modeling the degree of 
flexibility using an AFRIMA model. Under the assumption that the central bankers control the long-run inflation 
rates, the fractional integration order captures the flexibility of the inflation targets. A higher integration order is 
associated with a more flexible target. Several estimators of the fractional integration order have been proposed in 
the literature. Grassi and Magistris (2011) show that a state-based maximum likelihood estimator is superior to other 
estimators, but our simulations show that their finding is over-biased for a nearly non-stationary time series. We 
resolve this issue by using a Bayesian Monte Carlo Markov Chain (MCMC) estimator. Applying this estimator to 
inflation from six inflation-targeting countries for the period 1999M1 to 2013M3, we find that inflation is integrated 
of order 0.8 to 0.9 depending on the country. The inflation targets are thus implemented with a high degree of 
flexibility.  
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1 Introduction  

Several central banks around the world have switched from a fixed exchange rate regime to an 

inflation-targeting regime during the last 25 years. The inflation target is either a constant or a 

range and is calculated using the year-on-year change in the consumer price index (CPI). Facing 

a trade-off between inflation stability and real economic stability in the short run (Svensson, 

1997), most central banks have chosen a flexible inflation target to maintain real economic 

stability. In the words of the previous Governor of the Bank of England, Mervyn King, central 

bankers are not “inflation nutters”. Consequently, inflation contains long swings around its 

mean. Moreover, there is evidence that inflation is covariance non-stationary yet mean-reverting, 

i.e., fractionally integrated (Hassler and Wolters, 1995; Caggio and Castelnuovo, 2011).  

The flexibility of the inflation targets is commonly modeled using a Taylor rule (Clarida, 

Gali and Gertler, 1998; Cobion and Goldstein, 2012). According to the Taylor rule, the central 

bankers set the interest rate based on the deviation of inflation from the target and the size of the 

output gap. Empirical estimation of the Taylor rule is difficult because it requires both an 

estimate of the long-run equilibrium real interest rate and an estimate of the output gap. The 

model also assumes that central bankers do not consider other variables when making interest 

rate decisions (Svensson, 2003).  

An alternative approach is to estimate the degree of flexibility by modeling inflation with 

an ARFIMA model. Here, AR and MA components capture the short-run dynamics of the 

inflation target and the fractional integration order of the long-run dynamics. Using the fractional 

integration order under the assumption that the central bank controls the long-run inflation rate, 

we can estimate how flexibly the inflation targets are implemented. A higher integration order 

indicates that the central banker is more willing to allow inflation to deviate from its target - thus 
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the inflation target is more flexible, and conversely, the central banker is then more willing to 

allow inflation to deviate from its target. By analyzing the fractional integration order in an 

ARFIMA model, it is possible to determine whether the central bankers are “inflation nutters”, 

or, flexible in their implementation of the inflation target.  

Several estimators of ARFIMA models have been proposed. These estimators include the 

parametric method, which is based on the maximum likelihood function (Fox and Taqqu, 1986; 

Sowell, 1992; Giraitis and Taqqu, 1999), and the regression-based approach in spectral domain 

(Geweke and Porter-Hudak, 1983). Additional estimators include the semi-parametric (Robison 

1995a, b; Shimotsu and Phillips, 2005), and the wavelet-based semi-parametric (McCoy and 

Walden 1996; Jensen 2004).  

Chan and Palma (1998) established a theoretical foundation to estimate the ARFIMA model 

with an approximate maximum likelihood estimation (MLE)-based state space model. The 

authors truncate the infinite AR or MA representations of the ARFIMA model into finite lags 

and calculate the approximate maximum likelihood using the Kalman filter. Chan and Palma 

(1998) show that the approximate MLE-based state space model has desirable asymptotic 

properties and a rapid converging rate. Recently, Grassi and Magistris (2011) conducted a 

simulation study to compare the state space model-based long memory estimation with several 

widely applied parametric and semi-parametric methods. Grassi and Magistris (2011) show that 

compared with the other estimations, the state space model method is robust to the t distribution 

and is missing value, measurement error and level shift. However, both Chan and Palman (1998) 

and Grassi and Magistris (2011) concentrate mainly on estimating the fractional difference 

parameter d  in stationary time series when 0 0.4d  , and they ignore the estimation of the 

nuisance parameter  , which is the variance of the disturbance term. Simulations in our paper 
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include a wide range of d  and  , where 0 < d < 1 and  =1, 3, 5. Our results show that the 

state space-based estimators perform well in the near integrated case where d  is in the 

neighborhood of 1. However, the estimates for both d  and   are over-biased in the nearly 

covariance non-stationary case, i.e., when 0.4 0.5d  .  

In some cases, we know that the integration order is between certain intervals, e.g., 

covariance stationary (-0.5 ≤ d < 0.5), or mean-reverting but not covariance-stationary (0.5 ≤ d < 

1). We can combine this essential prior information with the state space model in the framework 

of Bayesian inference; if we know within which interval d is located, we can assign a prior 

distribution ( )  and generate parameter samples direct from the posterior distribution ( )L y  

where ( ) ( ) ( )L y L y    . The estimator for the parameters is the expected value from the 

posterior distribution. When the posterior distribution ( )L y  is not analytically tractable, the 

Markov chain Monte Carlo (MCMC) algorithm can be applied to draw samples from ( )L y  and 

to estimate both d  and  . Simulation studies show that using the Bayesian MCMC extension 

solves the bias problem when 0.4 0.5d  and that the Bayesian MCMC estimator performs 

well also for other values of d, including d ≥ 0.5.   

ARFIMA models are estimated for inflation from six inflation-targeting regions: Canada, the 

Euro Area, Norway, Sweden, the United Kingdom and the United States, for the period of 

1999M1 to 2013M3. Our results show that most of the inflation persistence is caused by the 

long-run dynamics and that the short-run dynamics exhibits low persistence. The fractional 

integration order falls within the interval of 0.8 and 0.90 for all regions except Norway, where 

the integration order is 1.05. However, the estimated integration order for Norway is not 
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significantly greater than one at the 5% significance level. Overall, our results show that none of 

the central banks are “inflation nutters”.  

The rest of the paper is organized as follows: section 2 introduces the state space model- 

based MLE for long memory series, section 3 combines the state space model with the MCMC 

algorithm to estimate the fractional difference parameters, section 4 applies empirical examples, 

and the conclusions can be found in the final sections.  

2 State Space Maximum Likelihood Estimator 

Consider the ARFIMA(p,d,q) model ( )(1 ) ( )d
t tB L Y B    , 0 1d   and 2~ . . . (0, )t i i d N   , 

0 1d   and 2~ . . . (0, )t i i d N   . When p,q are less than or equal to one, we can obtain a 

truncated AR or MA representation of the ARFIMA(p,d,q) model, and estimate the parameters 

by approximate MLE. However, it is difficult to write out closed form AR or MA representations 

and carry out the estimation when p and q exceed one. However, we can use Hosking’s (1981) 

method and estimate the parameters in the ARFIMA model recursively:  

Step 1: Estimate 0d  by viewing tY  as pure fractional difference series and then applying the 

ARIMA(p,0,q) process 
00 (1 )d

t tu L Y  . 

Step 2: Use the Box-Jenkins method to identify and estimate 0  and 0  parameters in the 

ARIMA(p,0,q) model 0( ) ( )t tB u B   . 

Step 3: Apply the ARIMA(0,d,0) process 0 0 1 0{ ( )} ( )t tx B B Y  , and estimate 1d  in the 

fractional difference process 
1

(1 )d
t tL x   . 

Step 4: Check for convergence with the convergence rule 1 0.005i id d   , and obtain the 

estimation results id , i  and i . 
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For simplicity, consider the pure long memory series (1 )d
t tL Y   . There are three reasons to 

consider a long memory model in state space form. First, it can streamline the prediction and 

interpolations through the recursive expression in Kalman filter. Second, it can utilize the 

skipping approach (Durbin and Koopman, 2001), which controls for missing data by 

extrapolating the data that is available rather than relying on assumptions.. Third, the state 

equation form addresses indirectly observed process. 

To obtain the state space form representation for the long memory series (1 )d
t tL Y   , 

0 1d   and 2~ . . . (0, )t i i d N   , Chan and Palman (1998) suggested writing the model in the 

form of truncated MA and AR expansions: 
1

t j t j t
j

y y 





   or 
0

t j t j
j

y  





 , where j  and 

j  can refer to Hosking (1981). This paper use AR representation and j =
( 1)!

!( 1)!

j d

j d

  
 

. The 

state space form representation can be expressed as:     

                                   
1

      (Measurement equation)

,  ~ (0, )     (State equation)
t t

t t t t

y Z

T H NID Q


   


  

 . 

With the truncated lag length setting as m , we have 
1

( 1) *1

...

t

t

t

t m m

y

y

y

 

 

 
 
   
  
 

2
1 m

1* m*m m*1 m*m
m-1

 ... ... 0
[1,0,...,0],  T = ,  H =(1,0,...0), Q

0   I     0
mZ     
    

   
. Based on the truncated 

state space form representation, we can obtain the approximate likelihood function with the 

corresponding estimation algorithm order being ( )O n . Compared with order 3( )O n  in exact 
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MLE, the reduced computation order will achieve a more efficient estimation and faster 

computation time (Chan and Palman, 1998). 

The Kalman filter is utilized to calculate the likelihood function. Let 1tI  denote the 

information set at time 1t  . The optimal predictor of the state t  and its variance matrix are, 

respectively: 1 t t-11α [ ] T α ,t tt t E I     and '
1 t 1 t-1 t1P [ ] T P T Qt t tt t Var I      . The corresponding 

optimal predictor for ty  is then tt t-1 t t-1y =Z α . Once the new observation ty  is available, the 

optimal predictors 1αt t  and 1Pt t are updated as: ' -1 ' -1
t t-1 t t t t-1 t t tt t-1 t t-1 t t-1α =α +P Z F ( -Z α )=α +P Z F ν ,ty

' -1
t t tt t-1 t t-1 t t-1 t t-1P =P -P Z F Z P  . When the initial value 1 0α  and 10P are specified, the Kalman filter 

returns prediction errors t t t t-1ν -Z αty  and the variance matrix ' '
t t t t t tt t-1(ν ν ) F Z P Z HE    . 

Finally, by maximizing the log likelihood function 

´ 1

1 1

1
ln ( ) ln(2 ) ln

2 2

T T

t t t t
t t

NT
L y F v F v  

 

     
 
  , the parameters 2( , )d    can be 

estimated. Chan and Palman (1998) established the asymptotic properties of the approximate 

maximum likelihood estimation, and the simulation shows that the approach is efficient. The 

most current study on the state space model long memory estimation is the one conducted by 

Grassi and Magistris in 2011. However, Chan and Palman (1998) and Grassi and Magistris 

(2011) only consider stationary series with 0 0.4d   where 2
 =1 and is assumed to be 

known.  

The range of integration orders considered in their simulations is relatively narrow from an 

economic point of view. Several economic time series such as exchange rates (Andersson, 2013), 

inflation (Hassler and Wolters, 1995; Caggio and Castelnuovo, 2011) and interest rates 

(Tkacz,2001; Coleman and Sirichand, 2012) have been found to be covariance non-stationary yet 
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mean-reverting. We thus expand the simulations (see Tables 1 to 3) to also include nearly non-

stationary time series ( 0.45,0.48d  ), non-stationary though mean-reverting ( 0.7,0.8,0.9d  ) 

and nearly unit root ( 0.95,0.98d  ). Unlike Chan and Palman (1998) and Grassi and Magistris 

(2011) we also consider both the case when 2
  is known (Table 1), and the case when 2

  is 

unknown and estimated jointly with d (Table 2). In the simulation, the initial value of 1 0α  is set 

as 0, and 10P  is the empirical auto-covariance matrix up to lag m , which is set to 10. We 

concentrate on the case where 170T  , which corresponds to the sample size in our empirical 

analysis. The standard deviation of the shocks is set to (1,3,5)  . The simulation is based on 

500 repetitions. 

The estimates of the integration order are unbiased for all cases except where d is close to 

0.5 and the estimates contain a positive bias. The bias is relatively large (between 0.10 and 0.12). 

In an empirical analysis, this large and positive bias increases the risk of concluding that a series 

is non-stationary when it is actually stationary.  

[Table 1] 

[Table 2] 

As can also be seen in the tables, the bias is independent of whether 2
  is known or unknown 

and of the value of 2
 . The estimates of 2

 are unbiased irrespective of d (see Table 3), and only 

the estimates of d are biased for the series with an integration order close to 0.5. Overall, the 

state space model based estimation gives out a satisfactory result in most cases except when

0.45,0.48d  .  

 [Table 3] 
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3 Bayesian MCMC Estimator 

In certain situations, we have some prior knowledge of the series’ properties, whether they are 

covariance-stationary, mean-reverting or non-stationary. Such information can potentially be 

used to improve the accuracy of the estimator, and in the case of the MLE described in Section 2, 

it can solve the over-bias problem for the nearly non-stationary series.  

The estimation in Section 2 is based on the maximization of the log likelihood function 

´ 1

1 1

1
ln ( ) ln(2 ) ln

2 2

T T

t t t t
t t

NT
L y F v F v  

 

     
 
  , where we assume   is fixed but unknown. 

If we know whether the series is stationary or non-stationary, we can set d  as a random variable 

with the definition domain as 0 0.5d   or 0.5 1d   respectively. To estimate the parameters 

in the fractional difference series using the Bayesian methodology, we can refer to Koop et al. 

(1997), Petris (1997) and the recent literature (Jensen 2004; Ko and Vannuchi 2006 a; Holan et 

al. 2009; Ko et al. 2009). Rather than estimating the parameters by maximizing the log 

likelihood function ln ( )L y  , we first construct the posterior distribution ( )L y  based on the 

prior distribution ( )  , and we construct the approximate likelihood function ( )L y   by

( ) ( ) ( )L y L y    .  

The prior information ( )  is chosen as the independent priors for d  and  with

( ) ( ) ( )d     . For d , where we have prior knowledge that the series is stationary with 

0 0.5d   and non-stationary with 0.5 1d  , we choose a respectively uniform distribution 

(0,0.5)Unif  and (0.5,1)Unif . The prior distribution   does not depend on d , and this paper 
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uses (0,10)Unif . The posterior distributions for d  and   are: 

/ 2 ´ 1
(0,0.5)

1 1

1 1
( , ) (2 ) exp ln ( )

2 2

T T
NT

t t t t
t t

p d y F v F v I d   

 

     
 

  ; 

/ 2 ´ 1
(0,10)

1 1

1 1
( , ) (2 ) exp ln ( )

2 2

T T
NT

t t t t
t t

p d y F v F v I   

 

     
 

  . 

The estimators for d  and  are simply the posterior mean and ˆ d ( )P y    . Because the 

marginal posterior ( )P d y  and ( )P y  result in the integration being analytically intractable, 

and the posterior distribution for d ,  are conditionally depend on each other, a two-step 

iterative Metropolis-Hasting method is applied (Scollnik, 1996; Brooks, 1998; Besag, 2004).  

Simulation results using the Bayesian approach are presented in Tables 4 to 6. We use the 

same simulation set-up as in Section 2. Table 4 contains the results when  is known. Table 5 

contains the results when   i are unknown and estimated jointly with d. The results for the 

Bayesian approach are similar to the result of the MLE for all d, except (0.4,0.45,0.48)d  . In 

this case, the bias issue has disappeared. Therefore, with certain prior information, the Bayesian-

based method can improve the estimation for the nearly non-stationary series and generate the 

same accurate results for the other integration orders.  

[Table 4] 

[Table 5] 

Compared with the MLE estimates of  , however, the Bayesian estimates are more biased 

when 0.48d  , which is a result of choosing a prior distribution. But, given the reduction in the 

bias of d, the bias of ˆ is acceptable. 

 [Table 6] 
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4 Empirical Analysis 

The integration order is estimated using an ARFIMA model for six inflation-targeting regions 

(Canada, the Euro Area, Norway, Sweden, the United Kingdom and the United States) for the 

period following the introduction of the Euro (i.e., 1999M1 to 2013M3). Inflation is measured as 

the year-on-year increase in the Harmonized Index of Consumer Prices (HICP) in all regions but 

Canada and the United States, where the Consumer Price Index (CPI) is used because there is no 

HICP data. All data are collected from Eurostat1.  

Descriptive statistics are available in Table 7. Table 7 also presents the official inflation 

targets. Average inflation is fairly close to the targets in all countries, although average inflation 

has been approximately 0.5 percentage points lower than the target in Norway and Sweden and 

approximately 0.5 percentage points higher than the 2012-defined United States target.  

[TABLE 7] 

The estimated parameters in the ARIMA model are presented in Table 8. The variance of the 

inflation shocks ranges between 0.243 (Euro Area) and 0.578 (the United States), and the shocks 

are auto-correlated in all countries. The degree of autocorrelation is relatively low. In most 

countries, the shocks follow an AR(1) model with an AR-parameter between 0.20 and 0.30. The 

exceptions are Norway and the United States, where the AR-parameters are within the range of 

0.65 to 0.8. The variance of the inflation shocks are also the highest in Norway and the United 

States.  

[TABLE 8] 

Because of the relatively low degree of autocorrelation in the inflation shocks, most of the long 

swings in inflation are not caused by the inflation shocks but by the central bankers’ response to 

                                                 
1 http://epp.eurostat.ec.europa.eu/portal/page/portal/eurostat/home/ 
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those shocks. The estimated fractional integration orders ranges between 0.824 (the United 

States) to 1.049 (Norway). The integration order for Norway is explosive, but the integration 

order is not significantly greater than one, and we cannot also reject mean-reversion for Norway.  

Excluding Norway, the estimated integration orders are similar amongst regions and within 

the range of 0.824 to 0.887. Central bankers in these countries appear to agree upon how flexibly 

the inflation target should be implemented. The integration orders are, moreover, relatively high 

and show that the inflation targets are implemented flexibly and that additional issues play an 

important role in the central banks’ policies. Although relatively high, the integration orders are 

all considerably smaller than 1 at the 5% significance level.  

5 Conclusion  

In this paper, we model the degree of inflation flexibility using an AFRIMA model in the 

framework of state space models. We divide the fractional difference series into four groups: 

pure stationary, nearly non-stationary, pure non-stationary and nearly unit root. We estimate both 

the difference parameter d  and the variance  . The simulation result indicates that the method 

calculates quite precise estimation in most cases, other than when d  nears 0.5. We argue that in 

certain situations, we have prior knowledge of whether the series is stationary or non-stationary. 

This knowledge can improve the estimation when we set the prior distribution for d  and  in 

the framework of Bayesian inference. We utilized the Metropolis–Hastings algorithm to show 

that this methodology can improve the estimation to a large extent when 0.4 0.5d  . Because 

the state space-based estimator works quite well when 0.7 1d  , we use it to estimate 

inflation-targeting in the empirical example. The result shows that inflation contains long swings 

and that these swings are caused by the central bankers’ preferences rather than the nature of the 
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inflation shocks. All central banks in the study pursue an inflation-targeting policy with a high 

degree of flexibility.  
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Table 1 Estimation of d based on the state space model when   is known 

d 0.20 0.30 0.40 0.45 0.48 0.70 0.80 0.90 0.95 0.98 

1   

Bias 

RMSE 

 

0.001 

0.076 

 

0.014 

0.070 

 

0.044 

0.090 

 

0.079 

0.124 

 

0.124 

0.167 

 

0.033 

0.079 

 

0.014 

0.069 

 

0.003 

0.059 

 

-0.003 

0.056 

 

-0.011 

0.060 

3   

Bias 

 

0.001 

 

0.010 

 

0.041 

 

0.081 

 

0.131 

 

0.027 

 

0.018 

 

0.002 

 

-0.004 

 

-0.008 

RMSE 0.066 0.067 0.093 0.125 0.172 0.077 0.071 0.062 0.059 0.061 

5   

Bias 

 

-0.003 

 

0.017 

 

0.048 

 

0.077 

 

0.134 

 

0.025 

 

0.018 

 

0.003 

 

-0.004 

 

-0.005 

RMSE 0.065 0.075 0.099 0.121 0.171 0.076 0.074 0.062 0.056 0.058 

 

Table 2 Estimation of d based on the state space model when   is unknown 

d 0.20 0.30 0.40 0.45 0.48 0.70 0.80 0.90 0.95 0.98 

1   

Bias 

RMSE 

 

-0.001 

0.077 

 

0.017 

0.069 

 

0.043 

0.096 

 

0.079 

0.121 

 

0.125 

0.166 

 

0.029 

0.079 

 

0.014 

0.065 

 

0.004 

0.064 

 

-0.005 

0.058 

 

-0.009 

0.057 

3   

Bias 

 

0.006 

 

0.020 

 

0.041 

 

0.084 

 

0.112 

 

0.030 

 

0.011 

 

0.004 

 

-0.004 

 

-0.007 

RMSE 0.077 0.064 0.088 0.123 0.155 0.081 0.067 0.061 0.058 0.058 

5   

Bias 

 

0.002 

 

0.015 

 

0.041 

 

0.067 

 

0.121 

 

0.036 

 

0.016 

 

0.001 

 

-0.008 

 

-0.009 

RMSE 0.056 0.066 0.089 0.100 0.170 0.078 0.070 0.060 0.049 0.050 

 

Table 3 Estimation of   based on the state space model 

d 0.20 0.30 0.04 0.45 0.48 0.70 0.80 0.90 0.95 0.98 

1   

Bias 

RMSE 

 

-0.001 

0.055 

 

-0.001 

0.054 

 

0.004 

0.054 

 

0.015 

0.059 

 

0.025 

0.064 

 

-0.001 

0.053 

 

-0.001 

0.055 

 

-0.004 

0.055 

 

-0.005 

0.052 

 

0.006 

0.055 

3   

Bias 

 

-0.002 

 

0.002 

 

0.023 

 

0.041 

 

0.062 

 

0.010 

 

-0.006 

 

0.011 

 

-0.003 

 

-0.013 

RMSE 0.166 0.155 0.167 0.181 0.180 0.153 0.152 0.132 0.135 0.150 

5   

Bias 

 

-0.010 

 

-0.016 

 

0.019 

 

0.065 

 

0.142 

 

0.002 

 

-0.015 

 

-0.008 

 

-0.037 

 

-0.038 

RMSE 0.227 0.234 0.224 0.255 0.314 0.221 0.208 0.225 0.266 0.228 
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Table 4 Estimation of d based on the Bayes model when   is known 

D 0.20 0.30 0.40 0.45 0.48 0.70 0.80 0.90 0.95 0.98 

1   

Bias 

RMSE 

 

0.012 

0.061 

 

0.020 

0.067 

 

0.018 

0.054 

 

0.003 

0.042 

 

-0.006 

0.031 

 

0.037 

0.079 

 

0.018 

0.067 

 

-0.007 

0.054 

 

-0.024 

0.050 

 

-0.037 

0.051 

3   

Bias 

 

0.014 

 

0.016 

 

0.018 

 

0.005 

 

-0.006 

 

0.035 

 

0.024 

 

-0.006 

 

-0.020 

 

-0.036 

RMSE 0.060 0.067 0.055 0.039 0.032 0.077 0.070 0.050 0.046 0.053 

5   

Bias 

 

0.008 

 

0.011 

 

0.018 

 

0.003 

 

-0.004 

 

0.039 

 

0.023 

 

-0.003 

 

-0.024 

 

-0.039 

RMSE 0.065 0.064 0.055 0.040 0.026 0.081 0.066 0.052 0.048 0.053 

 

Table 5 Estimation of d based on the Bayes model when   is unknown 

D 0.20 0.30 0.40 0.45 0.48 0.70 0.80 0.90 0.95 0.98 

1   

Bias 

RMSE 

 

0.010 

0.066 

 

0.019 

0.062 

 

0.019 

0.057 

 

0.003 

0.042 

 

-0.007 

0.031 

 

0.035 

0.80 

 

0.016 

0.067 

 

0.001 

0.047 

 

-0.024 

0.046 

 

-0.039 

0.052 

3   

Bias 

 

0.009 

 

0.018 

 

0.016 

 

0.005 

 

-0.004 

 

0.033 

 

0.023 

 

-0.001 

 

-0.020 

 

-0.038 

RMSE 0.063 0.067 0.055 0.037 0.030 0.077 0.067 0.051 0.045 0.059 

5   

Bias 

 

0.011 

 

0.016 

 

0.017 

 

0.005 

 

-0.004 

 

0.034 

 

0.020 

 

-0.004 

 

-0.020 

 

-0.037 

RMSE 0.050 0.068 0.056 0.038 0.027 0.079 0.069 0.051 0.048 0.050 

 

Table 6 Estimation of   based on the Bayesian model 

D 0.20 0.30 0.04 0.45 0.48 0.70 0.80 0.90 0.95 0.98 

1   

Bias 

RMSE 

 

0.007 

0.086 

 

0.009 

0.069 

 

0.025 

0.071 

 

0.042 

0.094 

 

0.101 

0.183 

 

0.018 

0.068 

 

0.019 

0.071 

 

0.011 

0.064 

 

-0.009 

0.063 

 

0.004 

0.059 

3   

Bias 

 

0.022 

 

0.035 

 

0.060 

 

0.120 

 

0.350 

 

0.044 

 

0.030 

 

0.018 

 

0.017 

 

0.019 

RMSE 0.160 0.162 0.164 0.200 0.500 0.165 0.150 0.170 0.150 0.165 

5   

Bias 

 

0.020 

 

0.061 

 

0.078 

 

0.190 

 

0.557 

 

0.052 

 

0.038 

 

0.037 

 

0.024 

 

0.023 

RMSE 0.27 0.230 0.260 0.400 0.092 0.290 0.244 0.269 0.235 0.228 
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Table 7 Descriptive statistics 
 

 Canada Euro Area Norway Sweden United Kingdom United States 

Inflation Target  1% ‐ 3%  <2%  2.5%  2.0%  2.0%  2.0% 

Average 2.06% 2.08% 1.82% 1.64% 2.18% 2.51% 

Std. Dev. 0.95 0.77 1.17 0.87 1.10 1.65 

 

 

 

Table 8 Estimation results 
 

 Canada Euro Area Norway Sweden United Kingdom United States 

d 
0.835 

(0.041) 

0.857 

(0.036) 

1.048 

(0.025) 

0.857 

(0.040) 

0.887 

(0.038) 

0.824 

(0.044) 

  
0.482 

(0.019) 

0.243 

(0.009) 

0.511 

(0.019) 

0.346 

(0.013) 

0.291 

(0.011) 

0.578 

(0.022) 

AR(1) 
0.220 

(0.076) 

0.338 

(0.081) 

0.807 

(0.050) 

0.201 

(0.080) 

0.237 

(0.076) 

0.653 

(0.075) 

AR(2) --- 
0.081 

(0.081) 

-0.714 

(0.076) 
--- 

0.145 

(0.076) 

-0.221 

(0.075) 

MA(1) --- ---  --- --- --- 

 
 
 
 
 


