
Reese, Simon; Li, Yushu

Working Paper

Testing for Structural Breaks in the Presence of
Data Perturbations: Impacts and Wavelet Based
Improvements

Working Paper, No. 2013:36

Provided in Cooperation with:
Department of Economics, School of Economics and Management, Lund University

Suggested Citation: Reese, Simon; Li, Yushu (2013) : Testing for Structural Breaks in the
Presence of Data Perturbations: Impacts and Wavelet Based Improvements, Working
Paper, No. 2013:36, Lund University, School of Economics and Management, Department of
Economics, Lund

This Version is available at:
https://hdl.handle.net/10419/260092

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/260092
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 
Working Paper 2013:36 
 
Department of Economics 
School of Economics and Management 

 
 

 

Testing for Structural Breaks in the 
Presence of Data Perturbations: 
Impacts and Wavelet Based 
Improvements 
 
 
 
Simon Reese 
Yushu Li 
 
October 2013 



1 
 

Testing for structural breaks in the presence of data perturbations 

---- Impacts and wavelet based improvements 

 

Simon Reese1 and Yushu Li2 

 

Abstract 

This paper investigates how classical measurement error and additive outliers influence tests 

for structural change based on F-statistics. We derive theoretically the impact of general 

additive disturbances in the regressors on the asymptotic distribution of these tests for 

structural change. The small sample properties in the case of classical measurement error and 

additive outliers are investigated via Monte Carlo simulations, revealing that sizes are biased 

upwards and that powers are reduced. Two wavelet based denoising methods are used to 

reduce these distortions. We show that these two methods can significantly improve the 

performance of structural break tests.  

 

JEL classification: C11, C12, C15 

 

Keywords: Structural breaks, measurement error, additive outlier, wavelet transform, 

empirical Bayes thresholding 

 

1. Introduction 

The detection of structural breaks is an integral part of economic time series analysis. If an 

econometric model is to reflect the optimal decision rules of individuals, its structure will be 

altered by changes in the environment of the economic agents that are studied (Lucas, 1976). 

Ignoring the presence of a structural break in the sample will in general lead to a 

misspecification of the econometric model that renders the obtained coefficients useless for 
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testing or further statistical inference (Stock, 1994). It is well known that in practice economic 

data cannot be produced without some degree of imperfection or incompleteness 

(Morgenstern, 1963, p.39). Evidence of the presence of inaccuracies in economic data has 

been found repeatedly, see van Bergeijk (1995, p. 3). Balke and Fornby (1994) argue that rare 

influential observations are also present in most macroeconomic indicators and account for a 

significant share of the overall variance in the sampling period. The implications of both 

classical measurement error and additive outliers in the explanatory variables of an 

econometric model are well documented. As pointed out in e.g. Bound et al. (2001, p. 3712), 

classical measurement error leads to inconsistency of the OLS estimator. In the case of 

outliers, the estimated coefficients will be biased in finite samples (see e.g. Davidson and 

MacKinnon, 2009, Ch. 2.6).  

As far as we know the only attempt to analyse how data imprecisions affect structural break 

tests is Rodrigues and Rubia (2011), who focus on CUSUM-type tests for detecting structural 

change in the variance. This paper extends these authors’ focus on classical measurement 

error and additive outliers to the widely used Quandt-Andrews family of tests for structural 

breaks (Quandt, 1960; Andrews, 1993; Andrews and Ploberger, 1994). We first give a 

theoretical derivation that shows that the asymptotic distributions of the structural test 

statistics are in general influenced by additive stochastic perturbations in the regressors. 

Monte Carlo simulations for finite sample sizes then show that both the size and power of 

these tests will be distorted in the presence of either classical measurement error or additive 

outliers. Our results show that classical measurement error may reduce test power 

significantly while having a relatively small impact on the size. The presence of additive 

outliers greatly inflates sizes while only exerting a moderately negative effect on power. The 

empirical Bayesian thresholding procedure of Johnstone and Silverman (2004, 2005a,b) is 

then used to remove inaccuracies from the data. This wavelet based method is chosen due to 

its ability to obtain resolution in both the frequency and time domains, which makes it 

possible to separate characteristics of a given series into different scales that can be treated 

separately. A simulation study using the corrected data shows that the size and power 

distortions due to additive outliers can be greatly reduced and that the negative effects on test 

power arising from measurement errors with can largely be mitigated.  

The paper is organized as follows. Section 2 investigates how measurement errors and 

additive outliers influence F-statistic based tests for structural breaks. Section 3 covers the 

removal of data inaccuracies via empirical Bayesian thresholding and the performance of the 

breakpoint test on the corrected data. Finally, section 4 concludes.  
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2. The impact measurement inaccuracies on F -statistic based tests for structural break 

Apart from the testing procedure that employs the generalized fluctuation test framework such 

as the CUSUM tests (Brown et al. 1975; Kuan and Hornik, 1995), the literature on tests for 

structural change in linear regressions is dominated by F-test based approaches that can be 

lead back to Chow’s “coefficients equality” test (Chow, 1960; Quandt, 1960; Hansen, 1992b; 

Andrews, 1993; Andrews and Ploberger, 1994). Consider the linear model 
' ,  1,...,t t t ty X e t Tβ= + =  with ty  denoting the dependent variable and '

1( ,..., )t t ktX x x=  

denoting the 1k ×  vector of stochastic or nonstochastic regressors. We test the null hypothesis 

of no structural break in the parameter vector '
1( ,..., )t t ktβ β β= , against the alternative 

hypothesis 1H  of a discrete break point in period at time point m . 
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the break date. The Quandt-Andrews family of tests (Quandt, 1960; Andrews, 1993; Andrews 
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To compare the performance of these three tests, Kim and Perron (2009) presented a 

comprehensive power investigation using finite samples. Their investigation assumes the 

exogeneity of the independent variable, i.e. [ ] 0t tE e X = . In the case of additive 
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perturbations in the data, however, this assumption will not necessarily be satisfied. Let 
*
t t ty y v= +  and *

t t tX X U= +  denote the observed values of the given data, with additive 

perturbations tv  and the 1k ×  vector tU  . This definition of tv  and tU  nests both classical 

measurement error and additive outliers, i.e. rarely occurring extreme values that cannot be 

explained by the DGP of the respective variables. However, distinguishing measurement 

errors from outliers entails further assumptions to be made about the stochastic properties of 

tv  and tU . Substituting *
t t ty y v= −  and *

t t tX X U= −  into the true linear relation 

'
t t t ty X eβ= +  yields * ' * *

t t t ty X eβ= + , where * '
t t t t te e v Uβ= + − . Under the assumption that tv  

and tU  are independent of each other and of both ty  and tX , the error in ty  will be absorbed 

in the disturbance term of the regression and can be ignored while the errors  in tX  will affect 

the estimation of tβ . If outliers affect a specific percentage of observations in the sample then 

classical measurement error and outliers result in an estimator that is both biased and 

inconsistent since * *[ ] 0,  1,...,t tE e X t T≠ = . However, if the absolute number of additive 

outliers is fixed then * *[ ]t tE e X  will converge to zero as  𝑇 → ∞. 

Stock (1986) gave out a clear illustration of the asymptotical distributions for the ( )T
mF
T

-

statistic in SupF , AveF  and ExpF  tests when the data is observed without error. Let “⇒ ” 

denote weak convergence in probability and “ P→ ” convergence in probability. The 

asymptotic distribution of the F-test statistic is found to be
'( ) ( )( )

(1 )
k k

T
B BF

µ µλ λλ
λ λ

⇒
−

, where 

(0,1)m
T

λ = ∈ , ( ) ( ) (1)k k kB W Wµ λ λ λ= −  and ( )kW ⋅  is a k-dimensional standard Brownian 

motion. To show this result we first define the 1k ×  vector 1/ 2

1
( )

T

T t t
t

v T X e
λ

λ −

=

= ∑  and the k k×  

matrix 1 '

1
( )

T

T t t
t

V T X X
λ

λ −

=

= ∑ . By a Functional Central Limit Theorem we can get that 

1/ 2( ) ( )T X kv Wεσ⋅ ⇒ Σ ⋅  and ( ) P
T XV λ λ→ Σ , where '

X t tEX XΣ = . Substituting the asymptotic 

distribution of ( )Tv ⋅ and ( )TV λ  into the partial sum of squared residuals we obtain 

' ' 1 ' 1
1, 1

1 1 1
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1, 1, 1,
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under the null hypothesis.  

When the data is observed with additive errors, however, the asymptotic distribution of the F 

statistic will be different since both ( )Tv λ  and ( )TV λ  will be affected: 
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The additive contaminations in the dependent variable now disappear, making the ( )TF λ  

statistic independent of the errors in the regressand. Since the perturbations in the regressor 

remain present, however, * ' * 1 *( ) ( ) ( )T T Tv V vλ λ λ−  will be different from ' 1( ) ( ) ( )T T Tv V vλ λ λ− . The 

direction of the small sample bias of 1, 1, 1,

1, 1,

( )
( )

( ) /( 2 )
T m m T

T
m m T

SSR SSR SSRmF
T SSR SSR T k

+

+

− +
=

+ −
 is hard to obtain 

theoretically as both the denominator and the numerator of the test statistic are affected. We 

therefore perform a Monte Carlo experiment to investigate how the tests will be influenced 

with and without contaminations. The experiment design is similar to Kim and Perron (2009), 
'

1

, ~ . . . (0,1) ; * ( [ ])

,  ,    ~ . . . (0,1)     
t t t t t t

t t t t t t

y X u u i i d N I t T
X Z Z Z e e i i d N

β β β γ λ

µ ρ −

= + = + >

= + = +
, 

where 

0 :  for size investigation
1,  0.7,  

0.4: for power investigation
µ ρ γ


= = = 


, 0.4β = , 0.5λ =  and T = 128, 256, 5123. 

We consider the affect of both types of error on the tests for structural change. Classical 

measurement error tη  is added in the regressor as * ,  (0, )t t t tX Z N ηµ η η σ= + + ∈  and ησ  is 

determined by a signal to noise ratio (SNR) ( ) /SNR SD X ησ= . SNR = ∞  indicates that the 

data is measured exactly whereas 2.5SNR =  and 0.8SNR =  represent imprecisely measured 

                                                           
3 The sample sizes are chosen to be suitable for the application of the wavelet transform (Percival and Walden 
2000). 



6 
 

data with low and high error margins respectively. Table 1 shows the size and power of the 

three tests with and without measurement error based on 10,000 replications. 

Table 1 

 
The 95% confidence interval for actual size when the nominal size is 5% is given by  

0.05(1 0.05)0.05 1.96* (0.0457,  0.0543)
10000

−
± =  when there are 10,000 replications. Table 1 

shows that for 0.8SNR = , the test size is distorted upwards while the powers is reduced. 

When 2.5SNR =  the test size remains mostly within the confidence interval for a true 

rejection rate of 5%, although a slight upwards tendency relative to the case without noise can 

be detected. The impact of measurement errors on test size does not, in general, diminish as 

the sample size grows. By contrast, the power becomes increasingly robust to measurement 

error as the number of observations increases. For a small magnitude of error (i.e. 

2.5SNR = ), a noticeable impact can only be found in the small sample case. The results in 

Table 1 indicate that the F-statistic based tests for structural change exhibit robustness to 

classical measurement error when its magnitude is not too excessive. The tests will, however, 

be influenced when the error margins around the true values are large. 

On the other hand, additive outliers (AO) in the explanatory variable are introduced by 

defining the distribution of tη  as a mixture between a point mass at zero and either positive or 

negative values from the Gumbel distribution:  

 , 

𝜂𝑡 ∼ 𝜅 ⋅ 𝛿0 + (1 − 𝜅)(−1)𝜋 ⋅ 𝐺𝑢𝑚𝑏𝑒𝑙 �𝜉 ⋅ 𝑆𝐷(𝑋),
1
3
� 

where 𝜋 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5), 𝜅 ∈ (0,1) and ξ  specifies the outlier magnitude. In the 

simulation study we consider 5ξ =  and 10ξ = . Furthermore, we enforce a probability 

parameter (1 ) 0.015625κ− =  by including 2ln ( ) 62 T −  outliers at random positions in a sample of 

length T . Table 2 reports the size and power of the tests, again based on simulation with 

10000 repetitions: 

 

Table 2 
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Table 2 shows that size is greatly increased with the same direction of the magnitude of 

outliers. For the SupF  test, these size distortions increase with the sample size. Similar 

tendencies cannot be found for the other tests except for the AveF  test with large outliers, 

where size distortions decrease in larger samples. The power of tests for structural change 

decreases in the case with small outlier magnitude ( 5ξ = ) relative to the scenario without 

outliers. This tendency is reversed in small samples, leading to an increase in power when the 

magnitude outlier increases. In medium and large samples, however, the negative relation is 

maintained. All in all, test power become consistently more robust to outliers as the sample 

size increases. Among the three tests for structural change, the SupF  and the ExpF  statistics 

behave very similarly. The AveF  statistic differs in that its size distortions are generally 

smaller than those of the other two tests. This does not, however, imply superior properties of 

the AveF  test since its power losses in the presence of outliers generally are the largest 

among the three tests we have considered. 

 

3. Improving the test performance using wavelet-based denoising 

The traditional way to deal with measurement error in the linear model is to use an 

instrumental variable, which must be correlated with the true value of the regressors but not 

contemporaneously correlated with the measurement error. Appropriate instruments are, 

however, usually very difficult to find in practice (Cragg, 1994; Schenach, 2004; Gençay and 

Gradojevic, 2011). We therefore favour a wavelet based denoising approach to reduce the 

problems introduced by classical measurement errors. This method does not need any 

instrumental variables, is mostly data driven and allows the key features of a time series to be 

characterized by a small number of coefficients, thus facilitating the elimination of noise. A 

slightly modified wavelet-based denoising strategy performs remarkably well in detecting 

outliers, allowing their replacement with low frequency information from the time series. This 

procedure constitutes an alternative to regression-based models for outlier detection (e.g. 

Tsay, 1986) and will circumvent the risk of model misspecification. 

Wavelet methods began to gain the attention of statisticians and econometricians after a series 

of articles in the field of economics and finance. Introductory texts for economists are given 

by Ramsey (1999), Schleicher (2002) and Crowley (2005) and more extensive descriptions 

have been provided by Vidakovic (1999), Percival and Walden (2000) and Gençay et al. 

(2001). Wavelet methodology represents an arbitrary time series in both time and frequency 

domains by convolution of the time series with a series of small wavelike functions.. 
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Corresponding to the time infinite sinusoidal waves in the Fourier transform, the time located 

wavelet basis functions �𝜓𝑘,𝑗 ∶ 𝑘, 𝑗 ∈  ℤ� used in the wavelet transform are generated by 

translations and dilations of a basic mother wavelet 𝜓 ∈ 𝐿2(ℝ). The function basis is 

constructed through / 2
, ( ) 2 (2 )j j

k j t t kψ ψ= − , where k is the location index and j is the scale 

index which corresponds to the information inside the frequency band 1

1 1( , )
2 2j j− .  For a 

signal f , its wavelet transform is the wavelet coefficients *
,{ ( , )}k jf k jγ ∈=  with  

*
, ,( , ) , ( ) ( )k j k jk j f f t t dtγ ψ ψ= 〈 〉 = ∫ , which can represent the resolution at time k  and scale j .  

The resolutions in the time domain and the frequency domain can be achieved by shifting the 

the time index k and the scale index j  respectively.  A lower level of j  corresponds to 

higher frequency bands and higher level of j  corresponds to lower frequency bands. 

Accordingly, the information at high frequency bands, such as noise, outliers, or data spikes, 

will be captured by ( , )k jγ  at a lower level of j . By contrast, the long persistent information 

at low frequencies, e.g. trends or structural breaks, will be captured by ( , )k jγ  at higher level 

of j . For a time series that is sampled at discrete time points, the coefficients of the time 

series in terms of the wavelet basis are obtained via the Discrete Wavelet Transform (DWT) 

and maximum overlap discrete wavelet transform (MODWT). The DWT can be implemented 

by applying a cascade of high-pass and low-pass filters to a time series that thereby separate 

its characteristics at different frequency bands (Mallat, 1989). For detailed illustration of DWT 

and MODWT, we refer to Vidakovic (1999), Percival and Walden (2000), and Gençay et al. 

(2001).Denoising of the time series is facilitated by three important properties of the wavelet 

transform: sparsity, orthogonality and linearity. Let y f e= +  be observed data with the 

unobservable signal f  being contaminated by noise e . The DWT of y  is defined as 
* Wd y= , where W is a transformation matrix which combines high-pass and low-pass filters. 

Thus the transformation can filter out the information of the time series at different frequency 

levels. Linearity implies that *d  maintains the additive structure of y , i.e. *d d ε= +  with 

Wd f= , Weε = . Orthogonality allows energy preservation so that f d= . Sparsity 

implies that the key characteristics of a systematic signal f , such as rapid local change, are 

captured in a small set of large DWT coefficients, leaving the remaining coefficients at a value 

of zero. By contrast, pure noise is spread evenly through all resolutions of *d  in the case of 

Gaussian white noise 𝜀𝑡 ∼ 𝑖𝑖𝑑𝑁(0,𝜎). In wavelet denoising, the DWT coefficients that are too 
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small are eliminated and we get the denoised coefficients *d̂ . The denoised time-domain 

representation of the signal f  can be reconstructed by applying the inverse wavelet transform 

on *d̂ , i.e. *ˆ ˆWTf d= . The choice of threshold is one of the most important steps and different 

approaches have been suggested in Donoho and Johnstone (1994, 1995) and Nason (1996). 

Since the sparsity of d  is very important prior knowledge, we favour the empirical Bayes 

thresholding proposed by Johnstone and Silverman (2004, 2005a,b). These authors specify the 

prior distribution of the true signal as 

0( ) ( ) (1 ) ( )f d w d w dγ δ= + − , 

where 0 1w≤ ≤  is the mixing weight, γ  is some fat-tailed distribution and 0δ  is a point mass 

at 0. Based on the observed coefficients *d  and the distribution of ε , we can obtain the 

likelihood *( )f d d  and the posterior distribution *( )f d d . Finally, a Bayesian rule is set in 

order to choose a statistic d̂  as the estimator of d . This is usually the mean or median from 

the posterior distribution, where using the posterior median implies thresholding while using 

the posterior mean leads to wavelet shrinkage. 

We will first apply empirical Bayes denoising to improve the results obtained in Table 1. In 

this case the terms of signal and error denote the true data X  and the measurement error e . 

The heavy-tailed distribution in the prior is specified as a quasi-Cauchy distribution:  

{ }1/ 2( ) (2 ) 1 ( ) / ( )d u d dγ π ϕ−= − Φ . 

This corresponds to the assumption that the non-zero wavelet coefficients of the true data 

have a higher probability of being larger than a Gaussian component. If the measurement 

error e  is distributed as 2(0, )N σ  the likelihood of the observed wavelet coefficients *d  will 

be 𝑑∗|𝑑 ∼ 𝑁(𝑑,𝜎2) and the cumulative posterior distribution of d  is given by 

 { }*2 * *2* / 2 1 * * * * / 2( ) (1 ) ( ) ( ) ( 1) ( )d dd dF d d e d d d d d dd e dϕ− − −= − − Φ − − − + − Φ . 

We judge the implied shrinkage rule to be more appropriate for the purpose of eliminating 

measurement error than thresholding, since complete elimination of small wavelet coefficients 

is more likely to remove minor details of the true signals together with the noise than a partial 

reduction of the coefficient values. Thus the posterior mean 
*2* * / 2 1 * 1( ) (1 ) 2du d d d e d− − −= − −  

is applied as the estimator for d . We conduct the same simulations as in Table 1,  using 

denoised regressors for the breakpoint tests . Our results are shown in Table 3.  
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Table 3 
It can be seen that denoising leads to small size corrections, which is most apparent at a SNR 

of 0.8. These downward corrections, however, appear in every scenario, indicating that the 

denoising algorithm modifies the data in a way that generally decreases size but does not 

specifically address the distortions caused by measurement error. The data modifications 

implied by the denoising method also affects the power. In small samples, a power decrease 

of up to 5% when there are no measurement errors has to be accepted. This negative influence 

decreases markedly with sample size, however, and  the power differences in the case without 

measurement error are already less than one percentage point in samples with 256 

observations. It can be seen that the denoising algorithm does not make a difference at a SNR 

of 2.5 when measurement error is added to the regressors. However, wavelet-based denoising 

helps to restore power in the scenario with more considerable error margins. The magnitude 

of these improvements amounts to around 12% in small and medium samples. We expect the 

overall performance of the denoising algorithm to improve when applied to time series with 

greater persistence. This is based on the fact that in more persistent time series the few DWT 

coefficients at coarser scales become larger relative to the greater number of coefficients at 

the finest scale. The amount of highly frequent data characteristics that are accidentally 

eliminated through the removal of measurement error will thus decrease. 

 

The use of empirical Bayes thresholding for the removal of outliers reduces to identifying 

their position and focuses explicitly on the finest scale coefficients of the wavelet transform. It 

furthermore reverses the role of true data and perturbations seen previously. Since outliers 

concern solely one observation, most of their energy will be captured by wavelet coefficients 

at the finest scale. By contrast, as most economic time series experience some sort of 

persistence, their energy will for the most part be allocated in coarse scales, leaving only a 

small contribution at high frequencies. Applying empirical Bayes thresholding to the finest 

scale wavelet coefficients will therefore treat the details of the true time series as noise and 

isolate the outliers. Since the isolation of outliers requires complete elimination of all other 

data characteristics we conduct the denoising method using the threshold rule implied by the 

posterior median. 

In order to correct the identified outliers, we first generate a benchmark series by applying the 

MODWT on the contaminated series. We then eliminate all coefficients in the first four scales 

and reconstruct the data. This yields a series consisting solely of low frequency variation and 



11 
 

thus excluds the impact of outliers. In a next step, we define candidate points. Since the 

wavelet transform is localized, the position of influential observations can be determined from 

the non-zero coefficients of the denoised signal. At the highest scale, each wavelet coefficient 

is related to two observations in the underlying time series, yielding two candidates for the 

position of the outlier. We compare each pair of candidates to their values in the benchmark 

series that excludes high frequency variation. The observation that deviates most is replaced 

with the value from the benchmark series. This procedure has the advantage of circumventing 

the necessity of estimating further models that are prone to misspecification. Furthermore, the 

focus of the analysis is kept exclusively to short range patterns, thereby minimizing the risk of 

mistaking other characteristics of the data as outliers. Finally, the data correction is 

implemented as precisely as possible by modifying only the observation that has been 

identified as an outlier. 

We conducted our simulation study as before, but this time using denoised regressors. The 

results are shown in Table 4: 

Table 4 

 
We can see that size reacts very favorably to this form of data correction. The excessive 

upward bias is reduced almost entirely, with only the exception of large outlier magnitudes in 

medium and large samples. In these cases an upward bias of 1.5% and 3% remains 

irrespective of which test is considered. The corrected data yields power results that are in 

very close to thoseobtained with the raw data when there are no outliers. The differences are 

in general smaller than 1.5% and indicate that the power of the tests for structural change is 

entirely mainted when using empirical Bayesian thresholding for outlier detection.  

 

Despite being a powerful tool to clean the data from influential observations, outlier detection 

based on the thresholding procedure of Johnstone and Silverman (2004, 2005a,b) does not 

mistake characteristics of the data for outliers when there actually are none. Both size and 

power of the corrected data differ from the results obtained from the raw data by at most three 

decimal placein a scenario with an outlier magnitude of zero. 

 

4. Conclusion  

This paper first derives a mathematical formula to demonstrate that additive contaminations 

of the explanatory variables in a linear model will influence the widely used Quandt-Andrews 
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family of tests for structural breaks. Monte Carlo simulations show that classical Gaussian 

measurement error generally diminishes test power and inflates size when its magnitude is 

sufficiently large. Additive outliers are shown to cause excessive size distortion and reduced 

test power. We apply two denoising techniques, based on empirical Bayes thresholding, in 

order to remove perturbations from the data. In the case of measurement error, a wavelet 

shrinkage strategy fails to correct size, but succeeds in mitigating the negative impact on 

power when the error margin is large enough. An outlier removal procedure consisting of 

outlier detection via wavelet thresholding and outlier replacement with low-frequency 

information of the contaminated time series leads to very good results. The size and power of 

tests using the denoised data are maintained almost entirely. 
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Table 1: Size and power of tests using raw data with measurement error 

 
 
 

 

 

 

 

 

 

 

 

 

 
 

Table 2: Size and power of tests using raw data with outliers 
      Test # obs         Outlier magnitude 

𝛾 = 0 (𝑠𝑖𝑧𝑒)  0 5 10 

𝑆𝑢𝑝𝐹𝑇 128 0.0432 0.2304 0.6804 
 256 0.0448 0.2709 0.7354 
 512 0.0488 0.2910 0.7430 

𝐴𝑣𝑒𝐹𝑇 128 0.0496 0.2149 0.6289 
 256 0.0469 0.2231 0.6006 
 512 0.0526 0.2130 0.5573 

𝐸𝑥𝑝𝐹𝑇 128 0.051 0.2527 0.7048 
 256 0.0497 0.2702 0.7203 
 512 0.0527 0.2695 0.7029 

     𝛾 = 0.4 (𝑝𝑜𝑤𝑒𝑟)     

𝑆𝑢𝑝𝐹𝑇 128 0.8641 0.7841 0.8878 
 256 0.9948 0.9214 0.9161 
 512 1.0000 0.9911 0.9549 

𝐴𝑣𝑒𝐹𝑇 128 0.8978 0.7359 0.8181 
 256 0.9962 0.8971 0.8350 
 512 1.0000 0.9871 0.8933 

𝐸𝑥𝑝𝐹𝑇 128 0.8980 0.7979 0.8914 
 256 0.9971 0.9216 0.9075 
 512 1.0000 0.9913 0.9443 

 
  

           Test            #obs               Signal-to–noise ratio 

𝛾 = 0 (𝑠𝑖𝑧𝑒)  ∞  2.5 0.8 

𝑆𝑢𝑝𝐹𝑇 128 0.0454 0.0463 0.0811 
 256 0.0456 0.0482 0.0939 
 512 0.0494 0.0509 0.0959 

𝐴𝑣𝑒𝐹𝑇 128 0.0501 0.052 0.0896 
 256 0.0476 0.0543 0.0886 
 512 0.049 0.0506 0.0858 

𝐸𝑥𝑝𝐹𝑇 128 0.0523 0.056 0.0979 
 256 0.0503 0.0532 0.0991 
 512 0.0494 0.0537 0.0943 

     𝛾 = 0.4 (𝑝𝑜𝑤𝑒𝑟)     

𝑆𝑢𝑝𝐹𝑇 128 0.8725 0.7991 0.461 
 256 0.9951 0.9844 0.7295 
 512 1 1 0.9424 

𝐴𝑣𝑒𝐹𝑇 128 0.9051 0.845 0.5079 
 256 0.9962 0.987 0.7527 
 512 1 1 0.9467 

𝐸𝑥𝑝𝐹𝑇 128 0.9064 0.8463 0.5156 
 256 0.997 0.9887 0.7585 
 512 1 1 0.9509 
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Table 3: Size and power of tests using the denoised data in the case of measurement error 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4: Size and power of tests using the denoised data in the case of additive outliers 
Test # obs Outlier magnitude 

𝛾 = 0 (𝑠𝑖𝑧𝑒)  0 5 10 

𝑆𝑢𝑝𝐹𝑇 128 0.0431 0.0436 0.0488 
 256 0.0447 0.0487 0.0633 
 512 0.0487 0.0545 0.0866 

𝐴𝑣𝑒𝐹𝑇 128 0.0492 0.0506 0.0562 
 256 0.0468 0.0521 0.0662 
 512 0.0523 0.0533 0.085 

𝐸𝑥𝑝𝐹𝑇 128 0.0493 0.0497 0.056 
 256 0.049 0.0527 0.0667 
 512 0.0522 0.0564 0.0882 

     𝛾 = 0.4 (𝑝𝑜𝑤𝑒𝑟)     

𝑆𝑢𝑝𝐹𝑇 128 0.8593 0.8508 0.8522 
 256 0.9943 0.9934 0.9937 
 512 1 1 1 

𝐴𝑣𝑒𝐹𝑇 128 0.8944 0.887 0.8882 
 256 0.9959 0.9944 0.9942 
 512 1 1 0.9996 

𝐸𝑥𝑝𝐹𝑇 128 0.8952 0.8888 0.8901 
 256 0.997 0.9956 0.9962 
 512 1 1 1 

 
 
 
 

 

        Test  #obs               Signal-to–noise ratio 

𝛾 = 0 (𝑠𝑖𝑧𝑒)    2.5 0.8 

𝑆𝑢𝑝𝐹𝑇 128 0.0426 0.0431 0.0839 
 256 0.0391 0.043 0.089 
 512 0.0448 0.0476 0.0895 

𝐴𝑣𝑒𝐹𝑇 128 0.0473 0.0476 0.0817 
 256 0.0458 0.0516 0.0845 
 512 0.0439 0.0484 0.0756 

𝐸𝑥𝑝𝐹𝑇 128 0.0489 0.0492 0.0912 
 256 0.0448 0.0489 0.0918 
 512 0.0461 0.0474 0.0857 

     𝛾 = 0.4 (𝑝𝑜𝑤𝑒𝑟)     

𝑆𝑢𝑝𝐹𝑇 128 0.8225 0.7682 0.5833 
 256 0.9895 0.9753 0.8543 
 512 1 1 0.9866 

𝐴𝑣𝑒𝐹𝑇 128 0.8666 0.8216 0.6244 
 256 0.9908 0.9813 0.8657 
 512 1 0.9999 0.9877 

𝐸𝑥𝑝𝐹𝑇 128 0.8676 0.8208 0.6309 
 256 0.9922 0.983 0.876 
 512 1 1 0.9891 
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