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Abstract

We introduce externalities into a two-sided, one-to-one assignment game by letting

the values generated by pairs depend on the behavior of the other agents. Extending

the notion of blocking to this setup is not straightforward; a pair has to take into

account the possible reaction of the residual agents to be able to assess the value

it could achieve. We define blocking in a rather general way that allows for many

behavioral considerations or beliefs. The main result of the paper is that a stable

outcome in an assignment game with externalities always exists if and only if all pairs

are pessimistic regarding the others’ reaction following a deviation. The relationship

of stability and optimality is also discussed, as is the structure of the set of stable

outcomes.

Keywords: two-sided matching, assignment game, externalities, stability

JEL Classification: C71, C78, D62

1 Introduction

Matching markets have been extensively analyzed ever since the publication of the pio-

neering paper of Gale and Shapley (1962). Our focus here is on the two-sided matching
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problems, and we refer the reader to Roth and Sotomayor (1992) for a thorough survey.

More precisely, we concentrate on assignment games, introduced by Koopmans and Beck-

mann (1957) and Shapley and Shubik (1971), where matched pairs create some value to

distribute among themselves and the agents aim to maximize their payoff.

It is implicitly assumed in the vast majority of the literature that agents’ preferences - or

values in case of assignment games - are independent of how the other agents are matched.

However, in many applications, for instance in case of labor markets, this assumption does

not seem to be realistic. On the contrary, it is natural to assume that firms competing

in the same market care about which workers are hired by their rival firms. Thus, the

preferences and respective profits of firms should depend on the matchings of the rest of

the agents.

Analyzing externalities in a matching framework is also important from a theoretical

point of view, since it is well known that the core of a cooperative game might be empty in

the presence of externalities (Funaki and Yamato, 1999; Kóczy, 2007). In addition, Mumcu

and Saglam (2007) show that the core of the housing market with externalities also may

be empty. Thus, it is interesting to examine whether one can find a nonempty set of stable

outcomes in this environment.

Externalities in matching problems began to receive attention following the wave of

papers on cooperative games with externalities. The key aspect of the presence of ex-

ternalities in a matching problem is that when a pair is considering whether to block a

certain matching or not, it has to take into account how the rest of the agents are going to

react. These considerations are typically referred to as residual behavior in the cooperative

game theory literature. Whereas these reactions do not play a role in problems without

externalities, different assumptions on residual behavior lead to different solution concepts

and different sets of stable outcomes when externalities are present.

In the literature, one can detect a number of ways to model externalities in matching

environments. Agents may experience externalities from the way that other agents are

matched or from the payoffs of the others. Moreover, externalities may be incorporated

by extending the preference profile, by imposing behavioral assumptions, or by enabling

agents to have beliefs or expectations about the occurrence of outcomes. We summarize

these solutions and their implications below.

Li (1993) was the first to introduce externalities into the one-to-one, two-sided match-

ing market by assuming that each agent has strict preferences over the set of all possible
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matchings. He finds that equilibrium may not exist in general, but does if externalities are

small enough: more specifically, if an agent’s preferences over matchings is lexicograph-

ically determined, first and foremost by his partner and then by how the other agents

are matched. Similarly, Sasaki and Toda (1996) also find non-existence when expectation

about residual behavior is determined endogenously. They show that there always is a

stable matching if estimation functions on the set of possible outcomes are exogenously

given. They are the first to examine assignment games with externalities and find that a

stable matching exists if agents find all matchings to be possible. Taking this approach one

step further, Hafalir (2008) introduces endogenous beliefs depending on the preferences.

He confirms the anticipation of Sasaki and Toda (1996) that rational expectations do not

guarantee existence. He introduces the notion of sophisticated expectations, determined

via an algorithm, inducing a game without externalities at the end, and shows that the

resulting set of stable matchings is nonempty. To achieve nonemptiness, he assumes that

there is no commitment; that is, a blocking pair can split up if they can get better off by

blocking again through a different pair. Eriksson, Jansson, and Vetander (2011) consider

assignment games where agents experience negative externalities from the payoffs of the

agents on the same side of the market in form of ill will. They define a new, stronger notion

of stability assuming bounded rationality and show that such stable outcomes always exist.

It is clear from the results summarized above that the introduction of externalities

causes many issues which need to be resolved. For instance, it is not unambiguous how to

generalize the notion of blocking and how to define stability. Moreover, the set of stable

outcomes may generally be empty. In the existing literature there are two main ways to

solve this problem: (i) put restrictions on agents’ preferences, or (ii) use a stronger notion

of stability. All papers cited above produce only sufficient conditions for existence.

In this paper we introduce externalities into assignment games by allowing the values

of matched pairs to depend on how the rest of the agents are matched. We look for stable

outcomes in the standard sense: an outcome is stable if it is individually rational and

has no blocking pairs. However, it is not straightforward though how one should define

the notion of blocking in this environment. When a pair is considering blocking a given

outcome, in this setup, their future value will depend on how the remaining agents react.

The cooperative game theory literature discusses many assumptions that can be made on

residual behavior, ranging from the pessimistic approach of Aumann and Peleg (1960) to

the optimistic one of Shenoy (1980). Here, we aim to cover as many behavioral assumptions
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or beliefs as possible by applying a very general definition of blocking. When agents are

deciding whether to form a blocking pair, they take the values for all contingencies into

account. According to their attitude towards risk or beliefs about the other agents, they

calculate a threshold based on the possible outcomes and form a blocking pair whenever

this threshold exceeds the sum of their current payoffs. By using this general definition we

manage to avoid imposing any initial assumption on beliefs or residual behavior. In turn,

we can distinguish different types of agents based on how they determine their threshold.

To facilitate proving the nonemptiness of the set of stable outcomes we introduce an

artificial assignment game based on our definition of blocking; it is a transformation of a

game with externalities to one without. We then show a relation between the set of stable

outcomes in the two games. This finding is still independent of behavioral assumptions;

the transformation can be made for any types of agents.

The main result of the paper shows that a stable outcome in an assignment game with

externalities always exists if and only if all agents are pessimistic. Remember that previous

results in the literature only provide sufficient conditions for nonemptiness, while ours is

a necessary and sufficient one. It also follows from our proof that the slightest optimism,

meaning that any pair puts a positive probability on an optimistic outcome, could lead to

nonexistence.

We will repeatedly relate the properties of the assignment game with externalities to

the known properties of assignment games without externalities. For instance, it is well

known in the case of assignment games without externalities that stability and efficiency

go hand in hand, in the sense that the total value generated by the agents is maximized at

stable matchings. It is not difficult to see that this relation does not extend to our setup.

For instance, if all matched pairs create roughly the same value at the efficient matching,

then it may be unstable if some other pair creates very large values at other, less balanced

matchings. We also show that stable outcomes may be inefficient. However, if all agents

are pessimistic, then we can show that there always exist a Pareto optimal stable outcome.

Shapley and Shubik (1971) show that the core of the assignment game, and hence the

set of stable outcomes, forms a complete lattice. Examining its generalization, we find

that the result does not carry over completely to games with externalities. However, for

a given matching, we show that the set of corresponding stable payoffs still does form a

complete lattice. In addition, we show that if there are multiple stable matchings, then

their respective sets of stable payoffs may be disjoint.
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The outline of the paper is as follows. We introduce the notation and define stable

outcomes in assignment games with externalities in Section 2. We characterize our notion

of stability in Section 3; we show existence of stable outcomes in Section 3.1, discuss

its relation to optimality in Section 3.2 and the lattice property in Section 3.3. Finally,

Section 4 concludes.

2 Preliminaries

2.1 The Assignment Game

We consider a finite set of agents N , consisting of m firms F and n = m workers W .1

We reserve i to denote a typical firm, j a typical worker. A firm can employ at most one

worker and no two can employ the same. A matching is a bijection µ : N → N such that

for all (i, j) ∈ F × W , µ(i) 6= i ⇔ µ(i) ∈ W , µ(j) 6= j ⇔ µ(j) ∈ F , µ(µ(i)) = i and

µ(µ(j)) = j. Additionally, if µ(i) = j, we say that (i, j) ∈ µ. The set of matchings for F

and W is M(F,W ). If i employs j, they generate a value or monetary benefit αij ∈ R+.

If i hires no worker or j is unemployed, their values are zero. Let α = (αij)i,j∈N be the

collection of values for all pairs of agents.

Definition 2.1. An assignment game Γ (without externalities) is completely described by

a triplet Γ = (F,W, α).

An outcome of Γ is a matching and a pair of payoff vectors, (µ, u, v) ∈ M(F,W ) ×
Rm × Rn, such that ∑

i∈F

ui +
∑
j∈W

vj =
∑

(i,j)∈µ

αij.

An outcome is stable if it is individually rational, ui ≥ 0 and vj ≥ 0, and has no blocking

pairs, ui + vj ≥ αij. It can be shown that ui + vj = αij for all (i, j) ∈ µ if (µ, u, v) is stable

(Shapley and Shubik, 1971).

A matching µ ∈M(F,W ) is efficient in Γ if, for all matchings µ′ ∈M(F,W ),∑
(i,j)∈µ

αij ≥
∑

(i,j)∈µ′
αij.

1That n = m is without loss of generality as we can create ”null-agents” to balance the count, i.e.

agents k such that αik = 0 and αkj = 0 for all i and j.
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Shapley and Shubik (1971) show that every efficient matching is compatible with a

stable payoff and that every stable outcome is efficient.

Assignment games are examples of cooperative games with transferable utility. Stability

in this setup can be captured by the notion of the core, which is the set of those allocations

that cannot be blocked by any coalition. It is well known that the set of stable outcomes

coincide with the set of core allocations (Shapley and Shubik, 1971).

2.2 Introducing Externalities

We would like to capture the phenomenon that agents’ values in the assignment game may

well depend on the behavior of other agents. To be able to model this interdependence we

need to introduce externalities. We do this by allowing the value of a pair to depend on

how the other agents are matched.

For each matching µ ∈M(F,W ) and each pair (i, j) ∈ µ, let αµij ∈ R+ denote the value

or monetary benefit i and j jointly can achieve given the matching µ. Let A = (αµ)µ∈M(F,W )

be the collection of values for all the possible matchings.

Definition 2.2. An assignment game with externalities, Γe, is completely described by a

triplet Γe = (F,W,A).

An outcome of Γe is a matching and a pair of payoff vectors, (µ, u, v) ∈ M(F,W ) ×
Rm × Rn, such that ∑

i∈F

ui +
∑
j∈W

vj =
∑

(i,j)∈µ

αµij.

An outcome is stable if, again, it is individually rational and there are no blocking pairs.

However, it is not immediately clear when a pair actually should engage in blocking. In the

absence of externalities, this is natural. Here, note that the value of the blocking pair may

well depend on the behavior of the rest of the agents. This is illustrated in the following

example.

Example 1. Consider an assignment game with externalities Γe with m = n = 3 firms

and workers. Suppose the current matching is µ1 = {(1, 1), (2, 2), (3, 3)}. Table 1 displays

the values created by the different pairs; all others are assumed to be zero.

Hence, at µ2 the pair (2, 3), firm 2 and worker 3, generate a value of αµ223 = 0. Say the

current outcome is (µ1, u, v), with u = (1, 1, 1), v = (1, 1, 0). Then u2 + v3 = 1, and we
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Matching Pair 1 Pair 2 Pair 3

µ1 = {(1, 1), (2, 2), (3, 3)} 2 2 1

µ2 = {(1, 2), (2, 3), (3, 1)} 2 0 2

µ3 = {(1, 1), (2, 3), (3, 2)} 2 2 1

Table 1: Values for Example 1. The second line shows that the pair (1, 2) is matched

at µ2 and generates a value of 2. At the same matching, the second pair, (2, 3), get 0.

Values for all pairs at all matchings not mentioned in the table are zero.

have αµ223 < u2 + v3 < αµ323 . In other words, it is sensible for agents (2, 3) to form a blocking

pair if the matching formed thereupon is µ3, but not if it is µ2.

Importantly, blocking a matching may set in motion a chain of events leading up to

a completely different matching with completely different values associated to it, which

should be taken into account by the agents. We construct a general notion of blocking

without imposing any assumptions on residual behavior in the very beginning. When

agents are deciding whether to form blocking pairs, they take the values for all contingencies

into account. According to their attitude towards risk or beliefs about the other agents,

they calculate a threshold dij ∈ R based on the possible outcomes, and block whenever dij

exceeds the sum of their current payoffs.

We can distinguish different types of agents based on how they determine dij:

Definition 2.3. The pair (i, j) is optimistic if dij = oij = maxµ′3(i,j) α
µ′

ij .

Hence, the threshold is set to the highest value that the pair can hope to generate. This

pair is very opportunistic and difficult to satisfy; they block as soon as they see a chance

of benefiting from it.

In contrast, careful or pessimistic agents form blocking pairs only if it guarantees them

a preferable outcome:

Definition 2.4. The pair (i, j) is pessimistic if dij = pij = minµ′3(i,j) α
µ′

ij .

The values pij and oij are natural bounds on the threshold dij. If we would have

dij < pij, then there are cases (dij < ui + vj < pij) when the pair does not form a blocking

pair even though it surely would benefit from doing so. On the other hand, if dij > oij
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then the pair may form a blocking pair even though it surely cannot benefit. Thus, it

is arguably reasonable to assume that pij ≤ dij ≤ oij for all pairs. We maintain this

assumption throughout the paper.

Assumption 2.5. For all pairs (i, j) ∈ F ×W , pij ≤ dij ≤ oij.

Note that this covers all types of beliefs on residual behavior and attitude towards risk

one might think of. In particular, expected utility maximization, rational expectations (for

instance in the spirit of Li, 1993), or any kind of recursive reasoning (Kóczy, 2007) are all

contained in this notion. None of these behavioral concepts result in thresholds outside

the bounds of pij and oij.
2

We are now ready to define stable outcomes in assignment games with externalities.

Definition 2.6 (Stability). An outcome is stable if it is individually rational, ui ≥ 0 and

vj ≥ 0, and has no blocking pairs, ui + vj ≥ αµij if (i, j) ∈ µ and ui + vj ≥ dij if (i, j) 6∈ µ.

Observe that for this concept to be applicable, the informational requirement is very

limited. Agents need to know a very small part of the whole collection of values A. Firm

i needs to be aware only of the values αµij for j ∈ W and µ ∈ M(F,W ). Similarly, worker

j only needs to know αµij for i ∈ F and µ ∈M(F,W ).

We illustrate the thresholds and the difference between stable outcomes with optimistic

and pessimistic agents in the following example.

Example 2. Consider an assignment game with externalities Γe with m = n = 3 firms

and workers. Among the workers, 1 and 2 are considered competent whereas 3 is less so.

Likewise, the firms have different characteristics. The first, a, is innovative: it takes larger

risks, but if it employs a competent worker it will be very successful. This is of particular

use for the second firm b: this firm can adopt the leading technology quickly. Hence, it

benefits from firm a hiring a competent worker. Finally, the third firm c knows its way

around the laws of corporate finance, generating a negative externality through patents

and legal disputes. Values are displayed in Table 2.

2These bounds are for instance used by Sasaki and Toda (1996) as well. Translating their setup into

ours, the thresholds fall within pij and oij , though in a more restricted way. In particular, suppose the

pair (i, j) creates a value of 0 or 1 depending on the matching. Then Sasaki and Toda’s thresholds are

either 0 or 1, whereas ours can fall anywhere inbetween.
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Matching Pair 1 Pair 2 Pair 3

µ1 = {(a, 1), (b, 2), (c, 3)} 8 6 1

µ2 = {(a, 1), (b, 3), (c, 2)} 7 4 3

µ3 = {(a, 2), (b, 1), (c, 3)} 6 7 2

µ4 = {(a, 2), (b, 3), (c, 1)} 4 3 5

µ5 = {(a, 3), (b, 1), (c, 2)} 2 5 4

µ6 = {(a, 3), (b, 2), (c, 1)} 1 3 6

Table 2: Values for Example 2.

We will focus on the individually rational outcome (µ1, u, v) with u = (ua, ub, uc) =

(3, 3, 1), v = (v1, v2, v3) = (5, 3, 0). To see if it is stable, we construct the matrices for

pessimistic and optimistic pairs and compare it to the sum of the agents’ respective payoffs

u+ v. Row i, column j relates to firm i (= a, b, c) and worker j (= 1, 2, 3). In the case of

the rightmost matrix, it shows the sum ui + vj.

p =


7 4 1

5 3 3

5 3 1

 o =


8 6 2

7 6 4

6 4 2

 u+ v =


8 6 3

8 6 3

6 4 1


Let us examine the top row, second column of p and o. These values relate to the pair

(a, 2). If they match, we reach either µ3, where the pair gets a value of 6, or µ4 where they

earn 4. Hence, the pair is sure to get pa2 = 4 when blocking. Similarly, the second value

shows what the pair can get at best, oa2 = 6. When we compare these values to the pair’s

current total payoffs, top row, second column of the matrix u+ v, we see that oa2 does not

exceed ua + v2 = 3 + 3 = 6. Hence, (a, 2) cannot benefit compared to the current outcome

by matching.

Moving a step down and to the right, we can see that the pair (b, 3) is assured 3 (in

case of µ4), at best 4 (if µ2), and currently gets ub + v3 = 3 + 0 = 3. Hence, unless the pair

is pessimistic, it has incentives to form a blocking pair.

Finally, note that the rightmost matrix u + v has no entries smaller than the corre-

sponding ones in p; the interpretation of this is that if all pairs are pessimistic, then the

outcome (µ1, u, v) is stable. It turns out that the matchings µ2 and µ3 also can be made
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stable with such pairs,3 whereas no matching is stable if all pairs are optimistic.

3 Characterization

Next, we show that we can find stable outcomes for the assignment game with externalities

by inspecting an artificial assignment game without externalities. This finding will be

essential later in showing the existence of a stable outcome.

We start by defining the values of the artificial assignment game. Consider an assign-

ment game with externalities Γe = (F,W,A). For each µ ∈M(F,W ), let

dµij =

α
µ
ij if (i, j) ∈ µ

dij otherwise.

Hence, dµij is either the value created by a matched pair at µ or the blocking threshold for an

unmatched pair. Using these values, we can generate an assignment without externalities,

Γ = (F,W, dµ). There is an important relation between the stable outcomes of these two

games.

Proposition 3.1. An outcome (µ, u, v) ∈M(F,W )×Rm×Rn is stable in Γe = (F,W,A)

if and only if it is stable in Γ = (F,W, dµ).

Proof. As (µ, u, v) is an outcome of Γe,∑
i∈F

ui +
∑
j∈W

vj =
∑

(i,j)∈µ

αµij.

By construction, dµij = αµij for (i, j) ∈ µ. Hence,∑
(i,j)∈µ

αµij =
∑

(i,j)∈µ

dµij.

Taken together, we find that (µ, u, v) indeed is an outcome of Γ:∑
i∈F

ui +
∑
j∈W

vj =
∑

(i,j)∈µ

dµij.

Next, (i, j) forms a blocking pair in Γe whenever they do so in Γ:

ui + vj < αµij = dµij if (i, j) ∈ µ

ui + vj < dij = dµij if (i, j) 6∈ µ.
3For instance, u = (3, 3, 1) is stable with v = (v1, v2, v3) = (4, 1, 2) for µ2 and with v = (4, 3, 1) for µ3.
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It follows that the outcome is stable in Γe whenever it is stable in Γ. 2

Be mindful not to draw the conclusion that this result implies that there exists stable

outcomes in the game with externalities. Surely, as noted before, Γ = (F,W, dµ) has

stable outcomes. However, if all of these use matchings other than µ, then none of them

is stable in the game with externalities. Observe also that the relationship between the

stable outcomes is independent of behavioral assumptions: it holds no matter how dij is

calculated.

3.1 Existence

The second and main result of the paper gives a necessary and sufficient condition for

the existence of a stable outcome in assignment games with externalities. This result

is particularly important given that the existing literature has only provided sufficient

conditions so far (Sasaki and Toda, 1996). We find that stability can be guaranteed if

and only if agents are pessimistic regarding residual behavior and hence careful in forming

blocking pairs.

Theorem 3.2. There exists a stable outcome in all assignment games with externalities if

and only if all pairs are pessimistic.

Proof. Assume first that all pairs are pessimistic. Note that Γ = (F,W, d), where

d = (dij)i,j∈N is the blocking thresholds, is an assignment game without externalities.

Hence, there exists a stable outcome (µ, u, w) in Γ (Shapley and Shubik, 1971). Define v

such that for all (i, j) ∈ µ,

vj = wj + αµij − dij.

Note that αµij ≥ dij as (i, j) is pessimistic. We claim that (µ, u, v) is stable in Γe = (F,W,A).

First, it is feasible:∑
i∈F

ui +
∑
j∈F

vj =
∑
i∈F

ui +
∑
j∈F

wj +
∑

(i,j)∈µ

αµij −
∑

(i,j)∈µ

dij =
∑

(i,j)∈µ

αµij.

The last equality follows as (µ, u, w) is an outcome in Γ,∑
i∈F

ui +
∑
j∈W

wj =
∑

(i,j)∈µ

dij.
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Moreover, as (µ, u, w) is stable, it is individually rational. As vj ≥ wj, so is (µ, u, v).

Finally, we show that there are no blocking pairs. Consider first (i, j) ∈ µ. As (µ, u, w) is

stable, we have ui + wj = dij if (i, j) ∈ µ. Then

ui + vj = ui + wj + αµij − dij = αµij.

Thus, the agents do not form a blocking pair. For (i, j) 6∈ µ, we reach the same conclusion:

ui + vj ≥ ui + wj ≥ dij.

Hence, the outcome is stable in Γe.

Now we prove the other direction. Assume there exists a pair which is not pessimistic.

Without loss of generality, suppose the pair (1, 1) puts positive weight λ ∈ (0, 1] on the

optimistic outcome, d11 = λo11 + (1 − λ)p11. Consider (F,W,A) such that αµij = 0 in all

cases except for the following:

o11 = αµ11 = 1/λ+ 1 for µ = {(1, 1), (2, 2), . . . , (n, n)}

αµ12 = 1 for µ 3 (1, 2)

αµ23 = 1 for µ 3 (2, 3).

With p11 = 0, we get d11 = 1 + λ. Then, no matter if the other pairs are pessimistic or

not,

dij =


1 + λ if (i, j) = (1, 1)

1 if (i, j) = (1, 2), (2, 3)

0 otherwise.

Then the matching µ = {(1, 1), (2, 2), . . . , (m,m)} can be blocked by (2, 3). For all match-

ings µ 63 (1, 1), (1, 1) can block as v1 = 0 and u1 cannot exceed 1 < 1+λ. For all remaining

matchings, (1, 2) can block. Hence, there exists no stable outcome. 2

This result shows that even the slightest optimism (in the example, λ close to zero) can

lead to unstable instances.

3.2 Efficiency

In contrast to the case without externalities, efficiency and stability no longer go hand

in hand when there are externalities. In the following example an inefficient matching is

stable whereas the efficient matching is not.
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Example 3. Consider (F,W,A) such that αµij = 0 in all cases except for the following:

αµ111 = 2 for µ1 = {(1, 1), (2, 2), (3, 3)}

αµ223 = 1 for µ2 = {(1, 1), (2, 3), (3, 2)}

αµ323 = 1 for µ3 = {(1, 2), (2, 3), (3, 1)}.

Then the matching µ1 is efficient, though (2, 3) forms a blocking pair. Instead, the matching

µ2 is stable.4

However, if all pairs are pessimistic we can still attain a form of optimality.

Definition 3.3. An outcome (µ′, u′, v′) of Γe is a Pareto improvement to an outcome

(µ, u, v) if u′i ≥ ui for all i ∈ F and v′j ≥ vj for all j ∈ W with at least one strict inequality.

An outcome (µ, u, v) is Pareto optimal if there is no Pareto improvement to it.

Proposition 3.4. Assume that all pairs are pessimistic. Let (µ′, u′, v′) be stable in Γe, but

not Pareto optimal. Then there exists a stable Pareto improvement (µ, u, v) to (µ′, u′, v′).

Proof. By contradiction, suppose there exists a blocking pair (i, j) for (µ, u, v). Assume

first (i, j) ∈ µ. We show that there exists a different outcome (µ, u′′, v′′) that still Pareto

dominates (µ′, u′, v′) but for which (i, j) is not a blocking pair. As (i, j) ∈ µ, ui + vj < αµij.

Define u′′ and v′′ equal to u and v with the exception that u′′i +v′′j = αµij. Then (µ, u′′, v′′) is

a Pareto improvement with one less blocking pair. By repetition, we find that it is without

loss of generality to assume no (i, j) ∈ µ can block the outcome.

Now assume (i, j) 6∈ µ is a blocking pair; we show that this contradicts (µ′, u′, v′) being

stable. If (i, j) ∈ µ′, dµ
′

ij = αµ
′

ij ≥ dµij as pairs are pessimistic. If (i, j) 6∈ µ′, then dµ
′

ij = dµij.

As by assumption the pair (i, j) forms a blocking pair for µ, dµ
′

ij > ui + vj. As (µ, u, v) is

a Pareto improvement to (µ′, u′, v′), ui + vj ≥ u′i + v′j. In conclusion, dµ
′

ij > u′i + v′j. Hence,

the pair (i, j) forms a blocking pair for (µ′, u′, v′), which is a contradiction. 2

Hence, if all pairs are pessimistic, there always exists a Pareto optimal stable outcome.

The following example shows the necessity of pairs being pessimistic.

Example 4. Assume that there is exactly one pair which is not pessimistic. Suppose

the pair (1, 1) puts positive weight λ = 1/2 on the optimistic outcome, d11 = (o11 +

4Stable payoffs include u = (0, 1, 0) with v = (0, 0, 0). If a matched pair is allowed to break up and

rematch, then the outcome is stable only if the pair (1, 1) is pessimistic. In that case, so is (µ3, u, v).
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Matching Pair 1 Pair 2 Pair 3

µ1 = {(1, 1), (2, 2), (3, 3)} 1 1 1

µ2 = {(1, 1), (2, 3), (3, 2)} 9 0 0

µ3 = {(1, 2), (2, 1), (3, 3)} 2 2 2

Table 3: Values for Example 4.

p11)/2. Consider (F,W,A) such that αµij = 0 in all cases except for the ones displayed in

Table 3. Then the matching µ1 is Pareto dominated by µ3. However, µ1 is the unique

stable matching (compatible with any individually rational payoffs), whereas µ3 is blocked

by (1, 1).

3.3 The Structure of the Set of Stable Outcomes

For the assignment model without externalities, Shapley and Shubik (1971) show that

the core of the game has a special structure. In particular, the set of stable outcomes is a

complete lattice with two extreme points: one where all firms achieve their highest possible

stable payoffs and a corresponding worker-optimal outcome. The following proposition

shows that this property does not generalize to our setup.

Proposition 3.5. The set of stable payoff vectors for an assignment game with externalities

may not form a lattice.

Proof. The proof is by counter example. Assume all pairs are pessimistic and values

are as in Table 4. There are two stable matchings, µ1 and µ4. For µ1, the set of stable

outcomes forms a lattice with a (firm-) minimal element of u = (1, 0, 0) together with

v = (7, 6, 4). For µ4, the stable outcomes form a lattice disjoint from the former set. The

minimal element is u′ = (0, 0, 1) with v′ = (5, 4, 8). For neither matching u′′ = (0, 0, 0) is

stable. Hence, the entire set of stable outcomes does not form a lattice. See Figure 1 for

a graphical illustration. 2

Without externalities, all stable matchings are compatible with all stable payoff vectors

(Shapley and Shubik, 1971). That is, if (µ, u, v) and (µ′, u′, v′) are stable, then we can

interchange the matchings: (µ′, u, v, ) is also stable. As is immediate from the example in
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Matching Pair 1 Pair 2 Pair 3

µ1 = {(1, 1), (2, 2), (3, 3)} 8 6 4

µ2 = {(1, 1), (2, 3), (3, 2)} 3 4 5

µ3 = {(1, 2), (2, 1), (3, 3)} 6 4 4

µ4 = {(1, 2), (2, 3), (3, 1)} 4 8 6

µ5 = {(1, 3), (2, 1), (3, 2)} 5 2 5

µ6 = {(1, 3), (2, 2), (3, 1)} 5 2 5

Table 4: Values for the example in the proof of Proposition 3.5.

Figure 1: The dark grey area shows the lattice structure of the stable payoffs com-

patible with the matching µ1 in the example of Proposition 3.5. The light grey area

consists of stable payoffs compatible with µ4. Importantly, the two areas are disjoint.
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the proof of Proposition 3.5, this property no longer holds in the generalized model with

externalities.

Corollary 3.6. If (µ, u, v) and (µ′, u′, v′) are stable outcomes in an assignment game with

externalities Γe, then (µ′, u, v) need not be a stable outcome in Γe.

Finally, let us return to the lattice property and instead focus on a specific matching

µ. Then the set of payoffs that are stable in combination with µ, if any, actually do form a

lattice. Let Ω denote the set of stable outcomes in Γe and Ωµ ⊆ Ω the set of stable payoffs

compatible with µ, that is, all u such that (µ, u, v) is stable.

Proposition 3.7. For any matching µ, the set of stable payoffs compatible with µ, Ωµ,

forms a complete lattice.

The result follows from the characterization in Proposition 3.1. There we found that

the set of stable outcomes for a given matching for the problem with externalities was

identical to the set of stable outcomes for an artificial problem without externalities. As

already noted, the latter set has the lattice property (Shapley and Shubik, 1971).

4 Discussion

There are numerous ways to trivially strengthen and generalize the results. First and

foremost, we can allow matched agents to form blocking pairs; that is, to break up and

rematch. This does not affect the results regarding pessimistic agents as a pessimistic pair

would never exercise this option. Secondly, we can allow the blocking thresholds to be

matching dependent. That is, a pair (i, j) can have a different threshold dij depending on

which matching currently is in place. Again, this has no effect on the pessimistic pairs as

their thresholds would still be the same at all matchings (by the definition of pessimism).

Thirdly, we need not consider the full set of matchings M(F,W ). Our model is equipped

to handle that some matchings are not allowed, say for legal reasons.
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