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Multi-Item Vickrey-English-Dutch Auctions ✩

Tommy Anderssona, Albin Erlansona,∗

aDepartment of Economics, Lund University, P.O. Box 7082, SE-222 07 Lund, Sweden

Abstract

Assuming that bidders wish to acquire at most one item, this paper defines a polynomial time multi-
item auction that locates the VCG prices in a finite number of iterations for any given starting prices.
This auction is called the Vickrey-English-Dutch auction and it contains the Vickrey-English auction
(J.K. Sankaran, Math. Soc. Sci. 28:143–150, 1994) and the Vickrey-Dutch auction (D. Mishra and
D. Parkes, Games Econ. Behav. 66:326–347, 2009) as special cases. Several properties of this
iterative auction are provided. It is, for example, demonstrated that the number of iterations from
the starting prices to the VCG prices can be calculated using a measure based on the Chebyshev
metric. By means of numerical experiments, it is showed that when the auctioneer knows the
bidders’ value distributions, the Vickrey-English-Dutch auction is weakly faster than the Vickrey-
English auction and the Vickrey-Dutch auction in 89 percent and 99 percent, respectively, of the
investigated problems. A greedy version of the Vickrey-English-Dutch auction is demonstrated to
perform even better in the simulation studies. In fact, it follows the theoretically shortest path in
63 percent of the investigated problems.

Keywords: Polynomial time algorithms, Multi-item auctions, Unit-demand bidders, Iterations.

JEL Classification: D44, C72.

1. Introduction

A fundamental insight due to Vickrey (1961) is that any sealed-bid auction mechanism that
implements the unique minimum Walrasian equilibrium prices, often referred to as the Vickrey-
Clarke-Groves prices (VCG prices for short), satisfies several desirable properties whenever the items
are homogeneous and each bidder wish to acquire at most one item. For example, no bidder can
gain by strategic misrepresentation, and the auction generates an efficient and individual rational
outcome. Demange and Gale (1985) and Leonard (1983) demonstrated that the properties of this
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sealed-bid auction mechanism hold also when the items are heterogenous (but still assuming unit-
demand bidders).1 Even if this sealed-bid auction satisfies many desirable properties, it is well-
known that bidders often prefer iterative auction mechanisms (Engelberecht-Wiggans and Kahn,
1991; Cramton, 1998). There are many reasons for this. For example, an iterative format does not
imply full preference revelation and it creates more transparency in the auctioneer’s methods. This
insight has motivated a substantial amount of research.

In an early paper, Demange et al. (1986) described an English multi-item auction for heteroge-
neous items based on the Hungarian method of Kuhn (1955). In this iterative auction format, prices
are updated based on information regarding groups of items that are overdemanded. Here, a set of
items is overdemanded, at a given price vector, if the number of bidders demanding only items in
the set is greater than the number of items in the set. This is a natural approach since a necessary
requirement for reaching the VCG prices is that all overdemanded sets of items are eliminated (Hall,
1935).2 Even if the iterative auction mechanism in Demange et al. (1986) converges to the VCG
prices in a finite number of iterations3, the price path from the sellers reservation prices to the
VCG prices is not unique as it depends on the specific selection of the overdemanded set of items
whose prices are updated for the next iteration. In fact, there are typically a very large number
of different paths and it is ex ante not possible to identify the fastest (Andersson and Andersson,
2012).4 Another fundamental problem with the approach in Demange et al. (1986) and related
papers (Andersson et al., 2010; Sun and Yang, 2009, among others) is that the termination criteria
requires an exhaustive search of all subsets of items. This problem is clearly exponential which is
a huge problem if the auction contains many items.

The above two problems with the multi-item auction in Demange et al. (1986) can be overcome
by using a modification of the mechanism based on the Ford and Fulkerson (1956) algorithm as
demonstrated by Andersson et al. (2010), Sankaran (1994), and Mo et al. (1988). This polynomial
time unique path English multi-item auction is called the Vickrey-English auction (VE, henceforth)
and it always converges to the VCG prices. VE starts at the sellers reservation prices. At these
prices there are no weakly underdemanded sets of items (see footnote 2) by construction. The price
increases in VE, prescribed by the Ford-Fulkerson algorithm, guarantee that the family of weakly
underdemanded sets stays empty in the ascending process. Because all overdemanded sets of items
always are eliminated after a finite number of price increases, as no item is infinitely valuable for
any bidder, convergence to the VCG prices follows (again, see footnote 2).

1A more demanding problem, not considered in this paper, is when bidders’ are allowed to demand multiple items.
See e.g. Ausubel (2004, 2006), Ausubel and Milgrom (2002), Bikhchandani et al. (2011), Bikhchandani and Ostroy
(2002), Conen and Sandholm (2002), Cramton et al. (2006), de Vries et al. (2007), Gul and Staccetti (2000),
Mishra and Parkes (2007), and Perry and Reny (2005).

2A necessary and sufficient condition for a price vector to be a VCG price vector is that all overdemanded and
all weakly underdemanded sets of items are eliminated (Mishra and Talman, 2010, Theorem 2). A set of items is
weakly underdemanded, at a given price vector, if the number of bidders that demand some item in the set is weakly
lower than the number of items in the set, and the price of each item in the set is strictly higher that the seller’s
reservation prices (see Definition 3).

3This result holds if bidders report truthfully in the iterative process. However, truthful bidding is not a dominant
strategy even if the mechanism converges to the VCG prices. This is in sharp contrast to its sealed-bid counterpart.
However, truthful revelation constitutes a Nash equilibrium given that certain ”activity rules” are imposed. See,
e.g., Ausubel (2006), de Vries et al. (2007), Gul and Staccetti (2000), or Parkes (2001) a for detailed discussion and
analysis. See also Ausubel (2006).

4All possible paths from the sellers reservation prices to the VCG prices, for the family of English auctions with
unit-demand bidders, are characterized in Andersson et al. (2010).
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The descending counterpart of the English format is the Dutch auction. Such a polynomial time
unique path multi-item auction is defined in Mishra and Parkes (2009). This mechanism, called
the Vickrey-Dutch auction (VD, henceforth), also identifies the VCG prices in a finite number of
iterations. Convergence to the VCG prices follows by symmetrical arguments as in the above, i.e.,
VD starts at the upper bound of the price space where there are no overdemanded sets of items by
construction. The prescribed price decreases then guarantee that the family of overdemanded sets
of items stays empty in the descending process while the family of weakly underdemanded sets of
items weakly shrinks in each iteration until it is empty.

The main innovation of this paper is the construction of a new polynomial time auction format
called the Vickrey-English-Dutch auction (VED, henceforth). The fundamental difference between
this mechanism compared to VE and VD is that it is allowed start at an arbitrary vector in the
price space and yet locate the VCG prices, i.e., it need not start at the sellers reservation prices,
as VE, or at the upper bound of the price space, as VD. Note, however, that VED can start at
these prices as any price vector in the price space is an allowed starting point. In this case, VED
is identical to VE and VD, and the two latter formats can therefore be regarded as special cases
of VED. Note also that VED is not necessarily an ascending or descending format as both price
increases and price decreases are allowed in the iterative process.

It is clear that any iterative auction format that converges to the VCG prices generates the same
revenue independently of its starting price. Thus, all other things being equal, it is not unreasonable
that the auctioneer selects the auction format which has the lowest expected number of iterations
before convergence. One motivation for this is the fact that bidders’ typically prefer auctions
with a shorter running time over auctions with a long running time (Larson and Sandholm, 2001;
Parkes et al., 1999). However, in order to evaluate the expected number of iterations, the auctioneer
must have a measure of the number of required iterations before convergence when comparing the
performance of different auction formats. This paper demonstrates that the measure of the number
of iterations between any two price vectors on the path from the starting prices to the VCG prices,
for VED, can be based on the Chebyshev metric.

Because VED gives the auctioneer the freedom to start at an arbitrary price vector in the
price space, any information regarding the bidders’ may help the auctioneer to reduce the expected
number of iterations (this information may be the distribution of valuations, bidding behavior in
previous auctions, etc.). This is easiest seen by considering the bounding cases of VED, namely
VE and VD, and noting that that VE (VD) is an ascending (descending) format. It is therefore
impossible to decrease (increase) the prices at any iteration. This in built feature of these formats
forces the auctioneer to start at the lowest (highest) possible price in the price space to guarantee
convergence to the VCG prices. Hence, neither VE nor VD can take advantage of more detailed
information about the bidders. For example, if the auctioneer have information about how the
valuations of the bidders’ are distributed, VE and VD must still start at the lowest and highest
possible price in the price space, respectively. For an auctioneer that adopts VED with a flexible
starting price, on the other hand, it is easy (e.g. by means of simulations) to find the expected VCG
prices and then select this expectation as starting prices. This will obviously reduce the expected
number of iterations as illustrated in this paper by means of numerical experiments. Note also that
VED always converges to the VCG prices even if the auctioneer does not have any information
about the bidders. The main point here is that if the auctioneer has some information, it may be
used cleverly when selecting the starting prices to reduce the expected number of iterations. This
is neither possible for VE nor for VD.

As explained in the above, the Vickrey-English-Dutch auction always locates the VCG prices in
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polynomial time for any given starting prices. In the unit-item auction case, the Bisection auction
(Grigorieva et al., 2007) shares this property. A more general model is considered by Ausubel (2006)
where a number of heterogeneous items are to be allocated among a number of bidders that are
allowed to demand multiple items. In this auction format, bidders report their demand-sets at any
price announced by the auctioneer. Given these reports, the auctioneer identifies the overdemanded
and the underdemanded items and adjust prices up and down, respectively. This iterative process
continues until a price vector is reached at which demand and supply are in balance for each item.
For any starting prices, the process always converges to an equilibrium in finitely many iterations.
The process of Ausubel (2006) is, however, fundamentally different from the Vickrey-English-Dutch
auction, e.g., as payments in the latter is based only on the prices in the last step of the auction
whereas payments in the former is based on the entire price path generated by the auction.

The paper is outlined as follows. Section 2 presents the basic model and the concept of a price
equilibrium. Some elementary set definitions and a number of important properties are provided
in Section 3. The Vickrey-English-Dutch auction is introduced in Section 4 where also some char-
acteristics of it are provided. In addition, a greedy version of the Vickrey-English-Dutch auction is
presented in Subsection 4.1. Section 5 contains some computational results obtained by numerical
simulations. Section 6 concludes the paper.

2. Model and Price Equilibria

Let the finite sets of items and bidders be denoted by I = {1, . . .m} and B = {1, . . .n}, respectively.
Let also vbi represent bidder b’s valuation of item i. Valuations are assumed to be non-negative
integers drawn from a distribution function f with support on [r,u]. Here, r represents the seller’s
reservation price vector, and it is assumed, without loss of generality, that r = (0, . . . ,0). The vector
u is the upper bound on valuations. Moreover, each bidder b ∈ B knows her own valuation for every
item in I, and all valuations are independent of each other.

There is a null-item, denoted by 0, which represents the situation when bidders are not assigned
any item from I. The price and the valuation for the null-item is zero for all bidders, and it can
be assigned to any number of bidders. For notational convenience, let I∗ = I ∪ {0} and I+(p) = {i ∈
I : pi > 0}. Each bidder is interested in acquiring at most one item (unit-demand bidders). The
prices of the items in I∗ are gathered in the price vector p = (p0, p1, . . . , pm). The net valuation for
bidder b ∈ B of item i ∈ I∗ equals the valuation of the item minus its price, i.e., vbi− pi. Each bidder
demands the items with the highest net valuation. Formally, the demand correspondence Db(p) for
bidder b ∈ B at price vector p is given by:

Db(p) = {i ∈ I∗ : vbi− pi ≥ vb j − p j for all j ∈ I∗}.
A price vector p is an equilibrium price vector if there is an assignment x : B→ I∗ such that xb ∈Db(p)
for all b ∈ B, xb � xb′ if xb, xb′ ∈ I (with b � b′), and pi = 0 if xb � i for all b ∈ B, i.e., each bidder is
assigned an item from his demand set, each item different from the null-item can be assigned to at
most one bidder and the price of any unassigned item equals the reservation price. The pair (x, p)
is an equilibrium allocation if p is an equilibrium price vector.

For the above model, Shapley and Shubik (1972) demonstrated that the set of competitive price
vectors is non-empty and forms a complete lattice. This result guarantees the existence of a unique
minimal element often referred to as the VCG price vector (Vickrey, 1961; Clarke, 1971; Groves,
1973). This price vector is denoted by pVCG.
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This section ends by introducing a few concepts and definitions from Mishra and Parkes (2009).
A bidder b ∈ B is satisfied at allocation (x, p) if xb ∈ Db(p). Note that each bidder is satisfied at an
equilibrium allocation. An assignment x is admissible at the price vector p if xb ∈ Db(p)∪{0} for all
b ∈ B. An assignment x is provisional at the price vector p if it generates the maximum revenue
among all admissible assignments, breaking ties in favor of satisfying the maximum number of
bidders and then at random. Let X(D(p)) denote the set of provisional assignments at the price
vector p, and let X(D−b(p)) denote the set of provisional assignments at the price vector p when
only considering bidders in B−b = B\ {b}. Finally, let A(x) ⊆ I+(p) denote the set of assigned items in
x with positive prices, i.e., A(x) = {i ∈ I+(p) : x j = i for some j ∈ B}. Similarly, A−b(x) = {i ∈ I+(p) : x j =

i for some j ∈ B \ {b}}.
Definition 1. Item i ∈ I∗ is universally allocated if i ∈ I∗ \ I+(p) or if item i ∈ I+(p) is provisionally
assigned to some bidder b ∈ B and there exist an provisional assignment y ∈ X(D−b(p)) where A(x) =
A−b(y).

3. Set Definitions and Results

This section introduces a number of set definitions that all are based on the demand correspon-
dences of the bidders. Two of these are of particular interest. Namely, the set in excess demand with
maximal cardinality and the set in excess supply. Both these sets can be identified in polynomial
time and will play a key role when defining the Vickrey-English-Dutch auction in the next section.

The set O(S , p) contains the bidders b ∈ B that only demand items in S ⊆ I at price vector p,
and the set U(S , p) contains the bidders b ∈ B that demand some item in S ⊆ I at price vector p.
Formally:

O(S , p) = {b ∈ B : Db(p) ⊆ S },
U(S , p) = {b ∈ B : Db(p)∩S � ∅}.

Using O(S , p) and U(S , p), the central concepts of overdemanded and weakly underdemanded sets
of items are next defined.

Definition 2. A set of items S is overdemanded at prices p if S ⊆ I and |O(S , p)| > |S |.
Definition 3. A set of items S is weakly underdemanded at prices p if S ⊆ I+(p) and |U(S , p)| ≤ |S |.
The family of overdemanded and weakly underdemanded sets of items, at prices p, are denoted by
OD(p) and UD(p), respectively, i.e.:

OD(p) = {S ⊆ I : |O(S , p)| > |S |}
UD(p) = {S ⊆ I+(p) : |U(S , p)| ≤ |S |}

Note that OD(u) = ∅, by construction, as 0 ∈ Db(u) for all b ∈ B. Moreover, UD(r) = ∅ because no
item i with pi = ri can be weakly underdemanded by Definition 3. Next, the above definitions are
illustrated in an example.

Example 1. Suppose that B = {1,2,3,4,5,6}, I = {1,2,3,4}, pi > ri for i = 1,4, and pi = ri for i = 2,3.
Hence, I+(p) = {1,4}. Furthermore, assume that D1(p) = D2(p) = D3(p) = {1}, D4(p) = D5(p) = {2},
and D6(p) = {4}. In this case, OD(p) = {{1}, {2}, {1,2}, {1,3}, {1,4}, {2,4}, {1,2,3}, {1,2,4}, {1,3,4}, I}, and
UD(p) = {4}. �
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The following result, which is due to Mishra and Talman (2010, Theorem 2), uses Definitions 2 and
3 to characterize the VCG price vector.

Theorem 1. A price vector p equals the VCG price vector if and only if OD(p) = ∅ and UD(p) = ∅.
Next, the concept of a set in excess demand is introduced. Informally, a set of items S is in excess
demand, at given prices, if S is overdemanded and the number of items in each proper subset T of
S is strictly smaller than the number of bidders that demand some item in T and in addition only
demand items in S .5

Definition 4. A set of items S is in excess demand at prices p if S ⊆ I and:

|U(T, p)∩O(S , p)|> |T | for each non-empty T ⊆ S . (1)

Example 2. This example is based on Example 1. As any set in excess demand must be overde-
manded, any set in excess demand must belong to OD(p). However, only the sets {1}, {2} and
{1,2} are in excess demand as condition (1) not is satisfied for the other sets in OD(p). For exam-
ple, if S = {2,4} and T = {4}, it follows that U({4}, p) = {6} and O({2,4}, p) = {4,5,6}. Consequently,
|U(T, p)∩O(S , p)|= 1 = |T |. �

To define a stronger version of excess demand, a stronger version of the demand correspondence is
needed. Let:

D+b (p) = Db(p)∩ I+(p),

O+(S , p) = {b ∈ B : D+b (p) ⊆ S }.
Clearly, D+b (p) ⊆ Db(p). Using the above definitions, a set of items in positive excess demand is
defined as follows.

Definition 5. A set of items S is in positive excess demand at prices p if S ⊆ I+(p) and:

|U(T, p)∩O+(S , p)| > |T | for each non-empty T ⊆ S . (2)

Example 3. This example is based on the same premises as Example 1. Because I+(p) = {1,4},
it is clear that D+1 (p) = D+2 (p) = D+3 (p) = {1}, D+4 (p) = D+5 (p) = ∅, and D+6 (p) = {4}. Consequently,
O+({1}, p) = {1,2,3}, O+({4}, p) = {6}, and O+({1,4}, p) = {1,2,3,6}. Note next that a set in positive
excess demand must be a subset of I+(p) = {1,4}. However, S = {1} is the only subset of I+(p)
satisfying condition (2). Therefore, the set S = {1} is the only set in positive excess demand at
prices p. �

Theorem 2. There exists a unique (possibly empty) set in positive excess demand (called S̃ , hence-
forth) with maximal cardinality at any given price vector p. This set is identical to the set of all
universally allocated items with positive prices (called Ŝ , henceforth).

5A detailed analysis of the family of sets in excess demand can be found in Andersson et al. (2010). Also, the
definition of a set in excess demand coincides with the definition of a pure overdemanded set (Mo et al., 1988;
Sankaran, 1994).
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Proof. See the Appendix.

Next the concept of excess supply is introduced. This concept can be regarded as the supply
counterpart of excess demand.

Definition 6. The set S ∗ = I+(p) \ S̃ is in excess supply at prices p if S̃ is the set in positive excess
demand with maximal cardinality at prices p.

Proposition 1. For any price vector p ≥ r:

(i) There exists a unique (possibly empty) set in excess demand with maximal cardinality E∗.
This set can be identified in polynomial time using the Ford and Fulkerson (1956) algorithm.

(ii) There exists a unique (possibly empty) set in excess supply S ∗. This set can be identified in
polynomial time using the FINDUNIVALLOCITEMS procedure (Mishra and Parkes, 2009).

Proof. Part (i). The existence of a unique set in excess demand with maximal cardinality E∗ is
established in Andersson et al. (2010).6 This set is the outcome of the Ford-Fulkerson algorithm
(Andersson et al., 2010; Sankaran, 1994).

Part (ii). The set S̃ is unique by Theorem 2, and it can be identified in polynomial time using
the FINDUNIVALLOCITEMS procedure (see Mishra and Parkes, 2009, Proposition 2). Consequently,
S ∗ = I+(p) \ S̃ is unique, and can be found in polynomial time.

Remark 1. The implication from Theorem 2 and the proof of Proposition 1(ii) is that the outcome
of the FINDUNIVALLOCITEMS procedure is the unique set in positive excess demand with maximal
cardinality. In this sense, Theorem 2 characterizes the outcome of the FINDUNIVALLOCITEMS pro-
cedure.

Example 4. This example is a continuation of Examples 1–3. Note first that, it is clear from
Example 2 that E∗ = {1,2} is the unique set in excess demand with maximal cardinality. Furthermore,
from Example 3, we know that {1} is the unique set in positive excess demand S̃ (this set is identical
to the set of all universally allocated items with positive prices Ŝ by Theorem 2). Because I+(p) =
{1,4}, it follows from Definition 6 that the unique set in excess supply is given by S ∗ = {1,4}\ {1}= {4}.
�

4. The Vickrey-English-Dutch Auction

This section introduces the Vickrey-English-Dutch auction (VED, henceforth) and state a few
of its properties. We start by defining the price adjustments for VED. These adjustments are either
based on the maximal set in excess demand or the set in excess supply. Let now t and t + 1 be
any two succeeding iterations. The difference between the price vectors pt+1 and pt can formally be
described as:

pt+1
i =

{
pt

i +α if i ∈ Kt,
pt

i otherwise.

6From Definition 4, it is clear that a set in excess demand can be empty. However, to simplify notation, we define
a set in excess demand to be empty whenever the family of sets in excess demand is empty or, equivalently, when
the output from the Ford-Fulkerson algorithm is the empty set.
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where Kt = E∗t and α = 1, or Kt = S ∗t and α = −1.7 The former price adjustment is called an E∗-
increase, and the latter is called a S ∗-decrease. Obviously, an E∗-increase (S ∗-decrease) is only
possible if the set E∗t (the set S ∗t ) is non-empty. The following lemma establishes two monotonicity
properties of these price adjustments.

Lemma 1. For any price vector p ≥ r:

(i) If S ∗t = ∅ and the price adjustment is given by an E∗-increase, then S ∗t+1 = ∅,
(ii) If E∗t = ∅ and the price adjustment is given by a S ∗-decrease, then E∗t+1 = ∅.

Proof. Part (i) can be found in Andersson et al. (2010, Lemma 1). To prove Part (ii), note that
E∗ = ∅ at prices q if and only if OD(q) = ∅. Consequently, the statement is true if OD(pt+1) = ∅, i.e.,
if:

|O(T, pt+1)| ≤ |T | for all T ⊆ I.

Let now T be any non-empty subset of I, and let T = A∪C where A ⊆ S ∗t and C ⊆ I \S ∗t . Note that
A∩C = ∅ by construction, and that A and/or C are non-empty as T � ∅.

Let now b be any bidder in O(T, pt+1), and note that this means that Db(pt+1)∩A � ∅ and/or
Db(pt+1)∩C � ∅. This leads to two observations:

• If Db(pt+1)∩C � ∅, then b ∈ O(C, pt). To see this, suppose that l ∈ Db(pt) for some l � C. Now
if l ∈ S ∗t , then C∩Db(pt+1) = ∅ as:

vbl− pt+1
l > vbl − pt

l ≥ vbk − pt
k = vbk − pt+1

k for all k ∈C,

which is a contradiction to Db(pt+1)∩C � ∅. If l ∈ I \(S ∗t ∪C), then l ∈Db(pt+1) as Db(pt+1)∩C � ∅,
which contradicts that b ∈ O(T, pt+1).

• If Db(pt+1)∩ A � ∅, then b ∈ U(A, pt) or b ∈ O(C, pt). To see this, suppose that b � U(A, pt).
Because the demand correspondence always is non-empty, there must be an item l ∈ Db(pt).
Moreover, as b � U(A, pt) it is clear that vbl− pt

l > vbk − pt
k for all k ∈ A. But as Db(pt+1)∩A � ∅,

it must then be the case that vbk′ − pt+1
k′ = vbl− pt

l for some k′ ∈ A. Hence, l � S ∗t and l ∈ Db(pt+1).
But then l ∈C as b ∈ O(T, pt+1). Hence, Db(pt+1)∩C � ∅, and consequently, b ∈ O(C, pt) by the
above conclusion.

In summary, if b ∈O(T, pt+1) then b ∈O(C, pt)∪U(A, pt). Hence, O(T, pt+1)⊆ (O(C, pt)∪U(A, pt)). This
together with Definitions 2–3 and A∩C = ∅ give:

|O(T, pt+1)| ≤ |(O(C, pt)∪U(A, pt))| = |O(C, pt)|+ |U(A, pt)|. (3)

Note next that |O(C, pt)| ≤ |C| as OD(pt) = ∅. Note also that |U(A, pt)| ≤ A since no item in A is
universally allocated. These facts together with condition (3) give the desired conclusion.

Using the insights from Lemma 1 in combination with Theorem 1, it may be tempting to define
an iterative auction that is allowed to start at an arbitrary price vector ps which, in each iteration
t, increases the price of the items in E∗t (if non-empty) and decreases the price of the items in S ∗t
(if non-empty). However, even if this iterative process appears to be promising, such an iterative
auction may run into difficulties as illustrated in the following example.

7E∗t denotes the unique set in excess demand with maximal cardinality at iteration t, and S ∗t denotes the unique
set in excess supply at iteration t.
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Example 5. Suppose that I = I1 ∪ I2 where |B| > |I|, I1 ∩ I2 = ∅ and |Ii| ≥ 1 for i = 1,2. Consider
valuations such that vbi− ps

i − (vb j − ps
j) = Δ for all i ∈ I1, all j ∈ I2 and all b ∈ B. The difference Δ is

an odd integer. Now, if the auction starts at price vector ps and E∗-increases and S ∗-decreases are
performed whenever possible, then:

• E∗t = I1 and S ∗t = I2 for all iterations 1 ≤ t ≤ 0.5(Δ+1),

• E∗t = I2 and S ∗t = I1 for iteration t = 0.5(Δ+1)+ k,

• E∗t = I1 and S ∗t = I2 for iteration t = 0.5(Δ+1)+ k+1,

where k ≥ 1 is an odd integer. This demonstrates that the above iterative auction is trapped in a
cycle for any iteration t > 0.5(Δ+1).8 �

The insight from Example 5 is that the iterative process may get trapped into a cycle9 if the
auctioneer is too greedy in finding a short path from the starting prices to the VCG prices, i.e.,
if prices are adjusted for the items in E∗t and S ∗t simultaneously. The primary solution to this
problem, proposed in this paper, is to only adjust the prices in E∗t or S ∗t (see also the discussion in
Subsection 4.1).

Algorithm 1 (Vickrey-English-Dutch Multi-Item Auction). Initialize the price vector to the
starting prices ps ∈ Nm+1. For each iteration t = 0,1, . . . :

1. Collect the demand sets Db(pt) of every bidder b ∈ B.
2. If E∗t = S ∗t = ∅ at pt, terminate the algorithm. Otherwise, goto Step 3.

3. Identify the set E∗t . If E∗t = ∅, goto Step 4. Otherwise, let pt+1 be given by a E∗-increase. Set
t := t+1 and start a new iteration from Step 1.

4. Identify the set S ∗t . If S ∗t = ∅, goto Step 2. Otherwise, let pt+1 be given by a S ∗-decrease. Set
t := t+1 and start a new iteration from Step 1.

Remark 2. Note that VED eliminates all overdemanded sets of items (Step 3) before eliminating
all weakly underdemanded sets of items (Step 4). This generates a unique sequence of price vectors
(ps, . . . , pVCG) called the E∗S ∗-path. Alternatively, Steps 3 and 4 can be reversed, i.e., the auctioneer
eliminates all overdemanded sets after all weakly underdemanded sets have been eliminated. Also
this generates a unique path, referred to as the S ∗E∗-path, henceforth. �

Remark 3. It is clear that the Vickrey-English auction (Sankaran, 1994, Algorithm DGS′ together
with Step 3′) and the Vickrey-Dutch auction (Mishra and Parkes, 2009, Definition 5) are special

8Here is a short numerical example which is based on the same premisses as Example 5. Suppose that I = {1,2},
I1 = {1}, I2 = {2}, B = {1,2,3}, vi1 = 9 and vi2 = 2 for all bidders. The starting prices is 5 for both items, i.e. ps = (5,5). In
the first four iterations, E∗t = {1} and S ∗t = {2}. Hence, the price for item 1 increases from 5 to 9, and the price for item
2 decreases from 5 to 1. At iteration 5, where prices are given by (p1 , p2) = (9,1), item 2 is overdemanded and item 1
is weakly underdemanded, i.e., E∗5 = {2}, and S ∗5 = {1}. Hence, the price of item 1 decreases to 8 and the price of item
2 increases to 2. But then, we are back at the price vector (8,2) at iteration 6. Consequently, the prices jump back
to (9,1) in iteration 7. Hence, the iterative process will from now on jump back and forth between price vectors (8,2)
and (9,1).

9Of course, it is possible to define rules that force the process to leave a cycle but there is no guarantee that such
rules will prevent the algorithm to end up in another cycle in later iterations. For a simple rule that avoids further
cycling, see Subsection 4.1.
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cases of VED. This follows as the sets E∗t and S ∗t , used in Algorithm 1, characterize the outcome
of the Ford-Fulkerson algorithm and the FINDUNIVALLOCITEMS procedure, respectively, by Propo-
sition 1. Note also that the Vickrey-English auction (Vickrey-Dutch auction) assumes that ps = r
(ps = u) and performs an E∗-increase (S ∗-decrease) in each iteration until the set E∗t (the set S ∗t ) is
empty. Because S ∗t = ∅ at prices r (E∗t = ∅ at prices u), by definition, Lemma 1 guarantees that the
set S ∗t (the set E∗t ) stays empty in the iterative process. Hence, Step 4 (Step 3) of Algorithm 1 is
redundant in the Vickrey-English auction (Vickrey-Dutch auction). �

Theorem 3. Algorithm 1 converges to the VCG prices in a finite number of iterations.

Proof. Consider any starting prices ps in the price space. The auctioneer can choose either the
E∗S ∗-path or the S ∗E∗-path of Algorithm 1. Suppose that the E∗S ∗-path (S ∗E∗-path) is selected. As
soon as the prices have increased (decreased) sufficiently much, there cannot be any overdemanded
(weakly underdemanded) sets of items as no item is infinitely good or bad for any bidder. Hence,
E∗t = ∅ (S ∗t = ∅) after finitely many iterations. Lemma 1(ii) (Lemma 1(i)) guarantees that E∗t (S ∗t )
stays empty when the S ∗-decreases (E∗-increases) are conducted. Again, as no item is infinitely
good or bad for any bidder, the set S ∗t (the set E∗t ) will be empty after a finite number of iterations.
But if E∗t = S ∗t = ∅, Theorem 1 gives the desired conclusion.

Example 6. Let B = {a,b,c}, I = {1,2}, u = (8,8), r = (0,0), and:

v =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
va1 va2

vb1 vb2

vc1 vc2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
2 6
3 7
6 7

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
Here, the VCG prices are given by pVCG = (2,6). For this example, the starting prices are set to
ps = (4,4). If the E∗S ∗-path of VED is adopted, E∗0 = E∗1 = {2} and E∗2 = ∅, i.e., E∗2 = ∅ at prices
(4,6). From this coordinate, only S ∗-increases are performed. More specifically, S ∗2 = S ∗3 = {1} and
S ∗4 = ∅ (= E∗2 = E∗3 = E∗4). In total, four iterations are required before converge to the VCG prices.
If, on the other hand, the S ∗E∗-path of VED is adopted, S ∗0 = S ∗1 = S ∗2 = S ∗3 = {1} and S ∗4 = ∅. Hence,
from coordinate (0,4), only D∗-increases are conducted. More specifically, E4 = E5 = {2} and E∗6 = ∅
(= S ∗4 = S ∗5 = S ∗6), meaning that six iterations in total are required before termination. See Figure 1
for an illustration. �

As demonstrated in Theorem 4, below, the following two definitions will play a key role when
determining the number of required iterations for VED before convergence to the VCG prices.

Definition 7. A sequence of price vectors (p0, . . . , pn) is called a path if maxi∈I(|pt
i− pt+1

i |) = 1 for all
0 ≤ t ≤ n−1.

Definition 8. Let (d∞,Nm+1) be a metric space where d∞ is the Chebyshev metric (or Tchebychev
metric or Maximum metric). Formally:

d∞(p,q) =maxi(|pi−qi|),
where p and q are two price vectors in Nm+1.

Note that a sequence of price vectors (p0, . . . , pn) generated by E∗-increases (S ∗-decreases) always
constitutes a path as the price adjustment for each item i ∈ I is at most one (minus one) when
comparing two succeeding price vectors pt and pt+1 in the sequence.
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Figure 1: The E∗S ∗-path and the S ∗E∗-path of the Vickrey-English-Dutch auction for starting prices ps = (4,4).

Theorem 4. Consider a path (p0, . . . , pn) produced from E∗-increases (S ∗-decreases) such that ps =

p0, and pn is the first price vector in the path where there are no non-empty sets in excess demand
(excess supply). Then d∞(p0, pn) gives the number of E∗-increases (S ∗-decreases) from p0 to pn.

Proof. We only prove the result for E∗-increases as the proof is symmetrical for S ∗-decreases.
Suppose first that d∞(p0, pn) = 0, which means that p0 = pn. Since, there cannot be any cycles when
E∗-increases are conducted, there cannot be any overdemanded sets of items at pn = p0. Thus, the
number of E∗-increases equals zero.

Suppose instead that d∞(p0, pn) = 1. Let E∗ denote the set of items with increased prices, i.e.
pn

i = p0
i +1 for all i ∈ E∗. Decompose the set E∗ into n−1 non-empty subsets E∗0, . . . ,E

∗
n−1, where subset

E∗i is the unique non-empty set in excess demand with maximal cardinality at prices pi (note that at
prices pn, there are no non-empty sets in excess demand by definition). Hence, E∗ = E∗0∪· · · ∪E∗n−1.

Note that E∗j ∩E∗k = ∅ for all j � k as d∞(p0, pn)= 1. To obtain a contradiction, suppose that n≥ 2. We

will demonstrate that the set E∗ is in excess demand at prices p0, which contradicts the assumption
that E∗0 is the set in excess demand with maximal cardinality at prices p0.

Let G be an arbitrary non-empty subset of E∗. Hence, G ⊆ E∗0∪· · ·∪E∗n−1. Let Gi =G∩E∗i for all
i = 0, . . . ,n−1. Then G may be rewritten as:

G = (G∩E∗0)∪ · · ·∪ (G∩E∗n−1) =G1∪ · · ·∪Gn−1.

This partition, the distributive law of set theory, and the facts that O(E∗i , p
0) ⊆ O(E∗, p0) for all

i = 0, . . . ,n−1, and O(E∗j , p
0)∩O(E∗k , p

0) = ∅ for all j � k yield:

|O(E∗, p0)∩U(G, p0)| = |O(E∗, p0)∩ ((U(G0, p
0)∪ · · ·∪U(Gn−1, p

0))|, (4)

= |(O(E∗, p0)∩U(G0, p
0))∪ · · ·∪ (O(E∗, p0)∩U(Gn−1, p

0))|, (5)

≥ |(O(E∗0, p
0)∩U(G0, p

0))∪ · · ·∪ (O(E∗n−1, p
0)∩U(Gn−1, p

0))|, (6)

= |(O(E∗0, p
0)∩U(G0, p

0))|+ · · ·+ |(O(E∗n−1, p
0)∩U(Gn−1, p

0))|. (7)
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Note next that O(E∗i , p
i) ⊆O(E∗i , p

0) for all i = 0, . . . ,n, and that U(Gi, pi) ⊆U(Gi, p0) for all i = 1 . . . ,n.
Thus, the following inequality holds:

|O(E∗i , p
0)∩U(Gi, p

0)| ≥ |O(E∗i , p
i)∩U(Gi, p

i)|. (8)

Recall next that Gi ⊆ E∗i , and that E∗i is the maximal set in excess demand at prices pi. From
Definition 4, it then follows:

|O(E∗i , p
i)∩U(Gi, p

i)| > |Gi| for all i = 0, . . . ,n−1. (9)

Recalling that G j∩Gk = ∅ and G =G0∪· · ·∪Gn−1, by construction, and using conditions (4)–(9), we
obtain:

|O(E∗, p0)∩U(G, p0)| > |G|. (10)

Because G is an arbitrary non-empty subset of E∗, condition (10) means that the set E∗ is in excess
demand at prices p0. Hence, E∗0 cannot be maximal.

Finally, any path (p0, . . . , pn) with distance d∞(p0, pn) = k can be divided into k numbers of paths
where the Chebyshev distance equals one in each path. From the above findings, we know that for
each of these k paths, there has been exactly one E∗-increase. Consequently, there must be exactly
k number of E∗-increases in total.

For given valuations v, let IVE(v), IVD(v), IE∗S ∗ (v) and IS ∗E∗ (v) denote the number of iterations be-
fore convergence to the VCG prices for the Vickrey-English auction, the Vickrey-Dutch auction, the
E∗S ∗-path of VED, and the S ∗E∗-path of VED, respectively. We now have the following corollaries
to Theorem 4.

Corollary 1. The number of iterations to convergence at the VCG prices for the Vickrey-English-
Dutch auctions is given by I j(v) = d∞(ps, pn)+d∞(pn, pVCG) for j ∈ {E∗S ∗,S ∗E∗}.
Proof. By Theorem 4, the first term d∞(ps, pn) gives the number of E∗-increases (S ∗-decreases) until
E∗t = ∅ (S ∗t = ∅), and the second term d∞(pn, pVCG) gives the number of S ∗-decreases (E∗-increases)
until also S ∗t = ∅ (E∗t = ∅). Lemma 1 and Theorem 1 then proves convergence to the VCG prices.

Corollary 2. The number of iterations to convergence at the VCG prices for the Vickrey-English
auction and the Vickrey-Dutch auction is given by I j(v) = d∞(p0, pVCG) for j ∈ {VE,VD}.
Proof. Because S ∗t (E∗t ) is empty in the entire iterative process for the Vickrey-English auction
(Vickrey-Dutch auction), and because the Vickrey-English auction (Vickrey-Dutch auction) consists
only of E∗-increases (S ∗-decreases), the result follows directly from Theorem 4.

4.1. The Greedy Vickrey-English-Dutch Auction

The basic idea in the Vickrey-English-Dutch auction is to eliminate all (non-empty) maximal
sets in excess demand first, and then to eliminate all (non-empty) sets in excess supply, or vice
versa. This approach is motivated by the observation that if prices are adjusted in both these sets
simultaneously, the iterative process may get trapped into a cycle (see Example 5).10 Of course,
there are rules that force the iterative process to leave the cycle and, at the same time, guarantee
convergence to the VCG prices. One example of this is the following algorithm.

10This need not be the case. In Example 6, for example, only two iterations are required before convergence to
the VCG prices if the price for item 1 is decreased by one unit and the price for item 2 is increased by one unit in
each iteration.
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Algorithm 2. Initialize the price vector to the starting prices ps ∈ Nm+1. For each iteration t =
0,1, . . . :

1. Collect the demand sets Db(pt) of every bidder b ∈ B.
2. If E∗t = S ∗t = ∅ at pt, terminate the algorithm. If pt = pt−2 for some t ≥ 2, set pt = ps and run

Algorithm 1. Otherwise, goto Step 3.

3. Identify the sets E∗t and S ∗t . Let pt+1
i = pt

i + 1 if i ∈ E∗t , pt+1
i = pt

i − 1 if i ∈ S ∗t , and pt+1
i = pt

i
otherwise. Set t := t+1 and start a new iteration from Step 1.

Algorithm 2 is a greedy version of VED (consequently called Greedy VED, henceforth) where the
prices are adjusted for all items in the maximal set in excess demand and all items that are in excess
supply until the iterative process gets trapped into a cycle (i.e. when pt = pt−2). If this occurs, VED
is adopted. As illustrated in the next section, Greedy VED will, on average, require fewer iterations
than VED in the numerical simulations.

5. Simulation Results

This section presents computational results obtained by numerical simulations. It is assumed
that there are five items (not counting the null-item) and |B| ∈ {5,6,7,8,9,10,15,20,25,30,40,50}
bidders. As already explained in Section 2, the values vbi are distributed according to some discrete
probability density function f . The support of f is given by [0,100], and the probability of a zero
valuation is 25 percent for each item11. In the numerical experiments, the values in [1,100] are
distributed according to one of three different distributions. The first is the uniform distribution
(UNI). The other two distributions have the same support and expected value as the uniform
distribution, and are given by discrete truncated normal distributions with standard deviations 10
and 50 (NORM10 and NORM50, respectively).12 The starting prices for VED are based on the
average VCG prices (rounded to the closest integer) in a simulation with 1000 repetitions for each
problem size.13 For example, when (|B|, |I|)= (5,5) the simulations generated the mean VCG prices
pVCG = (13,12,12,12,12). The performance of the E ∗S ∗-path of VED, for starting prices calculated
as in the above, will be evaluated by a comparison to the Vickrey-English auction and the Vickrey-
Dutch auction.14

We start by comparing E∗S ∗-path of VED to the Vickrey-English and the Vickrey-Dutch auction.
Table 1 reports the fraction of auctions (aggregated over all problem sizes) where the E∗S ∗-path
of VED is equally fast or strictly faster than the Vickrey-English auction and the Vickrey-Dutch
auction in terms of required iterations before convergence. For example, for the uniform distribution,
the E∗S ∗-path of VED is equally fast (strictly faster) as (than) the Vickrey-English auction in 1.04
percent (87.04 percent) of all cases. The E∗S ∗-path of VED is therefore weakly faster than the
Vickrey-English auction in 1.04+87.04= 88.08 percent of all investigated problems for the uniform

11This reflects the situation that not all items are valuable for all bidders. Mishra and Parkes (2009) adopt the
same assumption in their simulation study.

12We assume that the standard deviations are ”large” because if they are ”small” (say between 1 and 5), VED
outperforms the Vickrey-English auction and the Vickrey-Dutch auction in almost 100 percent of all problems, and
requires 85–97 percent fewer iterations on average. To avoid this, standard deviations are assumed to be ”large”.

13It is in general very hard to calculate the expected VCG price for a given distribution as there are (u+ 1)|B|×|I |
number of possible valuation profiles where u represent the upper limit in the support. Hence, it is convenient to rely
on simulations to find an approximation of the expected VCG prices.

14The results are almost identical for the S ∗E∗-path of VED.
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distribution. In fact, this is the case where VED performs worst in comparison to the Vickrey-
English auction and the Vickrey-Dutch auction.

Table 1: Fraction of auctions (aggregated over all problem sizes) where the E∗S ∗-path of VED is equally fast (=) or
strictly faster (<) than the Vickrey-English auction (VE) and the Vickrey-Dutch auction (VD) in terms of required
iterations before convergence.

Distribution = VE < VE = VD < VD

UNI 0.0104 0.8704 0.0517 0.9263
Norm10 0.0023 0.9113 0.0000 1.0000
Norm50 0.0083 0.8804 0.0276 0.9598

Aggregated mean 0.0070 0.8874 0.0264 0.9620

Figure 2 compares the mean number of iterations for the E∗S ∗-path of VED to the Vickrey-
English auction. As can be seen from the figure, VED clearly outperforms the Vickrey-English
auction except when there are very few bidders. This is natural as few bidders implies low competi-
tion, leading to low prices. Hence, the VCG prices are very close to the sellers reservation prices or,
equivalently, the starting prices of the Vickrey-English auction. Similarly, when comparing VED to
the Vickrey-Dutch auction (Figure 3), the differences are small when there are many bidders. The
same intuition applies in this case, i.e., when there are many bidders, the VCG prices are pushed
towards the maximal valuations or, equivalently, the starting prices of the Vickrey-Dutch auction
which naturally reduces the number of required iterations before convergence for the Vickrey-Dutch
auction.
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Figure 2: The mean number of iterations for the E∗S ∗-
path of VED and the Vickrey-English auction (VE) for

the different problem sizes and distributions.
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Figure 3: The mean number of iterations for the E∗S ∗-
path of VED and the Vickrey-Dutch auction (VD) for the

different problem sizes and distributions.

Figures 4 and 5 analyze only the auctions where the E∗S ∗-path of VED is strictly faster than
the Vickrey-English/Vickery-Dutch auction, and display how many percent fewer iterations, on
average, that the E∗S ∗-path of VED needs in comparison to the Vickrey-English/Vickery-Dutch
auction. Note that more than 90 percent of the auctions are included in this sample (see Table
1). Aggregated over all problem sizes, the E∗S ∗-path of VED requires on average 70 percent fewer
iterations than the Vickrey-English auction, and 45 percent fewer iterations than the Vickrey-Dutch
auction.

As is clear from the above simulation results, VED clearly outperforms the Vickrey-English and
the Vickrey-Dutch auctions in terms of required iterations before convergence. Next, it is evaluated
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Figure 4: Percentage fewer iterations required for the

E∗S ∗-path of VED compared to the Vickrey-English auc-

tion given that the E∗S ∗-path of VED is faster than the

Vickrey-English auction.
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Figure 5: Percentage fewer iterations required for the

E∗S ∗-path of VED compared to the Vickrey-Dutch auc-

tion given that the E∗S ∗-path of VED is faster than the

Vickrey-Dutch auction.

how the E∗S ∗-path of VED performs in comparison to Greedy VED. Figure 6 displays the average
difference in iterations between the E∗S ∗-path of VED and Greedy VED. As can be seen from
the figure, Greedy VED requires, on average, between 0.334 and 15.50 fewer iterations than the
E∗S ∗-path of VED, depending on the problem size and the distribution. Expressed in percentage,
Greedy VED requires, on average, between 1.512 and 36.95 percentage fewer iterations than the
E∗S ∗-path of VED, and it is weakly faster (equally fast) in 88.01 percentage (8.520 percentage)
of the investigated problems. Because Greedy VED outperforms the E∗S ∗-path of VED (and,
consequently, also the Vickrey-English and the Vickrey-Dutch auctions), it is interesting to evaluate
its relation to The (theoretically) Shortest Path between the starting prices ps and the VCG prices
pVCG, i.e., d∞(ps, pVCG) = maxi(|ps

i − pVCG

i |). The simulation results reveal that the path prescribed
by Greedy VED is identical to The Shortest Path in 62.89 percentage of the investigated problems.
Figure 7 offers a more detailed analysis for the different distributions and problem sizes. A general
observation from the figure is that the path generated by Greedy VED is remarkably often identical
to The Shortest Path considering the assumed huge standard deviations of the value distributions
(see footnote 12).
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Figure 6: Average difference in iterations between the

E∗S ∗-path of VED and Greedy VED for the different prob-

lem sizes and distributions.
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Note, finally, that the numerical experiments presented in this section have only considered
distributions with at most one ”peak” and where the expected value is in the center of the support.
A relevant question is then: what if there are several ”peaks” in the distribution and/or if the
expected value is non-centered? As far as we can see from our simulations studies (not presented
in this paper), VED will perform significantly better, on average, than the Vickrey-English auction
and the Vickrey-Dutch auction even if the distributions not are standardized as in this study.

6. Conclusions

The main purpose of the paper was to provide a polynomial time iterative multi-item auction
that always locate the VCG prices independently of its starting point. This auction may use
information (value distributions, previous auctions, historical bidding behavior, etc.) about the
bidders (if available) to significantly reduce the number of required iterations before convergence.
This was also illustrated by means of numerical simulations. Even if the purpose of this paper
not was to identify the fastest algorithm that is allowed to start at any price vector in the price
space and yet locate the VCG prices, the simulation studies demonstrated that the path selected
by Greedy VED is remarkably close to The Fastest Path.

Finally, the proposed Vickrey-English-Dutch auction was also demonstrated to be significantly
faster than the Vickrey-English and the Vickrey-Dutch auction. Of course, one may argue that the
comparison between the Vickrey-English-Dutch auction, on the one hand, and the Vickrey-English
auction and the Vickrey-Dutch auction, on the other hand, is unfair because the latter two auction
formats cannot use information about the bidders as they must start at the lowest and the highest
possible prices in the price space, respectively, independently of the available information. Another
way of looking at it is that the findings in these comparisons highlights the importance of future
work in this area.

Appendix: Proof of Theorem 2

To prove Theorem 2, note first that it is clear that there exists a set in positive excess demand
S̃ with maximal cardinality as the set is allowed to be empty. Thus we need only prove that
it is unique. This proof demonstrates that the set Ŝ ⊆ I+(p) of all universally allocated items
(Definition 1) with positive prices is identical to the set S̃ . The conclusion then follows as Ŝ is
unique (Mishra and Parkes, 2009). In the proof, we also note that, at any given price vector p, the
set X(D(p)) is non-empty by construction. That is, there always exists some provisional assignment
x.

It is first demonstrated that S̃ ⊆ Ŝ . If S̃ = ∅, then S̃ ⊆ Ŝ by construction. Suppose therefore that
S̃ � ∅. To prove the statement, we need to demonstrate that each item j ∈ S̃ is universally allocated.
Because the set S̃ is in positive excess demand, Definition 5 gives:

|U(T, p)∩O+(S̃ , p)| > |T | for each non-empty T ⊆ S̃ . (11)

Consider now the bidder b0 with xb0 ∈ S̃ . Hence, we need to demonstrate that xb0 ∈ S̃ is universally
allocated. By condition (11), there is a bidder b1 ∈ O+(S̃ , p), b1 � b0, with xb0 ∈ D+b1

(p). Let B0 =

B−b0 = B \ {b0}, yb1 = xb0 and y j = x j for all j ∈ B0 \ {b1}. Now, if xb1 � A(x), then A−b0(y) = A(x). Thus
xb0 is universally allocated. Suppose instead that xb1 ∈ A(x). But then xb1 ∈ S̃ as b1 ∈ O+(S̃ , p) and
x is provisional. Let T0 = S̃ \ {xb0}. Consequently, |(U(S̃ , p)∩O+(S̃ , p))∩ B0| > |T0| by construction
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of the sets B0 and T0 together with condition (11). Again, there is a bidder b2 ∈ O+(S̃ , p)∩ B0

with xb1 ∈ D+b2
(p). Let yb1 = xb0 , yb2 = xb1 and y j = x j for all j ∈ B0 \ {b1}. Now, if xb2 � A(x), then

A−b0 (y)= A(x) by construction. Thus xb0 is universally allocated. By repeating the above arguments,
it is possible to construct an assignment y where yb1 = xb0 , yb2 = xb1 , ..., ybk = xbk−1 , and y j = x j for
all j ∈ B \ {b1, ...,bk}. Note that there must be an index l ≤ k ≤ |S̃ | such that xbl � A(x) as condition
(11) holds for T = S̃ . But then A−b0 (y) = A(x) where yb1 = xb0 , yb2 = xb1 , ..., ybl = xbl−1 , and y j = x j for
all j ∈ B \ {b1, ...,bl} by construction. Hence, xb0 is universally allocated.

It is next established that Ŝ ⊆ S̃ . Let x be a provisional assignment at the price vector p and
W = A(x) \ Ŝ . Note that Ŝ ⊆ A(x) by definition. To obtain a contradiction to Ŝ ⊆ S̃ , suppose that
Ŝ � S̃ . Then, by Definition 5, there is a non-empty set T ⊆ Ŝ ⊆ I+(p) such that |U(T, p)∩O+(Ŝ , p)| ≤ |T |.
Note first that |U(T, p)|> T as T ⊆ Ŝ ⊆ I+(p), i.e., each item x j ∈ T must be assigned to some bidder
b with x j ∈ D+b (p) even if only bidders B− j = B\ { j} are considered since all items in Ŝ are universally

allocated. Consequently, there is a bidder b ∈ U(T, p) where b � O+(Ŝ , p). We also remark that for
this bidder b there is, by definition, an item i ∈ I+(p)\ Ŝ such that i ∈D+b (p) otherwise bidder b would

have been included in U(T, p)∩O+(Ŝ , p). We next note that the item i must belong to A(x). To see
this, suppose that i � A(x). If xb � A(x), then A(y) > A(x) for the assignment y where y j = x j for all
j ∈ N \ {b} and yb = i. This contradicts that the maximal number of bidders are assigned an item at
the provisional assignment x. If xb ∈ A(x), then there exists an assignment y such that A−b(y) = A(x)
as item xb universally allocated. Hence, if yb = i, we again obtain the contradiction A(y) > A(x).
Thus, i ∈ A(x). But then i ∈W (i.e. W � ∅) as i � Ŝ . But this also means that xb ∈ A(x) because if
xb � A(x), then A(x) = A− j(y) if x j = i contradicting the assumption that i not is universally allocated.
In summary:

if b ∈ U(T, p) but b � O+(Ŝ , p) then xb ∈ A(x). (12)

We next demonstrate that if xb ∈ Ŝ , then D+b (p) ⊂ Ŝ . To see this, suppose that j ∈ D+b (p) for some

j � Ŝ . As item xb is universally allocated there exists an assignment y such that A−b(y) = A(x). Now,
if j � A(x) then more items are allocated at assignment y than under assignment x if yb = j which
contradicts that x satisfies the maximum number of bidders. If j ∈ A(x) then A−k(y) = A(x) for xk = j
as xb is universally allocated which contradicts that j � Ŝ . Hence:

if xb ∈ Ŝ , then D+b (p) ⊂ Ŝ . (13)

Consider now the set of bidders B− j = B \ { j} for some j with x j ∈ T . Because D+b (p) ⊂ Ŝ if xb ∈ Ŝ ,
by condition (13), we can, without loss of generality, assume yb = xb for all b ∈ Bj with xb ∈ Ŝ .
Because all items in T ⊂ Ŝ are universally allocated and |U(T, p)∩O+(Ŝ , p)| ≤ |T |, there must be a
bidder b ∈ U(T, p) where b � O+(Ŝ , p) and xb � T but yb ∈ T . By condition (12), xb ∈ A(x). From
the assumption yb = xb for all b ∈ Bj with xb ∈ Ŝ , it then follows that xb ∈ W. Now, as xb not is
universally allocated this means that xb � A− j(y). Hence, A− j(y) < A(x), which is a contradiction.

In summary, S̃ ⊆ Ŝ and Ŝ ⊆ S̃ implies Ŝ = S̃ , as desired.
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