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Abstract: 

This paper concentrates on comparing estimation and forecasting ability of Quasi-Maximum 
Likelihood (QML) and Support Vector Machines (SVM) for financial data. The financial 
series are fitted into a family of Asymmetric Power ARCH (APARCH) models. As the 
skewness and kurtosis are common characteristics of the financial series, a skew t distributed 
innovation is assumed to model the fat tail and asymmetry. Prior research indicates that the 
QML estimator for the APARCH model is inefficient when the data distribution shows 
departure from normality, so the current paper utilizes the nonparametric-based SVM method 
and shows that it is more efficient than the QML under the skewed Student’s t-distributed 
error. As the SVM is a kernel-based technique, we further investigate its performance by 
applying a Gaussian kernel and a wavelet kernel. The wavelet kernel is chosen due to its 
ability to capture the localized volatility clustering in the APGARCH model. The results are 
evaluated by a Monte Carlo experiment, with accuracy measured by Normalized Mean Square 
Error ( NMSE ). The results suggest that the SVM based method generally performs better 
than QML, with a consistently lower NMSE  for both in sample and out of sample data. The 
outcomes also highlight the fact that the wavelet kernel outperforms the Gaussian kernel with 
a lower NMSE , is more computation efficient and has better generation capability.   
 

JEL classification: C14, C53, C61 

Keywords: SVM, APARCH, wavelet kernel, Monte Carlo Experiment.  

 

 

1. Introduction: 

Since the ARCH model was proposed in a seminal paper by Engle (1982), related research 

has grown rapidly and various forms and specifications of the ARCH model have emerged to 

represent the three typical “stylized characteristics” in the financial series: volatility 

clustering, fat tail leptokurtosis and the asymmetric leverage effect. The ARCH and GARCH 
                                                 
1 The author gratefully acknowledges funding from the Swedish Research Council (421-2009-2663) 
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(Bollerslev, 1986) models successfully managed these first two factors but failed in handling 

the leverage effect, which is a common phenomenon in financial markets due to insufficient 

information. To resolve this problem, Ding et al. (1993) proposed the Asymmetric Power 

ARCH (APARCH) model, which rapidly gained popularity due to its ability to capture the 

asymmetric impact of volatility corresponding to positive and negative news. Instead of 

assuming the correlation in the second order term of the innovation in GARCH models, the 

APARCH model allows the correlation to exist in other power forms and can further capture 

the leverage effect between asset return and volatility. Moreover, compared with GARCH 

model, which assumes a linear relationship between the return and volatility, the APARCH 

model allows more flexible autoregressive structure of the returns. However, the flexibility in 

the APARCH model also complicates the estimation due to the higher dimension and the 

identification problem of the parameters. As with the GARCH model, the estimation of the 

ARARCH model is generally based on the Maximum Likelihood (ML) under normal 

distribution or Quasi-Maximum Likelihood (QML) for non-normal densities. As the normal 

distribution lacks the ability to capture skewness (3rd moment) and kurtosis (4th moment) in 

high frequency financial data, Fernández and Steel (1998) proposed a Skewed Student’s t-

distribution to model the excess of kurtosis and asymmetric effects. The problem arises in 

cases where, for example, the QML estimator becomes inefficient with the inefficiency 

increasing as the degree of skewness increases (Engle and González-Rivera, 1991). The 

current paper will attempt to improve model fitting and forecasting when encountering 

skewed density by applying a distribution-free approach: Support Vector Machine (SVM)-

based regression. The SVM is a pure data driven technique and does not need a priori 

assumptions of the model structure or distribution properties. It is also a kernel-based 

methodology which can achieve computational sparsity when faced with the high dimensional 

data, which makes it an attractive approach for estimating the APARCH model when high 

power terms are introduced. Furthermore, the implementation of the SVM will generally 

attain high accuracy without requiring large sample sizes, which makes it more efficient than 

the QMLE, especially when distribution information is not available.   

Previous research has used the SVM and the extended methods to estimate and predict the 

volatility in financial markets: Tay and Cao (2002) have used C-ascending SVM in financial 

time series forecasting; Préz-Cruz et al. (2003) estimate the GARCH model by ε  insensitive 

SVM, Chen et al. (2010) apply a Recurrent SVM procedure to forecast volatility under a 

GARCH framework and Ou and Wang (2010) suggest a similar Relevance Vector Machine 
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(RVM) to deal with GARCH, EGARCH and GJR models. This research shows that the SVM 

is generally considered to be a better predictor of volatility when assessing the outcomes by 

various criteria. However, one important issue in applying the SVM technique is that its 

performance will be influenced by kernel selection. When estimating and predicting the 

volatility in financial data, Tang et al. (2009) suggest that the wavelet kernel can better 

capture the volatility clustering than the generally applied Gaussian kernel as the wavelet 

kernel is constructed on an orthonormal wavelet basis on 2 ( )L R  space through horizontal 

floating and flexing, so that it has a more accurate localized property and can approximate 

curves in quadratic continuous integral space better than the Gaussian kernel. No application 

of the SVM and wavelet kernel to the APARCH type model has been performed in previous 

researches, and the present paper will be the first to apply the SVM to estimate the APARCH 

model, which contains the GARCH, GJR, TSGARCH and TGARCH models. In addition, we 

will further investigate whether a wavelet-based kernel will outperform the commonly applied 

Gaussian kernel in the APARCH framework when using the SVM.  

The structure of the paper can be divided into the following parts: section 2 is an introduction 

of SVM-based regression and wavelet kernels; section 3 is a description of the model and the 

experimental design; section 4 applies the Monte Carlo experiment to assess the results and 

the final section contains conclusions and discussion.  

 

2. Brief description of SVM regression and wavelet kernels  
2.1. Theory of SVM based regression 

The SVM algorithm is a nonlinear extension of the generalized portrait algorithm developed 

by Vladimir Vapnik (Vapnik and Lerner, 1963) and based on the ground theory of statistical 

learning theory introduced by Vapnik and Chervonenkis (1974). It aims to minimize the 

structure risk in model fitting and prediction, and the solution can be uniquely and globally 

achieved by solving a linearly constrained quadratic optimizing problem. The SVM was 

originally used in classification and pattern recognition problems, while its utility for 

nonlinear regression becomes apparent after the introduction of the ε -insensitive loss 

function (Vapnik, 1995) due to the high accuracy and computation sparseness of the SVM. 

The framework of the ε -insensitive Support Vector Regression (SVR) begins with a training 

data set { }1 1(x , ),..., (x , )l ly y ⊂ dℜ ×ℜ  with x i ∈
dℜ denoting the input vector and iy ∈ℜ  

being the output scalar; the goal of this regression is to find a function ( )f x  that has at least 

http://www.clrc.rhul.ac.uk/people/vlad/index.shtml
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ε  deviation from the output scalar iy  while at the same time showing optimal smoothness. 

To achieve this goal, SVM nonlinearly maps the input space into a higher dimension feature 

space dfℜ , where df d> . The linear regression can then be employed in this feature space 

and the nonlinear relations in the input space can be approximated by the linear regression in 

the higher dimension feature space, with the accuracy of the approximation increasing with 

feature space dimension. Generally, given training data { }1 1(x , ),..., (x , )l ly y , the regression 

function in the feature space can be expressed as:  

(x) (x)Tf w bϕ= + ,                                                                                                                  (1) 

where (x)ϕ is the nonlinear mapping function, which maps the input vector x  into the future 

space at which the linear function (x)f  is defined. The smoothness of (x)f  corresponds to 

the norm of the regression coefficients 1[ ,..., ]T
dfw w w= . Here, we will refer to the Euclidean 

norm 2w with a smaller 2w indicating a flatter (x)f  as a minimum 2w  is equal to the 

maximum of the separation margin 21 w , which corresponds to the generalization ability 

(Smola and Scholkopf, 1998). The minimization should be performed while controlling the 

structure risk function under the ε -insensitive band constrain condition as follows:  

2

1

(x )  for (x )1Minimize + ( (x ), );  ( (x ), )
2 0   otherwise

l
i i i i

i i i i
i

y f y fCw L f y L f y
l

ε ε

=

 − − − >= 


∑ .     (2)                                                            

Function ( (x ), )i iL f y is the ε -insensitive loss function defined by Vapnik (1995). The ε -

insensitive band constraint sets a penalty to the empirical risk: (x)Te y w bϕ= − − : training 

data with an empirical error lower than ε  will not be penalized, and training data with error 

larger than ε  will be linear penalized. Thus, the training points within the ε -tube will not 

provide information for decisions. Only the data outside of the ε -tube are applied as support 

vectors to construct (x)f , resulting in prediction generalization and computational sparsity. 

Furthermore, slack variables *,  i iξ ξ  are introduced to denote the errors outside ε -tube, and 

equation (2) becomes the following: 

2 * *

1 *

(x)
1Minimize + ( ),  subject to (x)
2

, 0

T
il

T
i i i

i

i i

y w b
w C w b y

ϕ ε ξ

ξ ξ ϕ ε ξ

ξ ξ
=

 − − ≤ +


+ + − ≤ +
 ≥

∑ ,                                  (3) 

where penalty parameter C  in the second term determines to which extent the empirical error 

can be tolerated. The first term (the regularization term) denotes the smoothness of the 
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regression function. By choosing an appropriate C and setting a trade-off of the empirical 

error and generalization error, the regression can both fit the historical data well and make 

reliable predictions about future values. Both C  and ε  are free parameters and should be 

predetermined empirically according to the given data. In general, the value of C  and ε  are 

determined by cross-validation, which can guarantee sufficient generalization on the data set 

used for prediction. Equation (3) is called the primal objective function; solving the primal 

objective function is difficult due to the large variable set. Thus, a set of dual variables is 

introduced and Lagrange multipliers are applied to transfer the primal problem to dual 

problems of optimization. By constructing a Lagrange function from the primal objective 

function and the corresponding constraints (see Mangasarian, 1969; McCormick, 1983), the 

resulting formulation is: 

2 * * *

1 1

* *

1

* *

1

1 ( ) ( )
2

   ( , (x ) )          subjects to , , , 0

   ( , (x ) )  

l l

i i i i i i
i i

l

i i i i i i i i
i
l

i i i i
i

L w C

y w b

y w b

ξ ξ η ξ η ξ

α ε ξ ϕ α α η η

α ε ξ ϕ

= =

=

=

= + + − +

− + − + + >

− + + − −

∑ ∑

∑

∑

,                               (4) 

where L  is the Lagrange function and * *, , ,i i i iα α η η are Lagrange multipliers. The partial 

derivatives of L  with respect to the primal variables *, , ,i iw b ξ ξ  must be removed for 

optimality as follows: 

*

1
( ) 0

L

b i i
i

L α α
=

∂ = − =∑ ,                                                                                                            (5) 

*

1
( ) (x ) 0

L

w i i i
i

L w α α ϕ
=

∂ = − − =∑ ,                                                                                              (6) 

(*)
(*) (*) 0

i
i iL C

ξ
α η∂ = − − = .                                                                                                        (7) 

Substituting (5), (6), and (7) into (4) yields the dual optimization as follows: 

[ ]

* * * *

, 1 1 1

* *

1

1minimize  ( )( ) (x ), (x ) ( ) ( )
2

subjects to ( ) 0 and , 0,

l l l

i i j j i j i i i i i
i j i i

l

i i i i
i

y

C

α α α α ϕ ϕ α α ε α α

α α α α

= = =

=

− − − − + +

− = ∈

∑ ∑ ∑

∑
.                (8) 

The nonlinear minimization in equation (4) is under the inequality constraint. Thus, the 

Karush-Kuhn-Tucker (KKT) conditions (Karush, 1939; Kuhn and Tucker, 1951) must be 

satisfied. The KKT conditions require that at the solution points, the product between dual 

variables and constraints must be removed as follows:  
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*

* *

( , x ) 0

( , x ) 0

( ) 0, ( ) 0

i i i i

i i i i

i i i i

y w b
y w b

C C

α ε ξ

α ε ξ

α ξ α ξ

+ − + < > + =

+ + − < > − =

− = − =

.                                                                                           (9) 

Equation (9) indicates that for (x )i if y ε− < , iα  and *
iα  should be 0, which indicates that 

only the sample points associated with nonzero coefficients are referred to as support vectors 

and are used in deriving the function. Furthermore, equation (6) leads to 

*

1
( ) (x )

L

i i i
i

w α α ϕ
=

= −∑  so that the regression function is rewritten as follows: 

*

1
(x) ( ) (x ), (x)

l

i i i
i

f bα α ϕ ϕ
=

= − +∑ ,                                                                                    (10) 

where (x ), (x)iϕ ϕ  is the inner product of vectors in the feature space. To avoid the 

complexity of computing the nonlinear mapping ϕ , we can replace the dot product using 

kernel functions in the feature space. Equation (10) is as follows: 

* *

1
(x) ( ) (x , x)

l

i i i
i

f K bα α
=

= − +∑ ,                                                                                           (11) 

where the kernel function (x, y) (x), (y)K ϕ ϕ=  satisfies Mercer’s theorem (Mercer, 1909). 

The qualified kernels will correspond to the inner product in the feature space. By applying 

the kernel function to replace the inner product, the issues relating to dimension are alleviated 

and only the kernel function requires specification, which can be performed without 

knowledge of the form of the nonlinear mapping. The following kernels that can be selected 

as admissive kernels in SVM include:  

                                        2

2

Linear kernel:  (x , x) x x,

Polynomial kernel:   (x , x) ( x x 1) ,

x x
Gaussian kernel:   (x , x) exp ,

2

Sigmoid kernel:  (x , x) tanh( x x ).

T
i i

T d
i i

i
i

T
i i

K
K

K

K r

κ

σ

κ

=

= +

 − −
=  

 
 

= +

                                            

In addition to the free parameters C  and ε , hyper parameters 2,  d σ ,κ  and r  in the above 

kernels must be determined in advance. There is no analytical method to determine the most 

suitable kernel for a particular data set other than certain general rules: the linear kernel is 

suitable for large sparse data vectors, the polynomial kernel is used in image processing, and 

the sigmoid kernel is preferred as a proxy for neural networks. When applying a kernel to data 

without knowledge of its form, the Gaussian kernel is considered a reasonable first choice. 
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The Gaussian kernel is also a general kernel that contains the linear and sigmoid kernel by 

setting restrictions on the penal parameter (Keerthi and Lin (2003)). As both Polynomial and 

Sigmoid kernels have more hyper parameters that need to be specified, compared to only one 

hyper parameter in the Gaussian kernel, the current paper will apply the Gaussian kernel and 

later compare it to the wavelet kernel proposed by Zhang et al. (2004). Zhang et al. combine 

the wavelet theory and support vector machines to show that the wavelet kernel achieves 

more accurate approximation for nonlinear functions. The current paper aims to adopt their 

proposed Morlet wavelet kernel when applying SVM to manage the APARCH model and 

compare the outcome with that of the Gaussian model. The following section will provide a 

brief introduction of the wavelet theory and wavelet kernel.  

 

2.2. Introduction to the wavelet and the wavelet kernel.   

Wavelet methods have been widely applied in the field of signal and image processing after 

their theoretical development in the 1980s (Grossmann and Morlet, 1984; Mallat, 1989). 

Wavelet methods adopt a basis of spatially localized functions as their transform filters, based 

on wavelet filtering of the original signal through shifting and dilations. The wavelet 

transformation can capture the characteristics of data series both in the frequency domain and 

the temporal domain using a two dimensional resolution. Corresponding to sinusoidal waves 

in the Fourier transform, the orthonormal wavelet bases { }, : ,k a k a Rψ ∈  used in the wavelet 

transform are generated by translations and dilations of a basic mother wavelet 2 ( )L Rψ ∈  and 

can be expressed as ,
1( ) ( )k a

x kx
aa

ψ ψ −
= . For the signal ( )f x , the wavelet transform is 

*
, ,( , ) , ( ) ( )k a k ak a f f x x dxγ ψ ψ= 〈 〉 = ∫ . When the mother wavelet that satisfy the condition 

2

0

( )H
d

ω
ω

ω
∞

< ∞∫ , with ( )H ω  as the Fourier transform of the ( )xψ , we can reconstruct 

( )f x using the inverse wavelet transform, ,( ) ( , ) ( )k jf x k a x dkdaγ ψ= ∫∫ , or using finite terms 

to approximate the function, ,
1

ˆ ( ) ( )
l

i k a
i

f x W xψ
=

=∑ . For multi-dimensional data, which will be 

encountered in SVM, applying the tensor theory from Zhang and Benveniste (1992) results in 

a multi-dimensional wavelet function defined as 
1

(x) ( )
d

d j
j

xψ ψ
=

=∏ where 

{ }1x=( ,..., ) d
dx x ∈ℜ . 
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The fundamental motivation to combine the wavelet and the SVM is that by constructing a 

wavelet kernel that satisfies the Mercer theorem, any arbitrary function can be optimally 

approximated in the space spanned by the multi-dimensional wavelet basis. Zhang et al. 

(2004) proposed two types of wavelet kernel, the dot productive kernel and the translation 

invariant kernel, which are calculated as follows:  

Dot-product wavelet kernel: 
' '

1

(x,x') ( x,x'>) ( ) ( )
d

j j j j

j

x k x k
K K

a a
ψ ψ

=

− −
= < =∏ . 

Translation invariant kernel: 
'

1

(x,x') (x-x') ( )
d

j j

j

x x
K K

a
ψ

=

−
= =∏  

Zhang et al. (2004) also set the necessary and sufficient conditions for the kernels so that they 

satisfy Mercer’s theorem and can be applied as admissible SV kernels in Hilbert space. Based 

on those conditions, Zhang et al. (2004) construct a translation invariant kernel using the 

Morlet wavelet function and show that it is superior to the Gaussian function based kernel in 

both unitary and binary examples. Moreover, compared with the Gaussian kernel, which is 

correlative and redundant, the wavelet kernel is orthonormal or approximately orthonormal. 

This property can lead to increased training speed and will be superior when managing high 

dimensional data. The current paper utilizes the Morlet wavelet kernel with the kernel 

function
2

 ( ) cos(1.75 )exp( )
2
xx xψ =  and assesses its performance when combined with SVM 

in estimating APARCH model.  

 
3. Model Specification and experiment design  

A short description of the standard GARCH (1,1) model is presented for further 

generalization in the APARCH model. The form of the standard GARCH (1,1) model is as 

follows:      

 
2

1 1

;  ~ . . .(0,1)t t t t

t t t

u h i i d

h w u h

η η

α β− −

=

= + +
,                                                                                                    (12) 

where 0,  0, 0w α β> ≥ ≥  to ensure a positive conditional variance and condition 1α β+ <  

should be satisfied such that the GARCH series is weakly stationary. he stochastic process th  

is the conditional variance of tu with 1 ~ (0, )t t tu D h−Ι , where D  is the distribution and 1t−Ι  

denotes the available information at time 1t − . Volatility th  can be predicted by a weighted 

average of the constant long run unconditional variance, the first lag of the squared residual, 

and the lag one conditional variance, with the weights ,   and w α β . The restriction 
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1w α β+ + =  is imposed to ensure that the long run unconditional variance 
1

w
α β− −

 is equal 

to 1.  The standard GARCH model has been widely applied due to its ability to capture 

volatility persistence and clustering. However, as its linear structure only allows correlations 

to exist in squared residuals, negative shocks and positive shocks to the series will result in 

the same impact in predicting the volatility. As the volatility in financial return series tends to 

be more affected by negative events, relative to positive events of similar magnitude, the 

linear GARCH model is not able to manage this “leverage effect”. To resolve this problem, 

Ding et al. (1993) introduced the APARCH model, which can capture the asymmetric effect 

of “negative news” and “positive news” in the stock market. The model structure is then the 

following: 

/ 2 / 2
1 1 1

;   ~ . . .(0,1)

( )
t t t t

t t t t

u h i i d

h w u u hδ δ δ

η η

α γ β− − −

=

= + − +
,                                                                                      (13) 

where 0, 1 1,  0, 0,  0wδ γ α β> − < < > > > , and the conventional stationary condition is 

2(1 )  1α γ β+ + < . This model introduces the power coefficient δ  and the leverage 

coefficientγ . The power term δ  allows other power digits in the data transform instead of 

only the second order in the GARCH model, and parameter γ  controls the asymmetric 

volatility response to positive and negative returns. The APARCH model is a general class of 

model, which consists of a family of models such as the GARCH model with δ =2 and γ =0, 

the GJR-GARCH model by Glosten et al. (1993) with δ =2, the TS-GARCH model of Taylor 

(1986) and Schwert (1989) with δ =1 and γ =0 and the T-ARCH model of Zakoian (1993) 

with δ =1. Although the various models have special applications in particular circumstances, 

the estimations of the APARCH model are generally measured by Maximum Likelihood 

when D is a normal distribution or Quasi Maximum Likelihood when D is a non-normal 

distribution. Bollerslev and Wooldridge (1992) show that QML provides consistent 

estimators; however, QML is inefficient and cannot provide the best estimate for finite sample 

sizes.  More flexible tools are required when skewness and kurtosis are detected in the series, 

and the pure data based SVM may be an elegant choice. The current paper investigates the 

estimation performance and forecasting ability of the QML and SVM when the distribution of 

the data is set as a skewed Student- t distribution, to capture both fat tails and asymmetry in 

financial series. 
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To estimate the parameters in APARCH with QML, the log-likelihood function provides a 

maximized conditional on a set of samples when the distributions for the innovations are 

specified. For the nonparametric SVM estimation, there is no specified parameter 

that must be estimated, and the most important issue is identifying the output and input 

variables for function (x )tf . Applying SVM to estimate the APARCH model is not purely 

nonparametric, as the model framework must specify the output scalar and the input vector. 

As the primary goal in the present research is to forecast volatility, the output variable is 

naturally chosen to be / 2
thδ , and the variable δ  is already known based on the model types. 

The input vectors will vary based on whether γ  are available or not. If γ  is given, the input 

x t  is / 2
1 1 1[( ) ,  ]t t tu u hδ δγ− − −− ; if γ  is not known, the power term is expanded to a linear form 

and the input will differ according to the model types as follows: 2
1 1x [ ,  ]t t tu h− −=  for GARCH 

model, 1/ 2
1 1x [ ,  ]t t tu h− −=  for TS-GARCH, 1/ 2

1 1 1x [ ,  ,  ]t t t tu u h− − −=  for TARCH and 

2
1 1 1 1x [ ,  ,  ]t t t t tu u u h− − − −=  for GJR-GARCH model. Another important issue is that although 

the volatility th  is available and can be used directly in simulated data; for empirical series 

obtained from financial market, the volatility th  is unobservable. A feasible resolution is 

suggested by Perez-Gruz et al. (2003), where they set 
4

' 2

0

1
5t t k

k
h u −

=

= ∑  as the measurement for 

th . Because our simulation results show that 
4

' 2

0

1
5t t k

k
h u −

=

= ∑  will result in an over-smoothing of 

the volatility and reduce the asymmetric style of the series, we choose the formula 
4

' 2

0

1
3t t k

k
h u −

=

= ∑ . However, the actual volatility th  can be utilized later when we evaluatethe 

result by the normalized mean square error: 

' 2

1

2

1

1 ˆ( )

1 ( )
1

n

t t
t

h n

t
t

h h
nNMSE

h h
n

=

=

−
=

−
−

∑

∑
 where 

1

n

t
t

h h
=

=∑ and 

'
t̂h  are estimated by SVM. For real data where only tu  is available because t t tu hη= and 

~ . . .(0,1)t i i dη  is independent with th , we obtain 2 2
t t t tEu E h Ehη= = , and thus, the criteria can 
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be set as 

' 2 2

1

2 2 2

1

1 ˆ( )

1 ( )
1

n

t t
t

u n

t
t

h u
nNMSE

u u
n

=

=

−
=

−
−

∑

∑
 where 2 2

1

n

t
t

u u
=

=∑ . The evaluation for the performance 

of the estimation will be performed considering two aspects: the in-sample training data are 

used to evaluate model fitting, while the out-of-sample test data are applied to evaluate the 

predictive ability.  

 

4. Monte Carlo Experiment and result comparison. 

We first need to parameterize the four models before generating data, and the parameters are 

set to be weakly stationary:  

GARCH(1,1) model with δ =2 and γ =0: 0.2, 0.5, 0.3w α β= = = ; 

TS-GARCH model with δ =1 and γ =0: 0.2, 0.5, 0.3w α β= = = ; 

GJR-GARCH model with δ =2: 0.2, 0.5, 0.3, 0.3w α β γ= = = = ; 

T-ARCH model with δ =1: 0.2, 0.5, 0.3, 0.5w α β γ= = = = . 

The distributions of the innovations are Student’s- t  distributions with six degrees of freedom 

with the non-central parameter µ  set to (-0.5, 0.5). Parameter µ  controls the asymmetry of 

the distribution with µ >0 denoting a heavier right tail. The sample size for the series is 1000, 

with the first half as training data and last half as testing data. The free parameters C and ε  

are tuned by 10-fold cross-validation error. The combinations that minimize the validation 

error are chosen to adjust the weights iα  based on the training data. The same C and ε  are 

applied for both the Gaussian kernel-based SVM and the wavelet kernel-based SVM for 

further comparison. The hyper parameter σ  in the Gaussian kernel is determined based on 

suggestion from Caputo et al. (2002), where the optimal values are any values between the 

0.1 and 0.9 quantiles of 
2'x x− . We first simulate one data set from the GJR model and 

graph the estimation and prediction performance of three approaches. 
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                                 Figure 1: Estimating and forecasting results for one data trial 

Figure 1 depicts the actual and estimated or predicted conditional variance th  for both 

training and testing data. We see that the QML-based method can capture all of the volatility 

but tends to exaggerate the volatility to a greater extent than the estimated volatility from 

SVM. This performance partially confirms research by Acosta et al. (2002), where they 

mention that the ML estimation of the GARCH type of model tended to overestimate the 

volatility magnitude. For the Gaussian kernel-based SVM, although it failed to capture the 

large volatility in the training data, it provided better predictions in the testing dataset. 

However, even for the in-sample data, the overall performance of the Gaussian kernel-based 

SVM is better than the QML estimation. The wavelet-based SVM, although it slightly 

underestimates the volatility for the training data, provides the best prediction in the out-of-

sample data in the three cases. Next, we run 100 independent trials with the above-mentioned 

parameter settings and choose the median and mean values and the smallest value of the 

NMSE  for comparison. The results are reported in the following three tables. 
                                              Table 1: Estimated result based on the QML method 

      µ                    In sample                                 Out of sample 
                      hNMSE              uNMSE                   hNMSE              uNMSE  
                          Avg   Med   Low          Avg   Med   Low            Avg   Med   Low         Avg   Med   Low 

GARCH 
-0.5 
0.5 

 
0.842  0.683  0.123 
0.821  0.630  0.069 

 
1.131  1.161  0.587 
1.135  1.158  0.392 

 
 0.801  0.737  0.138 
 0.719  0.749  0.025 

 
56.45  2.460  0.701 
13.50  3.370  0.949 

TSGARCH 
-0.5                     
0.5                                

 
0.657  0.633  0.371 
0.622  0.589  0.407 

 
0.934  0.942  0.862 
0.929  0.931  0.875 

 
0.734  0.864  0.317 
0.716  0.698  0.014 

 
2.578  1.761  0.896 
3.202  1.877  1.016 

GJR 
-0.5 
0.5 

 
0.864  0.762  0.120 
0.882  0.687  0.021 

 
1.056  0.888  0.221 
0.827  0.881  0.230 

 
0.840  0.801  0.101 
0.888  0.856  0.035 

 
257.5  4.345  0.831 
35.90  1.340  0.940 

TGARCH 
-0.5 
0.5 

 
0.959  0.968  0.790 
0.589  0.525  0.330 

 
0.990  0.997  0.909 
0.877  0.887  0.760 

 
0.987  0.829  0.041 
1.117  1.081  0.043 

 
61.97  2.333  0.633 
1.423  1.383  1.014 

 

0 50 100 150 200

0
5

10
In sample estimation

QMEL

ha
p[3

0:(
T/

2)
]^2

0 50 100 150 200

0
5

10

Gaussian-Kernel based SVM

ha
p[3

0:(
T/

2)
]^2

0 50 100 150 200

0
5

10

Wavelet-Kernel based SVM

ha
p[3

0:(
T/

2)
]^2

0 50 100 150 200 250

1
3

5

Out of sample estimation

QMEL

ha
p[

(T
/2

 +
 1

):T
]^2

0 50 100 150 200 250

1
3

5

Gaussian-Kernel based SVM

ha
p[

(T
/2

 +
 1

):T
]^2

0 50 100 150 200 250

1
3

5

Wavelet-Kernel based SVM

ha
p[

(T
/2

 +
 1

):T
]^2



13 
 

To obtain the NMSE  for in-sample and out-of-sample data, we need the fitted and forecasted 

volatility '
t̂h . The fitted '

t̂h  values are derived from the QML, while the forecasted '
t̂h  is 

calculated from the APARCH model with estimated parameters based on the testing data. 

Table 1 indicates that for the hNMSE , the out-of-sample and the in-sample values are similar 

to each other. However, for the uNMSE , the out-of-sample values are much larger and less 

stable. When we verify the average values of the uNMSE , we observe that many values are 

quite large and the range of the value varies significantly, supporting the notion that the 

QML-based method is not efficient in finite samples. This inefficiency is in part due to the 

normal departure distribution of the data; for the skewed Student-t distribution, it is common 

to see outliers, even for small samples of data. As the extreme value could not be captured by 

the fixed model structure, the prediction is likely to be unstable.  

We next use the SVM approach to train the data, and the fitted '
t̂h  and forecasted '

t̂h  are 

determined by specifying the input vectors according to different types of APARCH models. 

The results are shown in Table 2: 
                                   Table 2: Estimated result based on the Gaussian-Kernel based SVM method 

      µ                    In sample                                 Out of sample 
                      hNMSE              uNMSE                   hNMSE              uNMSE  
                          Avg   Med   Low          Avg   Med   Low            Avg   Med   Low         Avg   Med   Low 

GARCH 
-0.5 
0.5 

 
0.559  0.591  0.289 
0.343  0.345  0.182 

 
0.753  0.771  0.571 
0.400  0.418  0.221 

 
1.243  0.982  0.622 
2.836  0.976  0.522 

 
1.045   1.042  0.973 
1.075   1.065  0.927 

TSGARCH 
-0.5                     
0.5                                

 
0.415  0.437  0.234 
0.386  0.380  0.166 

 
0.704  0.735  0.440 
0.770  0.781  0.604 

 
0.723  0.787  0.194 
0.679  0.687  0.333 

 
1.130  1.115  0.978 
1.127  1.131  0.996 

GJR 
-0.5 
0.5 

 
0.263  0.255  0.071 
0.589  0.612  0.387 

 
0.508  0.536  0.252 
0.848  0.866  0.751 

 
1.090  0.921  0.569 
0.905  0.905  0.470 

 
1.041  1.034  0.949 
35.69  1.040  0.978 

TGARCH 
-0.5 
0.5 

 
0.758  0.814  0.425 
0.803  0.803  0.368 

 
0.856  0.881  0.618 
0.847  0.863  0.598 

 
0.909  0.980  0.432 
0.878  0.869  0.615 

 
1.030  1.024  0.975 
1.154  1.139  0.971 

 

Table 2 shows better outcomes, in general, relative to the QML-based method for both in-

sample and out-of-sample values. A more stable average value, especially for the uNMSE , 

was observed in the Gaussian Kernel-based SVM method than in the QML analysis, 

indicating more efficient prediction when using the Gaussian Kernel-based SVM method. The 

results are unsurprising because, when training by SVM, the models are adjusted to an 

optimal density that fits the data best and simultaneously minimizes the prediction error. 

Moreover, the entire procedure is purely data driven and can be flexible even when including 

the extreme values and outliers. One could argue that current software packages commonly 

include the QMLE under the non-normal distribution, and the model can still be estimated 
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based on the parametric structure. However, in such situations, more parameters (e.g., skew 

parameters and degrees of freedom) must be specified and misspecification will undermine 

both estimation and forecasting. The SVM based methods generate these parameters, and only 

the structures of the input data are required. A more general case is illustrated in Tay and Cao 

(2002), where the SVM is applied as a pure nonparametric method where no information 

about the model’s structure is needed. Such a design would be especially suitable for data that 

cannot be described by any single specific model.  

The following will show the application of the wavelet kernel in the SVM approach; the 

results are shown in Table 3. 

 
                                  Table 3: Estimated result based on Wavelet-Kernel based SVM method 

      µ                    In sample                                 Out of sample 
                      hNMSE              uNMSE                   hNMSE              uNMSE  
                          Avg   Med   Low          Avg   Med   Low            Avg   Med   Low         Avg   Med   Low 

GARCH 
-0.5 
0.5 

 
0.286  0.294  0.134 
0.218  0.220  0.043 

 
0.673  0.694  0.417 
0.551  0.549  0.225 

 
0.615  0.715  0.085 
0.585  0.629  0.072 

 
1.092  1.000  0.873 
1.322  1.339  0.804 

TSGARCH 
-0.5                     
0.5                                

 
0.312  0.324  0.096 
0.317  0.324  0.117 

 
0.735  0.774  0.407 
0.763  0.785  0.497 

 
0.638  0.685  0.188 
0.573  0.569  0.118 

 
1.195  1.101  0.778 
1.191  1.115  0.999 

GJR 
-0.5 
0.5 

 
0.217  0.225  0.063 
0.446  0.461  0.263 

 
0.603  0.614  0.202 
0.777  0.791  0.534 

 
0.864  0.757  0.257 
0.761  0.757  0.340 

 
1.283  1.340  0.859 
1.010  1.126  0.900 

TGARCH 
-0.5 
0.5 

 
0.522  0.567  0.110 
0.911  0.889  0.359 

 
0.742  0.775  0.345 
0.860  0.867  0.650 

 
0.666 0.849  0.014 
0.879  0.932  0.536 

 
1.360  1.063  0.968 
1.186  1.172  0.996 

 

The wavelet kernel-based SVM outperforms the Gaussian kernel-based SVM with a larger 

number of smaller values of NMSE  and no extreme average values. Table 2 contains one 

extreme value (35.69) for the hNMSE  in GJR model with 0.5γ = , while Table 3 shows that 

the average values are all less than 1.5. One explanation for this result is that the wavelet 

kernels are constructed to capture the local characteristics in the series and that the wavelet 

kernel can capture the non-stationary dynamics of the data, such as the structure break and 

abrupt values. This ability is driven by the volatility clustering model under the fat tail 

distribution, as the wavelet can handle both local volatility and outliers quite well. It is also 

interesting to compare these results to those of Chen et al. (2010), where they compared the 

linear kernel, the polynomial kernel and the Gaussian kernel and concluded that no single 

kernel dominated the volatility predictions. The present paper shows that the wavelet kernel 

provides consistently better results than the Gaussian kernel in the APARCH model.  

In general, for both in-sample and out-of-sample data, most hNMSE  and hNMSE  values 

present a decreasing trend from Table 1 to Table 3, indicating that the SVM based methods 
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outperform the QMLE. Moreover, the wavelet kernel-based SVM is more adept at volatility 

estimation and forecasting than the Gaussian kernel-based SVM. Another appealing property 

of the wavelet kernel is that the number of support vectors is generally lower than those used 

in the Gaussian kernel:  
                            Table 4: Number of support vectors in Gaussian and Wavelet kernels 

                               Gaussian kernel              Wavelet kernel   
                     0.5µ = −          0.5µ =          0.5µ = −     0.5µ =                         
GARCH     271    267     231    201 

GJR     198    181     141    139 

TSGARCH     468   300     468    205 

TGARCH     174   346     146    305 

 

Table 4 shows that under the same free parameter setting, the number of support vectors in the 

wavelet kernel-based SVM is lower than in the Gaussian kernel-based SVM. The number of 

support vectors is important in SVM application, as a well-performed SVM is expected to 

approximately outline an entire dataset from a small fraction of input data (see Xiao et al., 

(2005)). For the training data, fewer support vectors will lead to sparse data sets when solving 

the quadratic programming optimization problem. For testing data, fewer support vectors can 

provide smaller test error, as the expectation value of the prediction error will be no larger 

than the ratio between the expectation value of the number of support vectors and the number 

of training vectors: [ .(  )][Pr( )]
.(  )

E Nr Support VectorsE error
Nr Training Vectors

≤ . Compared with the Gaussian 

kernel, the wavelet kernel provides fewer support vectors in all the cases and indicates more 

computational efficiency and better generation capability.  

 

5. Conclusion.  

The present paper primarily uses the SVM based technique to estimate and predict volatility 

in the APARCH type of model when the data are skewed Student-t distributed. We compare 

the outcomes with results from the QML estimation, and Monte Carlo simulations show that 

the SVM based methods outperform the QMLE in both estimation and prediction. As the 

performance of the SVM depends on the kernel choice in a given circumstance, we further 

evaluate the SVM with Gaussian and Wavelet kernels. Based on the results, we observe that 

the wavelet kernel is consistently more accurate than the Gaussian kernel in the APARCH 

model framework, as the local identification character in the wavelet kernel is well equipped 

to capture the volatility clustering style for the conditional volatility. Moreover, by applying 
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the wavelet kernel, fewer support vectors are needed, which simplifies the computation and 

improves the prediction ability.  
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