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1 Introduction

According to textbook financial theory, exposure to idiosyncratic (asset-specific, unique)

risk should not be rewarded on the market. This is because rational investors can eliminate

idiosyncratic risk from their portfolios through diversification. The risk that cannot be

diversified away is termed systematic risk. In order for risk-averse investors to hold a

positive supply of stocks, exposure to systematic risk would have to be rewarded.

Although this story seems convincing, recent empirical research has presented evidence

that idiosyncratic risk does affect risk premia, but it might not be in the direction that

one would first expect. Counter intuitively, Ang, Hodrick, Xing, and Zhang (2006) find

a negative relation between lagged idiosyncratic volatility and returns. They write that

their results represent “a substantive puzzle” (Ang, Hodrick, Xing, and Zhang, 2006, p.

262).1 As a theoretical motivation for their empirical setup, they refer to works that use

log linear approximations or assume a log normal structure (Campbell, 1993, 1996; Chen,

2002).

This paper derives an exact relation between volatilities and expected returns. Em-

ploying an exchange-only Lucas (1978) economy in which we allow for general distributions

of dividend growth rates, we find that, because idiosyncratic volatility will affect expected

returns in ways that are not captured by the log linear approximation, it will automati-

1However, Fu (2009) argues that “The lagged idiosyncratic volatility might not be a good measure of

expected idiosyncratic volatility” (Fu, 2009, p. 25). Instead using EGARCH to capture the time-varying

features of idiosyncratic risk, he finds a positive relation between conditional idiosyncratic volatilities and

returns.
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cally appear as though idiosyncratic risk is priced. Moreover, we show that assuming a log

Normal Inverse Gaussian (NIG) structure may help mitigate the equity premium puzzle

of Mehra and Prescott (1985): using their data set, the coefficient of relative risk aversion

required to match the equity premium is more than halved compared to the finding in

their article. For high levels of risk aversion, the difference in terms of generated equity

premia compared with the log linear approximation (log Normal case) is striking.

From a technical point of view, our paper is related to Martin (2009, 2010), who

also expresses equilibrium quantities in terms of cumulant generating functions. Martin

(2010) considers a Lucas economy with a single risky asset (tree), whereas Martin (2009)

considers the case of multiple risky assets. Lillestøl (1998) explores the possibility of using

the multivariate NIG distribution within the areas of portfolio choice and risk analysis, and

he also briefly considers equilibrium conditions assuming constant absolute risk aversion

(CARA) utility. However, none of these works specifically addresses the relation between

risk premia and idiosyncratic volatilities.

The remainder of the paper is organized as follows. Section 2 presents our model. In

Section 3, we present our theoretical results and, finally, Section 4 concludes the paper.

2 Model

To prove our main point, we consider a simple exchange-only Lucas (1978) economy in

which there are several risky assets and one risk-free asset. The risk-free asset is in zero

net supply. We explicitly model the dividends from n of the risky assets and the aggregate
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dividends. The future dividends from assets 1 through n are given by

Di = D0ie
gi , i = 1, 2, . . . , n (1)

and the future aggregate dividend is DA = D0Ae
gA . Here, g1, g2, . . . , gn and gA are div-

idend growth rates, and the vector of growth rates, (g1, g2, . . . , gn, gA), follows a joint

probability distribution. The difference DA −
∑n

i=1Di represents the cash flows from the

other assets (”the rest of the economy”).2

There are N agents, having constant relative risk aversion: Their utility of consump-

tion is given by

u(C) =
C1−γ − 1

1− γ
, (2)

where γ > 1.3 They maximize their expected utility of current and future consumption.

That is, they seek to maximize

u(Cj
0) + βE

[
u
(
C̃j
)]
, j = 1, 2, . . . , N, (3)

where Cj
0 denotes agent j’s current consumption, β is a time-preference parameter and

C̃j denotes his final consumption. All agents share the same beliefs and have access to

the same information. Each of the N agents is endowed with 1/N shares of each risky

asset, and this constitutes each agent’s sole endowment.

2Similar modeling approaches can be found in Bakshi and Chen (1997), Bansal and Yaron (2004),

Yan (2007) and Zhang (2008), among others.

3The restriction γ > 1 is imposed in order to avoid having solutions to the portfolio choice problem

that yield an infinite expected utility.
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3 Results

The agents are identical, so we can solve for equilibrium prices by considering a represen-

tative consumer with an endowment equal to the average aggregate endowment,4

Si = E

[
βu′ (DA/N)

u′ (D0A/N)
Di

]
, i = 1, 2, . . . , n (4)

and

B = E

[
βu′ (DA/N)

u′ (D0A/N)

]
, (5)

where Si is the price of stock i and B is the price of the bond.

In particular, under the assumed CRRA preferences, we can express the asset prices

as

Si = βD0iE[egi−γgA ] = βD0iM[gi−γgA](1), i = 1, 2, . . . , n (6)

and

B = βE[e−γgA ] = βM−γgA
(1), (7)

where MX denotes the moment-generating function for the random variable X.

Thus, the expected gross return on stock i is given by

E[(1 +Ri)] = E

[
Di

Si

]
=

D0iE[egi ]

βD0iM[gi−γgA](1)
=

Mgi
(1)

βM[gi−γgA](1)
, (8)

and the risk-free rate is

1 +Rf =
1

B
=

1

βM−γgA
(1)

. (9)

4For a general aggregation theorem, see Rubinstein (1974).
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The difference (in logs) between the two is given by

rpi ≡ ln(E[(1 +Ri)])− ln(1 +Rf ) = kgi
(1) + k−γgA

(1)− k[gi−γgA](1), (10)

where k is the cumulant-generating function, defined by kX(t) ≡ ln(MX(t)). We call rpi

the risk premium of asset i.

If the cumulant-generating function exists in an open interval containing 0, then it is

infinitely differentiable in this interval and thus, making a Taylor expansion around 0, we

can write the cumulant-generating function of the random variable X as

kX(t) =
∞∑
m=1

κm,X
tm

m!
, (11)

where κm,X ≡ k
(m)
X (0) is referred to as the cumulant.

Since kX(t) ≡ lnMX(t), there is an obvious relation between cumulants and moments.

For example, the first four cumulants are

κ1,X ≡ k′X(0) = E[X], (12)

κ2,X ≡ k′′X(0) = Var[X], (13)

κ3,X ≡ k
(3)
X (0) = Skew[X], (14)

κ4,X ≡ k
(4)
X (0) = Kurt[X]− 3 Var[X]2, (15)

where Skew[X] ≡ E[(X − E[X])3] is the third central moment (which we call skewness)

and Kurt[X] ≡ E[(X − E[X])4] is the fourth central moment (which we call kurtosis).

It is also possible to define cumulant-generating functions and cumulants for multi-

variate random variables. In the bivariate case, one can define a cumulant-generating
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function k(X,Y )(t1, t2) ≡ lnM(X,Y )(t1, t2) with joint cumulants

κ(m,n),(X,Y ) ≡
∂m∂nk(X,Y )

∂tm1 ∂t
n
2

(0, 0). (16)

Further, it can be shown that, if Z ≡ a1X + a2Y , where a1 and a2 are constants, then

κm,Z =
m∑
j=0

(
m

j

)
am−j1 aj2κ(m−j,j),(X,Y ) (17)

(McCullagh, 1987).

Hence, the risk premium of asset i can be written as

rpi = γ Cov(gi, gA) +
∞∑
m=3

1

m!

(
κm,gi

+ γmκm,gA
− κm,(gi−γgA)

)
= γ Cov(gi, gA)

+
∞∑
m=3

1

m!

(
(γm + (−γ)m)κm,gA

+
m−1∑
j=1

(
m

j

)
(−γ)jκ((m−j),j),(gA,gi)

)
. (18)

If the vector (g1, g2, . . . , gn, gA) follows a joint normal distribution, then gi, gA, and

(gi − γgA) are normally distributed. It is well known that, for a normally distributed

random variable, the cumulants of order three and higher are zero. Thus, in the case when

(g1, g2, . . . , gn, gA) follows a joint normal distribution, we obtain the familiar expression

rpi = γ Cov(gi, gA), (19)

where Cov(gi, gA) is said to capture systematic risk (cf. Mehra and Prescott, 2003). A log

linear approximation also suggests that the relation in (19) holds approximatively (see the

Appendix). However, the normal distribution is the only distribution with a finite number

of nonzero cumulants (Marcinkiewicz, 1938). Thus, unless higher-order terms cancel out
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in (18), the result in (19) does not hold in general.5 Below, we discuss the case in which

(g1, g2, . . . , gn, gA) follows a multivariate Normal Inverse Gaussian (NIG) distribution and

we find that the relation in (19) does not hold in this case.

For a more general heuristic discussion, we can focus on the first two additional terms

in the infinite series in (18):

rpi = γ Cov(gi, gA) +
1

2

(
γ2κ(1,2),(gA,gi) − γκ(2,1),(gA,gi)

)
+

1

12

(
γ4κ4,gA

− 2γκ(3,1),(gA,gi) + 3γ2κ(2,2),(gA,gi) − 2γ3κ(1,3),(gA,gi)

)
+ higher order terms (20)

5A well-known result is that CAPM holds when returns follow an elliptical distribution (Owen and

Rabinovitch, 1983; Ingersoll, 1987). Indeed, it follows from the analysis in Hamada and Valdez (2008)

that, if we let Di = D0i(1 + ḡi) for all risky assets in the economy, where the growth rates (ḡi:s) follow a

joint elliptical distribution, then CAPM would hold. However, in order to avoid negative consumption, we

model the log of dividend growth. Of course, the circumstance that a random variable is log-elliptically

distributed does not imply that it is elliptically distributed (e.g., the log-normal distribution does not

belong to the elliptic class). In particular, assuming that (g1, g2, . . . , gn, gA) follows a Laplace distribution

(which is elliptical) and using the results in (8) and (9), we get some additional terms compared to (19).

Interestingly, we obtain a consumption CAPM result for continuously compounded returns assuming

log-normal growth rates (19) even though the log-normal distribution does not belong to the elliptic

class.
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In the above expression, the second term can be written as6

second term =
1

2

(
γ2
(
Cov(g2

i , gA)− 2µgi
Cov(gi, gA)

)
− γ

(
Cov(gi, g

2
A)− 2µgA

Cov(gi, gA)
))

(21)

while the third term can be written as

third term =
1

12

(
γ4
(
Kurt[gA]− 3 Var[gA]2

)
− 2γ

(
3
(
µ2
gA
− Var[gA]

)
Cov(gi, gA) + Cov(gi, g

3
A)− 3µgA

Cov(gi, g
2
A)
)

+ 3γ2
(
4µgi

µgA
Cov(gi, gA)+Cov(g2

i , g
2
A)− 2Cov(gi, gA)2 − 2µgA

Cov(g2
i , gA)− 2µgi

Cov(gi, g
2
A)
)

− 2γ3
(
3
(
µ2
gi
− Var[gi]

)
Cov(gi, gA) + Cov(g3

i , gA)− 3µgi
Cov(g2

i , gA)
))

(22)

The second term depends on the expected (log) dividend growth rate of the individual

stock and the expected (log) growth rate of the aggregate dividend, while the third term

depends on the variances of the (log) aggregate and individual dividend growth rates.

Thus, looking at the third term and using the common interpretations, it appears as

though idiosyncratic risk is priced. In addition, Equation (22) tells us that the direction

of the effect of idiosyncratic volatility on the third term in the expression for the risk

premium of stock i depends on the covariance between its dividend growth rate and the

growth rate of the aggregate endowment.

6Here, and also later, when we reformulate the third term, we use the CumulantToCentral and Cen-

tralToRaw functions in the Mathematica add-on mathStatica.
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Example: Multivariate NIG distribution

Now, let (g1, g2, . . . , gn, gA) be distributed according to a multivariate Normal Inverse

Gaussian (NIG) distribution.7 The moment generating function of a NIG distributed

d-dimensional random variable X is given by

MX(t) = exp
{

t′µ+ δ
(√

α2 − h′Φh−
√
α2 − (h + t)′Φ(h + t)

)}
, (23)

where δ is a scale parameter (δ > 0), α is a parameter controlling tail thickness (α > 0),

µ is a d× 1 vector controlling location, h is a d× 1 vector controlling the asymmetry of

the distribution, and Φ is a d× d positive definite symmetric matrix with determinant 1,

which is related to covariance. With the help of the moment generating function in (23),

we can find the exact relation between Φ and the variance-covariance matrix (Σ):

Σ = δ
(
α2 − h′Φh

)−1/2
[
Φ +

(
α2 − h′Φh

)−1
Φhh′Φ

]
(24)

(Lillestøl, 1998; Øig̊ard, Hanssen, Hansen, and Godtliebsen, 2005).

Further, the moment generating function of the random variable Y = w′X, where X is a

7Not all choices of preference and distribution parameters will give rise to well-defined equi-

libria. In order to ensure that the equilibria are well-defined, we may impose the following re-

strictions: γ > 1 (as discussed earlier) and max{h′Φh, ((h + oiA)′Φ(h + oiA))n
i=1 , (h + oA)′Φ(h +

oA), ((h + oi)
′Φ(h + oi))

n
i=1 , (h + vA)′Φ(h + vA), (h + (1− γ)vA)′Φ(h + (1− γ)vA)} ≤ α2, where vA is

an (n+ 1)× 1 vector with 1 as its last entry and zeros in all other entries, and other scalars and vectors

are as defined below.
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NIG distributed d-dimensional random variable and w is a d× 1 vector, is given by

MY (t) = MX(tw) = exp
{
tw′µ+ δ

(√
α2 − h′Φh−

√
α2 − (h + tw)′Φ(h + tw)

)}
.

(25)

Thus, in the case when (g1, g2, . . . , gn, gA) is distributed according to a multivariate NIG

distribution, it follows that the risk premium in (10) is exactly equal to

rpi = δ
(√

α2 − h′Φh +
√
α2 − (h + oiA)′Φ(h + oiA)

−
√
α2 − (h + oA)′Φ(h + oA)−

√
α2 − (h + oi)

′Φ(h + oi)
)
, (26)

where oiA is an (n + 1) × 1 vector with 1 in its ith entry and −γ in its last entry and

zeros in all other entries, oA is an (n + 1)× 1 vector with −γ as its last entry and zeros

in all other entries, and oi is an (n+ 1)× 1 vector with 1 as its ith entry and zeros in all

other entries.

Now, in order to gain some intuition, consider the semi-symmetric case in which h = 0.

In this case,

rpi = δ
(
α +

√
α2 − φii + γ(φiA + φAi)− γ2φAA −

√
α2 − γ2φAA −

√
α2 − φii

)
. (27)

Given that h = 0, the variance–covariance matrix simplifies to Σ = δ
α

Φ (see Eq. (24)), so

we can rewrite the above expression as

rpi = δ

(
α +

√
α2 − α

δ
(σ2

i + γ2σ2
A − 2γσiA)−

√
α2 − α

δ
γ2σ2

A −
√
α2 − α

δ
σ2
i

)
, (28)

where σ2
i = Var[gi], σ

2
A = Var[gA] and σiA = Cov(gi, gA). That is, the risk premium of an

arbitrary asset is affected by its idiosyncratic volatility (σi) and the volatility of aggregate

consumption (σA).
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By studying the risk premium of a claim to the aggregate dividends/aggregate con-

sumption, we get to the equity premium. Comparing the exact expression for the equity

premium to its log linear approximation (the log normal case) both exposes the weakness

of the log linear approximation and shows that assuming a log NIG structure may help

mitigate the equity premium puzzle.

From (25), we know that the marginal distributions are also NIG: the moment generating

function for the growth rate of aggregate dividends/aggregate consumption can be written

as

MgA
(t) = exp

{
tµA + δA

(√
α2
A − h2

A −
√
α2
A − (hA + t)2

)}
, (29)

where δA =
√
φAAδ, hA =

∑
j φAjhj/φAA, αA =

√
η2
A + h2

A where ηA =
√

(α2 − h′Φh)/φAA

and µA = v′Aµ where vA is an (n + 1)× 1 vector with 1 as its last entry and zeros in all

other entries.

Thus, by (8) and (9), the equity premium is given by

ep ≡ lnE[(1 +RA)]− ln(1 +Rf ) =

δA

(√
α2
A − h2

A +
√
α2
A − (hA + 1− γ)2 −

√
α2 − (hA + 1)2 −

√
α2
A − (hA − γ)2

)
. (30)

Instead using a log linear approximation, the equity premium is given by ep ≈ γσ2
A (see

the Appendix).8

We estimate the NIG parameters by maximum likelihood using two data sets: the first

is the one used in the original article by Mehra and Prescott (1985), and it is obtained

from Prof. Rajnish Mehra’s homepage (www.academicwebpages.com/preview/mehra); the

8Under log normality, the approximation becomes exact.
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second is a revised and updated version of the one used in Chapter 26 in Shiller (1989),

and it is obtained from Prof. Robert Shiller’s homepage (www.econ.yale.edu/∼shiller).9

The estimates of the NIG parameters are quite similar for the two data sets (see Table

1). A Jarque-Bera test rejects normally distributed growth rates at the 5% level for both

data sets.

Having estimated the parameters of the NIG distribution, the equity premium and the

variance of consumption growth, we compare the relative risk aversion required to match

the equity premium, under a log normal and a log NIG structure, respectively. As seen

in Table 2, the differences are striking: assuming a log NIG structure more the halves the

required coefficients of relative risk aversion. Thus, we have demonstrated that assuming

a log NIG structure helps mitigate the equity premium puzzle.

Further, as seen in Figure 1, the log normal approximation seems to work well for

small values on the coefficient of relative risk aversion whereas, for larger values on this

coefficient, there is a large discrepancy between the exact equity premium in (30) and its

log linear approximation. In fact, for a relative risk aversion of 19, the error in the log

linear approximation is a whole 576 basis points a year.

9We thank Prof. Rajnish Mehra and Prof. Robert Shiller for making their data publicly available.
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Figure 1: The figure shows the equity premium as a function of the coefficient of relative

risk aversion under the NIG distribution (solid line). The dashed line is the log linear

approximation. The parameter values are based on our NIG estimation using the same

data as in Mehra and Prescott (1985): αA = 26.4, δA = 0.0325 and hA = −6.31 (see Table

1). Since we assume that the data is distributed according to a NIG distribution, we let

σ2
A equal the model-implied variance (σ2

A = δAα
2
A/(α

2
A − h2

A)3/2 = 0.00135).
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4 Conclusions

In this paper, we demonstrate that, allowing for general distributions of dividend growth

rates in a Lucas economy with multiple trees, idiosyncratic volatility will generically

appear to be priced, because it affects risk premia in ways that are not captured by a log

linear approximation. Our findings suggest that one needs to be careful in interpreting

empirical results that build on log linear approximations or assume a log normal structure.

Appendix: A Log Linear Approximation

Here, we derive a log linear approximation of the risk premium in (10).

The risk premium in (10) can be expressed as

rpi = lnE[egi ] + lnE[e−γgA ]− lnE[egi−γgA ]. (31)

Now, making a second-order Taylor expansion of ex around the expected value of the

random variable X, E[X], we obtain

ex ≈ eE[X] + eE[X](x− E[X]) +
1

2
eE[X](x− E[X])2

= eE[X]

(
1 + (x− E[X]) +

1

2
(x− E[X])2

)
. (32)

For the function eX of the random variable X, we thus have that

eX ≈ eE[X]

(
1 + (X − E[X]) +

1

2
(X − E[X])2

)
. (33)

Formally taking expectations on both sides, we get

E[eX ] ≈ eE[X]

(
1 +

1

2
Var[X]

)
. (34)
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Applying the above approximation to all the terms in (31), we have that

rpi ≈ ln

(
1 +

1

2
Var[gi]

)
+ ln

(
1 +

1

2
γ2 Var[gA]

)
− ln

(
1 +

1

2
Var[gi − γgA]

)
. (35)

A first-order Taylor expansion of ln(1 + x) around x = 0 gives that ln(1 + x) ≈ x. Hence,

applying this approximation to all the terms in (35), we find that

rpi ≈ γ Cov(gi, gA). (36)

If the vector of growth rates follows a normal distribution, this relation will be exact.
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Zeitschrift, 44, 612–619.

Martin, I. (2009): “The Lucas Orchard,” Working paper, Stanford GSB.

(2010): “Consumption-Based Asset Pricing with Higher Cumulants,” Working

paper, Stanford GSB.

McCullagh, P. (1987): Tensor Methods in Statistics. Chapman and Hall, London.

18



Mehra, R., and E. C. Prescott (1985): “The Equity Premium: A Puzzle,” Journal

of Monetary Economics, 15, 145–161.

(2003): “The Equity Premium in Retrospect,” in Handbook of the Economics of

Finance, ed. by G. Constantinides, M. Harris, and R. M. Stulz, vol. 1 of Handbook of

the Economics of Finance, chap. 14, pp. 889–938. Elsevier, Amsterdam.

Øig̊ard, T. A., A. Hanssen, R. E. Hansen, and F. Godtliebsen (2005): “EM-

estimation and Modeling of Heavy-Tailed Processes with the Multivariate Normal In-

verse Gaussian Distribution,” Signal Processing, 85, 1655–1673.

Owen, J., and R. Rabinovitch (1983): “On the Class of Elliptical Distributions and

Their Applications to the Theory of Portfolio Choice,” Journal of Finance, 38, 745–752.

Rubinstein, M. (1974): “An Aggregation Theorem for Securities Markets,” Journal of

Financial Economics, 1, 225–244.

Shiller, R. J. (1989): Market Volatility. MIT Press, Cambridge, Massachussetts.

Yan, H. (2007): “The Behavior of Individual and Aggregate Stock Prices,” Mathematics

and Financial Economics, forthcoming.

Zhang, Z. (2008): “State Uncertainty and the Cross-Sectional Returns: Theory and

Evidence,” Working paper, Singapore Management University.

19


