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The multi-item bisection auction∗

Albin Erlanson†

October 5, 2011

Abstract

This paper proposes an iterative sealed-bid auction for selling multiple heteroge-

neous items with unit-demand agents. It generalizes the single item bisection auction

(Grigorieva et al., 2007) to the environment with multiple heterogeneous items. We

show that it elicits a minimal amount of information on preferences required to

find the Vickrey-Clark-Groves outcome (Clarke, 1971; Groves, 1973; Vickrey, 1961),

when there are two items for sale and an arbitrary number of agents.

JEL classification: D44, C72
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1 Introduction

Recent research in auction theory has produced a number of papers on iterative auctions

(Mishra and Parkes, 2009; Perry and Reny, 2005; Ausubel, 2004). In an iterative auction

the auctioneer announces a price and bidders submit their bids. Then the price is updated

based upon the submitted bids. The process is repeated until an allocation is determined.

This is in contrast to the approach with direct mechanisms, where agents submit their
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preferences and then an allocation is determined. There are several reasons for focus-

ing on iterative auctions. In iterative auctions bidders may not reveal all information

regarding their private valuations. This is beneficial, since it has been shown that full

revelation of preferences can be problematic (Rothkopf et al., 1990; Engelberecht-Wiggans

and Kahn, 1991). Partial revelation of preferences can lead to less communication and

thereby decrease the amount of data required for the computation of an allocation. An-

other argument for looking closer at iterative auctions is the prevalence of them in real

world auctions (e.g. English auction, Dutch auction, etc.).

One property of importance when analyzing an auction is efficiency. The objective is

to find an auction with an efficient assignment in the equilibrium of the game induced by

the auction. An efficient assignment maximizes the sum of valuations. The benchmark for

the environment with private valuations is the Vickrey-Clarke-Groves mechanism (Clarke,

1971; Groves, 1973; Vickrey, 1961), henceforth VCG. The VCG mechanism is a direct

mechanism with truth-telling as a weakly dominant strategy and the equilibrium outcome

is efficient. Another classical mechanism is the English auction. It is an iterative open

bid ascending auction for selling one item, and its ascending counterpart is the Dutch

auction. The English auction is strategically equivalent to the Vickrey auction. Hence it

is a weakly dominant strategy to bid truthfully and the resulting equilibrium is efficient.

The single item bisection auction presented and analyzed by Grigorieva et al. (2007) is

another example of an iterative auction. In contrast to the English auction it is a sealed-

bid auction. It elicits a limited amount of information on preferences but still reaches

the VCG outcome. Furthermore it has fewer rounds than the English auction. In other

words, both from a strategic- and from a privacy preserving perspective it is satisfactory.

For multiple heterogeneous items things get more complicated. It is a complex problem

to solve in the most general setting where agents are allowed to bid on any packages of

items. In a seminal paper by Demange et al. (1986) an iterative auction for multiple items

with unit-demand agents was presented. The auction results in the VCG outcome.

In this paper we propose a multi-item bisection auction. It generalizes the single item

bisection auction (Grigorieva et al., 2007). We keep the assumption from the single item

bisection auction of unit-demand agents and we do not consider the case for bidding

on packages of items. It is a multi-item sealed-bid auction for the environment with

unit-demand agents and private valuations. In other words it is a standard assignment

problem. A description of the single item bisection auction and the properties of it is
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found in the Section 3. To illustrate the idea behind the multi-item bisection auction it

is enough to consider the case with two items for sale. The auction is then called the

duo-item bisection auction. The duo-item bisection auction is later modified to allow for

a more selective elicitation of information on preferences.

All our results are given for the environment with two items for sale. However, many of

them are straightforward to generalize to a setting with more than two items for sale. The

first result establish an upper limit on the number of iterations for the duo-item bisection

auction. Then we proceed by showing that the duo-item bisection auction reaches the

VCG outcome under the assumption of truthful bidding. This is not as restrictive as it

first may look. There are general results on incentives for dynamic auction mechanisms

implementing the VCG outcome. Loosely speaking the results establish truthful bidding

as a weakly dominant strategy when bidding strategies are constrained to maximize utility

in each step by taking prices as given (Gul and Staccetti, 2000; Parkes, 2001). Our last

result concerns the modification of the duo-item bisection auction. We prove that the

modification attains the VCG outcome, while eliciting the minimal amount of information

on preferences.

With one item to sell it is fairly easy to describe the rules of the single item bisection

auction. However, already with two items the generalized bisection auction gets involved

and more effort is required to describe it. This is not specific for this auction mechanism.

Using auctions in solving an assignment problem with an arbitrary number of items and

agents is a complex problem. There are both computational and theoretical obstacles to

overcome. The multi-item bisection auction can also be seen as a computational alterna-

tive for solving an assignment problem with known valuations.

The organization in the rest of the paper is as follows. In section 2 the model is

presented together with some preliminaries. In the subsequent third section the bisection

auction mechanisms’ are described. They are presented as algorithms and we begin by

describing the single item bisection auction and then move on to the duo-item bisection

auction and the modification of it. Section 3 ends with a short discussion of the multi-item

bisection auction. Section 4 contains the main results and section 5 concludes the paper.
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2 Model and preliminaries

There is a set M = {1, 2, . . .m} with indivisible items and a set N = {1, 2, . . . n} with

agents. It is an unit-demand environment, each agent is interested in buying at most

one item. Every agent i ∈ N has private valuations over each item j ∈ M , let vij be

agent i’s valuation of item j ∈M . Assume that agents’ valuations vij are integer valued,

drawn randomly from the interval [0, 2R) for some positive integer R. Assuming integer

valuations is reasonable since there is always a smallest quantity in which the value needs

to be specified in. Construct the matrix V of all valuations vij with n rows and m columns.

Row i contains agent i′s valuations and column j contains all valuations for the j-th item.

The matrix V represents the preferences’ of the agents. The utility of any agent i for

obtaining item j ∈ M and paying price pj is given by vij − pj. There is a null-item

denoted by 0. The value and the price of it is zero and it can be assigned to any number

of agents. For notational convenience let M̃ = M ∪ {0}. The standard notation of N−i

is employed, it stands for the set N excluding agent i. The demand correspondence for

agent i at price vector p is defined as,

Di(p) = {j ∈ M̃ : vij − pj ≥ vij′ − pj′ for all j′ ∈ M̃}.
This unit-demand environment with indivisible items is a standard assignment problem.

Using auctions is one way to solve the assignment problem and obtain an allocation. Let

the pair (x, p) ∈ M̃n×Nm+1
+ denote an allocation. The first component x is an assignment

and p is a price vector, where xi indicates which object individual i is assigned and pj is

the price of object j. An allocation is feasible if:

(i) xi 6= xi′ for all i 6= i′ and xi, xi′ ∈M
(ii) if pj > 0 then xi = j for some i ∈ N .

An allocation (x, p) is efficient if:∑
i∈N vixi ≥

∑
i∈N viyi for all feasible allocations (y, p).

The agents’ in the set N can be partitioned into m partitions, one partition Tj for

every item j ∈ M . Each partition Tj is based on valuations among the agents for item

j. It is constructed in the following manner. Define for every item j ∈ M a set Tj,1,

consisting of all agents (could be one or more) with the highest valuation of item j, i.e.

Tj,1 = arg max
i∈N

vij. This gives the first subset Tj,1 in the partition Tj. Consecutively

define the subset Tj,2 in the partition Tj consisting of agents (could be one or more)

with the highest valuation for item j amongst remaining agents in N \ Tj,1, formally
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Tj,2 = arg max
i∈N\Tj,1

vij. Repeating this procedure until all agents are assigned into a subset Tj,k

creates the partition Tj. For each step in the process the group of agents not yet assigned

into a subset is decreasing with at least one. Subset Tj,k in the partition Tj consists of

agents with the highest valuation for item j among the remaining agents not yet assigned

into a subset at step 1, 2, . . . , k − 1. To express formally the subsets in partition Tj let

T k−1j = ∪k−1m=1Tj,m. Now, the subset Tj,k can be expressed as Tj,k = arg max
i∈N\Tk−1

j

vij. Denote by

ijk an agent belonging to Tj,k. Agent ijk has the |T k−1j |+ 1 highest valuation for item j.

There are several possible ways to measure the degree of preference elicitation. In this

paper a sort of binary measure is employed. This approach resembles the one taken in

Andersson and Andersson (2010); Hudson and Sandholm (2004). They also measure the

degree of elicitation of preferences in relation to full revelation. An agent’s valuation for

an item is considered elicited if the exact value is known to the auctioneer. The total

number of valuations are nm, full revelation of preferences means that all nm valuations

are elicited, and the measure equals one. At the other extreme with no information at

all about preferences the value of the measure is zero. In all other cases the measure lies

between zero and one.

Definition 1. The measure on preference elicitation is defined as the ratio between the

number of elicited valuations and the total number of valuations nm.

The multi-item bisection auction to be proposed elicits valuations from one item at a

time, and then an allocation is computed after the last round. The auction mechanism

can be viewed as method of iteratively eliciting information on preferences to compute

the VCG outcome. Let us formulate what we mean by iteratively eliciting information

on preferences.

Definition 2. A sequential elicitation method elicits valuations from one item at a time,

and once it continues to the next item it cannot elicit any more valuations from previous

items.

3 A generalized bisection auction

Before looking at the duo-item bisection auction, a description and discussion of the single

item bisection auction (Grigorieva et al., 2007) is given. Each auction is described as an
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algorithm. Within the algorithms agents submit answers at each iteration and the price

is updated based on their answers. A yes answer for item j stands for being willing to

buy at price ptj and no the contrary.

3.1 Single-item bisection auction

The following description of the single item bisection auction differs from the presentation

in the paper by Grigorieva et al. (2007). The reason for this different approach is that the

generalization to the multi-item environment becomes less technical involved and the idea

behind stands out clearer. Before describing the auction some preliminaries are required.

Let ptL and ptH denote the lower bound respectively the upper bound in the price interval

at iteration t. Below is the algorithm describing the single item bisection auction. From

Algorithm 1 a price is generated and the assignment is based upon the agents’ answers

(yes or no) in the process of the algorithm.

Algorithm 1. The single item bisection auction.

Start the process with p0L = 0 and p0H = 2R and A0 = N . For each iteration t = 1, 2, . . . , R:

1. Update pt = (pt−1L + pt−1H )/2, if t < R collect answers from the set of active agents

in At−1, else if t = R the auction terminates.

(i) If two or more agents report yes, set ptL = pt, ptH = pt−1H ,

At = {i ∈ At−1 : i reported yes}, t = t+ 1 and repeat from step 1.

(ii) If every agent report no, set ptL = pt−1L , ptH = pt , At = At−1, t = t + 1 and

repeat from step 1.

(iii) If only agent i report yes, set ptL = pt−1L , ptH = pt, At = At−1 \ {i}, t = t + 1

and move on to step 2.

2. Update pt = (pt−1L + pt−1H )/2, if t < R collect answers from the set of active agents

in At−1, else if t = R the auction terminates.

(i) If one or more agents report yes, set ptL = pt, ptH = pt−1H ,

At = {i ∈ At−1 : i reported yes}, t = t+ 1 and repeat from step 2.
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(ii) If every agent report no, set ptL = pt−1L , ptH = pt , At = At−1, t = t + 1 and

repeat from step 2.

Convergence in Algorithm 1 is no issue since the process always has R number of iterations.

If the auction terminates at step 2 the winner of the auction is the agent with a yes answer

at step 1.(iii), i.e. the agent willing to buy for the highest associated price in the auction.

Otherwise the winner of the auction is the agent with the lowest index among the agents

with a yes answer at price pR.1 The item is given to the winner of the auction and she

pays the price p equal to the lower bound pRL of the final interval at step R. At this price

there are at least two agents who are willing to buy the item. The price p is uniquely

determined in the process of the auction. Because for each iteration the length of the

interval is decreased by a factor of one half. After R numbers of iterations and cuttings

of an interval with an initial length of 2R the length of the interval is 1.

Example 1. Suppose there are four agents α, β, γ, and δ participating in the auction.

They have the following valuations for the item: vα = 13, vβ = 9, vγ = 11 and vδ = 6,

drawn from the interval [0, 16). There will be 4 number of rounds in the auction before the

winner and the price can be determined. In all of our examples agents bid truthfully. With

the following strategy. Reporting yes for item j if it belongs to the demand correspondence

at the current stated price vector and no otherwise. In the single item case the report

from an agent is yes if her valuation is above or equal to the current stated price. If the

price is above her valuation she reports no.

Table 1: The single item bisection auction

Round Price Agent α Agent β Agent γ Agent δ

1 8 yes yes yes no

2 12 yes no no -

3 10 - no yes -

4 11 - - yes -

The process starts with the lower bound of p0L = 0 and the upper bound of p0H = 16. Every

agent belong to the set of active agents in the first round, i.e. A0 = {α, β, γ, δ}. In the

1Using the lowest index is one example of a tie-break rule. As a matter of fact any tie-break rule could

have been used, the results later in the paper are still valid.
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first round the price is set to p1 = (p0L + p0H)/2 = 8 and answers are collected from every

agent. There are three yes answers and one no answer in the first round. With more than

two yes answers we end up at step 1.(i). First the price bounds are updated, p1L = p0 = 8

and p1H = p0H = 16, then the set of active agents for the next round is formed. It consists

of those with a yes answer, using the notation from Algorithm 1, A1 = {α, β, γ}. The

second round starts at step 1 with updating the price p2 = (p1L + p1H)/2 = 12 and then

collecting answers from agents in A1. At the price of 12, α is the sole agent with a yes

answer, and α is the winner of the auction. We are now at step 1.(iii), the price bounds are

updated p2L = p1L = 8 and p2H = p1 = 12. Round number 3 begins at step 2 in Algorithm

1, the price is updated to p3 = (p2L + p2H)/2 = 10 and answers are collected from β and

γ. With one yes answer from γ and one no answer from agent β, we are in 2.(i) and the

price bounds are updated, p3L = p3 = 10, p3H = p2H = 12. In the fourth and last step the

price is updated to p4 = (p3L + p3H)/2 = 11. A yes answer is collected from γ, the only

agent still active, and the auction terminates. Agent α is the winner of the auction. She

gets the item and pays the price of 11. This is the VCG outcome.

3.2 Duo-item bisection auction

The duo-item bisection auction is a sealed-bid auction for selling two items. It is also

presented as an algorithm. From the algorithm price vectors are generated. The allocation

is determined as a function of the agents’ answers from the process. Call the two items

for sale 1 and 2 and the final prices of interest to be generated from the process are p1

and p2. The idea of obtaining prices by decreasing the length of intervals is maintained.

Similarly to before we let pt1L denote the lower bound of the price for item 1 at iteration

t and pt2L denotes the lower bound for item 2 at iteration t. The corresponding upper

bounds for item and 1 and 2 at iteration t are denoted pt1H and pt2H .

In order to be able to reach the VCG-outcome it is necessary to elicit more informa-

tion on preferences than in the single item case. To elicit more information the single

item bisection auction will be divided into different sub-processes. Each sub-process is a

continuation of the original process and a unique price is generated after in total R iter-

ations, counting from the beginning of the auction. The division into new sub-processes

can occur several times and it always creates two new processes. We will call this division

of the process a split and it is defined as follows.
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Definition 3. A split in a bisection auction at step t divides the process in two parts.

Process 1 consists of agents with a yes answer for item j at price ptj, the updated price

bounds are ptjL = ptj and ptjH = pt−1jH . The active agents at step t with a no answer for item

j are in process 2, the price bounds are ptjL = pt−1jL and ptjH = ptj. Each process continues

from iteration t+ 1.

Agents’ in the process with a yes answer at the split are called yes-agents and similarly

agents’ with a no answer are called no-agents. The auctioneer does not inform the agents

about the split, and they cannot infer that a split has occurred from only observing

the price pattern in the auction. This is possible since it is a sealed-bid auction and

the only information they receive is the announced price. In both processes prices are

updated based on the rules of the single item bisection auction, and it is not possible

to differentiate among the two processes. Hence, the agents’ cannot see that a split has

taken place.

For the single item bisection auction it was sufficient to find one price. Here we need

two prices, one for item 1 and another for item 2. Building on the process in Algorithm 1

the duo-item bisection auction is constructed. The idea is to use Algorithm 1 for finding

prices for item 1 and 2 separately. And by combing Algorithm 1 with splits several prices

for each item can be generated, and an sufficient amount of information about agents’

preferences can be elicited.

Algorithm 2. The duo-item bisection auction.

Start the auction with p0L = (p01L, p
0
2L) = (0, 0), p0H = (p01H , p

0
2H) = (2R, 2R), A0 = N , and

initialize Algorithm 1 with item 1 and keep the price for item 2 fixed at 2R.

1. Check for each iteration in Algorithm 1 after step 1:

(i) If one agent answered yes split the auction and go to 2.

(ii) If two agents answered yes split the auction and go to 3.

(iii) Otherwise keep on iterating Algorithm 1.

2. Process 1 with the yes-agent continues to step 2 in Algorithm 1, call the price

generated pR1 (1). Process 2 stays at step 1 in Algorithm 1. If one agent report yes

another split is made, else keep on iterating and call the price generated pR1 (2). If
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a split occurs both processes continues to step 2 in Algorithm 1. Let pR1 (2) be the

price from the first process and pR1 (3) from the other.

3. Process 2 with the no-agents continues to step 2 in Algorithm 1, call the price

generated pR1 (3). Process 1 stays at step 1 in Algorithm 1. If one agent report yes

another split is made, else keep on iterating call the price generated pR1 (1). If a split

occurs both processes continues to step 2 in Algorithm 1. Let pR1 (1) be the price

from the first process and pR1 (2) from the other.

4. Start Algorithm 1 with item 2 and set the price for item 1 to 2R. Repeat step 1 to

3 from above.

Now, using the information from Algorithm 2 an allocation consisting of a price vector and

an assignment can be determined. It will be shown later in the paper that the process in

Algorithm 2 can be viewed as a method of successively eliciting the information necessary

to compute the VCG-outcome. It generates at most three different prices for each item

and three associated sets of agents. Each process in Algorithm 2 leads to a distinct price

pRj (k), where j = 1, 2 and k = 1, 2, 3. Denote the set of winners by W k
j . The set of

winners for each process consist of agents with a yes answer for the highest associated

price in their specific process. For example if the first split is with one agent, then the

set of winners equals this agent with the yes answer. Further, let Wj = W 1
j ∪W 2

j ∪W 3
j

for j = 1, 2, and define a function f : W1×W2 7−→ N as f(i, j) = pR1 (i) + pR2 (j). Now the

allocation can be defined.

The assignment is determined as follows,

xi′ = 1, xj′ = 2, where (i′, j′) ∈ arg max
(i,j)∈W1×W2

f(i, j) and xk = 0 for all other k ∈ N. (1)

The prices of item 1 and 2 are,

p1 = max
(i,j)

f(i, j)− pR2 (j′), where (i, j) ∈ (W1 \ {i′})× (W2 \ {i′})

p2 = max
(i,j)

f(i, j)− pR1 (i′), where (i, j) ∈ (W1 \ {j′})× (W2 \ {j′}).
(2)

Below is an example of how the duo-item bisection auction works.

Example 2. Consider a situation with the same agents as in example 1, and add a second

item. Call the item from the first example item 1 and the new item 2. The agents α, β, γ
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V =


vα1 vα2

vβ1 vβ2

vγ1 vγ2

vδ1 vδ2

 =


13 4

9 9

11 7

6 5



and δ have private valuations for item 1 and 2. Collect the valuations for item 1 and 2,

in a matrix V .

The two first price updates in the duo-item bisection auction are identical to the single

item case. In the test after the second price update at step 1 in Algorithm 2 the condition

in 1.(i) is satisfied and the first split is made. After the split we move on to step 2 in

Algorithm 2. Process 1 with the yes-agent α continues to step 2 in Algorithm 1 with the

price bounds updated to p2L = p2 = 8, p2H = p1H = 16. Henceforth process 1 follows the

rules of Algorithm 1 and a price of 13 is found in round 4, the path is displayed in Table

2. The price p41(1) = 13 found equals agent α’s valuation for item 1.

Table 2: Initializing the duo-item bisection auction and the first split for item 1

Round Price Agent α Agent β Agent γ Agent δ

1 8 yes yes yes no

2 12 yes no no -

3 14 no - - -

4 13 yes - - -

Process 2 with the no-agents β and γ stays at step 1 in Algorithm 1 and the price bounds

are updated to p2L = p1L = 8, p2H = p2 = 12. The price in round 3 is updated to 10 and

this leads to a new split.

Table 3: The second split for item 1 in the duo-item bisection auction

Round Price Agent β Agent γ

3 10 no yes

In the process with the yes-agent γ the price bounds are updated to p3L = p3 = 10,

p3H = p2H = 12 and the price announced is 11. With the price of 11 γ reports yes and we

have found her valuation for item 1. The other process with the no-agent β ends up in a
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price of 9, which equals her valuation for item 1. Table 4 below shows the final step with

agent γ and β leading to the two separate prices.

Table 4: Last rounds for item 1 in the duo-item bisection auction

Round Price Agent γ

4 11 yes

Round Price Agent γ

4 9 yes

At this point in the duo-item bisection auction we have obtained the three highest valua-

tions for item 1 and can continue with item 2. The procedure in Algorithm 2 is the same

for item 2 therefore the various steps are not described as carefully. Table 5 summarizes

the path for finding the highest valuation for item 2, it equals the price p42(1) = 9.

Table 5: Initializing the duo-item bisection auction for item 2 and the first split

Round Price Agent α Agent β Agent γ Agent δ

1 8 no yes no no

2 12 - no - -

3 10 - no - -

4 9 - yes - -

The first split was made already in iteration 1 after the first price announcement for item

2. All agents except β reported no when the price was announced to 8 and they moved

on to a new separate process. Table 6 below shows the two first rounds in this process.

In the second round of this new process the price is announced to 6 and yet another split

occurs.

Table 6: The second split for item 2 in the duo-item bisection auction

Round Price Agent α Agent γ Agent δ

2 4 yes yes yes

3 6 no yes no

After the final split the price is set to 5 in the process with the no-agents α and δ, and

it is set to 7 with the yes-agent γ. Now the three highest valuations for item 1 and 2 are

elicited and an allocation can be determined as described by equation (1) and (2).
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Table 7: Last rounds in the duo-item bisection auction for item 2

Round Price Agent α Agent δ

4 5 no yes

Round Price Agent γ

4 7 yes

In the resulting allocation item 1 is given to α and she pays the price of 11, and item 2 is

given to β for a price of 7. This corresponds to the VCG outcome.

3.2.1 Modified duo-item bisection auction

Next we will present a modification of the duo-item bisection auction. This modified

version will be shown to extract the minimal amount of preferences required to compute

the VCG outcome. Algorithm 3 gives us price vectors and sets of potential winners

for items 1 and 2. Using these an allocation is determined in the same way as for the

standard duo-item bisection auction defined by equation (1) and (2) on page 10. The

only difference between Algorithms 2 and 3 is that the latter elicits less information on

preferences without giving up the possibility for the VCG outcome.

Algorithm 3. The modified duo-item bisection auction.

1. Run Algorithm 2 until item 2 has passed step 1. Generate W 1
2 and the second

highest price for item 2.

2. If |W 1
1 ∪W 1

2 | = 1 continue in Algorithm 2 and generate pR2 (1). Further if pR1 (1) +

pR2 (2) ≥ pR1 (2) + pR2 (1) or |W 2
1 ∪W 2

2 | = 1, continue in Algorithm 2 and generate the

third highest price for item 2.

3. If |W 1
1 ∪W 1

2 | = 2 consider the two cases.

(i) If |W 1
2 | = 2 continue in Algorithm 2 and elicit pR2 (2).

(ii) If |W 1
2 | = 1 there are two cases depending on |W 1

1 |.

(a) For |W 1
1 | = 1, generate pR2 (1) if |W 2

1 ∪ W 1
2 | = 1 and generate pR2 (3) if

|W 1
1 ∪W 2

2 | = 1.

(b) For |W 1
1 | = 2, generate pR2 (1) and generate pR2 (3) if |W 1

1 ∪W 2
2 | = 2.

4. If |W 1
1 ∪W 1

2 | ≥ 3 the auction terminates.
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Example 3. This example illustrates the modified dou-item bisection auction. The setup

is the same as in example 2, we continue with the four agents and their valuations. Nothing

changes for item 1 in the modified dou-item bisection auction, the change is for item 2. In

the first step of Algorithm 3 the price for item 2 is set to 8 and the answers are collected.

The only agent with a yes answer is β, and thereby W 1
2 is generated. Now it remains to

find the second highest price p42(2). The auction splits and every agent with a no answer

in the first round moves to a new process, which is illustrated in Table 8 below.

Table 8: The modified duo-item bisection auction

Round Price Agent α Agent γ Agent δ

2 4 yes yes yes

3 6 no yes no

4 7 - yes -

Now, Step 1 in Algorithm 3 is completed with the second highest price generated, and

we continue in Algorithm 3. There are two different agents with the highest valuation for

item 1 and 2. This makes step 3 the appropriate next step in Algorithm 3. There are three

different scenarios at step 3. With |W 1
1 | = |W 1

2 | = 1 we end up in the middle (ii), since

both inequalities are violated there is no need to generate more prices and Algorithm 3

ends here. The final part in the auction is identical to example 2, hence agent α is given

item 1 to the price of 11 and β buys item 2 for the price of 7. The modified duo-item

bisection auction neither elicited the highest nor the third highest price for item 2. In

terms of iterations the modified version saved 4 iterations out of 15 in total.

3.3 Multi-item bisection auction

The extension of the duo-item bisection auction to the environment with m items for sale

is natural. Instead of eliciting the 3 highest valuations for item 1 and 2, the multi-item

bisection auction elicits the m + 1 highest valuations, assuming n > m. The method is

the same as before it builds on splitting up the original auction into separate processes.

Similarly to the environment with 2 items for sale the auction begins with item 1 and

generates the m+ 1 highest valuations for item 1. The first split is made when there is a

yes answer from j < m + 1 agents. The j-th highest valuations for item 1 are elicited in

the group with yes-agents and new splits are made if necessary. The remaining valuations

14
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to get the m+1 highest valuations for item 1 are elicited from the group of no-agents from

the first split. This procedure continues item per item until the m+ 1 highest valuations

for item m are elicited. The allocation is determined in an analogous manner to the duo-

item bisection auction. Based upon the prices’ generated from the auction an efficient

assignment is found. The price for item j is determined by calculating the difference

between the efficient assignment in N and N−i, where agent i is the agent assigned item

j.

The main advantages with the multi-item bisection auction vanishes when the number

of agents and the number of items is approximately of the same size. Then the multi-

item bisection auction basically reveals all information on preferences, and it would have

been better to use a direct mechanism from the beginning. The remedy of this would

be to create a modification similar to the environment with two items for sale. However,

creating such a modification is not as easily done for the general case with m items.

The number of possible combinations for efficient assignments grows exponentially with

the number of items and it is difficult to find clear cut conditions as with the duo-item

auction. The main contribution of the multi-item bisection auction in this context is as

an alternative way of solving the standard assignment problem.

4 Main results

In an auction with two items for sale and at least two agents there are three possible

efficient allocations. Recall that an agent belonging to the subset Tj,k in the partition

Tj is denoted ijk, i.e. ijk ∈ Tj,k. As remarked earlier the tie-break rule chosen does

not matter for our results. The tie-break rule is the following. If two or more efficient

allocations exists then the agent with the lowest index is assigned item j. These are the

three scenarios, and they will be used extensively in the following proofs.

(I) |T1,1 ∪ T2,1| ≥ 2

with x given by, xi11 = 1, xi21 = 2 and xi = 0 for all i ∈ N \ {ii11 , ii21}

(II) |T1,1 ∪ T2,1| = 1 and vi111 + vi222 ≥ vi121 + vi212

with x given by, xi11 = 1, xi22 = 2 and xi = 0 for all i ∈ N \ {ii11 , ii22}

(III) |T1,1 ∪ T2,1| = 1 and vi111 + vi222 < vi121 + vi212

15
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with x given by, xi12 = 1, xi21 = 2 and xi = 0 for all i ∈ N \ {ii12 , ii21}

As pointed out earlier the single item bisection auction has R iterations. The number of

iterations required in the duo-item bisection auction varies, but there is an upper bound.

Our first result establish an upper limit on the number of iterations for the duo-item

bisection auction.

Proposition 1. The duo-item bisection auction has an upper limit on the number of

iterations of 6(R− 1).

Proof. At most there can be two splits and three prices generated for item 1 and similarly

for item 2. Without any split 2R iterations is required in the duo-item bisection auction.

A split at t∗ < R starts two new processes and each process requires R− t∗ iterations to

generate a price and before the split there was R−t∗ iterations. Hence in total a split at t∗

adds R− t∗ number of iterations. The earliest the first split can arise is in iteration 1 and

the second split in the next iteration. Thus, the upper limit for the number of iterations

is 2(R + (R − 1) + (R − 2)) = 6(R − 1), which is reached if six prices are generated and

all four splits happens as early as possible.

The VCG outcome is an efficient allocation and the prices are uniquely determined, it

is the benchmark for any auction. Loosely speaking the price paid by agent i assigned item

j equals the externality agent i imposes to the others by its existence in the economy.

Given an efficient assignment x the VCG price of item j depends on how the efficient

allocation looks in the economy without the agent who originally was assigned object

j. The VCG outcome with two items consists of an assignment and an associated price

vector. Define v(i, j) = vi1 + vj2, using v the VCG outcome can be defined as,

xi′ = 1, xj′ = 2, where (i′, j′) ∈ arg max
(i,j)∈N×N

v(i, j) and xk = 0 for all other k ∈ N. (3)

The prices for item 1 and 2 are,

p1 = max
(i,j)

v(i, j)− vj′2, where (i, j) ∈ (N−i′ ×N−i′)

p2 = max
(i,j)

v(i, j)− vi′1, where (i, j) ∈ (N−j′ ×N−j′).
(4)

Computing the VCG outcome in the generic case with two items requires the three highest

valuations for both items. To determine an efficient allocation it is sufficient to know the

two highest valuations for item 1 and 2, and for the prices we need the three highest
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valuations. Next result establish that the duo-item bisection auction reaches the VCG

outcome. In other words it leads to an efficient assignment and the prices in the allocation

are equal to the prices given by equation (4) above.

Proposition 2. The duo-item bisection auction results in the VCG outcome under truth-

ful bidding.

Proof. Under truthful bidding prices generated in the duo-item bisection auction equals

the true valuations. In other words generating prices is the same as eliciting preferences.

Algorithm 2 elicits the three highest valuations for item 1 and 2. This is the information

on preferences required to compute the VCG outcome. Hence, the function v can be

restricted to this domain and still the VCG outcome can be computed by equations

(3) and (4) above. Furthermore, the function v equals f on this restricted domain and

therefore the allocation found by equation (1) and (2) must be the same as the VCG

outcome.

The plan for the rest of this section is to prove that the modified duo-item bisection

auction elicits the minimal amount of information on preferences, required to find the

VCG outcome for any sequential elicitation method and all conceivable valuations V .

Lemma 1. In any sequential elicitation method reaching the VCG outcome for all con-

ceivable valuations V it is necessary to elicit the three highest valuations for item 1.

Proof. Suppose there is only one agent with the highest valuation for item 1 and 2, then

the highest valuation for item 1 is required to determine an efficient allocation. The

next example shows that the second and the third highest valuations are necessary to

find the VCG outcome. Consider scenario (I) from page 15 with the efficient assignment

xi11 = 1, xi21 = 2 and |T1,1 ∪ T2,1| = 2. Suppose agent i21 assigned item 2 also has the

second highest valuation for item 1, formally |T1,2∪T2,1| = 1. Similarly agent i11 assigned

item 1 has the second highest valuation for item 2, formally |T1,1 ∪ T2,2| = 1. Then there

are two possible efficient assignments in the economy N−i11 , either xi12 = 1, xi23 = 2,

or xi13 = 1, xi21 = 2. The latter is efficient when vi121 + vi232 ≤ vi131 + vi212 and if the

inequality is reversed the former is efficient2. Hence, we need vi121, vi131, vi222 and vi212 to

find the VCG price for item 1. Thereby we can conclude that it is necessary to elicit all

the three highest valuations for item 1.

2If equality both assignments are efficient, and both of them are possible choices.
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Lemma 2. With truthful bidding the modified duo-item bisection auction elicits a neces-

sary amount of information on preferences to reach the VCG outcome for all conceivable

valuations V .

Proof. The proof follows the structure of Algorithm 3. We will show step by step that

the valuations’ elicited in Algorithm 3 are required to find the VCG outcome. First, to

find an efficient assignment the information on who has the highest valuation is required.

Next, if we are in scenario (II) or (III), see page 15, the second highest valuation for item

2 is required to find an efficient assignment. For scenario (I) the second highest valuation

for item 2 is required when computing the VCG prices. Hence, the information elicited

on preferences in step 1 is necessary to find the VCG outcome.

Moving on to step 2 where Algorithm 3 proceeds to when we have scenario (II) or

(III). To find the efficient assignment the highest valuation for item 2 is required for both

scenarios.

• Let us begin with scenario (II) and see why it is necessary sometimes to elicit the

third highest valuation for item 2. The efficient assignment for scenario (II) is to

give item 1 to agent i11 and item 2 to agent i22. One candidate for the VCG price for

item 2 equals vi232, hence the third highest valuation for item 2 should be elicited.

• Looking at scenario (III), where the efficient assignment is to give item 1 to agent

i12 and item 2 to agent i21. Impose further the condition of |T1,2 ∪ T2,2| = 1. One

candidate for the efficient assignment in N−i21 is when agent i12 keeps item 1 and

agent i23 is assigned item 2. To evaluate this candidate we need to know the third

highest valuation for item 2. Thus, it is necessary to elicit the information on

preferences as described in step 2 of Algorithm 3.

Next consider step 3 of Algorithm 3, where we end up if |T1,1 ∪ T2,1| = 2. In the

efficient assignment agent i11 is given item 1 and agent i21 is given item 2. There are two

cases in Algorithm 3 at step 3 to cover (i) and (ii).

• First, consider case (i) with two agents having the highest valuation for item 2.

Then letting agent i11 keep item 1 and giving item 2 to the agent with the third

highest valuation is a candidate for an efficient assignment in the economy N−i21 .

Hence, eliciting the third highest valuation is necessary to find the VCG price for

item 2.

18



The multi-item bisection auction Albin Erlanson

• The other case (ii) is when one agent has the highest valuation for item 2. To

complicate the matter there are two possible subcases (a) and (b), when one agent

has the highest valuation for item 2.

1. In subcase (a) of Algorithm 3 at step 3.(ii), where there is one agent with the

highest valuation for item 1. If |T1,2 ∪ T2,1| = 1 the highest valuation for item

2 is elicited. It is required to evaluate the candidate for an efficient assignment

in N−i11 . The candidate consists of giving item 1 to agent i13 and item 2 to

agent i21. Similarly when |T1,1 ∪ T2,2| = 1 the third highest valuation for item

2 is required to evaluate the efficient assignment in N−i21 .

2. In subcase (b) in Algorithm 3 at step 3.(ii) the highest valuation for item 2 is

always elicited. Since, one candidate for an efficient assignment in the economy

N−i11 is to give item 1 to agent i12 and item 2 to agent i21. The third highest

valuation is elicited only if |T11∪T22| = 2. Because one candidate for an efficient

assignment in N−i21 is to give item 1 to agent i21 and item 2 to agent i23, recall

that agent i21 also has the highest valuation for item 1.

Now it remains to look at step 4 in Algorithm 3, where we end up if |T1,1 ∪ T2,1| ≥ 3.

This is straightforward. The VCG price for item 1 respectively 2 equals the second highest

valuation for item 1 respectively 2.

Lemma 3. With truthful bidding the modified duo-item bisection auction elicits a suffi-

cient amount of information on preferences to reach the VCG outcome for all conceivable

valuations V .

Proof. The proof goes through each of the three scenarios (I), (II) and (III) on page 15,

and for each of them establish that the information on preferences suffices to find the

VCG outcome. To begin with we can conclude that in all three scenarios, (I), (II) and

(III), the information on preferences suffices to determine an efficient assignment. Lemma

3 boils down to whether the available information on preferences suffices to determine the

VCG prices.

Let’s first look at scenario (II) and (III). In scenario (II) Algorithm 3 elicits each of the

three highest valuations’ for item 2, this always suffices to find the VCG outcome. Since,

eliciting the three highest valuation for both items is the maximal amount of information

required to determine the VCG outcome with two items to allocate. In scenario (III)
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both of the two highest valuations’ for item 2 are elicited. The third highest valuation for

item 2 is not elicited when |T1,2 ∪ T2,2| ≥ 2. This causes no problem because agent i23 is

neither an alternative for item 2 in N−i12 nor in N−i21 .

Now, consider the remaining scenario (I). The case with |T1,1 ∪ T2,1| ≥ 3 was covered

in the proof of Lemma 2 and there is nothing to be added. Moving on to the other case

in scenario (I) with |T1,1 ∪ T2,1| = 2. It is enough to discuss cases when Algorithm 3 does

not elicit all three highest valuations for item 2. Therefore it suffices to consider cases in

scenario (I) where one agent has the highest valuation for item 2. Taking this together

the remaining cases’ to cover are in scenario (I) with |T1,1 ∪ T2,1| = 2 and |T2,1| = 1

• Begin by looking at the case with |T1,1| = 2 and |T2,1| = 1. With this collection

of preferences we are in step 3.(ii)(a) of Algorithm 3. The highest and the second

highest valuation for item 2 are elicited. The third highest valuation is not elicited

when |T1,1 ∪ T2,2| ≥ 3. This does not cause any problems. The VCG price for item

2 equals vi222 and for item 1 there are two candidates for an efficient assignment in

N−i11 . The first candidate is to give item 1 to agent i11 and item 2 to agent i22, and

in the other item 1 is given to agent i12 and item 2 to agent i21. Hence, the third

highest valuation is not required.

• Next consider the case with |T1,1| = |T2,1| = 1. Here there are four subcases.

1. When |T1,2∪T2,1| ≥ 2 and |T1,1∪T2,2| ≥ 2 the VCG price for both items equals

the second highest valuation for each item, and we conclude that eliciting the

second highest valuation, as is done in Algorithm 3, for item 2 is enough.

2. Now, suppose one of the conditions changes. Say |T1,2∪T2,1| = 1 and the other

condition remains, |T1,1 ∪ T2,2| ≥ 2. The VCG price for item 2 is still equal to

vi222, but the price for item 1 changes. In Algorithm 3 the highest valuation for

item 2 is elicited. This is all what is needed to find the VCG price for item 1.

Since, agent i22 has the highest valuation for item 2 amongst remaining agents

in N−i11 . Hence, no need to elicit the third highest valuation for item 2.

3. A similar argument can be made when |T1,2 ∪ T2,1| ≥ 2 and |T1,1 ∪ T2,2| = 1.

The price for item 1 equals vi121 and the VCG price for item 2 can be found

with the knowledge of the second and the third highest valuation for item 2.

Agent i21 cannot be assigned any item in N−i21 .
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4. Finally when both |T1,2 ∪ T2,1| = 1 and |T1,1 ∪ T2,2| = 1 all three highest

valuations for item 2 are elicited.

Thus, in scenario (I) Algorithm 3 elicits the required amount of information on preferences

to find the VCG outcome.

Theorem 1. The modified duo-item bisection auction elicits the minimal amount of in-

formation on preferences to reach the VCG outcome for all conceivable valuations V , and

for any sequential elicitation method.

Proof. Lemma 1, 2 and 3 taken together proves Theorem 1.

5 Conclusion

We have proposed a multi-item bisection auction, a generalization of the single item

auction (Grigorieva et al., 2007). The analysis of the auction has been carried out in the

environment with two items for sale. The auction results in the VCG outcome. As part of

the analysis in the environment with two items for sale a modified version was presented.

We proved that the modified version elicits the minimal amount of preferences required

to reach the VCG outcome for any sequential elicitation method. In other words the

information acquired is sufficient and necessary for computing the allocation in the VCG

outcome. This paper has not discussed the strategic aspects of the multi-item bisection

auction. It is a topic for future research.
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