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Abstract 
 
 

In economics it is common to distinguish between different time horizons (i.e. short run, 

medium run, and long run). Engle (1974) proposed combining the discrete Fourier transform 

with a band spectrum regression to estimate models that separates between different time 

horizons. In this paper we discuss possibilities and challenges using the maximal overlap 

discrete wavelet transform instead of the Fourier transform when estimating band spectrum 

regressions.  
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1. Introduction 

 
In economics in general and in macroeconomics in particular, it is common to distinguish 

between different time horizons (see e.g. Friedman, 1957; King and Watson, 1996; Ramsey 

and Lampart, 1998). The neoclassical synthesis, for example, combines (New-) Keynesian 

theories with (dynamic-) neoclassical theories to distinguish between the causes of short term 

volatility and the causes of long term growth (Samuelson, 1955; Goodfriend and King, 1997; 

Woodford, 2003). Similarly, Friedman and Kuznets (1954) and Englund et. al. (1992) 

suggests separating between three time horizons: short run shocks, medium run business 

cycle fluctuations, and the long run equilibrium.  

To estimate models where the relationship between variables depend on the time 

horizon, Engle (1974), Phillips (1991) and Corbae, Ouliaris and Phillips (2002), among 

others, have proposed a band spectrum regression. The band spectrum regression is a two 

step estimator. First, all variables are transformed to the frequency domain where the 

respective time horizons are easily identified. Second, parameter estimates for each time 

horizon are obtained by regressing on a sub-set of frequencies rather than the entire frequency 

band.  

Each time horizon is in the frequency domain represented by a unique set of frequencies. 

The long run, for example, is represented by the low frequencies close to the zero frequency 

and the short run is represented by the high frequencies close to frequency one half. By 

identifying the frequencies representing a given time horizon, one can estimate a model for 

that time horizon by regressing on just those frequencies that represent that time horizon.   

Common for most band spectrum estimators is that they employ the Fourier transform to 

transform the time series from the time domain to the frequency domain. An alternative 

transform is a wavelet transform. Unlike the Fourier transform (which only contains 

frequency resolution) the wavelet transform combines time and frequency resolution, which 
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makes it possible to obtain an unbiased and consistent estimate of a time series spectral 

density for time series that contain structural breaks, outliers, and other non-recurring events 

(Percival and Walden, 2006). Without time resolution (e.g. Fourier transform), it is necessary 

to pre-whiten the data to remove outliers, and to split the sample into smaller samples to 

control for structural breaks. Because economic time series often include outliers and 

structural breaks the wavelet transform is well suited for economic analyses.   

For discrete data, two wavelet transforms are available: the discrete wavelet transform, 

and the maximal overlap discrete wavelet transform. The discrete wavelet transform (DWT) 

imposes a restriction on the sample size: only time series with T=2J observations, where J is 

an integer, can be transformed. The maximal overlap discrete transform (MODWT) does not 

impose such restrictions on the sample size. The MODWT also has better small sample 

properties than the DWT. Most economic studies therefore use the MODWT, but there are 

cases when the DWT is used as well (see e.g. Andersson, 2008). For a more detailed 

discussion on wavelet analysis see Percival and Walden (2006), Crowley (2007) or 

Andersson (2008).  

In this paper we demonstrate how the MODWT can be used to estimate band spectrum 

regressions. We also discuss the econometric consequences for not distinguishing between 

different time horizons in empirical analyses. These effects are also illustrated in a simulation 

study. 

The rest of the paper is organized as follows: Section 2 and Section 3 discuss the band 

spectrum regressions and the MODWT, Section 4 contains simulations illustrating the band 

spectrum regression, and Section 5 concludes the paper.  

2. Modeling Time Horizons 

Following Samuelson (1955) and Woodford (2003), consider a model with two time 

horizons: the short run and the long run,  
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௧ݕ ൌ ௅ோߚ௅ோ,௧ݔ ൅ ௌோߚௌோ,௧ݔ ൅  ௧,  (1)ߝ

where t=1,…,T is time, ݔ௅ோ,௧ is a vector with the long run component of the explanatory 

variables,  ݔௌோ,௧ is a vector with the short run component of the explanatory variables and ߝ௧ 

is a random disturbance. Some variables can have both a long run effect and a short run 

effect, but it is also possible that a given variable either have just a long run effect or just a 

short run effect. Moreover, if a variable have both a long run and a short run effect, the long 

run and the short run effects can either be the same or different. In this example, let the long 

run be represented by the frequencies 0 to a and the short run by the frequencies a to 0.5, 

where 0 ൑ ܽ ൑ 0.5, in the frequency domain.    

Before we consider how to estimate the parameters in (1), consider the case when we 

(wrongly) estimate the model,  

௧ݕ ൌ ߚ௧ݔ ൅ ௧.  (2) 

where ݔ௧ ൌ ௅ோ,௧ݔ ൅  .௅ோ,௧ , and we in effect assume that there is only one time horizon (i.eݔ

௅ோߚ ൌ  ,ௌோ). In this case the OLS estimates equalsߚ

መߚ ൌ ሺܠᇱܠሻିଵܠᇱܡ ൌ ሺܠᇱܠሻିଵܠԢሺܠ௅ோߚ௅ோ ൅ ௌோߚௌோܠ ൅ ઽሻ. (3) 

All frequencies are orthogonal to each other whereby the expected value of the parameter is 

equal to, 

መ൧ߚൣܧ ൌ ௅ோߚ௅ோܠᇱሺܠሻିଵܠᇱܠሾሺܧ ൅ ௌோߚௌோܠ ൅ ઽሻሿ ൌ 

ൌ ሺܠᇱܠሻିଵܠ௅ோ
ᇱ ௅ோߚ௅ோܠ ൅ ሺܠᇱܠሻିଵܠௌோ

ᇱ  ௌோ.  (4)ߚௌோܠ

As can be seen from (4), the estimated parameter vector is a weighted average of the long run 

and the short run parameters. The size of the weights ሺܠᇱܠሻିଵܠ௅ோ
ᇱ ௌோܠሻିଵܠᇱܠ௅ோ and ሺܠ

ᇱ  ,ௌோܠ

moreover, depend on the statistical properties of x. For example, in a bivariate model with 

only one explanatory variable the weights in (4) are equal to the share of the variance in ݔ௧ 

explained by the long run and the short run respectively. If the long run information 

dominates ݔ௧, ߚመ  is close to ߚ௅ோ. If the short run information dominates ݔ௧, ߚመ  is close to ߚௌோ. 
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A second consequence for estimating (2) instead of the true model (1) is that the variance 

of the disturbances in (2) is greater than the variance of the disturbances in (1). This can be 

seen by considering the difference between ߝ௧ from (1) and ௧ from (2) 

௧ െ ௧ߝ ൌ ௅ோߚ௅ோ,௧ሺݔ െ ሻߚ ൅ ௌோߚௌோ,௧ሺݔ െ  ሻ.  (5)ߚ

Rewriting (5) we get, 

௧ ൌ ௧ߝ ൅ ௅ோߚ௅ோ,௧ሺݔ െ ሻߚ ൅ ௌோߚௌோ,௧ሺݔ െ  ሻ.  (6)ߚ

As can be seen by (6), the disturbances in (2) thus include both the true disturbances (ߝ௧) and 

a miss-specification component: ݔ௅ோ,௧ሺߚ௅ோ െ ሻߚ ൅ ௌோߚௌோ,௧ሺݔ െ  ,ሻ. Consequentlyߚ

൫௧൯ݎܽݒ ൌ ଶߪ ൅ ௅ோߚ௅ோ,௧൯ሺݔ൫ݎܽݒ െ ሻଶߚ ൅ ௌோߚௌோ,௧൯ሺݔ൫ݎܽݒ െ  ሻଶ. (7)ߚ

To correctly estimate the model we must separate between long and short run effects.  

2.1 Band Spectrum Regressions Using the MODWT 

To estimate (1) all variables have to be decomposed into their short run component and a 

long run component. In the literature several different techniques are employed to make the 

separation of the time series into time horizons: for example a Fourier transform, a Hodrick-

Prescott filter (HP-filter) or 5-year averages. Problems with the Fourier transform have 

already been discussed. The HP-filter separates short and long run variations in the variables, 

but suffers from two problems. First, it only separates between two time horizons, and 

secondly, it is somewhat of a black box concerning which frequencies are defined as short-

run and long run. In the growth literature 5-year averages are commonly used (Islam, 2003), 

but simple averages may induce cycles and artifacts whereby the time horizon decomposition 

can be spurious (Slutsky, 1938; Percival and Walden, 2006). 

Considering that the MODWT solves the problems other techniques suffers from (at least 

asymptotically), let us consider the case where we estimate a band spectrum regression using 

the MODWT. Let ܅ be the MODWT matrix (see Percival and Walden, 2006, for a detailed 
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description of how to construct the transform matrix). The transform coefficients are obtained 

by multiplying the transform matrix with the vector containing the variable that is to be 

transformed, 

૑௬ ൌ   (8)  ,ݕ܅

where ૑௬ are the transform coefficients. The transform matrix and the transform coefficients 

can be partioned as, 

૑௬ ൌ

ۏ
ێ
ێ
ێ
ۍ
૑ଵ௬
૑ଶ௬

ڭ
૑௃௬
௃௬ܞ ے

ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ۍ
૚܅
૛܅

ڭ
۸܅

۸܄ ے
ۑ
ۑ
ۑ
ې

ൈ  (9)  ,ܡ

where the transform coefficients ૑௝௬, j=1,…, J, represent the frequency band 
ଵ

ଶೕశభ to 
ଵ

ଶೕ, and 

the transform coefficients ܞ௃௬ represents the frequency 0 to 
ଵ

ଶೕశభ. 

Assume ܽ ൌ ଵ

ଶ಻శభ, such that the long run is defined by the frequencies 0 to 
ଵ

ଶ಻శభ and the 

short run by the frequencies 
ଵ

ଶ಻శభ to 
ଵ

ଶ
. In this case ܄௃ܠ ൌ ௌோܠ௃܄ ௅ோ andܠ௃܄ ൌ  where O  is a ,۽

matrix of zeroes.  

Assume we are interested in the long run relationship between ݕ௧ and ݔ௧. By applying the 

transform matrix ܄௃ to ܡ and ܠ and estimating the following model with an OLS, 

ܡ௃܄ ൌ ߚܠ௃܄ ൅  ௃ઽ.  (10)܄

we get the OLS parameter estimate, 

መߚ ൌ ൫ܠᇱ܄௃
ᇱ܄௃ܠ൯

ିଵ
௃܄ᇱܠ

ᇱ܄௃ܡ ൌ ൫ܠᇱ܄௃
ᇱ܄௃ܠ൯

ିଵ
௃܄ᇱܠ

ᇱ܄௃ሺܠ௅ோߚ௅ோ ൅ ௌோߚௌோܠ ൅ ઽሻ ൌ

൫ܠᇱ܄௃
ᇱ܄௃ܠ൯

ିଵ
௃܄ᇱܠ

ᇱ܄௃ܠ௅ோߚ௅ோ ൅ ൫ܠᇱ܄௃
ᇱ܄௃ܠ൯

ିଵ
௃܄ᇱܠ

ᇱ܄௃ܠௌோߚௌோ ൅ ൫ܠᇱ܄௃
ᇱ܄௃ܠ൯

ିଵ
௃܄ᇱܠ

ᇱ܄௃ઽ ൌ

൫ܠᇱ܄௃
ᇱ܄௃ܠ൯

ିଵ
௃܄ᇱܠ

ᇱ܄௃ܠ௅ோߚ௅ோ ൅ ൫ܠᇱ܄௃
ᇱ܄௃ܠ൯

ିଵ
௃܄ᇱܠ

ᇱ܄௃ઽ.  (11) 

The expected value of ߚመ  is equal to, 

መ൧ߚൣܧ ൌ ൫ܠᇱ܄௃
ᇱ܄௃ܠ൯

ିଵ
௃܄ᇱܠ

ᇱ܄௃ܠ௅ோߚ௅ோ ൅ ൫ܠᇱ܄௃
ᇱ܄௃ܠ൯

ିଵ
௃܄ᇱܠ

ᇱ܄௃ܧሾઽሿ ൌ  ௅ோ.  (12)ߚ
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The expected value of ߚመ  is hence equal to ߚ௅ோ. The covariance matrix of the parameter 

estimate is given by, 

ܧ ቂ൫ߚመ െ መߚ௅ோ൯൫ߚ െ ௅ோ൯ߚ
ᇱ
ቃ ൌ ܧ ቂ൫ܠᇱ܄௃

ᇱ܄௃ܠ൯
ିଵ

௃܄ᇱܠ
ᇱ܄௃ઽઽᇱ܄௃

ᇱ܄௃ܠ൫ܠᇱ܄௃
ᇱ܄௃ܠ൯

ିଵ
ቃ,  (13) 

given that ߝ௧ is white noise with variance ߪଶ we get, 

ܧ ቂ൫ߚመ െ መߚ௅ோ൯൫ߚ െ ௅ோ൯ߚ
ᇱ
ቃ ൌ ௃܄ᇱܠଶ൫ߪ

ᇱ܄௃ܠ൯
ିଵ

௃܄ᇱܠ
ᇱ܄௃܄௃

ᇱ܄௃ܠ൫ܠᇱ܄௃
ᇱ܄௃ܠ൯

ିଵ
.  (14) 

Similarly we can replace ܄௃ with 

ܟ ൌ ൦

ଵ܅
ଶ܅

ڭ
௃܅

൪,  (15) 

and estimate the short run parameters. Given estimate of the short run and the long run we 

obtain estimates of the error term, 

ઽො ൌ ܡ െ ௃܄
ᇱ܄௃ߚܠመ௅ோ െ  መௌோ.  (16)ߚܠܟᇱܟ

It should be noted that it is not the variance of the long term residual that enters into (14), but 

the variance of the error term in (1) which includes both the short and the long terms. To 

obtain an estimate of the residuals, i.e. (16), it is therefore necessary to estimate both a short 

run and a long run model.  

Instead of separately estimating one model for the short run and one model for the long 

run, we can estimate short and long run parameters in one step by estimating,  

ܡ ൌ ௃܄
ᇱ܄௃ߚܠ௅ோ ൅ ௌோߚܠܟᇱܟ ൅  (17)  .ߝ

3. Modeling with Only One Time Horizon 

So far we have assumed that we are able to specify one model for each time horizon. At times 

economic theory may only suggest a model for some of the time horizons. For example, 

growth theory is oftentimes used to model long term economic growth, but is also commonly 

considered inappropriate for modeling short term growth variations.  
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Assume we cannot estimate a short run model; either because there is no suitable 

economic model or because we cannot obtain the necessary data (i.e. variables that have a 

short run effect on the dependent variable). In this case we cannot estimate of the 

disturbances in (1) from (16) and consequently we cannot obtain an estimate of ݎܽݒ൫ߚመ൯. 

However, using, 

ઽො௅ோ ൌ ܡ௝܄ െ  መ௅ோ,  (18)ߚܠ௝܄

we can, under the assumption of white noise, use ߝ௧̂,௅ோ to obtain an estimate of ݎܽݒ൫ߝ௧̂,ௌோ൯. 

Naturally we would prefer to use ߝ௧̂, and using ߝ௧̂,௅ோis only a second option. However, we can 

use ߝ௧̂,௅ோ to test if ߝ௧ is normally distributed and homoskedastic since it is still possible to 

estimate ݎܽݒሺߝ௧̂ሻ under these circumstances. The only remaining problem is that we cannot 

use ߝ௧̂,௅ோ to test for autocorrelation.  

3.1 Variance Estimation 

The variance of the short term disturbances can be estimated using ߝ௧̂,௅ோ. Assuming white 

noise, we know that the spectral density function for white noise is given by, 

ሺ݂ሻݏ ൌ   ଶ.  (19)ߪ

We can therefore write, 

ଶߪ ൌ 2 ׬ ሺ݂ሻଵ/ଶݏ
଴ ݂݀.  (20) 

In other words, white noise is characterized by each frequency having the same variance. 

Given our assumptions we know that ߝ௧,௅ோ is represented by the frequencies 0 to ܽ, and ߝ௧,ௌோ 

by frequencies ܽ to 0.5. Moreover, 

ଶߪ ൌ ௧,௅ோ൯ߝ൫ݎܽݒ ൅  ௧,ௌோ൯,  (21)ߝ൫ݎܽݒ

Let, 

ܳ ൌ
ሺ଴.ହି௔ሻ

ሺ௔ି଴ሻ
,  (22) 



8 
 

be the ratio between the short run and long run frequencies. Using the assumption that ߝ is 

white noise, from (19) we obtain,  

ଶߪ ൌ ௧,௅ோ൯ߝ൫ݎܽݒ ൅ ௧,ௌோ൯ߝ൫ݎܽݒ ൌ ௧,௅ோ൯ߝ൫ݎܽݒ ൅ ௧,௅ோ൯ߝ൫ݎܽݒܳ ൌ ሺܳ ൅ 1ሻݎܽݒ൫ߝ௧,௅ோ൯ ൌ

ଵ

ଶ௔
 ௧,௅ோ൯.  (23)ߝ൫ݎܽݒ

From (23) we obtain and expression we can use to estimate the residual variance without 

estimating a short run model. 

3.2 Testing for Normality, Heteroskedacity and Autocorrelation 

Testing for normality using the long run residuals is possible because the MODWT is 

performed by taking linear combinations of the variables. Thus, if ߝ௧ is normally distributed 

then ܄௃ઽ is also normally distributed. Heteroskedacity can be tested using the long run 

residuals because the variance-covariance matrix of white noise is given by, 

ሾઽઽᇱሿܧ ൌ ଶ۷ߪ ൌ ௧,௅ோ൯ߝ൫ݎܽݒൣ ൅ ௧,ௌோ൯൧۷ߝ൫ݎܽݒ ൌ ሾઽ௅ோઽ௅ோܧ
ᇱ ሿ ൅ ሾઽௌோઽௌோܧ

ᇱ ሿ ൌ  

ൌ ܒ܄௝܄ଶߪ
ᇱ ൅  (24) .ܟᇱܟଶߪ

The diagonal elements of ܄௃܄௃
ᇱ and ܟᇱܟ are both equal to constants. We can therefore test for 

heteroskedacity using either just the long run or the short run residuals.  

In theory we could also test for autocorrelation using the estimated long run residuals, 

but in practice this is not feasible. Consider first the case when ߝ௧ is white noise. The 

autocovariance function for white noise is given by,  

௧ି௛ሿߝ௧ߝሾܧ ൌ ଶߪ2 ׬ ݁௜ଶగ௙௛݂݀
ଵ/ଶ

଴ ,  (25) 

whereby the autocovariance function for the long run residuals equals, 

௅ோ,௧ି௛൧ߝ௅ோ,௧ߝൣܧ ൌ 2 ׬ ሺ݂ሻ݁௜ଶగ௙௛݂݀ݏ
௔

଴ , 
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As ܽ ՜ 0,  the correlation ܿߝൣݎݎ݋௅ோ,௧ߝ௅ோ,௧ି௛൧ ՜ 1. When we estimate an AR(1) model using 

just the long run disturbances, the estimated AR-parameter is going to be close to 1 even 

though ߝ௧ is white noise.  

Now, consider the case when ߝ follows AR(1) process, 

௧ߝ ൌ ௧ିଵߝߩ ൅ ߮௧. (26) 

For this process the autocovariance function is given by, 

௧ି௛ሿߝ௧ߝሾܧ ൌ 2 ׬
ఙమ

หଵିఘ௘ష೔మഏ೑ห
మ ݁௜ଶగ௙௛݂݀

ଵ/ଶ
଴ ,  (27) 

where ߩ is the autoregressive parameter. Similar to the case with white noise, the correlation 

௅ோ,௧ି௛൧ߝ௅ோ,௧ߝൣݎݎ݋ܿ ՜ 1 when ܽ ՜ 0. Therefore without the high frequency (short run) 

variations tests of autocorrelation become meaningless because we cannot distinguish 

between different autoregressive parameters.  

Figure 1 shows the expected autoregressive parameter from an OLS for white noise and 

an AR(1) process with different autoregressive parameters when estimated using only a sub-

set of low frequencies. The parameter a is shown along the x-axis (we use frequencies 0 to a 

to estimate the parameter), and the expected AR(1) parameter is shown along the y-axis. 

When a=0.5 (i.e. we use all frequencies), all short and along run information is used to 

estimate the AR parameter. When a<0.5 some of the short run information is excluded and 

the closer a is to zero the more of the short run information has been excluded.  

[FIGURE 1] 

As can be seen in the Figure, when a=0.5, ߩ is equal to its true value. As a gets smaller, 

 ොሿ forߩሾܧ increases and approaches 1 as a approaches 0. Although there is a difference in ߩ

different values of a, these are too small to be distinguishable in practice.  

4. Simulations 
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To illustrate the band spectrum regression using a MODWT we perform two sets of 

simulations. In the first set of simulations we consider a model with two time horizons, and in 

the second set of simulations we consider a model with three time horizons.  

4.1 Two time horizons 

In the first experiment the underlying model includes two time horizons: the short run and the 

long run. For simplicity we use a bivariate model with only one explanatory variable,  

௧ݕ ൌ ௅ோߚ௅ோ,௧ݔ ൅ ௌோߚௌோ,௧ݔ ൅  ௧,  (28)ߝ

where ߚ௅ோ ൌ 1 and ߚௌோ ൌ  ௧ ~ ܰሺ0,1ሻ and we assume that the long run is defined by theߝ ,0.2

frequencies 0 to 1/32 and the short run by the frequencies 1/32 to 1/2. In the case of monthly 

data, this would imply that the short run lasts up to 32 months and the long run is 32 months 

and beyond. In the case of quarterly data, the short run would be lasting up to 8 years and the 

long run from 8 years and beyond.  

In this experiment we simulate ݔ௧ as an autoregressive process, 

௧ݔ ൌ ௧ିଵݔߩ ൅  ௧,  (29)ߠ

where we consider three choices of ߩ ൌ ሼ0,0.5,1ሽ, and we let ߠ௧ ~ ܰሺ0,2ሻ. The greater the 

autoregressive parameter the more the long run influences x. Due to these variations between 

which component of x (short run or long run) that dominates, depending on ߩ, the expected 

value of ߚ when estimating the model, 

௧ݕ ൌ ߚ௧ݔ ൅  ௧,   (30)ߝ

varies as well. For example, the greater the value of ߩ the close ߚመ  is to ߚ௅ோ.  

As an illustration, we estimate both the miss-specified model (30) and a correctly 

specified model based on (28). Each experiment is carried out 1000 times and the average 

estimated parameter and the standard error are presented in Table 1.1  

                                                 
1 As wavelet filter we use the Haar-wavelet. 
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As expected the parameter estimate from (30) is an average of the two time horizons. For 

smaller ߩ, the high frequencies contain a larger proportion of the variance in x than the low 

frequencies do. The estimated parameter is therefore closer to the short run parameter than 

the long run parameter: the average estimate is 0.281. As ߩ increase the low frequencies 

become more influential and the estimated parameter comes closer to the long run parameter. 

When ߩ ൌ መߚ ௧ is a random walk andݔ ,1  should asymptotically approach ߚ௅ோ. As can be seen 

in Table 1, when T=100 the estimated parameter is 0.916, but as T increase to 500, the 

average estimate is close to 1: the average estimate is 0.981 when T=500. Yet, there is still a 

small bias even for T=500. 

[TABLE 1] 

The band spectrum regression estimates are on average unbiased. They are also more 

efficient than the estimates from (30). The variance of the residual is also correctly estimated 

by the band spectrum MODWT regression. The true value is 1 and the average estimate is, 

irrespective of ߩ and T, within the interval 0.975 and 0.999. The estimate from the miss-

specified model (28) is between 1.124 and 5.454, which is expected considering (7). The 

close the parameter estimate is to the long run parameter the greater the influence of the miss-

specification component. The more ߚመ  deviates from ߚௌோ the higher the variance of the 

disturbance in the miss-specified model.  

4.2 Three time horizons 

Next we consider a case with three time horizons: the long run, the medium run, and the short 

run. As before we let the frequencies 0 to 1/32 represent the long run, the medium run is 

represented by the frequencies 1/32 to 1/8 and the short run by the frequencies 1/8 to 1/2. 

Using monthly data the short run is defined as cycles with a periodicity from 2-8 months, the 

medium run by cycles with a periodicity from 8 to 32 months and the long run as more 
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persistent variations than 32 months. Using quarterly data this definition of the time horizons 

imply that the short run lasts up to 2 years, the medium run 2 to 8 years, and the long run is 8 

years and beyond.  

The data generating process is given by, 

௧ݕ ൌ ௅ோߚ௅ோ,௧ݔ ൅ ெோߚெோ,௧ݔ ൅ ௌோߚௌோ,௧ݔ ൅  ௧,  (31)ߝ

where ݔெோ,௧ is the medium run variations in the explanatory variables and ߚெோ the medium 

run parameter. In the simulations we set, ߚ௅ோ ൌ ெோߚ ,1 ൌ 0.5, and ߚௌோ ൌ 0.2. As before 

 ௧ is simulated as an autoregressive process. Simulation results areݔ ௧ ~ ܰሺ0,1ሻ andߝ

presented in Table 2. 

[TABLE 2] 

The results with three time horizons are similar to the results with two time horizons. The 

miss-specified model estimates a weighted average of the three time horizons and 

consequently the residuals include a miss-specification component. As indicated by the 

simulations, the close the estimated parameter is to the long run parameter, the greater the 

size of the miss-specification component.  

The band spectrum regression is on average unbiased and more efficient than the miss-

specified OLS estimator. A difference compared to the two time horizon model is that the 

standard error of the parameter estimates has increased. The increase is small for the long run 

parameter, and higher for the short run parameter estimates.  

As for the two time horizon case, the estimates of the variance of the shocks are biased 

for the miss-specified model, but close to the true value for the band spectrum regression. 

Moreover, the close ߚመ  is to ߚ௅ோ the larger the bias for the miss-specified model.  

5. Summary 
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In this paper we have shown how the maximal overlap discrete wavelet transform can be 

used to estimate band spectrum regressions. We have also illustrated the econometric 

consequences of assuming that the model only contains one time horizon when there are 

several in the true model.  
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 Miss-specified model Correctly specified model 

T ߚመ  ොଶߪ መௌோߚ መ௅ோߚ ොଶߪ 

ߩ ൌ 0      

100 0.281 
(0.061) 

1.124 
(0.174) 

1.017 
(0.211) 

0.199 
(0.056) 

0.980 
(0.147) 

200 0.281 
(0.041) 

1.132 
(0.120) 

0.997 
(0.142) 

0.200 
(0.040) 

0.985 
(0.101) 

500 0.281 
(0.025) 

1.146 
(0.081) 

0.995 
(0.085) 

0.200 
(0.024) 

0.995 
(0.064) 

      

ߩ ൌ 0.5      

100 0.412 
(0.076) 

1.362 
(0.229) 

1.000 
(0.107) 

0.200 
(0.054) 

0.975 
(0.138) 

200 0.412 
(0.052) 

1.400 
(0.168) 

1.000 
(0.075) 

0.200 
(0.038) 

0.990 
(0.100) 

500 0.416 
(0.035) 

1.425 
(0.109) 

1.000 
(0.045) 

0.200 
(0.025) 

0.995 
(0.063) 

      

ߩ ൌ 1      

100 0.916 
(0.065) 

4.728 
(2.819) 

1.000 
(0.013) 

0.200 
(0.044) 

0.980 
(0.138) 

200 0.957 
(0.033) 

5.267 
(3.250) 

1.000 
(0.006) 

0.200 
(0.030) 

0.992 
(0.102) 

500 0.981 
(0.016) 

5.454 
(3.176) 

1.000 
(0.002) 

0.200 
(0.019) 

0.999 
(0.064) 

Table 1: Simulation Results, Two Time Horizons 

 

Note: The standard error of the parameter estimates are presented below the average 
parameter estimates.  
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 Miss-specified model Correctly specified model 

T ߚመ  ොଶߪ መௌோߚ መெோߚ መ௅ோߚ ොଶߪ 

ߩ ൌ 0       

100 0.326 
(0.062) 

1.151 
(0.177) 

1.018 
(0.222) 

0.499 
(0.235) 

0.199 
(0.066) 

0.971 
(0.146) 

200 0.325 
(0.042) 

1.157 
(0.122) 

0.999 
(0.151) 

0.495 
(0.164) 

0.202 
(0.047) 

0.981 
(0.101) 

500 0.325 
(0.026) 

1.170 
(0.082) 

0.995 
(0.091) 

0.500 
(0.104) 

0.200 
(0.029) 

0.992 
(0.064) 

       

ߩ ൌ 0.5       

100 0.485 
(0.072) 

1.361 
(0.215) 

1.004 
(0.114) 

0.496 
(0.169) 

0.202 
(0.079) 

0.965 
(0.137) 

200 0.485 
(0.050) 

1.393 
(0.158) 

0.999 
(0.079) 

0.503 
(0.108) 

0.198 
(0.054) 

0.985 
(0.100) 

500 0.490 
(0.033) 

1.411 
(0.096) 

1.000 
(0.044) 

0.501 
(0.072) 

0.202 
(0.036) 

0.994 
(0.062) 

       

ߩ ൌ 1       

100 0.934 
(0.052) 

3.690 
(2.006) 

1.000 
(0.014) 

0.496 
(0.092) 

0.202 
(0.075) 

0.971 
(0.137) 

200 0.966 
(0.026) 

4.037 
(2.294) 

1.000 
(0.006) 

0.503 
(0.064) 

0.197 
(0.054) 

0.987 
(0.100) 

500 0.985 
(0.012) 

4.143 
(2.223) 

1.000 
(0.003) 

0.500 
(0.041) 

0.200 
(0.036) 

0.997 
(0.064) 

Table 2: Simulation Results, Three Time Horizons 
 

Note: The standard error of the parameter estimates are presented below the average 
parameter estimates.  
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Figure 1: Autoregressive parameter using a sub-set of all frequencies 


