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Sets in Excess Demand in Simple Ascending Auctions with
Unit-Demand Bidders

T. Andersson · C. Andersson · A.J.J. Talman

28 June 2012

Abstract This paper analyzes the problem of selecting a set of items whose prices are to
be updated in the next iteration in so called simple ascending auctions with unit-demand
bidders. A family of sets called "sets in excess demand" is introduced, and the main results
demonstrate that a simple ascending auction always terminates at the minimum Walrasian
equilibrium prices if and only if the selection belongs to this family. The paper also specifies
a number of properties of the family of sets in excess demand and relate previously proposed
selections to it.

Keywords: Multi-item auctions; unit-demand; excess demand; algorithms.

1 Introduction

Economies with indivisible items and money have received considerable attention in the lit-
erature since the pioneering work of Shapley and Shubik (1972). They did not only prove the
existence of a Walrasian equilibrium but also that the set of Walrasian price vectors forms a
complete lattice. Consequently, there exist unique minimum and maximum Walrasian equi-
librium price vectors. The existence result has later been refined and generalized by e.g.
Svensson (1983), Demange and Gale (1985) and Alkan et al. (1991). The lattice property
has been demonstrated to play a key role when designing strategy-proof mechanisms. For
example, Leonard (1983), Demange and Gale (1985) and Andersson and Svensson (2008)
demonstrate that by regarding the minimum Walrasian price equilibrium as a direct mecha-
nism for allocating the indivisible items no agent can gain by strategic misrepresentation.
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An obvious field of application for Walrasian pricing mechanisms is auction design. As
emphasized by e.g. Ausubel (2004) and Perry and Reny (2005), dynamic auction mecha-
nisms are overwhelmingly more prevalent than their direct counterparts (i.e. sealed-bid auc-
tions) because bidders often fear complete revelation of information. Consequently, a variety
of different dynamic auction mechanisms (ascending, descending, bisection etc.) has been
designed to handle a number of different prerequisites.

The most elementary type of ascending auction1 is what we will refer to as a Simple As-
cending Auction with unit-demand bidders (SAA, henceforth; see Algorithm 1). An SAA is
an ascending auction with bidders that wish to acquire at most one item.2 In the special case
where only one item is for sale, the basic rules of the auction are rather straightforward. In
a multi-item setting, things get more complicated. For example, which termination criteria
should be used, and which rule should be applied for selecting the items whose prices are
to be updated in the next iteration given that the termination criteria fails to be satisfied? In
almost any investigated SAA, so called overdemanded sets of items play a key role in an-
swering these types of questions, see e.g. Demange et al. (1986), Mo et al. (1988), Sankaran
(1994) or Sun and Yang (2009). In this context, a set of items is overdemanded, at a given
price vector, if the number of bidders demanding only items in the set is greater than the
number of items in the set. It is natural that this type of set plays a key role since it is known
from a famous theorem by Hall (1935) that a necessary requirement for reaching a Wal-
rasian equilibrium is that all overdemanded sets of items are eliminated. However, it is also
well-known that it is in general impossible to reach the minimum Walrasian equilibrium
prices by only using information regarding overdemanded sets of items (see e.g Example
1). Thus, only specific subsets of the family of overdemanded sets can be considered. In
for example Demange et al. (1986) and Sun and Yang (2009), the solution is to restrict the
attention to the family of minimal overdemanded sets. This family consists of all overde-
manded sets with the property that none of its proper subsets is overdemanded. Sankaran
(1994), on the other hand, handles the situation by identifying a unique overdemanded set
based on the Ford-Fulkerson method (Ford and Fulkerson, 1956). This set is not necessarily
minimal overdemanded. A similar approach is adopted in Mo et al. (1988) where a vari-
ant of the Ford-Fulkerson method described in Gale (1960) is used (the Gale-procedure,
henceforth) to identify a proper overdemanded set. All these selections have one thing in
common. Namely, if the selection rule in the SAA is based on any one of them, the auction
will converge to the minimum Walrasian equilibrium prices.

Knowing that there exist selections that guarantee that an SAA converges to the mini-
mum Walrasian prices, this paper gives an answer to the following question: Is it possible
to characterize the entire class of selections that make an SAA to terminate at the minimum
Walrasian equilibrium prices? Apart from the obvious academic interest, this finding is im-
portant for a number of reasons. First, for multi-item auctions that do not contain a large
number of items (say less than 20), any modern computer can make an exhaustive search
trough all subsets of the set of items in a matter of seconds to identify sets with specific
properties. This means that, for "small" multi-item auctions, it is not necessary that the pro-
cedure is polynomial as e.g. the Ford-Fulkerson method and the Gale-procedure. It may for
example be more important that convergence occurs on average after a fewer number of
iterations. Hence, by characterizing all possible selections, it may be possible to identify
e.g. "fast" rules that not necessarily are polynomial. Second, a complete characterization for

1 This paper focuses on ascending auctions but for each result presented in this paper there are descending
auction counterparts.

2 Walrasian auction mechanisms in a multi-demand setting have been considered by e.g. Gul and Stacchetti
(2000) and Ausubel (2006).
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the simplest possible type of ascending auction (i.e., SAA) may give important insights that
may be helpful in improving and analyzing more complex multi-item auctions, for example
auctions with multi-demand bidders.

To provide a complete characterization, this paper considers a subset of the family of
overdemanded sets of items consisting of all "sets in excess demand". Formally, an overde-
manded set of items S is in excess demand if the number of items in each subset T of S
is strictly smaller than the number of bidders that demand some item in T and in addition
only demand items in S. Sets in excess demand have a number of attractive properties. First,
if a set is minimal overdemanded, at a given price vector, then it is also in excess demand.
Hence, the family of minimal overdemanded sets is a subset of the family of sets in excess
demand (Theorem 2). Second, if two sets are in excess demand, at a given price vector, so
is their union (Theorem 1). Thus, by taking the union of all sets in excess demand, at given
prices, it is possible to construct a unique set in excess demand with a largest cardinality. We
demonstrate that the selections proposed by Mo et al. (1988) and Sankaran (1994) in fact
are given by this unique largest set (Theorem 3).

Because the selections in Mo et al. (1988), Sankaran (1994) and Demange et al. (1986)
are based on sets of items that belong to specific subsets of the family of sets in excess
demand, this paper establishes a common framework and a link between these papers. In
addition, the paper specifies an ascending auction mechanism, called the Excess Demand
Ascending Auction (EDAA), where in every iteration the prices for items belonging to one
of the sets in excess demand are updated. It is demonstrated that an SAA always converges
to the minimum Walrasian equilibrium prices if and only if it is an EDAA.

This section ends by describing the similarities between this paper and the unpublished
manuscript by Mo et al. (1988).3 The point of departure in Mo et al. (1988) is the claim in
Demange et al. (1986) that it is possible to compute minimal overdemanded sets by using
the Gale-procedure, and the main result establishes that the output of the extended Gale-
procedure is in fact not a minimal over-demanded set but instead a so-called "purely overde-
manded set" with maximal cardinality. Because (i) their definition of a purely overdemanded
set is equivalent to our definition of excess demand, and (ii) the Gale-procedure is a special
case of the Ford–Fulkerson method, their Proposition 2 is identical to our Theorem 3. In
addition, the observation in their Proposition 1 that the union of two purely overdemanded
sets results in a purely overdemanded set is identical to our Theorem 1. Finally, Mo et al.
(1988) define a modified version of the auction algorithm in Demange et al. (1986) which
uses the idea that price increments should be based on the pure overdemanded set with max-
imal cardinality. This algorithm is a special case of our EDAA. We also remark that none
of our characterization results (Theorems 5 and 6) are included or discussed in Mo et al.
(1988), i.e., their focus is on the understanding and the output of the Gale–procedure and its
relation to the minimum Walrasian equilibrium prices whereas our main results completely
characterize the class of simple ascending auctions that always terminate at the minimum
Walrasian equilibrium prices.

The paper is organized as follows. Section 2 introduces the economic model. Sets in
excess demand are defined and analyzed in Section 3. Section 4 provides the characterization
results. Some of the proofs are delegated to the Appendix.

3 The paper by Mo et al. (1988) neither has been published nor is available on the Internet. For this reason,
we regard our article as an independent work. We are extremely grateful to Al Roth for providing us with a
copy of the paper of Mo et al. (1988) in April, 2011, after we had completed an earlier version of this paper.
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2 The Model

The finite set of bidders is denoted by B and the finite set of items is denoted by I. Each item
i∈ I has a price pi and a reservation price ri. For simplicity and without loss of generality the
reservation price of each item is set equal to zero, i.e. r = 0. The value of item i ∈ I to bidder
b ∈ B is given by the number vbi. These values are assumed to be integers since in reality
no bidder can specify a monetary value more closely than to the nearest dollar or cent. For
each bidder there is a so-called null-item, denoted by 0, and having value, i.e., vb0 = 0 for
all b ∈ B. It is also assumed that a null-item has always price zero, denoted by p0 = 0. Prices
of the items are gathered in a vector p. A price vector p is said to be feasible if p0 = 0 and
pi ≥ 0 for all i∈ I. For notational simplicity we let I∗ = I∪{0} and I+(p) = {i∈ I∗ : pi > 0}.
The demand correspondence for bidder b ∈ B at price vector p is defined by:

Db(p) = {i ∈ I∗ : vbi − pi ≥ vb j − p j for all j ∈ I∗}.

A feasible price vector p is said to be a Walrasian equilibrium price vector if there is an
assignment x : B �→ I∗ such that xb ∈ Db(p) for all b ∈ B and if b′ 	= b and xb = xb′ then
xb = 0, i.e. each bidder is assigned an item from his demand set and if two bidders are
assigned the same item then both bidders are assigned the null-item. The pair (p,x) is a
Walrasian equilibrium if p is a Walrasian equilibrium price vector and xb 	= i for all b ∈ B
implies pi = 0, i.e. when an item is not assigned to some bidder, then its price equals the
zero reservation price. As demonstrated by Shapley and Shubik (1972) the set of competitive
price vectors is non-empty and forms a complete lattice. Thus, the existence of a unique
minimum Walrasian equilibrium price vector pmin is guaranteed.

This section ends by defining the simplest possible ascending auction format for unit-
demand bidders and multiple items. This type of auction is called a Simple Ascending Auc-
tion (SAA, henceforth).

Algorithm 1 (Simple Ascending Auction, SAA) Initialize the price vector to the reserva-
tion prices, p0 := r. For each iteration t = 0,1,2, . . . :

1. Collect the demand sets Db(pt) of every bidder b ∈ B.
2. If there is no overdemanded set of items at pt (Definition 1), the algorithm is terminated.
3. Choose an overdemanded set of items St ⊆ I.
4. Compute the updated price vector pt+1 whose elements are given by:

pt+1
i =

{
pt

i +1 if i ∈ St ,
pt

i otherwise.

5. Set t := t +1 and start a new iteration from Step 1.

3 Sets in Excess Demand

The focus in this section is the set of items St to be chosen in Step 3 of Algorithm 1 (SAA).
More explicitly, we define a class of sets, called "sets in excess demand", that belongs to the
family of overdemanded sets, at given prices, and analyze it in detail. The following section
then demonstrates that an SAA always converges to the minimum equilibrium prices if and
only if St belongs to this class in all steps of the algorithm.
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Let now p be a given feasible price vector, i.e., p0 = 0 and pi ≥ 0 for all i ∈ I. The
bidders that only demand items in the set S ⊆ I at prices p, and the bidders that demand
some item in the set S ⊆ I at prices p are collected in the sets

O(S, p) = {b ∈ B : Db(p)⊆ S},
U(S, p) = {b ∈ B : Db(p)∩S 	=∅},

respectively. By definition it holds that O(S, p)⊆U(S, p). Consequently, U(S, p)∩O(S, p)=
O(S, p).

Definition 1 A set of items S is overdemanded at prices p if S ⊆ I and |O(S, p)|> |S|.

Definition 2 A set of items S is weakly underdemanded at prices p if S ⊆ I+(p) and
|U(S, p)| ≤ |S|.4

Note that Definition 2 requires that S is a subset of I+(p). Thus, no set S where the price of
some item equals the reservation price (zero) can be weakly underdemanded. Consequently,
at the reservation prices, no set of items is weakly underdemanded.

Definition 3 A set of items S is in excess demand5 at prices p if S ⊆ I and:

|U(T, p)∩O(S, p)|> |T | for each non-empty T ⊆ S. (1)

A set of items S is therefore in excess demand if it is overdemanded and the number of items
in each proper subset T is strictly smaller than the number of bidders that demand some item
in T and in addition only demand items in S. The family of sets in excess demand at prices
p is given by:

ED(p) = {S ⊆ I : |U(T, p)∩O(S, p)|> |T | for each non-empty T ⊆ S}.

The following result shows that the union of two sets in excess demand is also a set in excess
demand.

Theorem 1 If S ∈ ED(p) and T ∈ ED(p), then S∪T ∈ ED(p).

Proof By Definition 3, we need to prove that the following condition is satisfied:

|U(K, p)∩O(S∪T, p)|> |K| for each non-empty K ⊆ S∪T . (2)

Note first that if b ∈ O(S, p) or b ∈ O(T, p) then b ∈ O(S∪T, p). This together with the ob-
servation that there may exist a bidder b with b /∈O(S, p)∪O(T, p) but b∈O(S∪T, p) gives:
(U(L, p)∩O(R, p))⊆ (U(L, p)∩O(S∪T, p)) for each L⊆ R and R ∈ {S,T}. Consequently:

|U(L, p)∩O(S∪T, p)| ≥ |U(L, p)∩O(R, p)|> |L| for each L ⊆ R and R ∈ {S,T}.

The last inequality follows from Definition 3 since S ∈ ED(p) and T ∈ ED(p) by assump-
tion. This implies that condition (2) holds if K ⊆ S or K ⊆ T .

4 This definition is from Mishra and Talman (2010, Definition 3) and it differs slightly from the definition
of underdemand in Sotomayor (2002) in the sense that Sotomayor (2002) assumes that there is a dummy
bidder that can be allocated more that one item and in addition demands each item at the reservation prices.

5 In Mo et al. (1988) such a set of items is called a purely overdemanded set.
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It remains to prove that condition (2) holds when K ⊆ S∪T and both K 	⊆ S and K 	⊆ T .
Let A = K ∩ S and C = K \S, then both A and C are nonempty, A∩C = ∅, and K = A∪C.
Since A ⊆ S and C ⊆ T \S it holds that:

(U(A, p)∩O(S, p))∩ (U(C, p)∩O(T, p))=∅.

Moreover, because S ∈ ED(p) and T ∈ ED(p) by assumption, it follows from Definition 3
that both |U(A, p)∩O(S, p)|> |A| and |U(C, p)∩O(T, p)|> |C|. These facts, together with
the observation that there may exist a bidder b with b /∈O(S, p)∪O(T, p) but b∈O(S∪T, p),
give:

|U(K, p)∩O(S∪T, p)| = |U(A∪C, p)∩O(S∪T, p)|
≥ |U(A∪C, p)∩ (O(S, p)∪O(T, p))|
≥ |(U(A, p)∩O(S, p))∪ (U(C, p)∩O(T, p))|
= |U(A, p)∩O(S, p)|+ |U(C, p)∩O(T, p)|
> |A|+ |C|
= |A∪C|
= |K|,

which concludes the proof.

Corollary 1 If ED(p) 	=∅, then there is a unique set S∗ ∈ ED(p) with maximum cardinal-
ity.

The remaining part of this section demonstrates that (i) the notion of excess demand is
a weaker notion than minimal overdemand introduced by Demange et al. (1986), and (ii)
the selection of an overdemanded set based on the Ford-Fulkerson (or its special case: the
Gale-procedure) method corresponds to the unique set in excess demand with maximum
cardinality.

3.1 Minimal Overdemand

An overdemanded set of items is minimal overdemanded if none of its proper subsets is
overdemanded. Let p be a given feasible price vector.

Definition 4 A set of items S is minimal overdemanded at prices p if S is overdemanded at
prices p and:

|T | ≥ |O(T, p)| for all T ⊂ S.

The family of minimal overdemanded sets of items at prices p is given by:

MOD(p) = {S ⊆ I : |O(S, p)|> |S| and |T | ≥ |O(T, p)| for all T ⊂ S}.

The following result establishes that the notion of sets in excess demand is a weaker notion
than minimal overdemand. This result can be traced back to van der Laan and Yang (2008,
Lemma 3.2) where it is demonstrated that any minimal overdemanded set satisfies the prop-
erty of excess demand (both when bidders are financially constrained and when they are
not). Note, however, that they do not analyze sets in excess demand, their lemma is only
introduced to facilitate some of their proofs.
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Theorem 2 If S ∈ MOD(p), then S ∈ ED(p).

Proof Suppose that S ∈ MOD(p) and S /∈ ED(p). S ∈ MOD(p) implies that |O(S, p)|> |S|
and |O(T, p)| ≤ |T | for all T ⊂ S. S /∈ ED(p) implies that there exists a non-empty K ⊂ S
such that:

|U(K, p)∩O(S, p)| ≤ |K|.
Moreover, K is a proper subset of S, since |O(S, p)|> |S| and U(S, p)∩O(S, p) = O(S, p).
Let S′ = S \K and note that S′ is a non-empty and proper subset of S. It then follows that
O(S′, p) = O(S, p)\ (U(K, p)∩O(S, p)). Thus:

|O(S′, p)| = |O(S, p)\ (U(K, p)∩O(S, p))|
≥ |O(S, p)|− |U(K, p)∩O(S, p)|
> |S|− |K|
= |S′|.

But then S′ is a proper overdemanded subset of S at prices p, which contradicts that S ∈
MOD(p).

Note that the converse of Theorem 2 is not true, i.e., a set in excess demand need not be
a minimal overdemanded set (see e.g. Example 2 in Section 4).

3.2 The Ford-Fulkerson Selection

The Ford and Fulkerson (1956) method is a classical method for network flow problems, that
can be used to find a feasible assignment of maximum cardinality. Let p be again a given
feasible price vector. By feasible assignment we mean a set X(p)⊆ {(b, i) : b ∈ B, i ∈ I∗} of
bidder-item pairs at prices p such that i ∈ Db(p) for all (b, i)∈ X(p) and such that any b ∈ B
and i ∈ I is part of at most one pair from X(p). No assumption is made on the cardinality of
X(p), but if |X(p)|= |B| each bidder can be assigned an item from his demand set and p is
therefore a Walrasian equilibrium price vector.

Starting from X(p) =∅, the Ford and Fulkerson (1956) method iteratively updates X(p)
based on augmenting paths. An augmenting path with respect to X(p) is a sequence of the
form P = (b0, i0, . . . ,bn, in) such that (bj, i j−1) ∈ X(p) for j = 1,2, . . . ,n, i j ∈ Dbj(p) for
j = 0,1, . . . ,n, and i j 	= 0 for j 	= n. This characterization corresponds to a bipartite matching
problem modified to account for the null-item.

Algorithm 2 (Ford-Fulkerson) Initialize the feasible assignment to the empty set, X(p) :=
∅. For each iteration:

1. Find an augmenting path P = (b0, i0, . . . ,bn, in) with respect to X(p), e.g. using Algo-
rithm 3. If no augmenting path exists, then X(p) is a maximal feasible assignment and
terminate the algorithm.

2. Augment the assignment along P:

X(p) :=
(
X(p)\

{
(b j, i j−1) : j ∈ {1,2, . . . ,n}

})
∪
{
(b j, i j) : j ∈ {0,1, . . . ,n}

}
.

3. Start a new iteration from Step 1.

The augmentation in Step 2 of Algorithm 2 increases the cardinality of X(p) by one.
Thus |X(p)| is strictly increasing as long as there is an augmenting path.



8 T. Andersson et al.

Algorithm 3 (Breadth-first Search for an Augmenting Path) Given a feasible assignment
X(p), let the initial set of bidders be defined by:

B0 = {b ∈ B : (b, i) /∈ X(p) for all i ∈ I∗}, (3)

and label any b ∈ B0 with s. All other bidders and items are initially unlabeled. Introduce
the iteration counter n. For each iteration n = 0,1, . . . :

1. Define the set of items:

In = {i ∈ I∗ \∪n−1
j=0I j : (b, i) /∈ X(p) and i ∈ Db(p) for some b ∈ Bn}. (4)

Label all i ∈ In with a respective b.
2. If 0 ∈ In or there is an i ∈ In such that (b, i) /∈ X(p) for all b ∈ B, a shortest augmenting

path has been found and terminate the algorithm.
3. If In =∅, no augmenting path exists and terminate the algorithm.
4. Define the set of bidders:

Bn+1 = {b ∈ B\∪n
j=0Bj : (b, i) ∈ X(p) for some i ∈ In}. (5)

Label all b ∈ Bn+1 with a respective i.
5. Set n := n+1 and start a new iteration from Step 1.

In case Algorithm 3 terminates with In = ∅, no augmenting path exists and the assign-
ment X(p) is feasible and has maximum cardinality. Otherwise a shortest augmenting path
(b0, i0, . . . ,bn, in), with b j ∈ Bj and i j ∈ I j for j = 0,1, . . . ,n, with respect to X(p) can be
found by backtracking the assigned labels starting from 0 if 0 ∈ In, or from any i ∈ In such
that (b, i) /∈ X(p) for all b ∈ B, until a bidder with label s is encountered. The breadth-first
search is guaranteed to find a shortest augmenting path if one exists. Several possible la-
bels may exist in Steps 1 and 4 of Algorithm 3, and there may be more than one shortest
augmenting path. The Ford-Fulkerson method converges regardless of the path and labels
chosen.

Theorem 3 Let S = ∪n
j=0I j be the set of labeled items upon termination of Algorithm 3 in

the last Ford-Fulkerson iteration at prices p, then S is equal to the unique set S∗ in excess
demand having maximum cardinality at prices p.

Proof See the Appendix.

4 The Excess Demand Ascending Auction

Since we are particularly interested in simple ascending auctions where the selection in Step
3 is made from the family of sets in excess demand at prices pt , we next define an ascending
auction called the Excess Demand Ascending Auction (EDAA, henceforth).

Algorithm 4 (Excess Demand Ascending Auction, EDAA) The Excess Demand Ascend-
ing Auction is a Simple Ascending Auction where St ∈ ED(pt) in Step 3 of Algorithm 1.

We observe from Theorem 2 that the algorithm described in Demange et al. (1986) is
a special case of Algorithm 4, since price increments in this algorithm are based on mini-
mal overdemanded sets. We also note that the modifications of the algorithm in Demange
et al. (1986) based on the extended Gale-procedure proposed by Mo et al. (1988) and the
Ford-Fulkerson method proposed by Sankaran (1994) are special cases of Algorithm 4. This
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is because the selections in Mo et al. (1988) and Sankaran (1994) is the set described in
Theorem 3.6

It is well-known (see e.g. Demange et al., 1986) that Algorithm 1 can identify the mini-
mum Walrasian equilibrium price vector pmin for proper selections in Step 3. To define the
whole class of selections that guarantee that Algorithm 1 always terminates at pmin, weakly
underdemanded sets of items play an important role. The family of weakly underdemanded
sets of items at prices p is denoted by WUD(p) = {S ⊆ I+(p) : |U(S, p)| ≤ |S|}, and the
reason for its importance is the following theorem from Mishra and Talman (2010).

Theorem 4 A price vector p equals pmin if and only if OD(p) =∅ and WUD(p) =∅.

The main insight from the above theorem is that if the aim is to identify an SAA that con-
verges to the minimum Walrasian equilibrium price vector, one needs to specify rules for
the price increments which guarantee that the family of weakly underdemanded sets re-
mains empty. The next result demonstrates that by defining price increments based on sets
in excess demand, the family of weakly underdemanded sets will always stay empty.

Lemma 1 Let p be a feasible vector of prices. Suppose that S ∈ ED(p) and WUD(p) =∅,
and let:

pi =

{
pi +1 if i ∈ S,
pi otherwise.

(6)

Then WUD(p) =∅.

Proof We need to show that for an arbitrary T ⊆ I+(p) it holds that:

|U(T, p)|> |T |. (7)

Three different cases are considered.
Case (i) T ⊆ S. We first make three observations. First, (U(T, p)∩O(S, p)) ⊆ U(T, p)

because O(S, p)⊆ B. Second, Db(p)⊆ Db(p) for all b ∈ O(S, p) by construction of p. Con-
sequently, if b ∈ U(T, p)∩O(S, p), then b ∈ U(T, p)∩O(S, p), implying that |U(T, p)∩
O(S, p)| ≥ |U(T, p)∩ O(S, p)|. Third, |U(T, p)∩ O(S, p))| > |T | since S ∈ ED(p). From
these three observations, we conclude:

|U(T, p)| ≥ |U(T, p)∩O(S, p)| ≥ |U(T, p)∩O(S, p)|> |T |,

which demonstrates that condition (7) is satisfied when T ⊆ S.
Case (ii) T ⊆ I+(p)\S. Since WUD(p) =∅ and T ⊆ I+(p) it follows that |U(T, p)|>

|T |. Moreover, by construction of p, an item i ∈ T belongs to Db(p) if it belongs to Db(p),
and therefore U(T, p)⊆U(T, p). Hence:

|U(T, p)| ≥ |U(T, p)|> |T |,

i.e., condition (7) is satisfied when T ⊆ I+(p)\S.
Case (iii) T = A∪C where ∅ 	= A ⊆ S and ∅ 	=C ⊆ I+(p) \S. Clearly, A∩C =∅. By

construction of p it holds that if i ∈C belongs to Db(p) then it also belongs to Db(p). Thus,
U(C, p)⊆U(C, p), and as a consequence:

|U(T, p)|= |U(A∪C, p)|= |U(A, p)∪U(C, p)| ≥ |U(A, p)∪U(C, p)|. (8)

6 The algorithms in Mo et al. (1988) and Sankaran (1994) are terminated if the assignment X(p) of maxi-
mal cardinality (identified by Algorithm 2) has the property that |X(p)|= |B|. This termination criterium may
of course also be used in Algorithms 1 and 4.
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Because, by construction of p, pi > pi for i∈A and pi = pi for i∈C, it follows that U(A, p)∩
U(C, p) =∅, and therefore:

|U(A, p)∪U(C, p)|= |U(A, p)|+ |U(C, p)|. (9)

Since A ⊆ S it follows from Case (i) that |U(A, p)|> |A|. Moreover, because WUD(p) =∅
and C ⊆ I+(p) it follows that |U(C, p)|> |C|. These observations together with (8) and (9)
yield:

|U(T, p)|> |A|+ |C|= |A∪C|= |T |,
which concludes the proof.

A direct consequence of the above lemma is the following convergence result.

Theorem 5 The Excess Demand Ascending Auction (EDAA) always converges to the unique
minimum Walrasian price equilibrium pmin in a finite number of iterations.

Proof The EDAA starts with reservation price vector r. By definition it holds that WUD(r)=
∅. From Lemma 1 and the price increases prescribed by Step 4 of Algorithm 4 it follows
that WUD(pt) =∅ at any iteration t. Moreover, at any iteration t it holds that ED(pt) 	= ∅
as long as there exists at least one overdemanded set of items at pt . Now the proof follows
directly from Theorem 4 and the observation that as soon as the price of an item becomes
sufficiently large, the item cannot belong to any overdemanded set.

As demonstrated in Theorem 5, EDAA always converges to the minimum Walrasian
equilibrium prices pmin. A related problem is of course to investigate if this is the only SAA
that always terminates at pmin, i.e., is EDAA a complete characterization of the class of SAA
that identifies the minimum Walrasian equilibrium prices. The next result demonstrates that
this indeed is the case. Before providing this result, we first demonstrate, using a simple
example, that unless the family of weakly underdemanded sets stays empty throughout the
whole ascending price adjustment procedure, the process need not converge to the minimum
Walrasian equilibrium prices. In other words, the selection in Step 3 of Algorithm 1 must
guarantee that WUD(pt) stays empty in each iteration otherwise it will be impossible to
reach the minimum Walrasian equilibrium prices for all possible valuation profiles.

Example 1 Let B = {1,2,3} and I = {1,2}. The values vbi, b ∈ B, i ∈ I, are given by the
matrix: ⎡

⎣ v11 v12

v21 v22

v31 v32

⎤
⎦=

⎡
⎣ 1 2

0 1
0 1

⎤
⎦ . (10)

At the reservation prices r = (0,0), the bidders’ demand sets are Db(r) = {2} for all b ∈ B.
Hence, ED(r) = MOD(r) = {{2}} and OD(r) = {{2},{1,2}}. Suppose now that the price
increments in Step 3 of Algorithm 1 are based on the overdemanded set {1,2} /∈ ED(r).
Then p1 = (0,1,1) and, as a consequence, WUD(p1) = {1}. Because pmin = (0,1,0), the
minimum Walrasian equilibrium prices can not be reached in such an ascending process. �

Theorem 6 A Simple Ascending Auction (SAA) always converges to the minimum Wal-
rasian Equilibrium Prices if and only if it is an Excess Demand Ascending Auction (EDAA).

Proof The "if" part follows from Theorem 5. To prove the "only if" part, recall from Exam-
ple 1 that the selection of the set St ⊆ I in Step 3 at iteration t of Algorithm 1 must guarantee
that WUD(pt+1) =∅ otherwise the process need not terminate at pmin. Hence, it remains to
show that if St /∈ ED(pt) then WUD(pt+1) 	=∅.
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If St /∈ ED(pt), then |U(T, pt)∩O(St, pt)| ≤ |T | for some T ⊆ St by Definition 3. We
start by making two key observations. First, if b /∈ U(T, pt)∩O(St , pt), then Db(pt+1)∩
T = ∅. To see this, suppose that b /∈ U(T, pt)∩O(St, pt) meaning that there is some item
i∈Db(pt) that do not belong to St . But then the conclusion follows, since pt+1

i = pt
i whereas

pt+1
j = pt

j +1 for all j ∈ T . Second, if b ∈U(T, pt)∩O(St, pt), then Db(pt+1)∩T 	=∅. This
follows from the construction (6), T ⊆ St , and the definitions of U(·) and O(·).

From the above two observations, we conclude that Db(pt+1)∩ T 	= ∅ if and only if
b ∈ U(T, pt)∩ O(St , pt). But then U(T, pt+1) = U(T, pt)∩O(St , pt). Using this fact and
|U(T, pt)∩O(St, pt)| ≤ |T | give:

|U(T, pt+1)|= |U(T, pt)∩O(St , pt)| ≤ |T |,

which demonstrates that T ∈WUD(pt+1). Hence, WUD(pt+1) 	=∅.

We end this paper by providing an example that illustrates all possible paths from the
reservation prices to the minimum Walrasian equilibrium prices that can be obtained by
SAA. By Theorem 6, all these paths are provided by EDAA.

Example 2 Let B = {1,2,3,4,5} and I = {1,2,3}. The values vbi, b ∈ B, i ∈ I, are given by
the matrix: ⎡

⎢⎢⎢⎢⎣

v11 v12 v13

v21 v22 v23

v31 v32 v33

v41 v42 v43

v51 v52 v53

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

24 8 32
0 12 66
99 66 53
85 30 18
45 74 94

⎤
⎥⎥⎥⎥⎦ . (11)

At the reservation prices r = (0,0,0) the bidders’ initial demand sets are D1(r) = D2(r) =
D5(r) = {3} and D3(r) = D4(r) = {1}. At the reservation prices r we have:

ED(r) = {{1},{3},{1,3}},
MOD(r) = {{1},{3}}.

In Figure 1, all possible paths from the seller’s reservation prices r=(0,0,0) to the minimum
Walrasian equilibrium prices pmin = (79,46,66) obtainable by Algorithm 4 are represented
in the form of a graph.7 Each vertex corresponds to a price vector reachable by Algorithm
4 and each arc is associated with a specific set in excess demand used to update prices. The
solid arcs and the shaded vertices are not reachable using the algorithm in Demange et al.
(1986). The unique path trough the graph identified by the algorithms in Mo et al. (1988)
and Sankaran (1994) is the path marked by bold (solid or dashed) arcs to the far right in the
figure. Notice that there are several paths which are shorter than the latter path. �

Appendix: Proof of Theorem 3

Lemma 2 Suppose that Algorithm 3 terminates with In =∅. Let S=∪n
j=0I j, then O(S, p) =

∪n
j=0Bj, and for each i ∈ S there is some b ∈ O(S, p) such that (b, i) ∈ X(p).

7 In the graph a set St is fixed until some bidder b with Db(pt) ⊆ St becomes indifferent to some item
i /∈ Db(pt). In Figure 1, this can be seen e.g. for the set S0 = {3} and the price vector p0 = (0,0,0) where
D1(p0) = {3} but D1( p̂) = {1,3} for p̂ = (0,0,8). Such an approach has previously been considered in
related problems by e.g. Abdulkadiroğlu et al. (2004) and Andersson and Andersson (2011).
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Proof To show that O(S, p) = ∪n
j=0Bj we prove that b ∈ ∪n

j=0Bj if and only if Db(p) ⊆ S.
We do this by considering three mutually exclusive cases.

Case (i) (b, i) ∈ X(p) for some i /∈ S. Then Db(p)� S, so it must be shown that b is not
an element of any Bj. The condition in (5) that (b′, i′) ∈ X(p) for some i′ ∈ I j is always false
for b′ = b since i /∈ S. It follows that b /∈ ∪n

j=0Bj.
Case (ii) (b, i) ∈ X(p) for some i ∈ S. Let i ∈ Im for 0 ≤ m < n, where the inequality

follows from the assumption In =∅. Equation (5) gives:

Bm+1 = {b′ ∈ B\∪m
j=0Bj : (b′, i′) ∈ X(p) for some i′ ∈ Im},

i.e. b ∈ Bm+1. To show that Db(p)⊆ S we need only to compute the set of items Im+1 in the
next iteration from (4):

Im+1 = {i′ ∈ I∗ \∪m
j=0I j : (b′, i′) /∈ X(p) and i′ ∈ Db′(p) for some b′ ∈ Bm+1}

⊇ {i′ ∈ I∗ \∪m
j=0I j : i′ ∈ Db(p)\{i}}

= Db(p)\∪m
j=0I j,

where i ∈ Im has been used in the last equality.
Case (iii) (b, i) /∈ X(p) for all i ∈ I∗. From (3) we have b ∈ B0. Insertion in (4) yields

Db(p)⊆ I0, which concludes the proof of the first statement.
To prove the second statement we observe that 0 /∈ S, and for each i ∈ S there is some

b ∈ B such that (b, i) ∈ X(p). Otherwise the algorithm would terminate in Step 2, which
violates the assumption In =∅. From Case (ii) above it follows that b ∈ O(S, p).

Lemma 3 Suppose that Algorithm 3 terminates with In = ∅, and let S = ∪n
j=0I j. If b /∈

O(S, p), then (b, i) ∈ X(p) for some i /∈ S.

Proof The result follows from Lemma 2, and Cases (i) and (iii) from its proof.

Proof of Theorem 3. To prove the theorem, we demonstrate that if Algorithm 3 terminates
with In =∅, then S =∪n

j=0I j is the set in excess demand with maximum cardinality at prices
p.

By assumption Algorithm 3 is not terminated in Step 2, so it follows that 0 /∈ S, and
thus S ⊆ I. Lemma 2 states that all items in S are assigned to bidders in O(S, p). It follows
directly that |U(T, p)∩ O(S, p)| ≥ |T | for all T ⊆ S. To prove that S ∈ ED(p), suppose
|U(T, p)∩O(S, p)|= |T | for some T ⊆ S.

Let K = {b ∈ O(S, p) : (b, i) ∈ X(p) for some i ∈ T} denote the set of bidders in O(S, p)
that are assigned an item from T . If |U(T, p)∩O(S, p)|= |T | then Db(p)∩T =∅ holds for
all b ∈ O(S, p) \K. Using Lemma 2 we have from (4) that In ∩T 	= ∅ only if Bn ∩K 	= ∅,
and from (5) that Bn+1 ∩K 	= ∅ only if In ∩T 	= ∅. Since the initial set of bidders satisfies
B0∩K =∅ we obtain the contradictions T � S and K �O(S, p). Thus |U(T, p)∩O(S, p)|>
|T | for all T ⊆ S, which completes the proof that S ∈ ED(p).

Because S is a set in excess demand we know from Corollary 1 that there exists a unique
S∗ ∈ ED(p) of maximum cardinality, and from Theorem 1 it follows that S ⊆ S∗. To prove
that S = S∗, suppose S ⊂ S∗.

Denote the set of bidders that are assigned an item in S∗ \ S by L = {b ∈ B \O(S, p) :
(b, i) ∈ X(p) for some i ∈ S∗ \S}, and the set of assigned items in S∗ \S by T = {i ∈ S∗ \S :
(b, i) ∈ X(p) for some b ∈ B \O(S, p)}. Without loss of generality we assume that T 	= ∅.
Otherwise O(S∗, p) = O(S, p) by Lemma 3, and U(S∗ \S, p)∩O(S∗, p) = ∅ after applying
Lemma 2, thus implying that S∗ is not in excess demand.
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Note that Db(p) � S∗ may hold for some b ∈ L, and that U(T, p)∩O(S∗, p) = ∅ from
Lemma 2. We obtain:

|U(T, p)∩O(S∗, p)|= |U(T, p)∩ (O(S∗, p)\O(S, p))|
≤ |U(T, p)∩L)|= |T |.

Hence, if S ⊂ S∗, then S cannot be in excess demand, thereby proving that S is the set in
excess demand with maximum cardinality. �
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Fig. 1 Graph corresponding to all price paths of the EDAA in Example 2. Vertices are labeled with current
prices and arcs are labeled with the sets in excess demand used to update prices.


