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A Flexible Hazard Rate Model for Grouped
Duration Data∗

Wolfgang Hess†

November 10, 2009

Abstract

This paper proposes a discrete-time hazard regression approach based on
the interrelation between hazard rate models and excess over threshold models,
which are frequently encountered in extreme value modelling. The proposed du-
ration model incorporates a grouped-duration analogue of the well-known Cox
proportional hazards model and a proportional odds model as special cases. The
theoretical setup of the model is motivated, and simulation results are reported
to suggest that it performs well. A numerical example using US unemployment
data is also provided.

JEL Classification: C41; J64.
Keywords: Discrete-Time Duration Model, Hazard Rate, Threshold Excess

Model, Unemployment Duration.

1 Introduction

The interrelation between binary response regression models and discrete-time du-
ration models has long been known in the literature. In particular, it can be shown
that a stacked binary choice model employing a complementary log-log (cloglog)
link function and including period-specific intercepts represents the exact grouped-
duration analogue of the well-known Cox (1972) proportional hazards (PH) model
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(see e.g. Kalbfleisch and Prentice, 1973, or Prentice and Gloeckler, 1978). Due to
its direct relationship to an underlying continuous-time process, the stacked cloglog
model has been widely used in the literature to analyze grouped duration data.

The application of duration models is most widespread in the field of labor eco-
nomics, where job search models provide the theoretical foundation for so-called
reduced form analyses of individual unemployment spells (see van den Berg, 2001,
for a comprehensive survey of this literature). In this context the PH assumption
implied by the cloglog model is not supported by economic theory (see e.g. van den
Berg, 1990a,b, or Blanchard and Diamond, 1994) and empirically questionable (see
McCall, 1994). In a discrete-time framework, a natural alternative to the PH model
is to estimate sequential logit or probit models with observations stacked across in-
terval durations. This method is very appealing because of its simplicity. However,
there are two major drawbacks to this approach. First, the choice of a logit or probit
link function for the binary regression model is rather ad hoc, and little is known
about the underlying continuous-time processes leading to these specifications.1 Sec-
ond, the estimated effects of covariates on the hazard rate may differ largely across
specifications, even if the overall fit in likelihood terms does not allow to discriminate
between the models (see Narendranathan and Stewart, 1993, and Sueyoshi, 1995).
In that case the researcher is left with little or no idea of which model to choose.

This paper considers a grouped-duration hazard model where transition probabil-
ities are given by a parametric family of distributions. The proposed hazard model
contains both logistic and extreme value regression models as special cases, allowing
the choice between logit and cloglog to be reduced to the estimation of a single addi-
tional parameter. In biostatistics it has long been common to fit such flexible families
of models in connection with binary response regression (e.g. Prentice, 1976, and
Aranda-Ordaz, 1981). In the social sciences, the use of such location-scale models
in binary choice modelling was first promoted by Nagler (1994). This paper extends
this approach to the analysis of grouped duration data. An important contribution
of this paper is to show that the class of discrete-time duration models considered
can be linked to an underlying continuous-time process. Specifically, the parametric
specification of the grouped-duration hazard rate is deduced from the asymptotic
distribution of threshold excesses of a continuous duration variable. For ease of
exposition, focus will be placed on unemployment durations throughout the paper,
although the suggested methods are applicable to many other types of durations that
are grouped into intervals.

The remainder of this paper is organized as follows. Section 2 introduces the
hazard model and investigates its properties from a theoretical angle. Section 3

1Both Heckman and Singer (1984) and Lancaster (1990) argue that it is preferable to work in
continuous time and translate to discrete time if necessary.
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contains simulation experiments analyzing the performance of the proposed model.
The simulations focus mainly on the model’s ability to discriminate between the
widely used cloglog and logit specifications of the hazard rate. Section 4 contains an
empirical application using US unemployment data, and Section 5 concludes.

2 The Hazard Rate Model

This section introduces the hazard rate model. A brief introduction of the grouped-
duration framework is followed by an extensive discussion of the hazard specification.
The properties of the proposed hazard rate model are analyzed at the end of the
section.

2.1 The Grouped-Duration Framework

Although unemployment durations are always reported in discrete units (mostly
weeks or months) and are therefore integer valued, the predominant part of the
econometric literature focuses on continuous-time models in which the durations can
take on all values on the positive real line. In continuous time the focal point of the
analysis is the instantaneous exit rate out of unemployment which is defined by the
hazard function. In standard job search models the hazard rate from unemployment
is determined by the joint probability of receiving a job offer and the (conditional)
probability of accepting it. Thus, job search models provide a theoretical framework
for reduced-form analyses of unemployment durations.

Formally, let Ti be a continuous, non-negative random variable denoting the length
of individual i’s unemployment spell. Initially it is assumed that the random variables
Ti are independent and identically distributed with common distribution function
G(t). Then the hazard of any individual at time t is defined as

h(t) := lim
dt→0+

P (t ≤ Ti < t + dt|Ti ≥ t)
dt

. (1)

In a discrete-time framework, the core of the analysis is formed by an indi-
vidual’s probability of leaving unemployment in a given time interval [tk, tk+1),
k = 1, 2, . . ., kmax, and t1 = 0, conditional on being unemployed up to the beginning
of the interval. This conditional probability is termed the discrete-time hazard rate
and formally defined as

hk := P (tk ≤ Ti < tk+1|Ti ≥ tk) = 1− exp
{
−

∫ tk+1

tk

h(t) dt

}
. (2)

The grouped-duration hazard rate given in (2) is typically parameterized as

hk = F (γk),
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where γk is a function of (interval) time that allows the hazard rate to vary across
periods. Somewhat loosely, γk will be referred to as the grouped-duration base-
line hazard in the following, although this term will not be formally correct in all
instances.2 Since there is usually little a priori knowledge about the duration de-
pendence of the hazard rate, it is common to model γk in the most flexible possible
way by means of period-specific dummy variables. However, a (flexible) functional
specification for γk may also be chosen to reduce the number of parameters in the
model. Since the discrete-time hazard is a conditional probability, the function F (·)
needs to be chosen such that 0 ≤ hk ≤ 1 for all k. Obvious choices are the cumulative
distribution functions of the standard normal or the logistic distribution. The hazard
rate can then be estimated using conventional stacked probit or stacked logit regres-
sion models. While this approach is very appealing due to its simplicity, it suffers
from the drawback that the choice of a stacked probit or logit model is rather ad hoc,
and little is known about the underlying continuous-time processes leading to these
grouped-duration specifications. Moreover, as shown by Sueyoshi (1995), the choice
of distributional form for the binary response model is not innocuous in a duration
context. Therefore, the following section proposes a flexible functional specification
of the discrete-time hazard, which is motivated by the asymptotic distribution of
threshold excesses of the underlying individual duration times Ti.

2.2 Functional Specification of the Hazard Rate

The derivation of the hazard specification requires two assumptions about the dis-
tribution of duration times, G(t), which is directly linked to the grouped hazard
through the relation

hk =
G(tk+1)−G(tk)

1−G(tk)
.

First, it is assumed that G(t) is continuous and has unbounded support on [0,∞).
Second, it is assumed that G(t) belongs to the domain of attraction of any one of
the extreme value distributions.3

The requirement that G(t) have unbounded support on the positive real line is
needed to ensure that the discrete hazard is “non-defective”, i.e. to ensure that
hk(z) → 1 as z → ∞. The second assumption is novel in the context of discrete-
time duration analysis. It requires that G(t) belongs to the maximum domain of

2Only if γk is modelled as an interval-specific step function, and if an extreme value minimum
distribution is chosen to specify F (·), γk can be shown to be the exact grouped-duration analogue of
the continuous-time Cox (1972) baseline hazard (see e.g. Kalbfleisch and Prentice, 1973, or Prentice
and Gloeckler, 1978, for a formal proof).

3Formally, this second assumption requires that there exist sequences of constants {an} and {bn},
with an > 0 for all n, and a non-degenerate distribution function H(z) such that for Mn = max

1≤i≤n
(Ti),

lim
n→∞

P ((Mn − bn)/an ≤ z) = H(z) for all z at which H(z) is continuous (see Pickands, 1975).
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attraction of some non-degenerate function H(z). Then, as shown by Fisher and
Tippett (1928), H(z) necessarily belongs to one of the extreme value distributions,
with types I, II, and III widely known as the Gumbel, Fréchet, and Weibull fami-
lies, respectively. This limit theorem for maxima is similar in scope to the central
limit theorem for averages, and valid for the vast majority of common distribution
functions. In particular, the theorem applies to the exponential, Weibull, Gamma,
log-normal, and Burr distributions which are the commonly encountered parametric
specifications in duration modelling. Given these assumptions, a functional specifi-
cation for the grouped-duration hazard can be derived using well-known results from
extreme value theory.

As first shown by Pickands (1975), the generalized Pareto distribution arises as
a limiting distribution for excesses over thresholds, if the parent distribution is con-
tinuous and belongs to the domain of attraction of an extreme value distribution.
Specifically, for any random variable Ti with distribution function, G(t), fulfilling the
two assumptions above, and for a given large threshold τ , the conditional distribution
of Ti given that Ti ≥ tk ≥ τ , which can be expressed as P (tk ≤ Ti < tk + z|Ti ≥ tk),
is very nearly of the form

1−
(

1 +
ξz

σ(tk)

)−1/ξ

.

The above expression describes the generalized Pareto distribution with scale pa-
rameter σ > 0 and shape parameter ξ. With G(t) having unbounded support on
the positive real line, it holds that ξ ≥ 0 and 0 < z < ∞. While σ depends on the
threshold level tk, it can be shown that ξ is constant for all tk above a level τ at which
the asymptotic motivation for the generalized Pareto distribution is valid (see e.g.
Leadbetter et al., 1983, or Embrechts et al., 1997, for extensive surveys on the gen-
eralized Pareto distribution). Setting z = 1 leads – under the common assumption
of equal unit interval length – to the discrete-time hazard rate representation

hk = P (tk ≤ Ti < tk + 1|Ti ≥ tk) = 1−
(

1 +
ξ

σ(tk)

)−1/ξ

. (3)

So far, the specification in (3) does not explicitly allow for individual variation
in the hazard rate. A main objective of econometric duration analysis is, however,
to estimate the effects of explanatory variables on exit probabilities. As in standard
extreme value models, explanatory variables can be incorporated into the model by
writing

hik = 1−
(

1 +
ξ

σ(xxx′ikβββ + γk)

)−1/ξ

for some positive-valued function σ(·) and some vector of (possibly time-varying)
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covariates xxxik.4 In view of the requirement σ > 0, one natural formulation is σ(xxx′ikβββ+
γk) = exp{−(xxx′ikβββ + γk)}, resulting in the hazard rate specification

hik = 1−
(

1 +
ξ

exp{−(xxx′ikβββ + γk)}
)−1/ξ

. (4)

Due to its relation to the generalized Pareto distribution, the discrete-time duration
model resulting from the functional specification in (4) will be referred to as the
Pareto hazard model in the following.

Estimates for the parameters βββ, γk, and ξ can be obtained as in conventional
binary choice models for panel data. The resulting log-likelihood function for a
sample of n individuals is

lnL =
n∑

i=1

ki∑

k=1

[yik ln(hik) + (1− yik) ln(1− hik)], (5)

where hik is specified as in (4), yik is a binary indicator variable taking the value one
if individual i’s unemployment spell is observed to cease during the kth time interval,
and zero otherwise, and ki denotes the last interval where individual i is observed.5

As opposed to conventional hazard specifications such as cloglog or logit, the Pareto
hazard rate contains a shape parameter, ξ, which makes the model considerably more
flexible with respect to the imposed effects of covariates on exit probabilities. In the
following, the properties of the Pareto hazard model are investigated in more detail.

2.3 Properties of the Pareto Hazard Model

The Pareto hazard model specified in (4) contains the two most commonly applied
discrete-time hazard models (cloglog and logit) as special cases. To see this, note
that

lim
ξ→0

(
1−

(
1 +

ξ

exp{−(xxx′ikβββ + γk)}
)−1/ξ

)
= 1− exp{− exp{xxx′ikβββ + γk}},

which is then the definition of hik for ξ = 0. The case ξ = 1 yields the logistic hazard
rate

1
1 + exp{−(xxx′ikβββ + γk)} .

4A detailed discussion of covariate modelling in the context of threshold excess models is provided
by Davison and Smith (1990).

5To obtain consistent parameter estimates from this log-likelihood, spells must be independent,
censoring must occur only at interval boundaries, and censoring must not provide any information
about Ti beyond that available in the covariates (see e.g. Allison, 1982, Singer and Willett, 1993,
or Jenkins, 1995, for excellent surveys on the derivation of the likelihood function).
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Due to its direct relationship to an underlying continuous-time process, the cloglog
model has been widely used in the literature to analyze grouped duration data. In-
deed, the cloglog model is sometimes regarded as a more sophisticated alternative
to conventional probit- or logit-type models with observations pooled across interval
durations (Diamond and Hausman, 1984). But due to its familiarity and simplicity
of computation, the logit model has received increasing attention in both applied and
theoretical work. In unemployment duration studies, the choice of the logit specifica-
tion is also sometimes motivated by the fact that it does not imply the theoretically
unsupported proportional hazards assumption (e.g. Steiner, 2001). However, the
logit model implies the rather restrictive proportional odds assumption which is also
lacking a solid theoretical foundation. Since the Pareto model nests both the cloglog
and the logit model, the choice between these specifications can be reduced to the
estimation of the shape parameter ξ. Moreover, the Pareto model does neither im-
pose proportional hazards nor proportional odds and allows for covariate effects that
are rather different from both the cloglog and the logit model.

The functional specification of hik in equation (4) is given by the cumulative
distribution function of the log-Burr distribution (see Burr, 1942, or Tadikamalla,
1980). Its density function is left-skewed if ξ < 1, right-skewed if ξ > 1, and sym-
metric in the intermediate case ξ = 1. The log-Burr distribution is a special case of
the type IV generalized logistic distribution (see e.g. Johnson et al., 1995), which
has been proposed by Prentice (1975, 1976) for discrimination between parametric
specifications in a binary response model context.6 Prentice has shown that ξ can be
consistently estimated along with the structural parameters by plugging (4) into (5)
and maximizing the log-likelihood function. The maximum likelihood estimate ξ̂ can
then be used to test the suitability of submodels relative to (4) by means of a simple
Wald test. In particular, in the logistic case, ξ = 1, the asymptotic distribution of ξ̂

is normal with mean 1 and variance 4(π2+3)/(N(π2−6)), where N denotes the total
number of observations (person periods) in the sample. At the boundary, ξ = 0, the
asymptotic distribution of ξ̂ is equal to the distribution of a random variable defined
as

ξtrunc =

{
ξ∗ if ξ∗ ≥ 0
0 if ξ∗ < 0,

where ξ∗ ∼ N
(
0;π2/(N(π2 − 6))

)
.

The conventional approach to analyzing grouped duration data is to choose be-
tween a cloglog, logit, or (less often) probit specification of the hazard rate, where
the researcher has little a priori information about the adequacy of the different
specifications for the data under consideration. However, the choice of distributional

6Kalbfleisch and Prentice (1980) consider this distribution for the parametric specification of
continuous-time duration models.
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form for the binary response model is not innocuous in a duration context, and will
have important implications for the effects of covariates on exit probabilities (see e.g.
Narendranathan and Stewart, 1993, or Sueyoshi, 1995). For discrete-time models, a
natural measure of the effects of explanatory variables is derived by examining the
derivative of the log hazard rate with respect to an arbitrary outcome at various
interval durations,

∂ lnh(xxx′βββ + γk)
∂xm

= βm
h
′
(xxx′βββ + γk)

h(xxx′βββ + γk)
,

where h
′ denotes the first derivative of h. This expression provides a measure of the

proportionate change in the hazard rate resulting from changes in the explanatory
variables. In continuous time, the assumption of proportional hazards would ensure
that the derivative of the log hazard rate remains constant over time. This result,
however, does not hold for the discrete-time PH model which does not exhibit pro-
portional interval hazards.7 The relevant issue in discrete-time duration analysis is
rather whether the logarithmic derivative of the hazard is roughly constant across
intervals.

For various functional specifications, Figure 1 plots the logarithmic derivative of
the hazard rate against standardized values of the aggregator function. These stan-
dardized values are calculated as z = (xxx′βββ + γk)/σ− µ/σ, where µ and σ denote the
mean and standard deviation of the respective distribution functions. For reasons of
comparison, Figure 1 also includes the probit hazard, although this functional speci-
fication is not nested in the Pareto hazard model. The degree of non-proportionality
inherent in the different hazard models is indicated by the (absolute) value of the
respective slopes.8 From Figure 1 it is apparent that the slopes for the different
specifications differ considerably at various values of z. In particular, the slope of
the probit curve differs considerably from the other specifications for small values of
z. Thus, the conventional wisdom regarding the similarity of probit and logit models
does not extend to the evaluation of proportionality in the discrete hazard, nor does
it apply to the probit and cloglog specifications. As a result, for duration data ex-
hibiting low to moderate exit rates, the discrete-time hazard rate models employing
a probit specification will tend to depart far more from proportionality than logit
models, which in turn will be slightly less proportional than cloglog models. Logit
and cloglog models diverge most significantly at the center of the distributions. Since
the Pareto hazard model nests both the logit and the cloglog model, it can exhibit

7A model with proportional interval hazards would be obtained from the Pareto model with
ξ = −1, if the class of binary response models considered could be extended in a regular manner to
include negative ξ. This possibility has not been pursued.

8Remember that the grouped-duration baseline hazard is contained in the (standardized) ag-
gregator function. Thus, for given values of xxx, changes in z are solely driven by changes in the
period-specific constants γk.
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identical proportionality effects over the whole range of the aggregator function. It
can also mimic the proportionality effects of the probit hazard rate over a wide range
of z. For low values of z, however, the Pareto model does not perform any better
in copying the non-proportionality of the probit model than do the logit or cloglog
model. In fact, for very low values of z, the Pareto model exhibits almost perfectly
proportional interval hazards, irrespective of the value of ξ.

Figure 1: Proportionate Change in the Hazard Rate for Various Functional Specifications
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This suggests that the Pareto hazard model should only be applied if the group-
ing of the duration times is sufficiently coarse to ensure that the discrete-time exit
probabilities are not altogether close to zero. With sufficiently high interval haz-
ards, the proportionality effect implied by the Pareto hazard model depends on the
shape parameter ξ, where larger values of ξ are associated with a higher degree of
non-proportionality of the interval hazards.

3 Simulation Experiments

This section evaluates the performance of the Pareto hazard model using simulations.
The simulations focus mainly on the estimation of the shape parameter, ξ, of the
Pareto hazard model. Precise estimation of ξ is crucial for discriminating between
submodels such as cloglog and logit. For comparison, models with prespecified values
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of ξ (cloglog and logit) are estimated, and the effects of misspecifying the functional
form of the hazard are analyzed.

3.1 The Data Generating Process

The performance of the Pareto hazard model is investigated in a variety of settings.
These settings vary by (a) the functional specification of the hazard rate; (b) the
sample size used in estimation; (c) the censoring schemes applied for generating the
binary outcome data; and (d) the explanatory variables affecting the hazard rate.

In setting up the data generating process (DGP), the true hazard rates are cali-
brated to resemble those typically observed in data on unemployment spells measured
in months. For the United States, Sider (1985) estimates aggregate monthly proba-
bilities of remaining unemployed over the period 1969 to 1982. For the first month of
unemployment, he reports continuation probabilities ranging from 41 to 59 percent,
thereafter increasing to about 90 to 95 percent for month 10 onwards. This implies
monthly hazard rates of 0.41 to 0.59 for the first month of unemployment, thereafter
declining to about 0.05 to 0.10 by month 10. Using this as a benchmark, the DGPs
are calibrated to generate hazards with about half the sample exiting during the first
month, and that are decreasing with duration.

For all simulations, the DGP considered employs individual hazard rates of the
Pareto form, i.e.

hik = 1−
(

1 +
ξ

exp{−zzzik}
)−1/ξ

,

where ξ takes on the values 1 and 5.9 The index is specified as

zik = xxx′ikβββ + γf(k),

where the two terms represent individual-specific heterogeneity in the hazard rate
and duration dependence, respectively. For all simulations, negative duration depen-
dence is assumed, where f(k) = ln(k), and γ is set equal to −1. Since variation in
the explanatory variables is a key determinant for the precise estimation of ξ, two
different specifications with Var(xxx′ikβββ) = 1 and Var(xxx′ikβββ) = 2 are compared. The
respective DGPs employ either time-invariant covariates, time-varying covariates, or
both. Finally, two different censoring schemes are used for generating the binary
outcome data. In Scheme I (low censoring) all ongoing spells are censored after 12
months. In addition to this type I censoring, Scheme II (high censoring) also involves

9The specification with ξ = 5 was chosen to analyze situations where transition probabilities are
given by a heavily skewed distribution. The specification with ξ = 1 was chosen since it constitutes
the important special case of a logistic hazard rate. Results of the second special case of the Pareto
hazard rate (ξ = 0) are not presented here, since they do not provide additional insights. Simulation
results for this specification are available from the author upon request.
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random censoring, thereby increasing the total fraction of censored spells. For each
of these DGPs, 100 random samples of size 500, 1 000, and 2 000 are generated and
analyzed using different estimation models.

3.2 Monte Carlo Exercises and Estimation Models

The Monte Carlo simulations are organized in three main sets. In the first set, Monte
Carlo exercise A, focus is placed on the estimation of ξ under various circumstances.
In particular, the data are generated using a sequential logit model (i.e. a sequential
Pareto model with ξ = 1) including a single time-invariant covariate. The individual
heterogeneity in the model is specified as

xxx′ikβββ = xiβ,

where β is fixed at 1, and xi ∼ IIDN(0, σx). Two different cases with σ2
x = 1

and σ2
x = 2 are considered. Moreover, two different censoring schemes (Scheme I

and Scheme II described above) are applied. This produces four different DGPs for
simulation exercise A. For each of these DGPs, a logit and a Pareto hazard model
are estimated. Thus, the performance of the Pareto model can be evaluated in
comparison to the “true” hazard model. To evaluate the effects of a flexible baseline
specification on the estimation of β and ξ, all models are estimated using both a
nonparametric dummy baseline and a logarithmic baseline hazard.

The second set of simulations, Monte Carlo exercise B, is concerned with the
consequences of misspecifying the functional form of the hazard rate for the estimated
effects of covariates on exit probabilities. In simulation exercise B, the data are
generated using a sequential logit model with individual heterogeneity specified as

xxx′ikβββ = x1,ikβ1 + x2,ikβ2,

where β1 and β2 are fixed at 1. The variables x1,ik and x2,ik are generated as
independent random draws from a normal distribution with zero mean and variance
0.25 and a demeaned Gamma distribution with variance 0.75, respectively. Three
different simulations for the explanatory variables are considered:

1. Two time-invariant variables that are iid across individuals.

2. Two time-varying variables that are iid across individuals and time.

3. Two independent variables; one constant over time, and one defined as the sum
of a time-invariant variable and a time-varying one.

The first simulation represents an extreme case, where all explanatory variables are
time-constant and thus correlated across time intervals. The second simulation rep-
resents the opposite extreme case, where all explanatory variables are time-varying
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and iid across individuals and time. Both scenarios are interesting from a theo-
retical point of view, but they are not very likely to occur in practice. Thus, the
third simulation represents an intermediate case, where the explanatory variables
are a mixture of time-invariant and time-varying variables that are correlated across
time intervals. For all simulations, logit, cloglog, probit, and Pareto models with
nonparametric baseline specifications are estimated, and the results are compared.

The third set of simulations, Monte Carlo exercise C, is organized in the same way
as exercise B, except that exit probabilities are not logistic but calculated using the
generalized log-Burr distribution with ξ = 5. The aim of this exercise is to analyze
the consequences of misspecifying the functional form of the hazard rate when the
“true” exit probabilities are not given by a symmetric distribution (as in the logit
case) but a heavily (right-)skewed distribution.

For all simulation exercises, the computations were performed in STATA. For
the Pareto hazard model, the maximum likelihood estimation was carried out us-
ing STATA’s method ml d1. For maximizing the Pareto likelihood function, a
Davidon-Fletcher-Powell algorithm was employed, where the starting values were
obtained from a conventional logit specification. All other models were estimated
using STATA’s built-in commands.

3.3 Results

This section presents the results of the Monte Carlo exercises A to C. The results
of exercise A are reported in Table 4. The depicted results are the averages and
standard deviations over 100 replications for the parameters β (the true value of
which is 1), γ (with a true value of −1), and ξ (with true value equal to 1). The
type of DGP used to generate the data is specified by column. More precisely,
four different types of DGPs are considered: sequential logit with Var(xiβ) = 1 or
Var(xiβ) = 2 and with a low or high fraction of censored spells. The low fraction of
censored spells involves only type I censoring, leading to a censoring proportion of
about 16% if Var(xiβ) = 1 and about 20% if Var(xiβ) = 2. In addition to the type
I censoring, a high fraction of censored spells also involves random censoring. The
resulting proportions of censored spells are approximately 24% if Var(xiβ) = 1 and
about 27% if Var(xiβ) = 2. The sample sizes (500, 1 000, or 2 000) and the type of
estimation model used are given by row.

The structural parameter β is estimated very accurately for all sample sizes and
all estimated models considered. Not surprisingly, increasing the sample size reduces
the standard deviation of the estimates. Increasing the proportion of censored spells
does not seem to distort the estimates of β in any of the estimated models, but
does lead to increased standard deviations. The increased standard deviations are
not surprising, since censoring reduces the sample size in terms of person periods.
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A lower variance of xiβ also increases uncertainty in the estimation of β. Finally,
whether the baseline hazard is estimated using the true logarithmic specification or
a nonparametric step function does not seem to affect the estimation results.

When fitting the Pareto model to the different generated data sets, the estimation
of the shape parameter ξ is of particular interest. In general, ξ is very accurately
estimated, but with rather large standard deviations in small samples. Especially
with a sample size of only 500 observations and a high fraction of censored spells,
the estimate of ξ exhibits a large variance. However, increasing the sample size or
the variance of xiβ greatly reduces variation in the estimation of ξ. With 2 000
observations, the effect of censoring on the standard deviation has almost vanished.
For samples of 1 000 or more observations, the estimated values of ξ are significantly
different from 0 for all DGPs considered. Applying the true logarithmic specification
of the baseline hazard instead of period-specific constants slightly reduces uncertainty
in the estimation of ξ. This effect, however, is only modest. Finally, when comparing
the β-estimates between the estimated logit and Pareto models, standard deviations
obtained from the latter ones are approximately twice as large. However, standard
deviations for the β- and γ-estimates obtained from the Pareto hazard models have
to be interpreted with caution. Since the scale of the structural parameters depends
on the shape parameter ξ, uncertainty in the estimation of the shape leads to a
higher variation in the absolute value of the structural parameters.

To summarize, the Pareto hazard model performs well under all circumstances
considered. In order to be able to effectively discriminate between the logit and the
cloglog model, a sample size of 1 000 or more observations is desirable. A high varia-
tion in the explanatory variables across individuals also enhances a precise estimation
of the shape parameter ξ.

The results of Monte Carlo exercises B and C are presented in Tables 5 and 6.
The results reported are the averages and standard deviations over 100 replications
for the covariate coefficients, β1 and β2 (both with a true value of 1), and their ratio
β1/β2. The DGPs used to generate the simulated data are specified by column. More
precisely, 6 different DGPs are considered: a sequential logit model (Table 5) and a
sequential Pareto model with ξ = 5 (Table 6), where the covariates included in the
models are either time-invariant, time-varying, or a mixture of both. In all cases, the
variance of xxx′ikβββ is fixed at 1, and the censoring mechanism involves type I censoring
only. The sample size and the type of estimation model used are specified by row.

The results in Table 5 indicate that choosing a cloglog specification of the hazard
rate when the true one is logit leads to biased estimates of the structural parameters.
For all DGPs and sample sizes, the ratio β1/β2 is greater than 1. While increasing the
sample size reduces the standard deviation, the distortion in the estimated parameter
ratio is persistent. The distortion is largest in the extreme case of two time-invariant
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covariates.10 The Pareto model performs as well as the true logit specification in
estimating the parameter ratio. This holds both for the average estimated ratios
and the respective standard deviations. In terms of estimating the parameter ratio,
the probit model also performs quite well with only a modest underestimation of
the true value in most cases. However, as illustrated in Figure 4, the probit model
exhibits a much higher degree of non-proportionality and generally larger predicted
effects of the covariates on exit probabilities. Figure 4 shows the relative change in the
hazard, associated with a change in the explanatory variable x1, at the period-specific
lower, middle, and upper quartiles of covariates and for all durations. The depicted
values are averages over 100 replications of simulation exercise B with time-invariant
covariates and a sample size of 1 000. As expected from the theoretical discussion in
Section 2.3, the predicted degree of non-proportionality (i.e. the slope of the depicted
curves) is largest for the probit model and smallest for the cloglog model, and the
logit model constitutes the intermediate case. Moreover, the predicted change in
the hazard differs substantially across specifications, especially if hazard rates are
low, i.e. at longer durations and at the lower quartile of covariates. The predicted
change in the hazard is largest for the probit specification and smallest for the cloglog
specification, with the logit model again being the intermediate case. These results
are in line with the empirical findings of Narendranathan and Stewart (1993). The
relative change in the hazard predicted by the Pareto hazard model is practically
indistinguishable from the relative change in the hazard predicted by the true logit
specification. With respect to the predicted hazard rates, the four specifications
do not differ substantially. To economize on space, the respective figures are not
reported in this paper but are available from the author upon request.

Monte Carlo exercise C differs from exercise B only in so far as the true exit
probabilities are given by a highly right-skewed log-Burr distribution (with ξ = 5)
instead of the symmetric logistic distribution. The results of exercise C are reported
in Table 6. As compared to exercise B, the cloglog model results in a noticeably
larger bias in the estimated ratio β1/β2. Again, increasing the sample size does not
reduce the bias. The logit and probit specifications exhibit considerably less bias
in the estimated parameter ratio than the cloglog model, with the probit model
being closest to the true value for all DGPs and sample sizes. As in exercise B, the
Pareto model performs well in estimating the parameter ratio. A striking feature of
the Pareto estimates are the large standard deviations of the parameter estimates
obtained from the 500 observations sample. This is due to the fact that, as ξ gets

10In a recent simulation study, Nicoletti and Rondinelli (2009) find that misspecifying the func-
tional form of the hazard rate causes only a proportional rescaling of the covariate coefficients.
However, Nicoletti and Rondinelli (2009) consider only the special case of normally distributed
covariates, and their findings do not seem to extend to different setups.
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larger, the likelihood function becomes increasingly flat with respect to ξ. This leads
to an increased uncertainty in the estimation of ξ, especially if sample sizes are
small. Since the scale of the parameter estimates obtained from the Pareto model
depends on the value of ξ, an imprecise estimation of the shape manifests itself
in large standard deviations of the parameter estimates. For obvious reasons, this
scale effect does not affect the standard deviation of the estimated ratio β1/β2. For
the various estimation models, Figure 5 shows the estimated relative change in the
hazard associated with a change in the variable x1. As expected from the theoretical
discussion in Section 2.3, the Pareto hazard model exhibits a large degree of non-
proportionality if the shape parameter ξ is large. For the data at hand, the Pareto
model exhibits a considerably higher degree of non-proportionality than the cloglog
and logit specifications. With respect to the slope of the depicted curves, the Pareto
model is similar to the decidedly non-proportional probit specification. However,
for the data considered, even the probit model underestimates the change in the
covariate effects over time.

To sum up the results of Monte Carlo exercises B and C, misspecifying the func-
tional form of the hazard rate is found to have two important negative consequences.
First, estimated relative effects of covariates on exit probabilities are biased. This
bias is more pronounced for time-invariant explanatory variables than for time vary-
ing ones which are independent both across individuals and time. Second, the esti-
mated effect of a single explanatory variable on the relative change in the hazard is
sensitive to the functional specification of the hazard rate. Due to its flexibility, the
Pareto hazard model can incorporate a wide range of proportionality effects.

To summarize, the results from Monte Carlo exercises A-C indicate that the
Pareto hazard model performs well even in small samples. It is shown that, for data
typically encountered in unemployment studies, the Pareto hazard model can be
applied to effectively discriminate between the commonly applied cloglog and logit
specifications of the hazard rate. Moreover, the Pareto model is sufficiently flexible
to allow for a wide range of proportionality effects other than those implied by the
conventional cloglog and logit specifications.

4 An Empirical Example

To examine the performance of the Pareto hazard model in practice, a sample of un-
employment duration data taken from the Panel Study of Income Dynamics (PSID)
is analyzed in the following.11 The focus of the analysis is placed on the effectiveness
of the Pareto model in discriminating between submodels such as the cloglog and

11More extensive analyses of this sample can be found in papers by Katz (1986), Han and Hausman
(1990), and Sueyoshi (1995).

15



the logit. In addition, models with different (fixed) values of ξ are estimated on the
same data to investigate the implications of the functional form assumptions for the
effects of covariates on the hazard rate.

Table 1: Variable definition and descriptive statistics of the PSID unemployment
spell sample (n = 1 055)

Variable Description Mean S.D.
Demographic and economic variables

Age Age of individual in years 33.154 10.607
Female Indicator for female 0.167 0.373
Schooling Years of schooling 11.341 2.170
Non-white Indicator for non-white 0.506 0.500
Dependents Number of dependents in household 3.038 1.639
UI receipt Indicator for receipt of UI during spell 0.636 0.481
Married Indicator for marital status in previous year 0.632 0.482
Unemployment Local rate of unemployment 7.701 2.551
Wife employed Indicator for wife’s employment status 0.342 0.475
Homeowner Indicator for homeownership 0.439 0.496

Industry dummies

Equipment Indicator for transportation equipment 0.118 0.322
Metals Indicator for metals 0.058 0.234
Durables Indicator for other durable goods 0.123 0.329

manufacturing (excluding metals)
Non-durables Indicator for non-durable goods 0.133 0.339

manufacturing
Trade Indicator for wholesale or retail trade 0.103 0.305
Transportation Indicator for transportation 0.080 0.271

or public utilities
Mining Indicator for mining or agriculture 0.034 0.182
Service Indicator for services 0.172 0.377
Construction Indicator for construction 0.180 0.384

Occupation dummies

Laborer Indicator for laborer or operative 0.508 0.500
Craft Indicator for craftsman 0.228 0.416
Clerical Indicator for clerical, services, sales 0.186 0.389
Manager Indicator for manager 0.045 0.206
Professional Indicator for professional 0.039 0.139

or technical worker

Source: Author’s calculation from PSID sample and Katz (1986).

The data used in the analysis are taken from the waves 14 and 15 of the PSID
(years 1980 and 1981) and consist of observations on 1 055 unemployment spells
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accounting for a total of approximately 13 300 person-period responses. In addition
to the spell durations, the data provide information on a variety of demographic
and economic characteristics for each individual and an indicator of whether a spell
ended via a new job, recall, or by censoring.12 A brief description of the explanatory
variables used in the analysis and descriptive statistics are given in Table 1.

Table 2: Estimated Effects of Selected Covariates on Job Recall Hazards for
Various Specifications of the Discrete Hazard Function

Pareto hazard Logit hazard Cloglog hazard Pareto hazard
(ξ = 5) (ξ = 1) (ξ = 0) (ξ > 0)

Age 0.0162 0.0148 0.0144 0.0144
(0.0054) (0.0045) (0.0043) (0.0043)

Female −0.0040 −0.0141 −0.0159 −0.0159
(0.1814) (0.1608) (0.1554) (0.1554)

Schooling −0.0362 −0.0301 −0.0286 −0.0286
(0.0278) (0.0234) (0.0221) (0.0221)

Non-white −0.2925 −0.2508 −0.2397 −0.2397
(0.1170) (0.1012) (0.0971) (0.0971)

Dependents −0.0110 −0.0042 −0.0023 −0.0023
(0.0366) (0.0308) (0.0292) (0.0292)

UI receipt −0.2171 −0.1947 −0.1882 −0.1882
(0.1163) (0.1003) (0.0961) (0.0961)

Married 0.0755 0.0505 0.0446 0.0446
(0.1759) (0.1526) (0.1465) (0.1464)

Unemployment −0.0070 −0.0067 −0.0067 −0.0067
(0.0203) (0.0173) (0.0165) (0.0165)

Wife employed 0.1647 0.1345 0.1268 0.1268
(0.1252) (0.1055) (0.1004) (0.1003)

Homeowner 0.4939 0.4113 0.3905 0.3905
(0.1190) (0.1026) (0.0985) (0.0985)

Industry dummies yes yes yes yes
Occupation dummies yes yes yes yes

Shape ξ 5 1 0 0.0000
(0.0071)

Log-likelihood −2170.14 −2168.37 −2167.89 −2167.89

Note: Standard errors in parentheses. For each of the four models, the baseline hazard is
modelled nonparametrically using duration dummies. All estimates are derived from 1 055
unemployment spells corresponding to 13 246 person periods.

Table 2 presents parameter estimates from four different specifications of the recall
hazard. Following Sueyoshi (1995), exit from unemployment via a new job is consid-

12A detailed description of the data set is provided by Katz (1986). The data are available for
download at http://qed.econ.queensu.ca/jae.
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ered an independent competing risk, and the corresponding durations are treated as
censored outcomes. All durations exceeding 40 weeks are artificially right-censored.
In all model specifications the baseline hazard is estimated nonparametrically using
period-specific dummy variables. The first three columns of Table 2 show estimates
from the Pareto hazard model with ξ being fixed at different values. In particular,
columns two and three correspond to the logit and cloglog models of Table II in
Sueyoshi (1995). The last column of Table 2 contains estimates from the Pareto
hazard model, where ξ is estimated along with the structural parameters.

Figure 2: Relative Change in the Recall Hazard Associated with a Change in the UI
Receipt Indicator Variable

−.2

−.18

−.16

−.14

−.12

−.1

R
el

. 
C

h
an

g
e 

in
 R

ec
al

l 
H

az
ar

d

0 10 20 30 40
Unemployment Duration

Cloglog

Logit

Pareto         

Probit

(ξ = 5)

Overall, the different model specifications yield quite similar results. Due to
differences in scale, models with larger values of ξ yield slightly larger parameter
estimates (and standard errors) in absolute values. The differences, however, are not
striking, and none of the predicted covariate effects changes sign across specifications.
The fit of the models in likelihood terms is very similar across specifications. In
particular, the log-likelihood values obtained from the cloglog and logit specifications
are almost identical. It would thus be premature to prefer one model over the others
on the basis of a simple likelihood criterion. However, despite their similarities at
first sight, the model specifications are quite different with respect to the imposed
effect of explanatory variables on the hazard rate. This is illustrated in Figure 2.
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Figure 2 depicts the relative change in the recall hazard due to a change in the
receipt of unemployment insurance for a representative individual (married white
male, 30 years old, 12 years of education, home owner, wife employed, 3 dependents,
laborer in metals industry, 7% regional unemployment rate). Since the receipt of
unemployment insurance is merely indicated by a dummy variable, the proportionate
change in the recall hazard cannot be calculated in the usual manner as the derivative
of the log hazard rate at various interval durations. Instead, the relative change in
the hazard associated with a discrete change in the UI receipt indicator is computed
for various durations and hazard specifications.13 Specifically, the effect of receiving
unemployment benefits is calculated as the relative change in the hazard when the
UI receipt indicator is first set to 0 and then to 1, i.e.

h(UI = 1)− h(UI = 0)
h(UI = 0)

.

The differences across model specifications are striking. As expected, the PH
assumption imposed by the cloglog model results in covariate effects with low vari-
ability over time. The logit model exhibits somewhat greater non-proportionality,
whereas the Pareto model with ξ fixed at 5 predicts largely non-proportional effects
of the UI receipt indicator. In fact, the latter specification is very similar to the
decidedly non-proportional probit model.

Table 3: Descriptive Statistics for the Relative Change in the Recall Hazard
Associated with the UI Receipt Indicator

Cloglog Logit Pareto (ξ = 5) Probit

Mean −0.165 −0.163 −0.157 −0.151
Standard deviation 0.006 0.011 0.025 0.024
Minimum −0.171 −0.175 −0.189 −0.195
Maximum −0.147 −0.133 −0.099 −0.104

Note: The relative change is computed for a representative individual (married white male,
30 years old, 12 years of education, home owner, wife employed, 3 dependents, laborer in
metals industry, 7% regional unemployment rate).

With ξ = 5, the variability in the predicted effect of the UI receipt indicator – as
measured by the standard deviation of the relative change in the recall hazard over

13There are two reasons why the variable UI receipt was chosen to illustrate the effect of covariates
on the hazard rate. First, as opposed to most of the other explanatory variables employed in the
regression, the effect of unemployment benefits on the hazard is significant (at least at the 10%
level) for all model specifications. Second, the effect of unemployment benefits is of high political
relevance and frequently analyzed in both theoretical work (e.g. van den Berg, 1990a) and empirical
studies (e.g. Narendranathan and Stewart, 1993).
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time – is about four times larger than under the PH assumption (0.025 vs. 0.006).
Looking at the lowest and highest benefit effects, the Pareto specification with ξ = 5
predicts that the receipt of unemployment benefits will decrease the recall hazard by
about 10 percent in the second week and by roughly 19 percent in week 21. This
can be compared to the corresponding effects predicted by the grouped-duration PH
model, which are approximately 15 and 17 percent, respectively. Further summary
statistics are presented in Table 3.

Figure 3: Predicted Recall Hazard for a Representative Individual
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Finally, Figure 3 shows the predicted recall hazard function for a representative
individual (married white male, 30 years old, 12 years of education, home owner,
wife employed, 3 dependents, laborer in metals industry, 7% regional unemployment
rate, no unemployment benefits) obtained from the four different specifications of
the discrete hazard rate. Overall, the absolute differences in the predicted hazard
across model specifications are not striking. This is, however, not surprising, since
the weekly hazard rates are generally rather low. For short durations with relatively
high hazard rates, some noticeable differences between model specifications exist. In
particular, the predicted hazard rates for the second week of unemployment range
from approximately 0.25 for the Pareto model with ξ = 5 to about 0.30 for the cloglog
specification. Surprisingly, even with regard to the predicted hazard rates, the probit
model yields similar results as the highly skewed Pareto specification, whereas the
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logit model is close to the grouped-duration PH specification.
To summarize, the findings of this empirical example indicate that the Pareto

hazard model is sufficiently flexible to allow for a wide range of proportionality pat-
terns for the effects of explanatory variables on exit probabilities. It incorporates the
cloglog and logit models as special cases, and can produce results that are similar
to the probit specification both in terms of predicted hazard rates and the imposed
effects of covariates on the hazard rate. The choice between different model specifi-
cations can thus be reduced to the estimation of a single additional parameter. For
the data considered in this empirical example, estimation results from the Pareto
model lend support to the PH assumption. As presented in the last column of Ta-
ble 2, the estimate for ξ is virtually zero, with a very low standard error of 0.0071.
Formally, the null hypothesis ξ = 0 can be tested against the one-sided alternative
ξ > 0 on the basis of the asymptotic normality of ξ̂, where the probability that ξ̂ ≤ 0
is amassed at 0 (see Prentice, 1975). For the data at hand, the asymptotic results
imply rejection of the null hypothesis at the 5% significance level if ξ̂ > 1.64×0.0071.
Clearly, this is not the case, and the PH assumption cannot be rejected for the data
sample under consideration.

5 Concluding Remarks

This paper introduces a new hazard rate model for grouped duration data, which
includes the widely applied cloglog and logit hazard models as special cases. The
paper provides new insights into the interrelation between continuous-time duration
processes and grouped-duration hazard specifications. In particular, it is shown that
the class of discrete-time hazard models considered can be linked to the asymptotic
distribution of threshold excesses of an underlying continuous duration variable.

The performance of the proposed Pareto hazard model is investigated using sim-
ulated and empirical data. It is shown that the model works well under a variety of
circumstances covering variations in sample size, the proportion of censored spells,
and the types of explanatory variables included. It is also shown that the estimated
effects of covariates on exit probabilities are very sensitive to the functional specifi-
cation of the hazard rate. Thus, the choice between cloglog, logit, and probit hazard
models is not innocuous in a duration context. Since the Pareto hazard model con-
tains an additional shape parameter, it is very flexible with respect to the imposed
effects of explanatory variables on the hazard. The Pareto hazard model nests both
the cloglog and the logit model, which reduces the choice between these models
to the estimation of a single additional parameter. Moreover, the Pareto model is
also capable of exhibiting covariate effects that are very similar to the decidedly
non-proportional probit hazard model.
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Throughout the paper it is implicitly assumed that all individual variation in
the hazard rate can be observed. This assumption, however, is unlikely to hold
in practice, and accounting for unobserved heterogeneity may well be important.
In particular, it is well-known that the neglect of unobserved heterogeneity may
cause spurious negative duration dependence of the estimated baseline hazard (see
e.g. Lancaster, 1979, Nickell, 1979, or Vaupel and Yashin, 1985). The negative
consequences of neglecting latent heterogeneity may then be more severe than effects
of misspecifying the functional form of the discrete-time hazard rate. It is thus
advisable to test for the presence of unobserved factors before applying the Pareto
hazard model. Evaluating the effect of unobserved heterogeneity on the estimation
of ξ and establishing a way to account for latent factors in the Pareto hazard model
should therefore be seen as a fruitful area for future research.
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Appendix: Simulation Results

Table 4: Parameter Estimates from Monte Carlo Exercise A. DGP: Logit with
Negative Duration Dependence

Var(xiβ) = 1 Var(xiβ) = 2

Estimated Fraction of censored spells
model n low high low high

Logit with β 0.994 (0.076) 1.020 (0.096) 0.999 (0.066) 1.024 (0.082)
log. baseline

500
γ −0.995 (0.088) −0.991 (0.111) −0.997 (0.097) −0.987 (0.121)

β 1.006 (0.058) 1.005 (0.070) 1.009 (0.049) 1.010 (0.056)1 000
γ −0.991 (0.068) −1.002 (0.077) −0.989 (0.073) −0.996 (0.083)

β 1.006 (0.039) 1.001 (0.044) 1.001 (0.037) 1.002 (0.035)2 000
γ −0.999 (0.040) −0.997 (0.057) −0.997 (0.041) −0.998 (0.058)

Logit with 500 β 0.997 (0.075) 1.022 (0.096) 1.001 (0.066) 1.026 (0.082)
dummy 1 000 β 1.007 (0.058) 1.006 (0.070) 1.010 (0.049) 1.011 (0.056)
baseline

2 000 β 1.007 (0.039) 1.002 (0.043) 1.002 (0.037) 1.003 (0.035)

Pareto with β 0.996 (0.148) 1.051 (0.207) 1.004 (0.128) 1.027 (0.170)
log. baseline 500 γ −0.995 (0.125) −1.018 (0.194) −0.998 (0.115) −0.988 (0.161)

ξ 0.996 (0.533) 1.126 (0.839) 1.008 (0.382) 0.999 (0.569)

β 1.015 (0.105) 1.023 (0.133) 1.013 (0.082) 1.019 (0.116)
1 000 γ −0.997 (0.088) −1.015 (0.117) −0.992 (0.087) −1.001 (0.107)

ξ 1.039 (0.378) 1.066 (0.450) 1.016 (0.286) 1.027 (0.367)

β 1.013 (0.082) 1.005 (0.094) 1.003 (0.058) 1.001 (0.066)
2 000 γ −1.004 (0.068) −0.999 (0.079) −0.999 (0.058) −0.997 (0.070)

ξ 1.029 (0.319) 1.012 (0.324) 1.010 (0.219) 0.994 (0.228)

Pareto with β 1.002 (0.151) 1.072 (0.236) 1.006 (0.136) 1.035 (0.186)
dummy

500
ξ 1.018 (0.578) 1.186 (0.937) 1.007 (0.420) 1.017 (0.626)

baseline β 1.029 (0.116) 1.026 (0.142) 1.022 (0.090) 1.026 (0.124)1 000
ξ 1.091 (0.413) 1.073 (0.494) 1.047 (0.324) 1.047 (0.416)

β 1.014 (0.087) 1.007 (0.097) 1.003 (0.060) 1.003 (0.071)2 000
ξ 1.028 (0.334) 1.016 (0.352) 1.005 (0.228) 0.997 (0.251)

Note: The displayed parameter estimates are average values based on 100 replications of
the simulation experiment (standard deviations in parentheses). The true parameter values
are 1 for β and ξ, and −1 for γ.
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Table 5: Parameter Estimates from Monte Carlo Exercise B. DGP: Logit with
Negative Duration Dependence

Estimated Type of covariates
model n time-invariant time-varying mixture
Logit with β1 1.010 (0.146) 1.034 (0.137) 1.016 (0.145)
dummy 500 β2 1.009 (0.119) 1.020 (0.082) 1.018 (0.099)
baseline β1/β2 1.011 (0.166) 1.019 (0.151) 1.003 (0.145)

β1 0.996 (0.108) 1.026 (0.090) 1.004 (0.096)
1 000 β2 1.002 (0.084) 1.005 (0.058) 1.016 (0.062)

β1/β2 0.999 (0.123) 1.022 (0.099) 0.990 (0.099)
β1 1.004 (0.072) 1.007 (0.066) 1.006 (0.068)

2 000 β2 1.004 (0.057) 1.012 (0.036) 1.008 (0.051)
β1/β2 1.003 (0.087) 0.996 (0.067) 0.999 (0.070)

Cloglog with β1 0.775 (0.109) 0.770 (0.103) 0.772 (0.114)
dummy 500 β2 0.692 (0.093) 0.707 (0.064) 0.715 (0.070)
baseline β1/β2 1.133 (0.188) 1.097 (0.168) 1.084 (0.159)

β1 0.765 (0.085) 0.768 (0.069) 0.761 (0.078)
1 000 β2 0.683 (0.065) 0.701 (0.043) 0.717 (0.052)

β1/β2 1.128 (0.143) 1.099 (0.117) 1.065 (0.115)
β1 0.766 (0.059) 0.750 (0.051) 0.765 (0.052)

2 000 β2 0.678 (0.043) 0.695 (0.035) 0.711 (0.039)
β1/β2 1.133 (0.103) 1.082 (0.080) 1.077 (0.079)

Probit with β1 0.577 (0.083) 0.604 (0.078) 0.583 (0.082)
dummy 500 β2 0.589 (0.069) 0.600 (0.048) 0.591 (0.056)
baseline β1/β2 0.988 (0.163) 1.012 (0.148) 0.992 (0.141)

β1 0.567 (0.061) 0.599 (0.053) 0.577 (0.055)
1 000 β2 0.585 (0.048) 0.592 (0.033) 0.590 (0.035)

β1/β2 0.974 (0.121) 1.015 (0.098) 0.980 (0.099)
β1 0.572 (0.041) 0.589 (0.039) 0.577 (0.039)

2 000 β2 0.586 (0.033) 0.595 (0.021) 0.585 (0.029)
β1/β2 0.978 (0.086) 0.990 (0.067) 0.988 (0.071)

Pareto with β1 1.028 (0.246) 1.060 (0.234) 1.054 (0.191)
dummy 500 β2 1.031 (0.269) 1.056 (0.242) 1.071 (0.199)
baseline β1/β2 1.014 (0.166) 1.018 (0.160) 0.998 (0.149)

β1 1.003 (0.167) 1.026 (0.132) 1.015 (0.128)
1 000 β2 1.015 (0.186) 1.009 (0.129) 1.029 (0.116)

β1/β2 1.000 (0.131) 1.022 (0.102) 0.990 (0.100)
β1 1.018 (0.091) 1.013 (0.100) 1.008 (0.098)

2 000 β2 1.023 (0.099) 1.019 (0.085) 1.011 (0.091)
β1/β2 0.999 (0.089) 0.996 (0.067) 0.999 (0.071)

Note: The displayed parameter estimates are average values based on 100 replications of
the simulation experiment (standard deviations in parentheses). The true parameter values
are 1 for β1 and β2. While the estimated parameters are identified only up to scale, the
estimated ratio β1/β2 needs to equal 1 for all estimated models.
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Table 6: Parameter Estimates from Monte Carlo Exercise C. DGP: Pareto (ξ = 5)
with Negative Duration Dependence

Estimated Type of covariates
model n time-invariant time-varying mixture
Logit with β1 0.671 (0.120) 0.659 (0.103) 0.686 (0.116)
dummy 500 β2 0.581 (0.079) 0.560 (0.060) 0.611 (0.072)
baseline β1/β2 1.174 (0.260) 1.131 (0.225) 1.134 (0.210)

β1 0.656 (0.096) 0.656 (0.075) 0.669 (0.086)
1 000 β2 0.593 (0.061) 0.587 (0.050) 0.595 (0.046)

β1/β2 1.113 (0.173) 1.125 (0.165) 1.129 (0.156)
β1 0.681 (0.064) 0.645 (0.052) 0.661 (0.059)

2 000 β2 0.585 (0.034) 0.586 (0.033) 0.599 (0.036)
β1/β2 1.166 (0.113) 1.104 (0.101) 1.107 (0.108)

Cloglog with β1 0.573 (0.104) 0.554 (0.091) 0.583 (0.100)
dummy 500 β2 0.451 (0.065) 0.460 (0.050) 0.478 (0.060)
baseline β1/β2 1.294 (0.295) 1.220 (0.246) 1.236 (0.240)

β1 0.559 (0.084) 0.551 (0.065) 0.567 (0.075)
1 000 β2 0.455 (0.051) 0.456 (0.039) 0.459 (0.039)

β1/β2 1.237 (0.202) 1.217 (0.183) 1.241 (0.176)
β1 0.579 (0.057) 0.541 (0.045) 0.559 (0.049)

2 000 β2 0.450 (0.029) 0.451 (0.026) 0.461 (0.031)
β1/β2 1.291 (0.126) 1.203 (0.112) 1.217 (0.129)

Probit with β1 0.375 (0.067) 0.374 (0.057) 0.385 (0.064)
dummy 500 β2 0.338 (0.045) 0.343 (0.034) 0.354 (0.041)
baseline β1/β2 1.129 (0.251) 1.103 (0.216) 1.099 (0.203)

β1 0.366 (0.052) 0.373 (0.043) 0.376 (0.047)
1 000 β2 0.345 (0.035) 0.341 (0.029) 0.344 (0.027)

β1/β2 1.068 (0.164) 1.099 (0.160) 1.097 (0.152)
β1 0.381 (0.035) 0.367 (0.030) 0.371 (0.033)

2 000 β2 0.341 (0.020) 0.341 (0.019) 0.346 (0.021)
β1/β2 1.120 (0.110) 1.079 (0.098) 1.076 (0.107)

Pareto with β1 1.276 (2.208) 1.330 (1.976) 1.248 (1.419)
dummy 500 β2 1.406 (3.551) 1.350 (2.008) 1.380 (2.492)
baseline β1/β2 1.035 (0.243) 1.031 (0.226) 1.008 (0.204)

β1 1.004 (0.202) 1.074 (0.245) 1.089 (0.236)
1 000 β2 1.054 (0.245) 1.070 (0.257) 1.111 (0.293)

β1/β2 0.972 (0.161) 1.017 (0.151) 1.000 (0.154)
β1 1.047 (0.156) 1.027 (0.144) 1.024 (0.145)

2 000 β2 1.038 (0.177) 1.035 (0.144) 1.040 (0.160)
β1/β2 1.019 (0.114) 0.995 (0.091) 0.992 (0.106)

Note: The displayed parameter estimates are average values based on 100 replications of
the simulation experiment (standard deviations in parentheses). The true parameter values
are 1 for β1 and β2. While the estimated parameters are identified only up to scale, the
estimated ratio β1/β2 needs to equal 1 for all estimated models.
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Figure 4: Proportionate Change in the Hazard Rate Associated with a Change in x1.
Monte Carlo Exercise B. DGP: Logit with Negative Duration Dependence.
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Figure 5: Proportionate Change in the Hazard Rate Associated with a Change in x1.
Monte Carlo Exercise C. DGP: Pareto (ξ = 5) with Negative Duration Dependence.
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