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Abstract: Beliefs in signals that reveal lies or truths are widespread. These signals may 

lead to a truth or lie detection bias if the probability that such a signal is perceived by the 

receiver is contingent on the truth value of the sender’s message. Such detection biases 

are analyzed theoretically in a bluffing game. The detection bias shrinks the equilibrium 

set to a unique non-pooling equilibrium, in which the better a player is at detecting lies 

the more often the opponent player will lie. With proper deception techniques such biases 

can in principle be used to extract hidden information. 
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1 Introduction 

”Your poker face needs work my friend. It took me several 
seconds , but I can see now that you are lying." 
Dan Brown, The Da Vinci Code (2004, p. 553). 

A recurring theme in fiction is that a character believes that others can see through his 

lies or that he can tell if someone is lying just by looking at or listening to him. In 

Dostoevsky’s “Crime and Punishment” Raskolnikov is haunted by thoughts that 

police superintendent Nikodim Fomitj can tell that he is lying, and Sir Leigh Teabing 

in “The Da Vinci Code” believes, as the quote above indicates, that he has the ability 

to call a bluff. Furthermore, it is not uncommon that people in real life claim that they 

can see through a lie, while others claim that they are quite bad at bluffing.1 In addition 

to this, psychological research suggests that although people in general are relatively 

bad at distinguishing lies from truths, they tend to believe that certain observable non-

verbal cues indicate lies (see e.g., Vrij, 2000, p.58). This psychological inclination 

motivates further investigations into the theoretical implications of lie detection cues 

in strategic situations. This paper will suggest a simple way to model lie detection and 

demonstrate that lie detection cues may have important theoretical consequences in 

situations of pure conflict of interest. 

Lying in strategic situations has received little attention in economic theory.2 

The standard assumption is that if a player does not want to, communication does not 

necessarily disclose his type or his intentions. Thus, lying is possible and costless. 

                                                            
1 Beliefs about such abilities might have had some historical impact. One example is when Hitler in a 
meeting before WWII lied to the ex-British Prime Minister Chamberlain about his intentions to invade 
Czechoslovakia. Chamberlain, obviously with a certain confidence in his abilities to identify liars, 
wrote to his sister: “in spite of the hardness and ruthlessness I thought I saw in his (i.e., Hitler’s) face, I 
got the impression that here was a man that could be relied upon when he had given his word” (Ekman, 
1992, pp15-16, parenthesis is mine.) In the Parliament Chamberlain said that he was convinced that 
Hitler did not try to deceive him. Czechoslovakia was invaded by Germany a few weeks later. 
2 There is however, a small number of interesting papers that experimentally investigate lying or issues 
closely related to it (see e.g., Frank et al., 1993, Ockenfels and Selten 2000, Brosig, 2002, Brandts and 
Charness, 2003, Charness and Dufwenberg, 2006, Gneezy, 2005). However, the approaches in these 
papers differ from the present one in that they involve reasoning about consequences, intentions, social 
preferences, or preferences for lying. Furthermore, the game analysed in these papers also differs from 
the pure conflict of interest game studied here. 
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Without this assumption the literature on asymmetric information ought to be 

fundamentally modified. 

As recognized by Crawford (2003) and Hendricks and McAfee (2003) 

many strategic situations involve a stage where one party has the opportunity to 

misrepresent information. One such example of pure conflict of interest is where to attack 

in a war. Since disclosure of real intentions can be exploited by the counterpart, game 

theory (see Crawford and Sobel, 1982) predicts that zero-cost messages sent in such 

games are not informative (i.e., cheap talk). However, Crawford (2003) argues that there 

are many examples in reality where such messages are actually sent and appear to have an 

effect. If players are heterogeneous with respect to their reasoning capacity, Crawford 

(2003) has demonstrated that misrepresentation in such games may matter. However, 

there is also a more direct and psychological explanation. Players may actually be able, or 

believe that they are able, to recognize signals that are directly observed and related to the 

act of lying or truth-telling. Now, if such signals are present, there is no obvious reason to 

assume that “lie signals” are as accurate as “truth signals”. If there is a difference between 

an individual’s (imagined or real) ability to detect a lie and his ability to detect a truth, 

there is a detection bias. Mathematically, such a bias implies that the likelihood of 

detecting a lie is conditional on if the message is a lie or a truth, and furthermore, that the 

conditional likelihood of detecting a lie differs from that of detecting a truth. The aim of 

this paper is to analyze the implication of such a bias. 

Psychological research indicates that detection biases are possible. For 

instance, a review based on some 40 studies (see Vrij, 2000, p.69) noted a 67 percent 

average accuracy rate for detecting truths. The corresponding accuracy rate for detecting 

lies was only 44 percent. One possible explanation is a truth detection bias.3 Furthermore, 

lie and truth signals obtained by new techniques may also involve detection biases. One 
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promising finding in neuroscience (see Langleben et al., 2002) is that certain simple lies 

(which involve inhibitory processes) are associated with higher activity in certain areas of 

the brain. The increased activity is detectable by functional magnetic resonance imaging 

of the brain.4 

In this paper it is not important if people in general are better at recognizing 

truths than lies or vice versa, the important thing being that beliefs about the recognizing 

capacity might differ and be conditional on whether the truth is told. One possibility is 

detection biases that are relationship specific. For instance, a man may know (or believe) 

that his wife sometimes with certainty can tell when he is lying and both are fully aware 

of this. The reason might simply be that the man is a hopelessly poor liar and that the wife 

has become a good lie detector after learning some observable cues associated with her 

husband’s lies. When lying, the man is not in full control of when he emits these cues. 

The issue of detection biases is certainly (to the author’s knowledge) new in 

economics and game theory, and it would appear that analyzing detection biases with 

game theoretical tools is something new in psychology. To investigate the effects of 

detection bias, a simple signaling game is introduced and analyzed in section 2. 

Implications of the results are discussed in section 3 and the paper ends with some 

concluding remarks. 

 

                                                                                                                                                                          
3 It should be mentioned that this difference can be explained in different ways. One important part of 
the difference is that people have a tendency to judge other’s statements as truthful. 
4 For a popular treatment on evidence that lying and truth-telling generate physiologically different 
effects that are observable with e.g., modern brain-scanning techniques (see The Economist, 2004, July 
10th, “Lie Detection, Making Windows in men’s souls, p. 71-2). If lying creates physiologically 
different reactions from truth-telling, it is not impossible that some of these physiological differences 
also generate differences in behavior that are i) observable ii) more easily recognizable for truths (or 
lies) than for lies (truths). Recent voice stress analyzing software is partly based on this idea. Despite 
the fact that its reliability has been debated, this software has already been used by British insurance 
companies to screen telephone claims in the hope of detecting fraud (see New York Times, 2004, July 
1st, “It's the Way You Say It, Truth Be Told”, Technology section). 
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2 Theory 

This section will analyze detection biases theoretically. The game, denoted as the 

Bluffing game, can be presented as follows. In period 1 Nature selects the state variable 

{ }BRs ,∈  with probability 21=Np . The S-player then observes a perfect signal of s. In 

period 2, S makes a statement { }RBm ,∈  to the R-player about s. R is then to make a 

guess, { }FTg ,∈ , as to whether the statement is true ( Tg = ) or false ( Fg = ). A 

statement is said to be true if sm =  and false otherwise. R wins 1, if her guess correct, 

that is if Tg =  and sm = , or if Fg =  and sm ≠ . In that case S gets zero. If R’s guess 

is incorrect S wins 1 and R gets zero.5 

 There is an infinite number of mixed (perfect Bayesian) equilibria in this game. 

These equilibria can be characterized by [ ]1,0∈Bp  and 21=Tp , where Bp  and Tp  

denote the probability of player S stating B (i.e., Bm = ) and the probability of player R 

guessing that the statement is true (i.e., Tg = ), respectively.6 Furthermore, R believes 

that the probability of being in either node in the non-singleton information sets is 21 .7 

There are also pure pooling equilibria, where S makes a statement (R or B) with 

probability one and player R chooses for each statement either T or F with probability 

one. 

 

2.1. Detection Bias in a Game Theoretical Setting 

We will phrase the detection bias as a truth detection bias and then show that lie detection 

biases can be modeled in a symmetrical way. Incorporating a truth detection bias in this 

                                                            
5 This game can be interpreted as a signalling game (see e.g., Gibbons, 1992), where Nature draws S’s 
(i.e., the sender’s) type after which he sends a message to R (the receiver) who forms beliefs about S’s 
type and chooses an action contingent on these beliefs. The game in its extensive form is given in 
Figure A1 in the appendix. 
6 Note, in the full extension of the game S’s strategy is obviously contingent on the state, but in any 
mixed equilibrium the probability of S sending a certain message will be the same for both states. 
Similarly, the probability of R making a certain guess is contingent on the statement, but in any mixed 
equilibrium this probability is the same for both statements. To simplify the notation these probabilities 
are written as if they are unconditional. 
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paper involves adding a stage in the game where R with a certain probability ( )1,0∈π  

observes a perfect signal if the statement is true.8 This stage takes place after S has made 

his statement and only if S tells the truth (i.e., sm = ). In the proof of Proposition 1 we 

show that as soon as a truth detection bias is introduced the pooling equilibria vanish and 

the game can be reduced to the one in Figure 1. Since the decision to lie or tell the truth is 

crucial for S in the remaining equilibrium, the analysis can do without referring to the 

state variable in this symmetrical game. In the reduced form of the game we simply say 

that S chooses between telling the truth (T) or lying (L), where T means sm =  and F 

means and sm ≠ .  

Before the equilibrium is derived some variables will be introduced. Let a 

denote the probability of S choosing T, and let μ  denote R’s beliefs that she is at node R2 

in Figure 1 when in this information set. Finally, let b denote the probability of R 

choosing T in the information set that is not singleton (i.e., consisting of nodes R2 and R3) 

and let c be the corresponding probability for the singleton node (R1). 

Proposition 1: Introducing a truth bias as described above leads to a unique perfect 

Bayesian equilibrium in the Bluffing game. The equilibrium is characterized by 

( )π−= 21*a , ( ) ( )ππ −−= 21*b , 1* =c  and 21* =μ . 

Proof: Let us start by ruling out all pooling equilibria. Suppose, in the non-reduced 

game, that e.g., B is played with a certain strictly positive probability that is state 

independent (i.e., pooling), then R’s updated belief concerning the probability of 

being in either node of the non-singleton information set will differ. Since R has not 

received a truth signal, it is more probable that S has lied about the state. This makes 

it optimal for R to set 0=b . Clearly, this cannot be consistent with equilibrium, since 

S will expect this and react to it. 

                                                                                                                                                                          
7 Se Figure A1. 
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Let us now derive the non-pooling mixed equilibrium by analyzing R’s 

decision in the last stage, where there are two different information sets corresponding to 

node R1 and the two nodes R2 and R3 in Figure 1. 9 At node R1, R has received a perfect 

signal, which means that it is optimal to set 1* =c . At nodes R2 and R3, R’s conditional 

expected payoff from choosing T and F will be ( ) ( )ππ aa −− 11  and ( ) ( )πaa −− 11 , 

respectively. These payoffs must be equal in a mixed equilibrium, which require that 

( )π−= 21*a . Similarly, S’s payoff from the pure strategies of T and L are ( )( )b−− 11 π  

and b, respectively and must also balance. Hence, ( ) ( )ππ −−= 21*b . Furthermore, 

consistent beliefs then require that ( ) ( ) 211 1* =−−=
− ππμ a . 

Uniqueness should be clear from the following observations. First, 21≠μ  

cannot be consistent with equilibrium since it would then be optimal for R to select a pure 

strategy in this information set. A pure separating strategy obviously cannot form an 

equilibrium in this “matching pennies” like game. Furthermore, if 21=μ , then no 

strategy combination other than the one chosen will balance the expected payoff of the 

pure strategies. Together with the non-existence of any pooling equilibrium this 

establishes the uniqueness result. Q.E.D. 

 

To see that the reasoning behind Proposition 1 also applies to a lie detection 

bias, assume instead that π  is the probability of R observing the perfect signal if the 

statement is false. This stage takes place after S has made his statement if and only if S 

lies. Furthermore, let a denote the probability of S choosing F, let μ  denote R’s belief 

that she is at the node where S has lied but no perfect signal has been emitted from Nature 

                                                                                                                                                                          
8 This signal could be a twinkle, a tick, a blush, a particular brainwave recognizable by EEG or a 
specific signal that the R player has learnt to associate with truth-telling. Furthermore, S knows this. 
9 This equilibrium is weakly separating in the sense that the probability of S sending a certain message 
(B or R) in the non-reduced game is type dependent. 
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and let b denote the probability of R choosing F in the non-singleton information set. 

Finally, let c be the corresponding probability for the singleton node. 

 Note, irrespectively of whether the bias is in terms of lie detection or truth 

detection, the introduction of it has a theoretical quality in that the equilibrium set is 

refined. Furthermore, the actual existence of true detection signals is not crucial. What is 

crucial is that the players believe in them. This has important implications for the 

possibility of extracting the likely truth, as will be explained in the next section. 

It should be stressed that the flavor of Proposition 1 is retained even if both truth 

and lie signals exist simultaneously in the game. This is proven in Proposition 2 in the 

Appendix. The only additional assumption required is that the probability of receiving a 

truth signal is not the same as the probability of receiving a lie signal.10 

 

3. Implications 

Let us now use Proposition 1 to make some observations concerning the implied 

equilibrium behavior when a detection bias is at hand. The message contingent 

probability for the perfect signal, π , can be interpreted as a measure of how good R is at 

detecting truths (or lies). The first part of Proposition 1 stating that ( )π−= 21*a  then 

implies that the better R is at recognizing truths, the more often S will tell the truth. This 

observation may seem counter-intuitive since one might expect S to be more wary of 

telling the truth the better the opponent is at tracing it. Perhaps it appears even more 

counter-intuitive when expressed in terms of lie detection; the better R is at detecting lies 

the more often will S lie. The intuition for the result is that the better R is at detecting lies 

the more informative it will also be for her not to receive a signal. Hence, the stronger the 

lie detection bias the more likely it is that S is telling the truth if no lie signal is observed. 

R will exploit this by guessing more often that S is telling the truth in this situation, which 
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will make the truth strategy less profitable to S. Thus, one might say that S is squeezed by 

either lying at the risk of being revealed by the perfect lie detection signal or being 

outguessed when telling the truth. 

One interesting implication of Proposition 1 is that if R could make S believe in 

the detection bias game, she would command a powerful tool to improve her information 

about the true state even if no perfect signals actually exist.11 To give a concrete example, 

suppose, before a large invasion by an S-army, a high-ranked officer in that army is 

captured by the R-army. Both armies know that S will soon attack, but only the S-officers 

know exactly where. There are only two feasible places to attack, Redding and 

Blackburn. R wins if and only if its officers succeed in deploying its army in the city 

attacked; the S-army wins otherwise. Now, assume that the captured S-officer only cares 

about the future success of his army and is brought in to be questioned by the R-officers 

about the place S plans to attack. Thus, the strategic situation is similar to the one in the 

bluffing game. However, before he is confronted with the crucial question he is 

successfully deceived into believing in a lie detection device possessed by the R-army 

and, also that the R-officers actually believe in it. He is informed that the probability that 

the lie detector will emit a perfect signal if he tells a lie is very high. When he is 

confronted with the crucial question Proposition 1 predicts that the officer will lie with 

high probability. Hence, if the officer’s answer to the crucial question is Redding, the R-

officers will know that Blackburn is the probable target for the attack.12 

 

                                                                                                                                                                          
10 In fact, the class of games analyzed in Proposition 2 in the appendix contains the class analyzed in 
Proposition 1. Hence, the former can be regarded as a generalization of the latter. 
11 Some professionally used lie detection methods rely on deceiving subjects into believing in the lie 
detection device. After the deception, physiological reactions (blood pressure, palm sweating, 
respiration etc.) are measured when certain questions are posed (see e.g., Vrij, 2000, p.179). What is 
argued here is that in certain strategic situations, as long as the deception works, the data from such 
measurements may be unnecessary from a game theoretic perspective! 
12 It should be mentioned that it is important that the players are sufficiently rational, but not too smart. 
For instance, if the captured officer realizes the deception scheme and can feint that he believes in it, he 
can use a meta-feinting strategy by telling the truth since he knows it will be taken as a lie. Obviously, 
there is no end to such a meta reasoning. 
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4. Concluding Remarks 

The aim of the paper is to contribute to the study of bluffing. It is noted that beliefs in 

signals revealing lies or truths are widespread, and that neuroscience has recently 

suggested new methods for detecting such signals. These signals lead to a truth or lie 

detection bias if the probability that such a signal is perceived by the receiver is 

contingent on the truth value of the sender’s message. The theoretical implication of lie 

and/or truth detection bias in bluffing appears to be an entirely new question in the 

literature and is given a first theoretical account here. The analysis is accomplished by 

developing a simple bluffing signaling game with conflicts of interest. In such a game it is 

shown that if the detection bias is modeled as a perfect signal from Nature, sent with a 

certain probability conditional on the truth value of the sender’s message, the bias can be 

incorporated into a game theoretical equilibrium analysis. The result of the analysis is that 

the equilibrium set shrinks to a unique non-pooling equilibrium, in which the better the 

receiver is at detecting lies the more often the sender will lie. This somewhat counter-

intuitive result could, in principle, be used to improve predictions about hidden 

information if the uninformed receiver is able to make the informed sender believe in the 

detection bias. 
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Appendix 

 

Detection bias with both truth and lie signals 

In this appendix it will be demonstrated that with a slight modification Proposition 1 

also holds in the case where there are possibilities for both truth and lie signals in the 

game. Let [ ]1,0∈σ  be the probability of R receiving a perfect lie signal when S is 

lying. Furthermore, let [ ]1,0∈d  be the probability of R choosing Tg =  if she has 

received the lie signal (i.e., she is at R4 in Figure A3). The other variables are defined 

in section 2. The following proposition is a generalization of Proposition 1. 

 

Proposition 2: If σπ ≠  then there exists a unique perfect Bayesian equilibrium 

characterized by 
σπ

σ
−−

−
=

2
1*a , 

σπ
π
−−

−
=

2
1*b  , 1* =c , 0* =d  and 21* =μ . 

Proof: In the subgames where R has received a perfect signal it should be obvious that 

1* =c  and 0* =d . Now, let us start with the case where σπ >  (i.e., there is a 

relative truth detection bias). For the same reasons as stated in the proof of 

Proposition 1, all pooling equilibria disappear. A pooling equilibrium (in the non-

reduced game) implies that 21* =a . The updated probability of being in node R3 

would then be larger than the corresponding probability of being in R2. This cannot be 

consistent with equilibrium, otherwise it would be optimal for R to set 0=b . 

Obviously, S has to react to that, meaning that 21* ≠a . Thus, pooling equilibria can 

be disregarded. 

Let us now concentrate on the non-pooling equilibria. As noted in the proof of 

Proposition 1, in a mixed non-pooling equilibrium R’s expected payoff from Tg =  
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and Fg =  must be the same in the non-singleton information set. The conditional 

payoffs of these strategies are ( )
( ) σσπ

π
−−−

−
a
a

1
1  and ( )

( ) σσπ
π

−−−
−

a
a

1
1 . To balance, it is 

necessary that 
σπ

σ
−−

−
=

2
1a . Similarly, R will choose a strategy so that S’s payoffs 

from the pure strategies balance. Hence, ( )( ) ( )
σπ

πσπ
−−

−
=⇒−=−−

2
1111 bbb . 

Furthermore, as noted in the proof of Proposition 1 any separating equilibrium in pure 

strategies can be ruled out in this “matching pennies” like game. 

Finally, the reasoning above would be entirely symmetric if it instead was 

assumed that σπ < .  Q.E.D. 

 

To see that Proposition 2 is a generalization of Proposition 1, let 0=σ . 
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Figure A3: Reduced bluffing game with both truth and lie signals.
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