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Finite-Sample Stability of the KPSS Test

Kristian Jönsson∗†

December 14, 2006

Abstract

In the current paper, the finite-sample stability of various implementations of the KPSS
test is studied. The implementations considered differ in how the so-called long-run variance
is estimated under the null hypothesis. More specifically, the effects that the choice of kernel,
the value of the bandwidth parameter and the application of a prewhitening filter have on the
KPSS test are investigated. It is found that the finite-sample distribution KPSS test statistic
can be very unstable when the Quadratic Spectral kernel is used and/or a prewhitening filter
is applied. The instability manifests itself through making the small-sample distribution of the
test statistic sensitive to the specific process that generates the data under the null hypothesis.
This in turn implies that the size of the test can be hard to control. For the cases investigated in
the current paper, it turns out that using the Bartlett kernel in the long-run variance estimation
renders the most stable test. By supplying an empirical application, we illustrate the adverse
effects that can occur when care is not taken in choosing what test implementation to employ
when testing for stationarity in small-sample situations.
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1 Introduction

Following the contribution of Kwiatkowski et al. (1992), testing for stationarity has

become an integral part of time-series econometrics. The test, often denoted the KPSS

test, that was suggested by these authors tests the null hypothesis that a time series

is level or trend stationary, i.e. integrated of order zero, I(0), against the alternative

hypothesis that the series is integrated of order one, i.e. is I(1). The formulations of

these hypotheses stands in contrast to the unit root test of Dickey and Fuller (1979),

where the null and alternative hypothesis are reversed so that the series considered is

I(1) under the null, while it under the alternative is I(0). Kwiatkowski et al. (1992) argue

that it can be of interest to test both types of hypotheses when investigating the dynamic

properties of a time series. Asymptotic distributions for the test statistics that take level

and trend stationarity as the null hypothesis are derived by Kwiatkowski et al. (1992)

and critical values are supplied in the article. If the covariance stationary stochastic

component in the considered time series is allowed to follow a linear process, such as

in Phillips and Solo (1992), an estimator for the long-run variance generally has to be

employed in order to eliminate the nuisance parameters that serial dependence otherwise

would bring into the asymptotic distribution of the test statistic. Most commonly, a

class of non-parametric or semi-parametric long-run variance estimators is considered

for this purpose. The use of an estimator from this class entails a choice of kernel, a

selection of a bandwidth parameter and a decision regarding whether or not to employ

a prewhitening filter in the variance estimation process. Provided that the bandwidth

parameter is chosen appropriately with respect to the kernel and the sample size, the

limiting distribution that applies for the KPSS test statistic under the null hypothesis

is invariant to choices regarding the kernel, the bandwidth parameter and prewhitening.

However, such invariance cannot be established analytically in small-sample situations.

Considering that many time series, especially annual macroeconomic time series, often

are very limited when it comes to sample size, it is important to obtain knowledge about

the small-sample properties of various estimators and tests. This applies also for the

KPSS test. Since the finite-sample distribution of the latter test can be sensitive to the

choice of kernel, the choice of bandwidth parameter and whether or not prewhitening is

used, knowledge regarding the test’s behavior along these three dimensions is important

to obtain. If the test is shown to be highly dependent upon the choices made, care

must be taken when performing the KPSS test in small samples, while finite-sample

stability would ensure that test results are not as contingent upon the choices made when

implementing the test. However, while several studies have documented the behavior of

the KPSS test in fairly large samples (see e.g. Caner and Kilian, 2001; Hobijn et al.,

2004; Sul et al., 2005; Carrion-i-Silvestre and Sansó, 2006), little evidence exists about
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the small-sample stability of the KPSS test.

The current paper investigates the effects that the choice of kernel, the choice of

bandwidth parameter and the choice of whether or not to apply a prewhitening filter

have on the KPSS test in small samples. Two commonly used kernels are considered,

the Quadratic Spectral (QS) kernel and the Bartlett kernel. In addition to studying the

choice of kernel, it is investigated how the bandwidth parameter affects the small-sample

distribution of the test statistic. As a final step, the paper investigates if prewhitening

has any small-sample effects on the test distribution when the various kernels are used.

The main results indicate that using the Bartlett kernel, rather than the QS kernel,

in the KPSS test can render a more stable test statistic in small-sample situations.

More precisely, the distribution of the KPSS test can be less sensitive to the exact data

generating process (DGP) under the null hypothesis when the Bartlett kernel is used,

which makes it easier to control the size of the test. It is also found that the bandwidth

parameter affects the small-sample distribution of the test regardless of which kernel

that is used. However, the influence of the bandwidth parameter is smaller when the

Bartlett kernel is considered than when the QS kernel is employed. Finally, prewhitening

is found to be detrimental to the small-sample stability of the KPSS test, regardless of the

choice of kernel. More specifically, prewhitening increases the test’s sensitivity to various

DGPs under the null hypothesis. The results indicate that it can be good practice to use

the Bartlett kernel, and utilize the finite-sample critical values supplied by Hornok and

Larsson (2000) and Jönsson (2006), when performing the KPSS test for level or trend

stationarity in situations where samples are moderately sized.

To illustrate the main points of the paper, the KPSS test is employed in order to test

the stationarity of private consumption for 22 OECD countries over the period 1960-

2004. The main results from investigating these series are that the outcome of the test

is highly dependent on which implementation of the Kwiatkowski et al. (1992) test that

is used and that the finite-sample stability of the test is important to consider before

performing the test in small-sample situations.

The remainder of this paper is organized as follows. In Section 2, the econometric

model is introduced together with the Kwiatkowski et al. (1992) test for stationarity.

Furthermore, some central issues in the test implementation are discussed in this sec-

tion. Section 3, presents the main results concerning the finite-sample stability of the

stationarity test, while Section 4 presents an empirical illustration. Finally, Section 5

offers some concluding remarks.
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2 Testing for stationarity

2.1 The time-series model

The test for level or trend stationarity that was suggested by Kwiatkowski et al. (1992)

takes the following unobserved components time-series model as point of departure:

yt = α0 + α1t + ξt + εt (1)

ξt = ξt−1 + ηt (2)

The time-series yt in (1) has three different components. First, α0 and α1t are deter-

ministic components in the form of a constant term and a linear time trend. Secondly, ξt

is either a random walk component or a constant term, depending on whether the vari-

ance of ηt, denoted σ2
η, takes on a non-zero value or not.1 Finally, εt is a disturbance term

that in the current context is assumed to fulfill εt = Θ(L)νt, where Θ(L) =
∑∞

i=0 θiL
i

such that 0 < Θ(1) < ∞ and
∑∞

i=1 i|θi| < ∞, while νt is independently and identically

distributed with zero mean and 0 < σ2
ν < ∞, where σ2

ν = E(ν2
1). The assumptions on

the error process amounts to assuming that the disturbance follow a linear process, as

in e.g. Phillips and Solo (1992), with summable coefficients and homoscedastic distur-

bances in the infinite moving average representation. Under these assumptions, the test

of Kwiatkowski et al. (1992) can be used to test whether or not yt is I(0). The test is

presented in the next subsection.

2.2 The KPSS test

In order to test the null hypothesis that yt is covariance stationary, or I(0), Kwiatkowski

et al. (1992) suggest that it should be tested whether or not σ2
η is equal to zero by

employing the test statistic in (3).

LM =
T−2

∑T
t=1 S2

t

σ̂2
(3)

In (3), St is the partial sum process St =
∑t

i=1 ei, where et is the least squares residual

obtained after detrending the time series yt with either an intercept or an intercept

and a time trend. Furthermore, σ̂2 in the denominator of (3) is a variance estimator

that is intended to relieve the asymptotic distribution of the LM statistic from nuisance

parameters under the null hypothesis. In order to see why such an estimator is necessary,

it can be noted that the numerator of (3) weakly converges, as T → ∞, either to

1In the case where the variance equals zero, the random walk term will take on the value ξ0 for all t, which will

alter the constant term of yt to α0 + ξ0.
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a scaled standard Brownian bridge, σ2
∫ 1

0
V (r)2dr, or a scaled second-level Brownian

bridge, σ2
∫ 1

0
V2(r)

2dr, with the limiting behavior depending on whether and intercept,

or an intercept and a time trend, are used to detrend yt. The scaling parameter is given by

σ2 =
∑∞

i=−∞ E(εtεt−i), from which it is clear that σ2 is affected by the serial dependence

in εt. In order to relieve the asymptotic distribution from this nuisance parameter, often

called the long-run variance of εt, a long-run variance estimator has to be employed. This

issue is discussed next.

2.3 Long-run variance estimation

When calculating the test statistic presented in the previous subsection, an estimator for

the long-run variance, σ2 =
∑∞

i=−∞ E(εtεt−i), has to be chosen. Choosing an estimator

within the non-parametric framework that was originally suggested by Kwiatkowski et al.

(1992) entails a choice of a kernel, w(i, l), and a choice of a bandwidth parameter, l.2

Together, w(i, l) and l give a scheme that describes how the ith sample autocovariance,

γ̂i, should be weighted in the estimation of the long-run variance. The general form for

a long-run variance estimator from the non-parametric framework is given in (4) below.

σ̂2 = γ̂0 +
T−1∑
i=1

w(i, l)γ̂i (4)

In their original article, Kwiatkowski et al. (1992) suggest that the long-run variance

estimator of Newey and West (1987) should be used, which implies that the Bartlett

kernel should be employed in the KPSS test. However, in practice, two kernels have

become frequently used when performing the KPSS test. Besides the Bartlett kernel,

the Quadratic Spectral kernel is often considered (see e.g. Hobijn et al., 2004; Sul et al.,

2005). The two kernels are presented in (5) and (6) below.

Bartlett: w(i, l) =

{
1− i

l+1
if i ≤ l

0 if i > l
(5)

Quadratic Spectral: w(i, l) =
25

12π2(i/l)2

[
sin(6π(i/l)/5)

6π(i/l)/5
− cos(6π(i/l)/5)

]
(6)

While both render the same asymptotic distribution of the KPSS test, there are two

main differences between the kernels presented above. The first difference is the number

of sample autocovariances that are used in the estimation of the long-run variance. The

2It can be noted that, in addition to the non-parametric approach taken by Kwiatkowski et al. (1992), Leybourne

and McCabe (1994, 1999), Saikkonen and Luukkonen (1993) and Lanne and Saikkonen (2003) have considered para-

metric versions of tests that takes covariance stationarity as the null hypothesis.
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Quadratic Spectral kernel assigns a non-zero weight to every autocovariance that can be

calculated from the sample. The Bartlett kernel, on the other hand, uses only some of

the estimated autocovariances to estimate the long-run variance, more specifically only

the first m autocovariances are used, where m is the largest integer such that m ≤ l.

To the other autocovariances that can be calculated from the sample at hand, i.e. to γ̂i

when m < i < T , the Bartlett kernel assigns a zero weight and hence neglects them in

the long-run variance estimation.

The second difference between the kernels refers to how they are affected by a change

in the bandwidth parameter. When l is changed for the Quadratic spectral kernel, the

weighting scheme is altered for all the autocovariances. This stands in contrast to the

Bartlett kernel, for which a change in the bandwidth parameter alters the weighting for a

limited number of autocovariances and changes the number of autocovariances considered

in the estimation only when the integer part of the bandwidth parameter changes. For

the latter reason, the Bartlett kernel is often used in conjunction with integer-valued

bandwidth parameters (see Kwiatkowski et al., 1992, p. 169), while the same does not

apply for the QS kernel (see e.g. Hobijn et al., 2004), where instead any positive real

value can be used.

The fact that the bandwidth parameter can take on any real positive value for the

QS kernel, while it most commonly only takes on positive integer values for the Bartlett

kernel, may looked upon as a minor difference since both kernels can be used to obtain

an asymptotically pivotal test statistic for the KPSS test. However, because the latter

kernel most often only takes on integer values, it is possible to easily approximate the

small-sample distribution of the LM statistic that applies this kernel by conditioning

the distribution of the test statistic on the bandwidth parameter and the sample size,

as done by e.g. Hornok and Larsson (2000) and Jönsson (2006). These authors argue

that the KPSS test that employs the Bartlett kernel can be more sensitive to the choice

of bandwidth than to the actual serial correlation in the disturbances, given that a

sufficient bandwidth is chosen. Hence, the small-sample properties of the KPSS test

can be enhanced in the same way as the properties of the Augmented Dickey-Fuller

(ADF) test are enhanced by taking the number of augmentation terms into account

when performing the test in small samples (see Cheung and Lai, 1995, for a treatment of

the ADF test). The feasibility of such a small-sample improvement to the performance

of the KPSS test have implications for the choice of kernel. If the KPSS test in general is

sensitive to the choice of bandwidth parameter when samples are small and the QS kernel

is used, the Bartlett kernel would be preferable to use since conditional distributions can

be obtained more easily and since small-sample critical values are readily available for

the implementation that considers this choice of kernel. However, if the small-sample

distribution of the KPSS test statistic is insensitive to the bandwidth parameter when
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the QS kernel is used, this kernel would be preferable since no small-sample critical values

would be needed. Hence, to give guidance regarding the choice of kernel in small-sample

situations, the finite-sample stability of the KPSS test will be investigated in the next

section.

Besides using purely non-parametric estimators of the long-run variance, a semi-

parametric estimator, that applies prewhitening, can be used. Employing a prewhitening

filter in the estimation of the long-run variance can improve the properties of the esti-

mator when there is serial dependence in εt. The prewhitening procedure is performed

by fitting an ARMA(p,q) to the detrended series, applying the non-parametric long-run

variance estimator to the ARMA-filtered residuals and then calculating the long-run

variance based on the non-parametric variance estimate and the estimated ARMA coef-

ficients. For convenient calculations, an AR(p), or even an AR(1), model is often used

for prewhitening. The reason for using the non-parametric long-run variance estimator

in the prewhitening procedure is that prewhitening is often performed, not to actually

obtain white noise disturbances after having filtered the detrended series, but to obtain

test statistics with enhanced properties in the presence of serial dependence in εt (see

e.g. den Haan and Levin, 1997). Furthermore, even if serially uncorrelated disturbances

are achieved through prewhitening the detrended series, the use of a long-run variance

estimator can still be required in order to capture heteroscedasticity in the disturbance

variance (see e.g. Carrion-i-Silvestre and Sansó, 2006). To avoid that the stationarity

test becomes inconsistent and suffer from the power loss documented by Lee (1996), a

boundary rule for the estimated ARMA coefficients has been suggested by Sul et al.

(2005).

Since the prewhitening procedure does not affect the asymptotic distribution of the

test under the null hypothesis, the critical values supplied by Kwiatkowski et al. (1992)

can be used when samples are large. However, very little knowledge exists regarding

the effects of prewhitening in small samples. Hence, it is important to consider the

finite-sample stability of the KPSS test also when prewhitening is used.

In order to obtain more knowledge about the finite-sample robustness of the various

implementations of the KPSS test, we set up and run Monte Carlo simulations. More

specifically, we will study how the different test implementations perform under data-

generating processes where various degrees of serial dependence are considered.

3 Finite-sample robustness

In this section, the properties of the KPSS test are investigated in a setting where samples

are small or medium-sized, i.e. in a setting where it is not evident that the asymptotic
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distributions can be used to describe the behavior of the KPSS test statistics. First, it

is investigated how the choice of kernel and choice of bandwidth parameter affect the

distribution of the KPSS test when serial correlation is absent. After that, the effects

of prewhitening are studied. The robustness of the KPSS test under various degrees

of serial correlation are considered next. Finally, the finite-sample size properties of

the different implementations of the KPSS test are investigated under varying degrees

of serial dependence. Since the finite-sample properties of the test are hard, if at all

possible, to derive analytically even under stringent assumptions regarding the specific

distribution of stochastic components, we resort to Monte Carlo simulations to investigate

the behavior of the test.

3.1 Bandwidth dependence in small samples

As mentioned in Section 2.3, it can be of importance to consider the value of the band-

width parameter when performing the KPSS test in finite-sample situations. This is

especially important in situations where the small-sample distribution of the KPSS test

is sensitive to the choice of bandwidth parameter. Under such circumstances it is also

desirable to use a kernel for which the bandwidth parameter takes on only a finite number

of values, since if this is the case, it is possible to easily condition the critical values on

the choice of bandwidth parameter as well as on the sample size. For the situation where

the distribution of the KPSS test exhibits no bandwidth dependence in small samples, it

is of less importance to obtain finite-sample critical values, since the asymptotic critical

values can be successfully used for inference about the stationarity hypothesis. Hence,

as a first step, it is important to study to what extent the small-sample distribution of

the KPSS test statistic depends on the bandwidth parameter for the various kernels that

can be used in the test.

To illustrate why knowledge about bandwidth-dependence of the KPSS test statistic

is vital, suppose that data is generated without any serial correlation in the disturbance

term εt.
3 If the small-sample distribution of the KPSS test statistic is altered by the

bandwidth choice, then one set of of critical values, such as the asymptotic critical values

supplied by Kwiatkowski et al. (1992), would not suffice for stable inference since the

test outcome under such circumstances very well could depend on the bandwidth pa-

rameter chosen when estimating the long-run variance. Instead, a minimum requirement

for a robust test would be that critical values are available for each possible choice of

3Obviously, this situation makes it unnecessary to use a long-run variance estimator, the estimator in σ̂2
ε =

PT
t=1 e2

t

T

would suffice. However, since the purpose here is to illustrate the possible bandwidth dependence of the test, long-run

variance estimators will still be applied.
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bandwidth parameter. However, the availability of such critical values would not be a

sufficient condition for a stable stationarity test. Instead, an additional assumption that

would ensure stability of the KPSS test across test implementations and across various

DGPs under the null hypothesis would be that the distribution of the test statistic is rel-

atively unaffected by various degrees of serial dependence under the null hypothesis once

the time-series dimension and the bandwidth parameter have been taken into account.

Hence, it is of interest to study two separate questions, the first being the issue regarding

bandwidth dependence and the second being the robustness across DGPs given the the

bandwidth parameter and the sample size. The former issue is probed next, while we

later in the current paper will address the latter issue.

Figure 1 and Figure 2 show how the 10% finite-sample critical values of the KPSS

test are affected by various bandwidth choices and time-series dimensions. The critical

values in these figures are obtained by generating 25,000 different time series, yt, with

deterministic components, α0 and α1t, and stochastic disturbances, εt. More specifically,

data is generated according to yt = α0 + α1t + εt, where α0 is distributed uniformly over

the interval [0,10], denoted α0 ∈ U [0, 10], while α1 = 0 if only an intercept is considered

and α1 ∈ U [0, 2] if both an intercept and a linear time trend are present. The stochastic

disturbance term is generated according to εt ∼ i.i.d. N(0, 1). Time series are generated

for the sample sizes T ∈ {20, 30, 40, 50}, while the bandwidth parameter is set as in

(7) and (8), which is tantamount to the choice in e.g. Hobijn et al. (2004), with the

bandwidth scaling parameter k ∈ {4, 8, 12}.4,5

Bartlett: l =

[
k

(
T − 1

100

)1/4
]

(7)

Quadratic Spectral: l =

[
2k

3

(
T − 1

100

)2/9
]

(8)

When looking at Figure 1 and Figure 2, it is evident that the critical values for the

KPSS test depend on both the sample size, T , and the bandwidth scaling parameter, k,

regardless of which kernel that is used in the test and regardless of which deterministic

components that are present. However, some distinct differences exist when compar-

ing the behavior of the test statistic under various configurations of kernels and trend

components.

4In (7) and (8), [a] denotes the integer part of a.
5The expressions in (7) and (8) use T − 1 in the numerator since, later on in this section, one time series obser-

vation is lost when prewhitening the detrended series. Hence, in order to assure comparability across the various

implementations, the bandwidth parameter is calculated based on T − 1 observations even when prewhitening is not

used.
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The first thing that can be seen when comparing Figure 1 and Figure 2 is that the

critical values are more dependent on T and k when both an intercept and a time trend

are accounted for than when only an intercept is present. The same result was obtained

by Jönsson (2006) for the KPSS test that employs the Bartlett kernel. The current

result indicates that this feature also generalizes also to the case where the QS kernel is

employed. Since both kernels exhibit sensitivity to the sample size and the bandwidth

scaling parameter, there is no reason to prefer one over the other when it comes to the

small-sample dependence of the test statistic with respect to these factors.

The second distinct feature that can be noticed when comparing the upper and lower

panels of Figure 1 and Figure 2, respectively, is that the use of the Quadratic Spectral

kernel, rather than the Bartlett kernel, renders a test statistic that is more sensitive to

the sample size and bandwidth scaling parameter. This applies regardless of whether a

constant or a constant and a time trend are considered in the test. From this perspective,

failure to account for the finite-sample distribution of the KPSS test statistic is more

detrimental to test performance when the QS kernel is employed than when the Bartlett

kernel is used. Moreover, considering the fact that the QS kernel is a continuous function

of a real variable that is not necessarily integer-valued, the use of the Bartlett kernel in

small and medium-sized samples seems preferable, at least when the use of small-sample

critical values are considered.

Having established that there is a finite-sample bandwidth dependence in the distri-

bution of the KPSS test statistic regardless of whether the Bartlett kernel or the QS

kernel is used in the test, the robustness of the implementations of the test, with respect

to varying degrees of serial dependence, becomes relevant. This issue will be addressed

below, but first, in the next subsection, the issue regarding the effects of applying a

prewhitening filter will be investigated.

3.2 Effects of prewhitening

When estimating the long-run variance, σ2, it is possible to first filter the detrended

series, et, through e.g. an ARMA(p,q) model in order to get better estimates of the

long-run variance. However, since AR(p) models, such as the one in (9), are very simple

to estimate they are often preferred over ARMA models. If ût denotes the AR-filtered

residual, as in (10), the long-run variance estimator that relies on prewhitening can be

calculated as in (9)-(11), where σ̂2
u is the long-run variance estimate for the filtered series

ût.
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et − φ1et−1 − . . .− φpet−p = Φp(L)et = ut (9)

Φ̂(L)et = ût (10)

σ̂2 =
σ̂2

u(
Φ̂p(1)

)2 (11)

In order to assure that the test implementation that utilizes prewhitening can be

used also under the alternative hypothesis, where a unit root is present in yt, boundary

conditions are often employed for the lag polynomial. For example, Carrion-i-Silvestre

and Sansó (2006) suggest, following Sul et al. (2005), that an the boundary condition

should be set in such a way that Φ̂p(1) does not exceed 1 − 1/
√

T . This boundary rule

is also used in the following simulations.

If the process of prewhitening renders a long-run variance estimator that makes the

KPSS test more stable than the results of the previous subsections indicated, the use of

small-sample critical values would become less urgent. To investigate if this is the case,

data is once again generated as described above and the KPSS test is once again applied

to the generated data but now with a prewhitening filter being employed in the long-run

variance estimation. The 10% critical values are presented in Figure 3 and Figure 4.

As seen from Figure 3 and Figure 4, the use of a prewhitening filter in the long-run

variance estimation renders a test statistic that is more sensitive to the sample size and

the bandwidth parameter compared to the case where no prewhitening is applied. The

same result is obtained regardless of whether the Bartlett kernel or the QS kernel is

used. Moreover, it can also be seen from the figures that the use of the QS kernel makes

the critical values more dependent on T and k than what is the case when the Bartlett

kernel is used. Hence, applying prewhitening does not affect the choice of kernel when

sample-size stability and bandwidth stability are considered to be desirable properties

of the test. However, since it is easy to condition the small-sample distribution of the

KPSS test on the sample size and the bandwidth when the Bartlett kernel is used, the

prewhitening procedure can still be of interest if the KPSS test distribution is stable with

regard to various degrees of serial dependence in data generating process under the null

hypothesis of stationarity. The issue regarding stability of the different implementations

of the KPSS test across various degrees of serial correlation in the DGP is investigated

in the next subsection.

3.3 Robustness in the presence of serial dependence

One of the main advantages of conditioning the critical values used in the KPSS test on

the sample size and bandwidth parameter is that when these two factors are controlled
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for, the size properties of the test can be improved considerably across various data gen-

erating processes under the null hypothesis (see e.g. Hornok and Larsson, 2000; Jönsson,

2006). If a similar stability is present when prewhitening is used in the long-run variance

estimation, critical values could in addition to being conditioned on T and k, also be

conditioned on the use of a prewhitening filter. That is, if using the Bartlett kernel in

conjunction with a prewhitening filter does not affect the distribution of the test statistic

under varying serial correlation patterns, prewhitening could perhaps improve the size

properties of the stationarity test. But if this implementation of the test becomes highly

dependent on the specific form of serial dependence under the null hypothesis, it would

be intractable to use prewhitening in small-sample situations. For this reason, we will

study how the distribution of the KPSS test statistic is affected by various degrees of

serial correlation both when prewhitening is used and when it is not.

To see whether the LM statistic is sensitive to the actual data generating process

under the null hypothesis, various degrees of autocorrelation are now allowed for in the

stationary disturbance term. To make the situation as favorable as possible for the

prewhitening filter, an AR(1) process is assumed, while an AR(1) prewhitening filter

is employed. Data is hence generated as described in Section 3.1, but now with the

modification that εt = ρεt−1 + ϑt, with ϑt being i.i.d. N(0, 1) and ρ ∈ {0.0, 0.2, 0.4, 0.6}.
By altering ρ it is possible to see how the distribution of the KPSS test statistic is affected

by various DGPs under the null hypothesis.

In Figure 5 and Figure 6, the kernels density estimates for the distribution of the

KPSS test statistic are presented for various choices of ρ and for different combinations

of kernels and deterministic components when no prewhitening is used. These graphs

are constructed for two reasons. First, the effects that serial dependence has for the

distribution of the test statistic that does not apply prewhitening can be analyzed from

them. Secondly, they serve as a background that facilitate an analysis of the effects

that prewhitening has on test stability. The density estimates are based on 25,000 test

statistics generated as described above and estimated using the Triweight kernel with

the smoothing parameter to 0.08.

The distribution of the test statistic when only an intercept is present is relatively

stable across the various values of ρ, as seen in Figure 5. This applies regardless of

whether the Bartlett kernel or the Quadratic kernel is considered. Hence, it seems like

small-sample critical values could be obtained for either one of the kernels and testing

could, by conditioning on the bandwidth parameter, be successfully performed using

these critical values. However, when both an intercept and a time trend are present,

the stability of the KPSS statistic breaks down when the QS kernel is used. Instead of

retaining stability, the test statistic now becomes sensitive to the actual value of ρ. This,

of course, makes the Quadratic Spectral kernel undesirable in small-sample situations
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since the size performance of the test will vary with the (unobserved) DGP under the

null hypothesis. However, the test based on the Bartlett kernel retains its stability, which

is a feature that can make it an attractive candidate in finite-sample situations.

The next step is to investigate what effects prewhitening has on the distribution

of the test statistics. To this end, the same DGPs are considered and the KPSS tests

performed using a long-run variance estimator that employs an AR(1) prewhitening filter.

The kernel density estimates for this simulation setup are presented in in Figure 7 and

Figure 8.

As seen from Figure 7 and Figure 8, the distribution of the test statistic becomes very

sensitive to the autoregressive parameter, ρ, when prewhitening is used. This applies

both for the Bartlett kernel and the Quadratic Spectral kernel and regardless of whether

an intercept or an intercept and a time trend are included in the model. Hence, it is

not desirable to try to control the size of the KPSS test by using finite-sample critical

values obtained for the case where ρ = 0.0, i.e. for the case where no serial correlation is

present.

The results presented in this section indicate two things. First, if critical values are

to be obtained by conditioning on the bandwidth parameter, the Bartlett kernel should

be used in the test. The main reason for this is that the distribution of the KPSS test

statistic is more robust to changes in the DGP under the null hypothesis when this kernel

is used, at least when considering the DGPs investigated in the current paper. Moreover,

the Bartlett kernel takes integer-valued arguments, which makes it easier to condition

the distribution of the test statistic on the bandwidth. The second main result is that

prewhitening can have detrimental effects in small samples. Hence, one way to maintain

control of the size of the KPSS test in small samples could be to use finite-sample critical

values obtained by applying the Bartlett kernel without prewhitening.

As a final note, it must be recognized that the computational suggestion of Carrion-

i-Silvestre and Sansó (2006) still applies when samples become large. This is illustrated

by kernel density estimates of the KPSS statistic in Figure 9 and Figure 10. The distri-

butions in these figures are obtained for T=100, i.e. the smallest sample size considered

by Carrion-i-Silvestre and Sansó (2006), and for the case where the Quadratic Spectral

kernel is used. From the figures it is evident that the dependence on the DGP becomes

less pronounced as the sample size increases. This applies for the case when prewhitening

is used as well as for the case where no prewhitening is applied. The results presented in

the current paper should hence be seen as a remainder that care should be taken when

testing for stationarity in small-sample situations.
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3.4 Effects on size

Having established that the finite-sample distribution of the KPSS test can be consider-

ably more stable when the Bartlett kernel is used without prewhitening than when the

same kernel is used in conjunction with prewhitening or when the QS kernel is used with

or without prewhitening, it is interesting to see how the size of the KPSS test is affected

by the instability. To do this, we consider the same DGP as in the proceeding subsections

and study the size of the KPSS test for the cases where T ∈ {20, 30, 40, 50, 100, 250, 500},
while k = 12. As above, we consider the cases where ρ ∈ {0.0, 0.2, 0.4, 0.6}. In order to

to get a picture of the stability of the KPSS test, and show that it is important to ensure

that the test implementation applied is stable, the finite-sample critical values for the

situation where ρ = 0.0 are used to calculate the size of the test for all the implemen-

tations that are considered and for all of the various DGPs that are studied. The size

properties, on the 10% significance level, for the various implementations of the test are

presented in Table 1.

Before studying the size properties in Table 1 in greater detail, it can be interesting to

turn back to the results from the previous subsections. The kernel density plots that were

analyzed previously give clear indications of the qualitative properties that we can expect

to find when the size is studied. First and foremost, for all cases where prewhitening is

used, the size of the stationarity test is expected to be downward distorted for the case

where serial correlation is present. Figure 7 and Figure 8 show that the distribution of the

KPSS test statistic shifts leftward as the serial correlation increases when prewhitening

is applied, regardless of which kernel that is used. Furthermore, looking at Figure 6,

it can be seen that the same effect should be expected when a linear trend is allowed

for even when no prewhitening is used. From this figure, it is also evident that the size

distortions should be more severe for the test that applies the QS kernel than for the test

that applies the Bartlett kernel. When only an intercept is accounted for in the series

under consideration, Figure 5 indicates that only small size distortions should occur as

the serial correlation increases. These figures indicate the direction of the size distortions

that can be expected, but they say nothing, however, about the magnitude of the size

distortions that will occur. To get a picture of the magnitude of the size distortions,

Table 1 has to be consulted.

From the upper panel of Table 1, where the size is considered for a level stationary

process, it can be seen that there are only small size distortions to the stationarity test

that applies the Bartlett kernel without prewhitening. For the lower values of the au-

toregressive coefficient, i.e. for ρ = 0.2 and ρ = 0.4, the size distortions is about 2-3

percentage points. For the other test, i.e. for the tests that apply the QS kernel and/or

prewhitening, the corresponding size distortions are 3-5 percentage points. Hence, there
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are only small differences between the size performance of the various test implementa-

tions. When ρ = 0.6, the size distortion is about 5 percentage points regardless of what

test implementation that is considered.

When attention is turned to the case where both an intercept and a linear trend

is allowed for in the time series, the picture becomes somewhat different. The size

distortions in the KPSS test that applies the Bartlett kernel without prewhitening remain

at the same level as in the case where only an intercept was allowed for. However, when

the other implementations of the test are considered, the size distortions become much

more severe. When prewhitening is used, the size on the 10% significance level can drop

as much as 9 percentage points. The direction of this size distortion was predicted from

the figures above, but it now turns out that the magnitude is rather large. Also when

no prewhitening is applied and the QS kernel is used, there are large size distortions

to the test. These results support the conjecture that, from a stability point of view,

the KPSS tests that applies the Bartlett kernel without prewhitening can be preferable

to the implementation that rely on the QS kernel and/or prewhitening in the long-run

variance estimation.

Before we continue with an empirical illustration that shows the effects that can

occur when care is not taken when selecting an implementation of the KPSS test, a few

remarks on the above results are in place. First, it can be noticed that the size results

presented in Table 1 give an indication of the stability of the KPSS test. The results says

nothing about the general performance of the various test implementations. One can

easily imagine a situation where an upward size distortion eliminates the downward size

distortions observed in Table 1, and as a consequence alters the relative attractiveness

of the various test implementations. For example, if asymptotic critical values were to

be used in the investigation of the size, it could be imagined that the size for the case

ρ = 0.0 would be upward distorted. When the cases where ρ > 0 are considered, the

downward size distortions of the tests that use the QS kernel and/or prewhitening could

eliminate the upward size distortions for some specific ρ, and hence render a situation

where these test implementations get good size properties. However, since the applied

research never knows the DGP that has generated the data at hand, it would be highly

unlikely to encounter a situation like this when applying the KPSS test, and it would be

better to rely on stability across DGPs rather than to rely on pure luck.

Second, it should be emphasized that the relative performance of the tests can change

if a bandwidth that does not capture the serial correlation good enough is used. If the

bandwidth parameter is given a value that is too small, the Bartlett kernel that does not

apply prewhitening could suffer from this choice since too many significant higher-order

autocorrelations are neglected in the variance estimation. However, it is not necessarily

the case that this deficiency changes the relative performance of this test implementation
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compared to the implementations that utilize prewhitening. The reason for this is that

if a misspecified prewhitening filter is applied in the test implementation that utilizes

prewhitening, the test would also suffer from this.6 Moreover, the tests that apply

prewhitening would be negatively affected through two channels. First, choosing a to

narrow bandwidth leaves serial correlation in disturbances that would not be picked up by

the long-run variance estimator. But a second channel, introduced by biased estimators

for the parameters of the AR model as a consequence of autocorrelated disturbances,

could also worsen the size properties. The overall effects could hence be ambiguous,

depending on the specific case considered.

Finally, it can be noted that it might be that case that increases in test stability come

at the cost of a lower power against an I(1) alternative hypothesis. Stated differently,

it is possible that a higher power can be bought at the price of less stable finite-sample

distribution of the test under the null hypothesis. This, of course, highlights the ever-

present tradeoff between size and power properties.

In order to further point out the relevance of the findings presented above, the next

section supplies an empirical illustration.

4 Empirical illustration

As seen from the previous sections, the KPSS test can be very sensitive to the choice

of kernel, the choice of bandwidth parameter and the choice of whether or not to use

prewhitening in the long-run variance estimation process. To further stress the relevance

of these findings, we supply an empirical illustration in this section.

As shown by Hall (1978), private consumption can follow a random walk if the perma-

nent income hypothesis is true. If, on the other hand, private consumption is covariance

stationary, then the permanent income model with a quadratic instantaneous utility

function is not supported by the data. In order to test whether this is the case, the

KPSS test can be employed. In this paper, we use the per capita private consumption

data set of Jönsson (2006) to show how the lack of finite-sample stability of behalf of the

KPSS test can cause problems when using the test in empirical applications.7

To test for stationarity in the private consumption series, the KPSS test is applied

under various choices regarding the kernel used and the choice of whether or not to

6Remember that the prewhitening filter used in the current paper is correctly specified with respect to the DGP.

Hence, the test implementations that apply prewhitening are given a slight advantage since the effects of model

misspecification are eliminated from the simulations.
7The per capita private consumption series are gathered from the OECD Economic Outlook Database, Vol 2005

release 02, and contains data for 22 OECD countries.
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prewhiten the detrended series previous to variance estimation. The bandwidth scaling

parameter is set as k = 12, while an intercept and a time trend are used as deterministic

components. The bandwidth is then calculated for the Bartlett kernel and the QS kernel

as in (7) and (8) above. Furthermore, the KPSS test is calculated both for the case where

prewhitening has been used and for the case where it has not been used. The test results

are presented in Table 2.

From Table 2 it can be seen that the conclusion drawn, based on the various im-

plementations of the KPSS test, varies to a large extent with the choices made when

calculating the test statistic. However, some general patterns can be easily seen from the

table.

Looking at the test results in Table 2, it can be noticed that the KPSS test that em-

ploys the Bartlett kernel without prewhitening rejects the null hypothesis of stationarity

for 13 out of the 22 countries.8 The test that employs the QS kernel, but still does not

utilize prewhitening in the variance estimation process, rejects the null hypothesis for 11

of the 22 countries. It can be seen that the the latter test fails to reject the null hy-

pothesis for Austria and Japan, countries for which the KPSS test utilizing the Bartlett

kernel reject the null. Finally, the tests that rely on prewhitening do not reject the null

hypothesis of stationarity for any of the countries in the sample.

The test results in Table 2 can be interpreted in at least two ways. The first possible

interpretation is that the tests that do not apply prewhitening has an upward size dis-

tortion that is larger than what is the case for the tests that apply prewhitening. The

consequence, if this were to be the case, would be that the former test implementations

reject the null hypothesis more often than what is warranted by the significance level.

Hence, the test results would be an indication of the fact that applying a prewhitening

filter in the variance estimation process enhances the performance of the KPSS test.

However, the simulation evidence presented in the previous sections offers another ex-

planation for the results.

The results from the simulations that are presented in the previous sections render

two important conclusions. The first conclusion is that using the Bartlett kernel in the

KPSS test can give rise to a test that is more stable than what is the case when the

QS kernel is used. More specifically, using the QS kernel when a positive first-order

serial correlation is present could alter the distribution of the test statistic in such a way

that the test become downward size-distorted (see Figure 6 and Table 1). The second

conclusion is that using prewhitening also can introduce a downward size distortion, but

8It should be noted that we have used asymptotic critical values for the stationarity test, rather than the finite-

sample critical values of Hornok and Larsson (2000) or Jönsson (2006), in order to assure comparability across test

implementations.
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now regardless of what kernel that is used (see Figure 7, Figure 8 and Table 1). These

results offer an reasonable explanation of the results in Table 2.

Turing back to the test results of Table 2, it can be seen that the test outcomes

very well can be explained by the finding that the test implementations that relies on

the QS kernel and/or prewhitening can incur considerable downward size distortions

when samples are small. Moreover, based on the results above, it was seen that such

size distortions are smallest when Bartlett kernel is used without prewhitening, largest

when prewhitening is used, with the performance of the test implementation using the QS

kernel without prewhitening falling in between the former two. These results are perfectly

in line with the varying test results presented in Table 2. The test implementation with

the smallest downward size distortions, KPSSNo PW
Bartlett, rejects the null more often than

the test with the second best size properties (and the second largest downward size

distortions), i.e. the KPSSNo PW
QS tests. Finally, the test implementations with the worst

size properties (and the largest downward size distortions), the KPSSPW
Bartlett and the

KPSSPW
QS test, fail to reject the null most often of all test implementations.

Which of the two explanations above that is most likely to explain the results of

Table 2 is of course hard to tell. Nevertheless, the empirical illustration presented in this

section emphasizes one very urgent aspect of stationarity testing, namely the importance

of considering test stability when choosing an implementation of the KPSS test to test

for stationarity of a time series.

5 Concluding remarks

In the current paper, the finite-sample stability of the KPSS test is investigated. More

specifically, the stability of the test is studied when various kernels are used in the long-

run variance estimation, when various choices of bandwidth parameters are considered

and when prewhitening is used in the variance estimation process.

The main results are that the distribution of the KPSS test can depend critically on

the choice of kernel when samples are small or medium-sized. Furthermore, applying

a prewhitening filter in the estimation of the long-run variance need not to improve

the performance of the test, rather it can make the test more sensitive to the specific

DGP under the null hypothesis. The main conclusion from these results is that it can

be recommendable to use the Bartlett kernel without prewhitening, together with the

currently available small-sample critical values, when performing the KPSS test in small

samples, at least under circumstances that resembles those investigated in the current

paper.

Besides pointing out important factors that must be taken into account when per-
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forming the KPSS test in finite-sample situations, the results also point out dimensions

along which future research can extend. For example, the size results reported in the

current paper, apply for the case where disturbances are serially correlated. However,

it can very well be the case that the conclusions drawn apply equally well when various

forms of heteroscedasticity are considered. Investigation of this issue is left for future

research.

Finally, it can be noted that the results in this paper also have implications for the

use of stationarity tests in panel data. Since so-called mean group stationarity tests

employ a standardized average over a set of time-series stationarity statistics, the failure

to account for the finite-sample distribution of the KPSS test induce an error also in

the panel data framework of e.g. Hadri (2000). Since the error will accumulate over

cross-sections, panel stationarity tests can be expected to have even worse small-sample

properties, more specifically small-T properties, than the time-series tests studied in this

paper. As in the case with the univariate stationarity test, considerable improvements

of the small-sample size properties of the panel stationarity tests should be feasible by

taking into account the small-sample distribution of the KPSS test.
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Table 1: Size effects of various choices in the KPSS test.
Intercept

ρ = 0.0 ρ = 0.2
Bartlett QS Bartlett QS

T No PW PW No PW PW No PW PW No PW PW
20 0.100 0.100 0.100 0.100 0.113 0.077 0.074 0.075
30 0.100 0.100 0.100 0.100 0.115 0.084 0.092 0.081
40 0.100 0.100 0.100 0.100 0.112 0.087 0.100 0.090
50 0.100 0.100 0.100 0.100 0.110 0.091 0.099 0.088
100 0.100 0.100 0.100 0.100 0.107 0.095 0.102 0.096
250 0.100 0.100 0.100 0.100 0.110 0.102 0.107 0.104
500 0.100 0.100 0.100 0.100 0.105 0.100 0.103 0.101

ρ = 0.4 ρ = 0.6
Bartlett QS Bartlett QS

T No PW PW No PW PW No PW PW No PW PW
20 0.121 0.058 0.056 0.056 0.146 0.050 0.051 0.046
30 0.135 0.074 0.089 0.069 0.156 0.061 0.090 0.053
40 0.128 0.074 0.101 0.074 0.153 0.063 0.122 0.064
50 0.127 0.084 0.109 0.084 0.147 0.069 0.130 0.069
100 0.120 0.090 0.108 0.090 0.143 0.087 0.131 0.088
250 0.115 0.097 0.108 0.100 0.132 0.097 0.126 0.098
500 0.115 0.101 0.108 0.103 0.126 0.096 0.117 0.098

Intercept and trend
ρ = 0.0 ρ = 0.2

Bartlett QS Bartlett QS
T No PW PW No PW PW No PW PW No PW PW
20 0.100 0.100 0.100 0.100 0.095 0.042 0.061 0.053
30 0.100 0.100 0.100 0.100 0.093 0.041 0.058 0.054
40 0.100 0.100 0.100 0.100 0.092 0.049 0.061 0.060
50 0.100 0.100 0.100 0.100 0.101 0.062 0.079 0.068
100 0.100 0.100 0.100 0.100 0.108 0.086 0.095 0.086
250 0.100 0.100 0.100 0.100 0.107 0.095 0.101 0.095
500 0.100 0.100 0.100 0.100 0.110 0.101 0.105 0.103

ρ = 0.4 ρ = 0.6
Bartlett QS Bartlett QS

T No PW PW No PW PW No PW PW No PW PW
20 0.083 0.015 0.031 0.024 0.072 0.006 0.016 0.011
30 0.081 0.014 0.029 0.022 0.056 0.004 0.013 0.008
40 0.095 0.026 0.037 0.034 0.086 0.014 0.028 0.018
50 0.108 0.039 0.070 0.048 0.108 0.021 0.074 0.032
100 0.121 0.075 0.100 0.078 0.142 0.063 0.117 0.065
250 0.119 0.091 0.106 0.092 0.136 0.086 0.124 0.086
500 0.121 0.100 0.108 0.100 0.139 0.098 0.123 0.096
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Table 2: Empirical application of the KPSS test.a,b

Test statistics

Sample period Asy. CV KPSSNo PW
Barlett KPSSPW

Bartlett KPSSNo PW
QS KPSSPW

QS

Australia 1960-2004 0.119 0.122 0.034 0.120 0.039

Austria 1960-2004 0.119 0.126 0.034 0.108 0.030

Belgium 1960-2004 0.119 0.128 0.040 0.124 0.036

Canada 1961-2004 0.119 0.099 0.026 0.080 0.017

Denmark 1966-2004 0.119 0.118 0.074 0.107 0.074

Finland 1960-2004 0.119 0.108 0.027 0.083 0.017

France 1963-2004 0.119 0.132 0.078 0.132 0.066

Greece 1960-2004 0.119 0.125 0.060 0.129 0.052

Iceland 1960-2004 0.119 0.117 0.064 0.113 0.061

Ireland 1960-2004 0.119 0.147 0.079 0.152 0.084

Italy 1960-2004 0.119 0.136 0.046 0.124 0.041

Japan 1960-2004 0.119 0.126 0.034 0.108 0.032

Luxembourg 1960-2004 0.119 0.153 0.062 0.126 0.041

Netherlands 1960-2003 0.119 0.103 0.053 0.103 0.049

New Zealand 1962-2004 0.119 0.129 0.029 0.121 0.028

Norway 1960-2004 0.119 0.106 0.021 0.089 0.020

Portugal 1960-2004 0.119 0.084 0.028 0.075 0.023

Spain 1960-2004 0.119 0.091 0.032 0.082 0.024

Sweden 1960-2004 0.119 0.112 0.029 0.083 0.016

Switzerland 1965-2003 0.119 0.149 0.064 0.143 0.064

UK 1960-2004 0.119 0.166 0.090 0.174 0.087

USA 1960-2004 0.119 0.153 0.051 0.143 0.043

Notes: a The tests are performed on the 10% significance level.
b Boldface numbers indicate rejection of the null hypothesis of stationarity.
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Figure 1: Critical values for the KPSS test, intercept only, no prewhitening.a,b
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Notes: aCritical value as a function of the sample-size, T, and the bandwidth scaling, k.
b Long-run variance estimated without prewhitening.
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Figure 2: Critical values for the KPSS test, intercept and trend, no prewhitening.a,b

20 30
40

50 4

8

12
0.00

0.10

0.20

0.30

0.40

0.50

CV

10% critical value, Barlett kernel, w. intercept and trend

T
k

CV

20 30
40

50 4

8

12
0.00

0.10

0.20

0.30

0.40

0.50

CV

10% critical value, Quadratic Spectral kernel, w. intercept and trend

T
k

CV

Notes: aCritical value as a function of the sample-size, T, and the bandwidth scaling, k.
b Long-run variance estimated without prewhitening.
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Figure 3: Critical values for the KPSS test, intercept only, prewhitening.a,b
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Notes: aCritical value as a function of the sample-size, T, and the bandwidth scaling, k.
b Long-run variance estimated with an AR(1) prewhitening filter.
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Figure 4: Critical values for the KPSS test, intercept and trend, prewhitening.a,b
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Notes: aCritical value as a function of the sample-size, T, and the bandwidth scaling, k.
b Long-run variance estimated with an AR(1) prewhitening filter.
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Figure 5: Kernel density estimates, w. intercept, no prewhitening.a,b
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Notes: aThe density estimates are obtained for T=20 and k=12.
b Long-run variance estimated without prewhitening.
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Figure 6: Kernel density estimates, w. intercept and trend, no prewhitening.a,b
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Notes: aThe density estimates are obtained for T=20 and k=12.
b Long-run variance estimated without prewhitening.
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Figure 7: Kernel density estimates, w. intercept, prewhitening.a,b
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Notes: aThe density estimates are obtained for T=20 and k=12.
b Long-run variance estimated with an AR(1) prewhitening filter.
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Figure 8: Kernel density estimates, w. intercept and trend, prewhitening.a,b
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Notes: aThe density estimates are obtained for T=20 and k=12.
b Long-run variance estimated with an AR(1) prewhitening filter.
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Figure 9: Kernel density estimates, Quadratic Spectral kernel, no prewhitening.a,b
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Notes: aThe density estimates are obtained for T=100 and k=12.
b Long-run variance estimated without prewhitening.
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Figure 10: Kernel density estimates, Quadratic Spectral kernel, prewhitening.a,b
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Notes: aThe density estimates are obtained for T=100 and k=12.
b Long-run variance estimated with an AR(1) prewhitening filter.
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