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Choosing Opponents in Prisoners’ Dilemma:
An Evolutionary Analysis∗

Peter Engseld† and Andreas Bergh‡

Dept of Economics, Lund University, P.O. Box 7082, 220 07 Lund, Sweden

November 29, 2005

Abstract

We analyze a cooperation game in an evolutionary environment. Agents
make noisy observations of opponents’ propensity to cooperate, called rep-
utation, and form preferences over opponents based on their reputation. A
game takes place when two agents agree to play. Pareto optimal coopera-
tion is evolutionarily stable when reputation perfectly reflects propensity
to cooperate. With some reputation noise, there will be at least some
cooperation. Individual concern for reputation results in a seemingly al-
truistic behavior. The degree of cooperation is decreasing in anonymity.
If reputation is noisy enough, there is no cooperation in equilibrium.
JEL classification: C70; C72

Keywords: Cooperation; Conditioned Strategies; Prisoners Dilemma; Sig-
naling; Reputation; Altruism; Evolutionary Equilibrium

1 Introduction

1.1 Background

The literature on the problem of cooperation is huge and spans several disci-

plines, see e.g. Gintis et al. (2005) and Hammerstein (2003). There is, however,

still no consensus on how to explain both the emergence and deterioration of

cooperation with unrelated strangers in finite interactions. A classical example

of a cooperation game is the Prisoners’ Dilemma, in which playing defect is

a strictly dominant strategy. Nevertheless, both agents would be better off if
∗We are grateful to Sergiu Hart, Frank Thuijsman, Hans Carlsson, and Håkan J. Holm for

helpful comments.
†Corresponding author: peter.engseld@nek.lu.se.
‡The Ratio institute: andreas.bergh@ratio.se.
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they could somehow commit themselves to play cooperate. Note that feasible

commitments requires that agents are able to observe, directly or indirectly, the

actions of the opponent, otherwise defection can not be retaliated.

The tit-for-tat strategy was described in Axelrod (1984) as retaliation mech-

anism against defections, and became widely known as the best strategy in

repeated games of Prisoners’ Dilemma. However, as pointed out in Boyd and

Lorberbaum (1987), a population of cooperating tit-for-tats can be invaded by

nice but less retaliatory strategies, resulting in a population vulnerable to in-

vasion by defecting strategies. Thus, tit-for-tat is not an evolutionarily stable

strategy. The main mechanism behind this result is that in standard game theo-

retical models, the agents are unable to choose with whom they are matched up.

Instead, it is typically assumed that they are matched up with the same oppo-

nent or through random/tournament matching, see e.g. Kandori, Mailath, and

Rob (1993). This convention stems not from descriptive accuracy, but rather

from methodological considerations: Allowing other matching procedures would

open countless possibilities.

Nevertheless, many interactions in real life are the results of individual

choices, and not randomly imposed. Moreover, it is implausible to assume that

individuals, given a choice, continue to interact with those who treat them un-

favorably, see e.g. Tullock (1985). For this reason, it makes sense to analyze the

Prisoners’ Dilemma when agents have both some ability to observe the actions

of others, and some possibilities to choose between potential opponents. Since

the agents’ payoff is strictly increasing in the opponents probability to play co-

operate, all agents will seek to be matched with opponents who are more likely

to play cooperate. This imposes a restriction on the matching possibilities: If

you want to play with a cooperative agent, you have to play cooperative too.
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1.2 Outline of the Model

In this paper, we analyze the Prisoners’ Dilemma in an evolutionary environ-

ment, see Maynard Smith (1982), using a theoretical framework similar to that

of Kandori, Mailath, and Rob (1993) and Young (1993). The main difference is

that the probability of mutations in our model is given and assumed to be close

to zero. We instead assume that agents make imperfect observations of oppo-

nents’ propensity to play cooperate, interpreted as reputation, which enables

them to form preferences over opponents based on their reputation. We intro-

duce preference based matching which pairs agents with their most preferred

feasible opponent.

The driving mechanism for our main results is the combination of observa-

tional skills and the ability to choose opponent. Under our assumptions, we

show that if observational skills are perfect, i.e. reputation perfectly reflects

each agent’s propensity to cooperate, the payoff maximizing strategy in evolu-

tionarily stable populations, is to cooperate and prefer to play with cooperative

agents.

When observational skills are imperfect, so that reputation only imperfectly

reflects past actions, any population can always be invaded by strategies with

marginally higher degree of defection. This decreases the degree of coopera-

tion in the population over time. However, if observational skills are accurate

enough, a population with a sufficient degree of defection can be invaded by pure

cooperators. In this case, the behavior in the population will change in a cycli-

cal pattern. To capture this dynamic, we introduce a new equilibrium selection

model which basically is a slightly modified absorbing set, and less restrictive

than the conventional evolutionarily stable strategies ESS, see Maynard Smith

(1982).

When observational skills are sufficiently inaccurate, the model yields the

same equilibrium as standard models: there will be no cooperation in equilib-

rium. However, if agents are able to evolve such that observational skills can

3



improve, the observational skills will endogenously, due to evolutionary pressure,

improve over time.

1.3 Related Literature

The idea of conditioned actions in the Prisoners’ Dilemma, is not new. Dawkins

(1982) observed that if cooperative agents has an observable characteristic, such

as a ”green beard”, agents with green beards will cooperate with each other and

play defect with others. A similar idea, with a secret handshake was later for-

mally modelled by Robson (1990). Frank (1988) considers the case when agents

send different signals regarding whether they play cooperative or defect; cooper-

ation is driven by an outside option which enables agents not to play. Grégoire

and Robson (2003) show that when the population is divided into at least three

subpopulations and imitation across subpopulations of the best strategy occurs,

all equilibria involve cooperation. Using the Prisoners’ Dilemma, Rob and Yang

(2005) show that the ability to leave a defecting partner can induce long term

cooperative relationships. Jackson and Watts (2005) introduce the term social

games for games where agents chose not only strategies, but also with whom

they play. In a non-evolutionary environment, they show that the threat of

rematching can sustain new equilibria.

2 The model

Consider a population I with a large even number N agents who are repeatedly

matched to play a symmetric 2× 2 game below.

0
0

1
β

β
1

α
α

  D   C 

D 

C 

Γ (α,β)
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Let α ∈ (0, 1) and β ∈ (−∞, 0) . Prisoners’ Dilemma is the special case when

cooperation is socially optimal (2α > 1 + β) . The action set is A ≡ {D,C},

where a ∈ A. Actions are taken in discrete time, t ∈ {1, 2, 3, ...}. The actions D

and C can be thought of as Defect and Cooperate.

The game Γ (α,β) is played repeatedly by the agents in the population. We

use the term propensity as a measure of action history, formally defined as

follows:

Definition 1 The propensity P ti ,∀i ∈ I at time t is a recursive function, where

P ti ≡ ρPr (ati = C | ·) + (1− ρ)P t−1i , P 0i ∈ [0, 1], and ρ ∈ (0, 1).

The propensity in period t is defined as a weighted average of the probability

to play C in period t and the propensity in the previous period. This implies

that agents with identical action history will have identical propensity.

Every agent i ∈ I observes the reputation rt−i of an opponent −i, which is

a realization of the stochastic variable Rt
−i. R

t
−i is symmetrically, unimodally

and smoothly distributed around P t−i, as depicted below. As a measure of the

observational skills denoted Oti ∈ R+ we use the inverted standard deviation of

Rt
−i. The value of r

t
−i ∈ R is private information for i. Note that reputation is

not limited to the unit interval. Henceforth we omit the time index when there

is no risk for confusion.

R t
i−  

t
iP−

Property 1 lim
Oi→∞

r−i = P−i,∀i,−i ∈ I.

By being able to observe the reputation of opponents, agents can form pref-

erences over all possible opponents. Let Ψ denote the set of all complete and
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transitive preference relations defined on R. Let % ∈ Ψ and let %i denote the

preferences of agent i.

Let S denote the set of all pure strategies. A pure strategy s ∈ S is a mapping

from own propensity, and opponents’ reputation onto A and Ψ. More formally,

we have s : [0, 1]×R 7→ A×Ψ. Less formally, a strategy assigns an action and a

preference order over every feasible population. Note that this mapping allows

agents to condition their actions on the reputation of their opponents.

A mixed strategy is denoted σ and is defined as a probability distribution

over S. Formally, σ ≡ (σs)s∈S , σs ∈ [0, 1] ,∀s ∈ S and
R
s∈S σs = 1. Any mixed

strategy can consequently be seen as a vector σ ∈ R∞+ , that belongs to the unit

simplex ∆σ, where

∆σ ≡
½
σ ∈ R∞+ |

Z
s∈S

σs = 1

¾
.

A combination of strategies in the population is denoted QI and defined as a

probability distribution over ∆σ. Let qσ denote the fraction of agents in I with

strategy σ. Formally, QI = (qσ)σ∈∆σ , qσ ∈ [0, 1] ,∀σ ∈ ∆σ and
R
σ∈∆σ qσ = 1.

Any combination of mixed strategies in the population can be seen as a vector

QI ∈ R∞+ , that belongs to the unit simplex ∆Q, where

∆Q ≡
½
QI ∈ R∞+ |

Z
σ∈∆σ

qσ = 1

¾
.

Note that QI both can be viewed as a point in R∞+ and as a set of strategies.

We use QI\i to denote the strategy mix in the population I \ i, and we let OI\i

denote the observational skills of all agents I \ i. The expected payoff for agent

i with strategy σi at period t will be πt
¡
σi, Oi;QI\i, OI\i

¢
. When there is no

risk of confusion, we use Q to denote QI .

2.1 Evolutionary Stability

To analyze how the population evolves we apply an evolutionary setting similar

to e.g. Kandori, Mailath, and Rob (1993) and Young (1993). We impose per-

turbations such that every agent in the population in each period with a small
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given probability will “mutate”, meaning that they change strategy. Just as in

the papers cited above, one or more agents can change strategy in each time

period and all mutations have equal probability.

The perturbations can be divided into three subgroups: successful mutations,

unsuccessful mutations and evolutionary drift. A successful mutation implies

that the change of strategy yields a strictly higher payoff, whereas an unsuc-

cessful mutation yields a strictly lower payoff. Evolutionary drift occurs when

the change of strategy yields the same payoff, see e.g. Binmore and Samuelson

(1999).

The growth in the population is such that strategies with higher payoffs will

have a higher representation in the population in the next period:1

(1) sign

µ
qt+1σ

qtσ
− q

t+1
σ0

qtσ0

¶
= sign

¡
πt (σ, ·; ·)− πt (σ0, ·; ·)

¢
.

Offsprings are assumed to inherit both strategy, propensity and observational

skill from the parent. The question whether a mutant strategy could invade

the current (incumbent) strategy distribution is not as straightforward as in

standard models. As usual, the payoff of an agent i depends both on the agent’s

strategy σi and on the opponent’s strategy σ−i. However, the opponent’s actions

can also depend on the agent’s reputation, just as the agent’s action can depend

on the opponent’s reputation. This implies that if an agent changes strategy,

her actions and thus her propensity can change, which could trigger different

actions from other agents and thereby change their propensity, which in turn

might lead to other agents changing their actions ad infinitum.

An adiabatic relationship between the processes help us avoid such cumber-

some dynamic:

Assumption 1 The distribution of propensity in the population converges to a

limit state before the growth begins, and the growth converges to a limit state

before new perturbations.
1The growth in this model is identical to that in Kandori, Mailath, and Rob (1993) and

Young (1993).
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Consequently, the adjustment process of the propensity is much faster than

the growth process, which in turn is much faster than the process of perturba-

tions. This implies that the population on average can be considered stationary

in so far as the pair σi, Pi is fixed ∀i ∈ I. This renders the index for time redun-

dant in most cases. Another consequence of Assumption 1 is that ∀Q ∈ ∆Q,

there exists a corresponding propensity distribution.

A population can evolve from Q to Q0 either through growth, successful

mutations or evolutionary drift.

Definition 2
−−→
QQ0 denotes a path connected curve in ∆Q between Q and Q0,

implying that Q can evolve to Q0 through growth or through perturbations.

Due to the potential existence of oscillating strategy mixes, standard equi-

librium concepts, such as ESS, are too restrictive. Let us therefore define a

mutation proof attraction set (MAS ), which basically is a slightly modified ab-

sorbing set, see e.g. Samuelson (1998), where the set is closed under the growth

mechanism and mutations, whereas absorbing sets are closed only under the

growth mechanism.

Definition 3 (MAS) QMAS (Γ) is a set of strategy mixes Q ∈ QMAS (Γ)

where

• ∃
−−→
QQ0, ∀Q,Q0 ∈ QMAS (Γ) , and

• @
−−→
QQ00 for any Q00 /∈ QMAS (Γ).

Let ∆MAS (Γ) ≡
S
QMAS (Γ).

Property 2 ∆MAS (Γ) 6= ∅,∀Γ.

A population I belongs to a MAS, precisely if the strategy mix Q in the

population belongs to an attraction set QMAS (Γ) such that ∃
−−→
QQ0, ∀Q,Q0 ∈

QMAS (Γ). That is, each combination of strategies in the population that be-

longs to the attraction setQMAS (Γ)must be able to evolve to any other point in
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the attraction set, either through growth or through evolutionary drift. More-

over, there must not exist any feasible path such that the population could

evolve to a point Q00 /∈ QMAS (Γ). Note that MAS yields identical equilibria on

unconditioned strategies as neutrally stable strategies NSS, see Maynard Smith

(1982).

2.2 Matching of the Agents

The individual preference ordering %i ∈ Ψ enables each agent to make pairwise

comparisons of all other agents in the population, such that k %i j implies that

agent i weakly prefers agent k over agent j, whereas k Âi j implies that agent

i has a strict preference for agent k over agent j.

Let I denote the set of matched pairs. Formally, preference based matching

is described as follows:

Definition 4 (Preference based matching)

@ (i, j) , (k, l) ∈ I such that k Âi j, and i Âk l.

Preference based matching implies that agents are matched up with their

most preferred feasible opponent. Many matching procedures may satisfy the

conditions above, for an example see Appendix B. Preference based matching

procedures do not generate a deterministic set of matched agents. In order

to make the matching procedure path independent, the games are evaluated

through the expected payoffs given a fixed set of preferences and observational

skills in the population. For technical reasons, we assume that each strategy

present in the population is utilized by an even number of agents. By this

assumption we avoid the pathological case when a non-preferred opponent im-

posed on an odd agent with a given strategy, possibly decreases the expected

payoff for agents this strategy.

Note that when observational skills are non-existent, preference based match-

ing is equivalent to random matching.
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3 Evaluating the Game

Denote the strategy mixes where all choose action C and D respectively:

QC ≡ {Q | Pr (ai = C) = 1,∀i ∈ I} , and QD ≡ {Q | Pr (ai = C) = 0,∀i ∈ I} .

Regardless of an agent’s strategy, the payoff is always higher if the opponent is

more likely to play C. Since changes in strategies are assumed to be rare, the

adiabatic relationship propensity and actions (Assumption 1) implies that the

expected payoff π is strictly increasing in the opponent’s propensity.

Property 3 ∂πi
∂P−i

> 0.

From the definition of reputation we know that the expected value of the

reputation equals the propensity.

Property 4 ∂πi
∂r−i

> 0.

Denote by %C the set of preferences such that the agent prefers opponents

with higher reputation:

Definition 5 %C≡ {%| rj ≥ rk ⇔ j % k,∀r ∈ R}.

3.1 Perfect Observational Skills

Let us begin with the special case when reputation is identical to the propensity,

i.e. Oi = ∞,∀i ∈ I. From property 3 we know that the payoff is strictly

increasing in the opponent’s propensity. For this reason, assume for now that

all agents have preferences %C.

Since all agents will be able to avoid being matched up with opponents of

lower propensity, agents will only be matched up with opponents of identical

propensity.

Let zi ≡ Pr (ai = C). Since agents matched with each other will have iden-

tical propensity, let z ≡ zi. Focus now on how the payoff depends on the
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propensity. The payoff for an arbitrary agent i is given by πi (·) = αz2 +

z (1− z) (1 + β), which is maximized for

z =
1

2
+
1

2

α

1 + β − α
.

When cooperation is socially optimal, 2α ≥ 1 + β, this implies z = 1. If

2α < 1+β, the payoff is maximized for mixed strategies where the probability of

playing C is equal to 1
2+

1
2

α
1+β−α >

1
2 . Thus, the probability of playing action C

is strictly increasing in α, and always higher than 50 percent. However, when all

agents have identical propensity, the population will be vulnerable to a neutral

invasion of agents with the same propensity as the incumbents, but with % 6=%C.

Lemma 1 Pi = Pj ,∀i, j ∈ I ⇒ π
¡
σ |%C

¢
= π

¡
σ |% 6=%C

¢
,∀σ ∈ ∆σ.

In other words, the population will through mutations drift away from all

agents preferring opponents with higher reputation.

Proposition 1 If Q ∈ ∆MAS (Γ) and Oi =∞,∀i ∈ I then

• 2α ≥ 1 + β ⇒ lim
N→∞

Pr (ai = C) = 1, and

• 2α < 1 + β ⇒ lim
N→∞

Pr (ai = C) =
1
2 +

1
2

α
1+β−α ,∀i ∈ I.

The intuition is as follows: Since agents with % 6=%C can only make a neutral

invasion, they will, for a given growth and perturbation speed, represent a small

subset of I of fixed size. This fraction can be exploited by strategies more

inclined to play D, with preferences %C. These strategies will initially yield more

than all other strategies in the population. However, strategies with % 6=%C will

yield less than all other strategies and therefore grow slower. This implies that

agents with low propensity strategies to a higher degree will become matched up

themselves, and thus earn a lower payoff. This process will eventually stabilize

when the expected payoff for agents with % 6=%C equals that of agents with low

propensity strategies.

Note that when the exploiting agents, due to their lower payoff, eventually

disappear from the strategy mix, the population will again drift away from all
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agents having preferences %C, and the process described above will start over,

causing a rare reoccurring limited cyclical movement in Q.

3.2 Imperfect Observational Skills

Assume now that reputation is noisy and only imperfectly reflects propensity.

Lemma 2 Oi < ∞,∀i ∈ I, and ∃Pi 6= Pj , for some i, j ∈ I ⇒ π
¡
σ |%C

¢
>

π
¡
σ |% 6=%C

¢
,∀σ ∈ ∆σ.

When the population contains agents with different propensity, preferences

%C will yield higher payoff. Moreover, if the population contains agents with

different propensity, the payoff is strictly increasing in observational skills for

agents with %C.

Lemma 3 Oi < ∞,∀i ∈ I, and ∃Pi 6= Pj , for some i, j ∈ I ⇒
∂πi(σ|%C)

∂Oi
>

0,∀i ∈ I and ∀σ ∈ ∆σ.

Corollary 1 ∃Pi 6= Pj , for some i, j ∈ I and Q ∈ ∆MAS (Γ)⇒ Oi = O,∀i ∈ I.

If agents are able to evolve such that observational skills can improve, the

observational skills will improve over time.

Corollary 2 ∃Pi 6= Pj , for some i, j ∈ I and Q ∈ ∆MAS (Γ)⇒ lim
t→∞

Ot =∞.

As a consequence of Corollary 1, we henceforth analyze the game under the

assumption that all agents have the same observational skills: Oi = O,∀i ∈ I.

Now consider two types of agents with strategies σ1 and σ2, and correspond-

ing propensities P1 > P2. Define π1 ≡ π (σ1) and π2 ≡ π (σ2). Let π11 denote

the payoff for type 1 agent when matched against another type 1 agent. Let π12

denote the payoff for a type 1 agent when matched against type 2. Analogously,

π22 denotes the payoff when two type 2 agents meet, and π21 is the payoff for

type 2 agents when matched against type 1.

ρ1 denotes the fraction of type 1 agents who meet type 2, i.e. matching

failures for type 1. Analogously, ρ2 denotes the fraction of type 2 agents who
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meet type 1. Let N1 and N2 be the number of agents of type 1 and 2, and note

that ρ1N1 = ρ2N2.

The payoffs can be described as follows:

π1 = (1− ρ1)π11 + ρ1π12 and π2 = (1− ρ2)π22 + ρ2π21,

As before, z1 denotes the probability to play C for a type 1 agent with

propensity P1. Let z2 = z1 − x denote the corresponding probability for a type

2 agent, where x ∈ (0, z1]. Hence, the relevant payoffs can be written:

π11 = z21α+ z1 (1− z1) (1 + β) ,(2)

π12 = z1 (z1 − x)α+ (z1 − x) (1− z1) + z1 (1− z1 + x)β,(3)

π22 = (z1 − x)2 α+ (z1 − x) (1− z1 + x) (1 + β) ,(4)

π21 = z1 (z1 − x)α+ (z1 − x) (1− z1)β + z1 (1− z1 + x) .(5)

Since π11 > π12 and π22 < π21 it follows that if matching failures for type

1 agents are sufficiently common, the less cooperative type 2 agents will earn

more. Let ρmax1 be the value of ρ1 for which π1 = π2. In other words, ρmax1 is

the maximum fraction of matching failures allowed for type 1 agents in order

to prevent type 2 agents from earning a higher payoff and thereby successfully

invade the population.

Lemma 4 ∃P2 < P1 such that π2 > π1,∀P1 ∈ (0, 1] when O <∞.

The maximum allowed fraction of matching failures for agents of type 1 in

a close proximity of P2 corresponds to less mistakes than random matching,

i.e. ρmax1 < N2

N2+N1
. From the assumption about the noise it follows that the

ability to identify whether an agents is type 1 or 2 when |P1 − P2| ≈ 0 is close

to non-existent.

Consequently, unless observational skills are perfect, any population can al-

ways be invaded by agents less prone to play cooperative. The intuition behind

this result is that the observational skills needed to prevent invasion by more de-

13



fecting agents requires fewer errors than random matching, which is impossible

when the invasion occurs arbitrarily close to the propensity of the incumbents.

Lemma 4 suggests a dynamic that eventually will drive the population to-

wards a state where all agents play defect. Nevertheless, from the definition

of noise it follows that %i=%C ,∀i ∈ I ⇒ ∂ρ1
∂x < 0. That is, matching failures

for type 1 agents are decreasing in x, and thus also in the propensity distance

between type 1 and 2. Less formally, a slightly less cooperative opponent is

harder to recognize than an opponent with much lower propensity, and thereby

also harder to avoid being matched up with.

Lemma 5 ∃O <∞, z1 ∈ [0, 1] and x ∈ (0, z1] such that ρmax1 > ρ1 > 0.

Corollary 3 ∃O <∞ and x ∈ (0, z1] such that π1 > π2.

That is, there exists an imperfect observational skill which enables a more

cooperative strategy to invade a population of less cooperative players. Let O∗

denote the minimum observational skill with which Lemma 5 is satisfied.

Corollary 4 O ≥ O∗ ⇒ ∃x ∈ (0, z1] such that π1 > π2.

If the observational skill in the population is better than O∗, then type 1

agents can successfully invade a population with much less cooperative type 2

agents. But as shown in Lemma 4, this more cooperative population can in turn

be invaded by slightly less cooperative strategies. The process described above

will start over, causing a cyclical movement in Q such that the population will

oscillate between different degrees of cooperation.

Unless the observational skill in the population is higher than O∗, complete

defection is a unique MAS.

Proposition 2 O < O∗ ⇒ QD = ∆MAS (Γ).

Nevertheless, given that observational skills can evolve, note that the popu-

lation will always be subjected to perturbations. Hence, agents with P > 0 will
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rarely, but repeatedly emerge in the population, i.e. ∃Pi 6= Pj , for some i, j ∈ I.

From Lemma 3 it follows that
∂πi(σ|%C)

∂Oi
> 0. Hence, eventually will O ≥ O∗.

Then from Lemma 4 and 5 it follows that ∃Pi 6= Pj , for some i, j ∈ I.

Lemma 6 %i=%C,∀i ∈ I ⇒ ∂ρ1
∂O < 0.

The fraction of matching failures for type 1 agents is decreasing in observa-

tional skills. Hence, the possibility of successful invasion by type 1 agents will

increase as observational skills improve.

Proposition 3 The degree of cooperation in the population is strictly increasing

in observational skills when O ≥ O∗.

From Proposition 2 and 3 it follows:

Corollary 5 The degree of cooperation in the population is weakly increasing

in observational skills.

3.3 Summary

The results can now be summarized as follows:

1. If observational skills are perfect, i.e. Oi =∞,∀i ∈ I, we have two cases:

(a) When cooperation is socially optimal, 2α ≥ 1 + β, almost total co-

operation is a unique MAS.

(b) When cooperation is inefficient, 2α < 1 + β, more than half of the

actions in the MAS will be cooperative.

2. If observational skills are imperfect, but sufficiently good, i.e. O ≥ O∗,

the strategy mix in the population will oscillate between different degrees

of cooperation. The degree of cooperation in the population is strictly

increasing in observational skills.

3. If observational skills are poor enough, i.e. O < O∗, complete defection is

a unique MAS, i.e. QD = ∆MAS (Γ).
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4. If agents are able to evolve such that observational skills can improve, the

observational skills will improve over time.

4 Conclusions and Remarks

In our model individual concern for reputation results in a seemingly altruistic

behavior. We have thus shown that prosocial behavior, such as cooperation in

Prisoners’ Dilemma can be explained without resorting to models with altruism

or inequity aversion, see e.g. Fehr and Fischbacher (2003) and Fehr and Schmidt

(1999). Reputation based choice can also potentially explain the big impact of

the degree of anonymity on behavior. When reputation does not perfectly reflect

behavior, there are situations where the payoff associated with defections will

outweigh the reputational costs. For experimental evidence, see e.g. Hoffman,

McCabe, and Smith (1996).

Regarding the effect of reputation based choice of opponent, there is less

experimental evidence available. McCabe, Rigdon, and Smith (2003) pair par-

ticipants in a trust game based on their degree of trust and trustworthiness,

which allows cooperation to emerge and protects cooperation from being in-

vaded by defecting players.

This supports the idea that an important key to understanding cooperation

in repeated games is the matching procedure. Random/tournament matching

represents one extreme, whereas reputation based choice as analyzed in this

paper represents another. In practice, people encounter some situations where

they are able to choose their opponent in strategic interactions and some situa-

tions where they are forced to play games of cooperation against random agents

in the population. The implications of such mixed matching procedures deserve

to be examined closely. The results are likely to be positive for cooperation: As

long as there is at least some degree of free opponent choice, agents must take

into consideration the reputational consequences of their actions also when they

play against randomly assigned opponents.
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A Proof

Proof of Lemma 1. Pi = Pj ,∀i, j ∈ I ⇒ zi = zj ,∀i, j ∈ I. zi = zj ,∀i, j ∈ I

implies that all opponents will yield the same payoff. Consequently, π (σ |%0) =

π (σ |%00) ,∀σ ∈ ∆σ and ∀ %0, %00∈Ψ.

Proof of Proposition 1. From Property 3 we know that ∂πi
∂P−i

> 0. When

observational skills are perfect, we have that P−i = r−i which implies that all

agents can avoid being matched up with opponents with lower propensity. We

know that each agent i maximizes her payoff when zi = 1 if 2α ≥ 1 + β, and

zi =
1
2 +

1
2

α
1+β−α if 2α < 1 + β. Let Q∗ denote the set of strategy mixes where

all agents, for given α and β, use payoff maximizing strategies. This results in

a constant Pi = P ∗,∀i ∈ I. Denote the incumbent strategy σ∗ with preferences

%C yielding the propensity P ∗. From Lemma 1 we know that the incumbent

population can be neutrally invaded by a strategy σ0 with P 0 = P ∗ but with

% 6=%C. This in turn makes the population vulnerable to invasion by a strategy

σ00 with P 00 < P ∗ and with %C . This will according to equation 1 result in

π (σ00) ≥ π (σ∗) > π (σ0)⇒ qt+1
σ00
qt
σ00
≥ qt+1

σ∗
qt
σ∗
>

qt+1
σ0
qt
σ0

However, as the fraction qσ0 decreases relative to qσ00 , σ00 will gradually to a

higher degree become matched up with other σ00, since σ∗ will never be matched

up with σ00. As a consequence π (σ00) will decrease as qσ0 decreases. π (σ00) will

continue to decrease until eventually

π (σ∗) > π (σ00)⇒ qt+1
σ∗
qt
σ∗
>

qt+1
σ00
qt
σ00
, and π (σ∗) > π (σ0)⇒ qt+1

σ∗
qt
σ∗
>

qt+1
σ0
qt
σ0

.

No more invasions are possible as long as qσ00 > 0.

Now consider the neutral invasion by σ0. Since π (σ∗) = π (σ0) ⇒ qt+1
σ∗
qt
σ∗

=

qt+1
σ0
qt
σ0
. Hence, according to equation 1 the fraction qσ0 is constant. Given As-

sumption 1, this implies that qσ0 will be decreasing in population size N . Also

note that qσ00 is bounded by qσ0 . Hence there exist a bounded neighborhood

around Q∗ which is decreasing in N , such that the population in a MAS will
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converge to:

lim
N→∞

Pr (ai = C) = 1,∀i ∈ I if 2α ≥ 1 + β, and

lim
N→∞

Pr (ai = C) =
1

2
+
1

2

α

1 + β − α
,∀i ∈ I if 2α < 1 + β.

Proof of Lemma 2. From Property 3 and 4 we know that ∂πi
∂P−i

> 0 and

∂πi
∂r−i

> 0. If ∃Pi 6= Pj , for some i, j ∈ I, then %C will result in a lower probability

of being matched up with low propensity opponents, and a higher probability

of being matched up with high propensity opponents, than any % 6=%C.

Proof of Lemma 3. Consider a population with a fixed distribution

of observational skills and focus an agent i with observational skill Oi. The

probability that agent i mistakenly perceives an opponent to be more coopera-

tive than she really is, is clearly decreasing in observational skill. Analogously,

the probability that agent i correctly identifies an opponent as having a higher

propensity is increasing in observational skills. Consequently, for agents with

%C, a better observational skill leads to a higher probability that low propensity

agents are ranked low and high propensity agents are ranked high, which in turn

results in a higher probability to become matched up with a high propensity

agent. The Lemma follows directly from Property 4.

Proof of Lemma 4. Let Oi = O,∀i ∈ I. Consider the difference π1 − π2,

and assume that π1 − π2 = 0. Hence,

π1 − π2 = (1− ρmax1 )π11 + ρmax1 π12 −
µ
1− ρmax1

N1
N2

¶
π22 − ρmax1

N1
N2

π21 = 0.

Solving for ρmax1 yields:

(6) ρmax1 =
N2 (π22 − π11)

N2 (π12 − π11) +N1 (π22 − π21)
.

Substituting the payoffs from equations 2 to 5 into equation 6 yields:

ρmax1 =
N2 ((2z1 − x) (α− β − 1) + 1 + β)

(N2 +N1) (z1 (α− β − 1) + 1)− xN1 (α− β − 1)
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Note that ρ1 denotes the actual fraction of mistakes for the incumbents. It

follows that ρmax1 < ρ1 ⇒ π1 < π2 and ρmax1 > ρ1 ⇒ π1 > π2.

Note that having no observational skills is equivalent to random matching

where ρ1 =
N2

N2+N1
. From the definition of reputation, it follows that the fraction

of matching failures converges to random matching as x→ 0. Consequently, we

have lim
x→0

ρ1 =
N2

N2+N1
.

For an invasion arbitrariliy close to the incumbents, we have

lim
x→0

ρmax1 = N2(2z1(α−β−1)+1+β)
(N2+N1)(z1(α−β−1)+1) .

Consider the difference lim
x→0

ρmax1 − lim
x→0

ρ1

= N2(2z1(α−β−1)+1+β)
(N2+N1)(z1(α−β−1)+1) −

N2

N2+N1
= N2

N2+N1

³
2z1(α−β−1)+1+β
z1(α−β−1)+1 − 1

´
.

Since N2

N2+N1
> 0, we have lim

x→0
ρmax1 − lim

x→0
ρ1 < 0

⇔ 2z1(α−β−1)+1+β
z1(α−β−1)+1 − 1 < 0⇔ z1 (1 + β − α) > β.

Two cases:

⎧⎪⎨⎪⎩ 1 + β − α < 0 ⇒ z1 < 1 <
β

1+β−α

1 + β − α > 0 ⇒ z1 > 0 >
β

1+β−α

.

Since z1 ∈ [0, 1], it follows that N2(2z1(α−β−1)+1+β)
(N2+N1)(z1(α−β−1)+1) <

N2

N2+N1
.

Then ∃eε > 0 such that:
N2(2z1(α−β−1)+1+β)
(N2+N1)(z1(α−β−1)+1) + eε < N2

N2+N1
.

Then there also ∃x > 0 such that N2((2z1−x)(α−β−1)+1+β)
(N2+N1)(z1(α−β−1)+1)−xN1(α−β−1) <

N2

N2+N1
.

Consequently, ∃P2 < P1 such that π2 > π1 or more explicitly:

π (σ2, O) > π (σ1, O) ,∀O <∞.

Proof of Lemma 5. From the proof of Lemma 4 we know that

(7) ρmax1 = N2((2z1−x)(α−β−1)+1+β)
(N2+N1)(z1(α−β−1)+1)−xN1(α−β−1)

.

Remember that: ρmax1 > ρ1 ⇒ π1 > π2. Consequently, ∃ρmax1 > 0 ⇒ ∃ρ1 >

0 such that π1 − π2 > 0. Consider the denominator in equation 7:

(N2 +N1) (z1 (α− β − 1) + 1)− xN1 (α− β − 1) >

(z1 − x) (α− β − 1) + 1 > 0.
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Now consider the nominator, for x = z1 = 1:

N2 ((2z1 − x) (α− β − 1) + 1 + β) = N2α > 0.

Consequently, ∃ρmax1 > 0. Then ∃ρmax1 > ρ1 ⇒ π1 > π2.

Proof of Proposition 2. Follows from Lemma 5 and Corollary 4.

Proof of Lemma 6. Consider a population I with agents of type 1 and

2, and propensities P1 > P2. Let ρ1 denote the probability for a type 1 agent

to become matched up with a type 2 agent. Let ρi,j denote the probability that

agent i of type 1 is going to be matched with agent j of type 2.

Let pi,j denote the combined probability that an agent i of type 1 mistakenly

ranks an agent j of type 2 higher than a type 1 agent, and that agent j correctly

ranks agent i higher than a type 2 agent.

Note that ρi,j is increasing in pi,j , ∀i, j ∈ I, i.e. ∂ρi,j
∂pi,j

> 0,∀i, j ∈ I.

Let ep denote the probability that an agent i of type 1 perceives an agent
of type 2 to be more cooperative than herself, ep ≡ Pr (r2 > P1). Since both

types have identical observational skills, the probability that an agent j of type

2 perceives an agent of type 1 to be more cooperative than herself, is 1 − ep =
Pr (r1 > P2). Note that ∂ep

∂O < 0.

pi,j is increasing in the combined probability (ep) (1− ep) ≡ epi,j , i.e. ∂pi,j
∂epi,j > 0.

From the definition of reputation it follows that ep < 1
2 , hence

∂epi,j
∂ep > 0.

Consequently
∂ρi,j
∂ep =

∂ρi,j
∂pi,j

∂pi,j
∂epi,j ∂epi,j∂ep > 0. Moreover,

∂ρi,j
∂O =

∂ρi,j
∂ep ∂ep

∂O < 0.

That is, the probability that agent i of type 1 is going to be matched with agent

j of type 2 is decreasing in observational skill.

Since the probability that agent i of type 1 is going to be matched with agent

j of type 2 is decreasing in observational skill for every pair in the population,

we have that sign
³
∂ρi,j
∂O

´
= sign

³
∂ρ1
∂O

´
.

Proof of Proposition 3. From Lemma 6 we know that ∂ρ1
∂O < 0. Since

π11 > π12 ⇒ ∂π1
∂ρ1

< 0 and π22 < π21 ⇒ ∂π2
∂ρ1

> 0, it follows that a decrease in ρ1
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benefits more cooperative agents. Hence, fewer mistakes will make it harder for

less cooperative agents to exploit cooperative agents. As observational skills im-

prove, the population will converge towards the degree of cooperation described

by Proposition 1.

B Example of a Matching Procedure

First, for each individual preference ordering%i ∈ Ψ there exists at least one cor-

responding vector Ri ≡
¡
R1i , R

2
i , ..., R

N
i

¢
where Rki denotes agent i’s k-preferred

choice. Thus, R1i denotes i’s most preferred opponent, R
2
i her second best, and

so on.

This procedure makes use of a randomized choosing order, assumed (with-

out loss of generality) to coincide with the numbers 1 to N . First, agent 1

asks her most preferred opponent, who accepts if agent 1 is her most preferred

opponent. Then agent 2 asks her most preferred opponent, and when all agents

have proposed to their first best choice, the procedure is repeated for second

best choices. The procedure continues until all agents are paired. Formally, the

matching procedure can be described by the following algorithm, which pairs

all agents in I into I.

Algorithm 1 (Matching procedure) Let I be the set of matched pairs.

Step 0. Let I = ∅, i = 1, and l = 1.

Step 1. If there exists an m ∈ [1, l] such that if
¡
Rli = j

¢
∧
¡
Rmj = i

¢
∧ (i, j /∈ I),

then (i, j) ∈ I.

Step 2. Increase i by 1. If i ≤ N, go to step 1.

Step 3. Increase l by 1 and let i = 1. If l ≤ N, go to step 1.

To ensure that the realized payoff for every agent at each period is equal

to the expected payoff, the matching procedure is assumed to be repeated an

infinite number of times within each period.
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