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Abstract

In this paper, two tests for structural hypotheses on cointegration vectors are
evaluated in a Monte Carlo study. The tests are the likelihood ratio test proposed by
Johansen (1991) and the test for stationarity proposed by Kwiatkowski et al. (1992).
The analysis of the likelihood ratio test is extended with the inclusion of a Bartlett
correction factor. Under circumstances common in empirical applications, all tests
su�er from large size distortions and have low power to detect a false cointegration
vector, but the Johansen (1991) test fares slightly better than the Kwiatkowski et al.
(1992) test. Applying a Bartlett correction factor in small samples improves to a
large extent the likelihood ratio test.
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1 Introduction
Cointegration analysis is widely used in empirical economics. When analysing cointegration
relationships, economic theory often predicts speci�c cointegration vectors that are to be
evaluated. Thus, in many applications, the crucial part of the analysis is to test such
structural hypotheses on the cointegration vectors. This is, for example, the case when
testing the Purchasing Power Parity (PPP) hypothesis. For the PPP hypothesis to hold,
a country's real exchange rate has to be stationary. In a two-variable model, this can be
stated as follows: the natural logarithm of the foreign price level in domestic currency and
the natural logarithm of the domestic price level should be cointegrated with cointegration
vector

[
1 −1

]
. Since the theoretical cointegration vector implies a one-to-one relation

between the two variables, any other cointegration vector leads to the conclusion that the
PPP theory is not valid. Therefore, in order to be able to draw appropriate conclusions
regarding economic theory, it is vital to analyse and evaluate di�erent tests used for testing
hypothesis on cointegration vectors, on their abilities to distinguish between true and false
cointegration vectors.

In this paper, we analyse and compare two econometric methods that are common in
cointegration analysis. We focus on situations where we want to test a speci�c cointegration
vector given by economic theory, as in the PPP example above. The �rst method is the
likelihood ratio test for structural hypotheses proposed by Johansen (1991) and Johansen
and Juselius (1990, 1992), henceforth called the LR test. Among various likelihood ratio
tests, this is the most commonly used test and it has also been shown to posses the
most desirable statistical properies (see for example Haug (2002)). The second method is
based on the Engle�Granger methodology (Engle and Granger, 1987). Here, we apply the
commonly used test proposed by Kwiatkowski et al. (1992) (the KPSS test) to the residuals
from the long-run regression and test the residuals for stationarity. The Johansen method
and the Engle�Granger method are the two most frequently used methods in cointegration
analysis, which makes the comparison between the tests highly important for empirical
applications.

The LR test is a multivariate test that tests a null hypothesis of a speci�ed cointegration
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vector against the alternative hypothesis that the speci�ed vector is not valid. The test
is asymptotically χ2 distributed, but the distribution is not always a good approximation
in small samples, as pointed out by, for example, Jacobson (1995) and Zhou (2000). To
help reducing the problems in �nite samples, a so-called Bartlett correction factor can be
applied to the test.1 In the present study, the LR test is performed both with and without
the Bartlett correction factor, in order to establish its consequences for the test.

The KPSS test is univariate and tests the residuals from a long-run relationship for
stationarity in a version of the Engle�Granger method. Instead of estimating the long-
run relationship, which is the common strategy when using the Engle�Granger method,
we specify the long-run coe�cients, extract the residuals and apply the KPSS test. We
then have a test for a speci�c cointegration vector in this framework as well. Since the
KPSS test has stationarity of the residuals as its null hypothesis, failing to reject the null
hypothesis implies that the chosen long-run relation is a cointegration vector. Thus, the
null hypotheses for the LR test and the KPSS test are analogous and a straightforward
comparison between the two procedures is legitimate.2

The analysis in this paper is conducted in a Monte Carlo study. We examine both the
size, i.e. the probability of rejecting a null hypothesis if the null hypothesis is true, and
the power, i.e. the probability of rejecting a null hypothesis if the null hypothesis is false,
of the two tests. Throughout the analysis, we work with a bivariate model. Although

1The Bartlett correction originate from Bartlett (1937). A presentation of the ideas behind the Bartlett
correction can be found in Jacobson and Larsson (1999).

2The most common strategy when applying the Engle�Granger methodology in cointegration analysis,
is to test the estimated residuals from the long-run regression with a unit root test, for example an
augmented Dickey�Fuller test or a Phillips�Perron test. The null hypothesis of these tests is the presence
of a unit root in the data, i.e. no cointegration relation between the variables. Therefore, these tests are
not directly comparable with the LR test for structural hypotheses in the Johansen approach, where the
null hypothesis implies the presence of a cointegration relation in the model. In this study, however, we
compare two tests with analogous null hypotheses. A Monte Carlo study of di�erent cointegration tests
with null hypothesis of no cointegration, including the augmented Dickey�Fuller test and the Phillips�
Perron, is made by Östermark and Höglund (1999). In the study, they analyse cointegration test but not
tests for structural hypotheses on cointegration vectors.
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this is a very simple model, it can be appropriate for some economic questions where
cointegration analysis is commonly used, for example when testing the PPP hypothesis or
the relation between income and consumption. It is important to evaluate statistical tests
under circumstances common in empirical studies. The aim is to design the simulation
experiments accordingly. We therefore choose values of the parameters in the model often
appearing in such studies. One important process in a cointegration model is how fast
the variables return back to equilibrium after a deviation from the long-run relation. In
many empirical macroeconomic applications, this adjustment process is very slow. We
extend earlier research regarding the properties of cointegration tests by analysing slower
adjustment processes than before. We also focus on the properties of the KPSS test in
applications where we test hypotheses on cointegration vectors.

The paper is organized as follows. Previous studies are discussed in section 2. The
LR test and the KPSS test are discussed in section 3 and in section 4, the set-up of the
simulation experiment is presented. The empirical results regarding size and power of the
tests are presented in section 5. Conclusions are made in section 6.

2 Previous studies
The LR test for testing structural hypotheses on cointegration vectors has been examined
by Jacobson (1995), Zhou (2000), Gredenho� and Jacobson (2001) and Haug (2002). These
studies suggest that the LR test is biased towards rejecting a true null hypothesis more
often than asymptotic theory suggests. The bias is greater when the sample size is smaller,
when the lag length is longer and when the cointegration relationship is highly serially
correlated. Jacobson (1995) also studies the power of the LR test and �nds that the power
is low for detecting a true the cointegration vector close to the one in the null hypothesis.
However, the power is fairly high when the sample size is large. Fachin (2000) compares
the Johansen (1991) test with a bootstrap procedure for the test in a Monte Carlo study.
He �nds that the empirical size of test improves with the bootstrap procedure compared
to the asymptotical test, but the power of the test may be a�ected. He therefore propose
a combined test based on the outcome of the asymptotic and bootstrap tests that gives
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small size distortions and high power. Haug (2002) compares several likelihood ratio tests
and Wald tests with respect to size and power properties. He �nds that Johansen's LR
test is preferable regarding size and that it performs well regarding power in comparison
to the other tests, although some tests have better power.

Johansen (2000) has derived a Bartlett correction factor for the LR test. In simulation
experiments, he shows that the correction helps reducing the empirical size of the test.
This conclusion is also reached by Haug (2002). Omtzigt and Fachin (2002) analyse the
use of the Bartlett correction factor when testing hypotheses on cointegration vectors.
They compare a Bartlett correction with two types of bootstrap methods, concluding that
the Bartlett correction gives less power losses compared to the bootstrap methods.

3 Statistical tests

3.1 The Johansen method and the LR test

The Johansen method for cointegration analysis is based on the works of Johansen (1988,
1991) and Johansen and Juselius (1990, 1992). The basis for the analysis is a vector
autoregressive model (VAR) with dimension p, equal to the number of variables in the
model. The VAR model can be written as

Xt = A0 + A1Xt−1 + A2Xt−2 + ... + AkXt−k + εt (1)

where k is the number of lags in the model and Xt is a variable vector de�ned as Xt =[
x1t ... xpt

]′
. The error term εt is assumed to be independently and identically normally

distributed with mean zero and covariance matrix Σ. The VAR model can be rewritten in
its vector error correction form as

∆Xt = A0 + ΠXt−1 + Γ1∆Xt−1 + Γ2∆Xt−2 + ... + Γk−1∆Xt−k+1 + εt (2)

where Γi = −∑k
j=i+1 Aj and Π =

∑k
i=1 Ai − In. Since the simulation study in this paper

is conducted in a two-variable model with one lag, the variable vector Xt =
[
xt yt

]′
and

the vector error correction model simpli�es to

∆Xt = A0 + ΠXt−1 + εt. (3)
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The Johansen analysis is concerned with the matrix Π. In a cointegrated model, the
Π-matrix has reduced rank and can be decomposed into two matrices, α and β, as Π = αβ′.
Both α and β have the dimension (p× r), where r is the number of cointegrated vectors in
the model. The matrix β is a matrix of long-run cointegration relations and the elements
in the matrix α are adjustment coe�cients, determining the speed of adjustment back
to equilibrium after a deviation from the long-run relation. The number of cointegrated
vectors, r, is also equal to the rank of Π. If r(Π) = 2 in equation (3), Π has full rank
and the variables in Xt are stationary. If r(Π) = 0, Xt is non-stationary, but there is no
cointegration relation between the variables, and �nally, if r(Π) = 1, Xt is non-stationary
and there exists one cointegration relation among the variables.

Testing for the number of cointegration relations and obtaining estimates of α and β

are done with the Johansen maximum likelihood procedure and Johansen's trace statistic.
Details about the estimation procedure and the trace statistic are found in Johansen (1988).

After establishing the presence of cointegration in the model and the number of coin-
tegration vectors, the interest turns to testing hypotheses regarding the parameters in the
matrices α and β. This kind of structural hypotheses can be tested with the LR test pro-
posed by Johansen (1991) and Johansen and Juselius (1990, 1992).3 Suppose we want to
test the hypothesis that the cointegration vector β =

[
1 −β1

]′
. If this is the cointegration

vector, β′Xt is stationary; otherwise the variables are not cointegrated. The presence of
cointegration relations in the model is determined by the rank of the Π-matrix, which also
equals the number of eigenvalues of Π that is di�erent from zero. The LR test compares
the estimated eigenvalues from the model without any restrictions on α and β, with the
eigenvalues estimated with the restrictions de�ned in the structural hypothesis imposed.
If the restriction β =

[
1 −β1

]′
is valid, the eigenvalues of the two models should be the

3Johansen (1991) and Johansen and Juselius (1990, 1992) propose various tests for hypotheses on the
cointegration vectors. In this paper, we focus on situations where we test if a speci�c vector belongs to the
cointegration space. In addition to this, we can test the same set of restrictions on all cointegration vectors,
restrictions on one cointegration vector leaving the other vectors unrestricted and di�erent restrictions on
each cointegration vector. In a bivariate model with one cointegration vector, some of these hypotheses
result in the same model.
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same; if the restriction is not valid, the eigenvalues should di�er to a large extent. The LR
test statistic is calculated as

Q = −T

r∑
i=1

ln

(
1− λ̂A,i

1− λ̂i

)
(4)

where λ̂i are the eigenvalues of the Π-matrix estimated under the null hypothesis and λ̂A,i

are the eigenvalues estimated under the alternative hypothesis. Asymptotically, this test
statistic is χ2 distributed with degrees of freedom equal to the number of restrictions placed
on the vector β. The null hypothesis is rejected if the test statistic exceeds the critical
value from the χ2 distribution.

3.2 The Bartlett correction factor

The LR test for structural hypotheses on cointegration vectors is asymptotically χ2 dis-
tributed. In �nite samples, the χ2 distribution is not always a good approximation of the
distribution and to improve the test under such circumstances, a Bartlett correction factor
can be used.

The idea behind the Bartlett correction factor is that the test statistic QT , converges
to Q∞ when the sample size, T , goes to in�nity. In �nite samples, QT has an error term
of order 1/T . With a Bartlett correction factor, the test statistic QT is transformed, to
Q∗

T , which converges faster towards Q∞, with an error term of order 1/T 2. The correction
factor is based on the expectation of the test statistic QT , denoted E[QT ]. Following
the derivations in Jacobson and Larsson (1999), we take advantage of knowing that QT

E[QT ]

approaches Q∞
E[Q∞]

as T →∞. We then know that

QT ≈ E[QT ]
Q∞

E[Q∞]
. (5)

Generally, E[QT ] is not known and a Taylor expansion of E[QT ] under the null hypothesis
has to be made. The expansion has the form

E[QT ] = E[Q∞] +
B

T
+ O

(
1

T 2

)
(6)
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and by substituting equation (6) into equation (5), and de�ning B0 = B
E[Q∞]

, we obtain
the Bartlett corrected test statistic as

Q∗ = Q

(
1 +

B0

T

)−1

. (7)

The factor B has to be derived speci�cally for each model and test statistic. In this paper,
the derivation of B is taken from Johansen (2000). The derivation is made for a model
with one cointegration vector and one lag, which is identical to the model used in this
paper.

3.3 The Engle�Granger method and the KPSS test

Cointegration analysis using the Johansen method takes place in a multi-equation frame-
work. The widely used method proposed by Engle and Granger (1987) is a single-equation
method and consists of two steps. For the method to be suitable, all variables in the model
have to be integrated of the same order. Assuming that both variables in our bivariate
model are integrated of order one, the �rst step in the analysis is to estimate the long-run
relationship between the variables. The long-run relationship between variables yt and xt

is
yt = β0 + β1xt + εt (8)

which can be estimated with ordinary least squares. After the estimation, the residual
series {ε̂t} is extracted and saved for further analysis. If two variables are cointegrated,
there exists at least one linear combination among them that yields a stationary relation.
Therefore, if the residual series {ε̂t} is stationary, the variables yt and xt are cointegrated
and if {ε̂t} is non-stationary, the variables are not cointegrated. The second step in the
Engle�Granger analysis is to test the residuals for stationarity or for the presence of a unit
root.

If we want to test a hypothesis about a speci�c cointegration vector, a version of the
Engle�Granger method can be used. We then construct a variable, ut = yt−β0−β1xt, where
β1 is chosen and not estimated, and test this variable for stationarity. If the variable ut is
stationary, the variables are cointegrated and the cointegration vector is

[
1 −β0 −β1

]
.
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In this paper, we use the test developed by Kwiatkowski et al. (1992), the KPSS test, and
test if the variable ut is stationary.

The KPSS test starts with regressing the variable of interest, in this case ut, on a set
of deterministic components. These can be either an intercept or an intercept and a trend.
Here, we specify the model with a constant only, and run the regression

ut = ζt + ρt. (9)

ζt is a random walk given by ζt = ζt−1 + νt, where νt ∼ (0, σ2
ν). The null hypothesis of the

KPSS test is
H0 : σ2

ν = 0. (10)

This implies that ζt is a constant, which in turn implies that under the null hypothesis,
the variable ut is level stationary. The test is based on the partial sum series

St =
t∑

i=1

ρ̂i (11)

where the series {ρ̂t} is the residuals from regressing equation (9). Kwiatkowski et al.
(1992) de�ne the long-run variance

σ2 = lim
T→∞

1

T
E(S2

T ) (12)

which is estimated by the consistent estimator given by

s2(`) =
1

T

T∑
t=1

ρ̂2
t + 2

1

T

[∑̀
j=1

w(j, `)
T∑

t=j+1

ρ̂tρ̂t−j

]
(13)

where w(j, `) is a weighting function. Like Kwiatkowski et al. (1992), we use the weighting
function

w(`, j) = 1− j

` + 1
(14)

and we chose the lag truncation parameter ` as ` =
√

T . The test statistic of the KPSS
test, testing the null hypothesis of stationarity in ut versus a stochastic trend, is then

η =
1

T 2

T∑
t=1

S2
t

s2(`)
(15)

Critical values for the test are available in Kwiatkowski et al. (1992).
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4 The Monte Carlo study

4.1 The model

The evaluation of the tests presented in the previous section is made using generated data.
The data originate from a two-variable system with variables xt and yt, which are de�ned
as

xt = xt−1 + εxt (16)

yt = α0 + α1yt−1 + α2xt−1 + εyt (17)

The disturbances εxt and εyt are assumed to be normally distributed with mean zero and
variance σ2

x and σ2
y, respectively. The covariance between the two disturbances is denoted

θ.4 The two variables are rewritten in error-correction form as

∆xt = εxt (18)

∆yt = φ2(yt−1 − γ − β1xt−1) + εyt (19)

where, φ2 = α1 − 1, γ = α0/(1 − α1) and β1 = α2/(1 − α1). With the variance of εyt

normalized to one and the relative variance between εxt and εyt denoted σ2, the joint
distribution of the two disturbances can be formulated as


εxt

εyt


 ∼ N





0

0


 ,


σ2 θ

θ 1





 . (20)

The two-variable system is a rather simple system. It includes xt, a random walk variable,
and yt, that follows a more complex process, and under certain circumstances, the two
variables are cointegrated. If −1 < φ2 < 0, cointegration is present in the model and
the cointegration relationship is given by the expression in parenthesis in equation (19),
y − γ − β1x. The cointegration vector is thus

[
1 −γ −β1

]
, where γ is a constant. The

parameter φ2 is the adjustment coe�cient and gives us information about the persistence
of the deviations from the long-run relationship. If |φ2| is high, yt rapidly returns to

4This structure of the generated data is used in simulation studies on similar topics by, among others,
Östermark and Höglund (1999), Zhou (2000) and Haug (2002).
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equilibrium after a deviation from the cointegration relationship and if |φ2| is low, the
adjustment process is slow. As seen from the error correction form in equation (18) and
(19), all adjustment takes place in the variable yt; the variable xt follows a random walk
and does not adjust towards equilibrium.

4.2 Choice of parameter values

The characteristics of the tests depend on a variety of circumstances, such as sample size,
parameter values and variances and covariances of the error terms. The aim of this study
is to analyse the tests under circumstances common in empirical studies, and we choose
values of the di�erent parameters in the data generating process, corresponding to these
situations.

While many statistical results concerning a certain test are based on asymptotic theory,
in practice the test is carried out in a �nite sample. On many occasions, we have a very
limited number of observations and therefore, our simulations include situations with small
sample sizes. The sample sizes, T , are chosen as T =

{
50 100 300

}
.

As noted in the previous section, a parameter value of φ2 in the range of −1 < φ2 < 0

implies that the two variables are cointegrated. A high absolute value of the adjustment
parameter further implies that the adjustment process towards the cointegration relation
is fast, and vice versa. However, in empirical applications concerning the PPP hypothesis,
the speed of adjustment is often very low. For example, Rogo� (1996) reports half lives for
PPP deviations of about 3 to 5 years when summarizing a number of PPP studies. This
corresponds to adjustment parameters of �0.03 to �0.06 on a quarterly basis.5 The chosen
values for the adjustment parameter in this study are φ2 =

{
−0.01 −0.04 −0.2 −0.5

}
.

The values are chosen to span over a range of possible parameter values, also including very
low parameter values in absolute terms, re�ecting the aforementioned empirical results.

The two parameters in the joint distribution of εxt and εyt may also a�ect the results.
5For other empirical studies with low adjustment parameters, see for example Banerjee et al. (2001) for

a study of the relation between in�ation and the mark-up and Johansen and Juselius (1990), for a study
of money demand.
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In the simulations, the parameters σ2 and θ can take the values σ2 =
{

0.5 1 2
}

and

θ =
{
−0.25 0 0.25

}
. If σ2 < 1, the variance of the disturbance in the random walk

variable is relatively lower than the variance of the disturbance to the other variable. This
implies that yt, the variable adjusting to the cointegration relationship, has relatively high
variance.

The tests presented in section 3 are applied to the bivariate model in equations (18)
and (19). Throughout the all analysis we set the value of the constant γ = 0 and test the
cointegration vector β =

[
1 −1

]
. This is the vector in the null hypothesis of the LR test

and when analysing the KPSS test, the variable ut is constructed as yt − xt.
We are interesting in analysing the power of the tests to detect a false cointegration

vector. We therefore vary the parameter in the cointegration vector and let β1 take the
values β1 =

{
0.3 0.5 0.8 0.95 1

}
.

5 Empirical results
In this section, the results from the Monte Carlo study are presented. The simulation
experiment is carried out as follows. Normally distributed random numbers are drawn in
the program GAUSS and two variables are generated according to equations (18) and (19).
Test statistics for the LR test for structural hypotheses, with and without the Bartlett
correction factor, and the KPSS test, are calculated and compared to critical values at
the 5 percent signi�cance level. The procedure is repeated 10000 times. Finally, rejection
frequencies are calculated for the di�erent parameter combinations, presented in section
4.2. The tests are applied to the generated data for the possible parameter combinations.6

The empirical size of the tests is calculated by counting the number of times the null
hypothesis is rejected if the null hypothesis is true. Since we place one restriction on the
cointegration vector in the LR test, i.e. that the parameter β1 = 1, critical values from
the χ2 distribution with one degree of freedom is used. Kwiatkowski et al. (1992) provide
critical values for the KPSS test.

6The total number of parameter combinations is 540. For space-saving reasons, the result regarding all
parameter combinations will not be presented the paper.
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If the null hypothesis is false, we want to reject it. The rejection frequencies of the tests
when the null hypothesis is false is the power of the tests. When investigating the power of
the tests, we use empirical critical values from our simulations, i.e. we use as critical values
test statistics from our 10000 trials that would make us reject the null hypothesis in 5
percent of the trials when the null hypothesis is true. If the empirical size of a test depends
on the parameter combination used, we have used parameter-speci�c critical values. By
doing so, we correct the sizes to be the same across all tests, which is necessary in order to
be able to make a valid comparison of the power and the rejection frequencies both within
and between the tests.

5.1 Empirical size

5.1.1 The LR test for structural hypotheses

We start by examining the empirical size of the LR test. Since the empirical size is the
probability of rejecting a true null hypothesis, we evaluate the parameter combinations
from the simulations where the parameter β1 in equation (19) is β1 = 1. In this case, the
null hypothesis of the LR test is true.

In table 1, the empirical size of the test is presented for some of the parameter combi-
nations. The empirical size of the test turns out to depend on all parameters in the model.
The two parameters with most impact on the size are the adjustment parameter, φ2, and
the number of observations, T . In the �rst panel of table 1, the result when σ2 = 1 and
θ = 0 is shown. We see that the empirical size of the test is often much higher than the
nominal 5 percent, especially when the number of observations is small and the absolute
value of the adjustment parameter is low. For φ2 = −0.01 and φ2 = −0.04, the empirical
size is between 28 and 43 percent for a sample size of 50 or 100, while it is 31 percent
and 12 percent, respectively, for 300 observations. The empirical size decreases when the
number of observations increases, and is close to 5 percent for 100 and 300 observations
and values of the adjustment parameter that imply a fast adjustment process.

The size e�ects of a change in the value of the parameter σ2 are shown in the two lower
panels in table 1. Compared to σ2 = 1, the empirical size is higher when σ2 < 1 and lower
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Table 1: Empirical size of the LR test for structural hypotheses

β1 σ2 θ φ2 T = 50 T = 100 T = 300
1 1 0 −0.01 0.429 0.401 0.312

−0.04 0.361 0.275 0.120
−0.2 0.141 0.085 0.060
−0.5 0.076 0.062 0.053

1 0.5 0 −0.01 0.433 0.410 0.330
−0.04 0.376 0.300 0.139
−0.2 0.162 0.094 0.063
−0.5 0.084 0.064 0.054

1 2 0 −0.01 0.424 0.389 0.278
−0.04 0.335 0.232 0.099
−0.2 0.115 0.076 0.058
−0.5 0.071 0.060 0.054

Note: The table shows the empirical size of the test,
i.e. the rejection frequencies for the test when the
null hypothesis is true.

when σ2 > 1. This means that if the relative variance in the variable adjusting to the
cointegration relation is high, the case when σ2 < 1, we more often erroneously reject a
true null hypotheses. The value of θ in�uences the empirical size to a minor degree and
the result is not shown in the table.

The results above point in the same direction as the results in Zhou (2000), Jacobson
(1995) and Haug (2002); the LR test is biased towards rejecting a true null hypothesis too
many times. For all parameter combinations, the size is higher than the nominal 5 percent,
but the problem is particularly severe if the adjustment parameter φ2 is low in absolute
value, so that the adjustment process to the cointegration relationship is slow. In these
cases, we reject up to 40 percent of the true null hypotheses. This is a relevant concern in
empirical economics, since few observations and a slow speed of adjustment are common
in empirical applications.

In �gure 1, the empirical size of the LR test is presented in a di�erent way. The level
curves in the �gure show combinations of the adjustment parameter, φ2, and the number of
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Figure 1: Empirical size of the LR test for structural hypotheses

observations, T , that yield a certain empirical size. The �gure is based on simulations of the
variables xt and yt in section 4.1, but with a di�erent set of parameters than before. Since
the result presented earlier showed that the two parameters a�ecting the empirical size the
most was φ2 and T , the relative variance and the covariance between the disturbances in
equation (18) and (19) are kept �xed at σ2 = 1 and θ = 0, in the �gure.7 Two di�erent
aspects of the empirical size can be seen in the �gure. First, for a given level curve, all
parameter combinations above the curve yield a higher empirical size and all combinations
below the curve yield a lower size. Worth noticing is that no combination of φ2 and T yields
an empirical size of 5 percent. We also see the trade-o� between values of the adjustment
parameter and the sample size, since we see which empirical size di�erent combinations
of the adjustment parameter and the number of observations yield. For example, with
50 observations, we need an adjustment parameter of �0.6 to get an empirical size of 7
percent, but with 300 observations, the adjustment parameter only has to be �0.1. With
|φ2| < 0.1, we seldom get an empirical size less than 10 percent, regardless of the number
of observations.

7In the simulations behind �gure 1, the parameter values of φ2 and T are φ2 ={−0.01 −0.04 −0.05 −0.1 −0.15 ... −0.9 −0.95
}
and T =

{
25 50 75 ... 275 300

}
.
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Table 2: Empirical size of the Bartlett corrected LR test for structural hypotheses

β1 σ2 θ φ2 T = 50 T = 100 T = 300
1 1 0 −0.01 0.239 0.219 0.165

−0.04 0.202 0.147 0.073
−0.2 0.089 0.061 0.051
−0.5 0.058 0.052 0.049

1 0.5 0 −0.01 0.236 0.225 0.181
−0.04 0.210 0.162 0.082
−0.2 0.098 0.064 0.051
−0.5 0.062 0.053 0.050

1 2 0 −0.01 0.236 0.210 0.149
−0.04 0.179 0.126 0.063
−0.2 0.076 0.057 0.050
−0.5 0.056 0.051 0.050

Note: The table shows the empirical size of the test,
i.e. the rejection frequencies for the test when the
null hypothesis is true.

5.1.2 The Bartlett corrected LR test for structural hypotheses

In this section, the LR test is adjusted with the Bartlett correction factor, with the aim
of improving the distribution of the test statistic in �nite samples. The empirical size of
the Bartlett corrected LR test is shown in table 2. Comparing the tables 1 and 2, we see
that the Bartlett correction has a signi�cant impact on the empirical size of the test. The
correction makes us reject the null hypothesis more seldom, lowering the empirical size
closer to the nominal 5 percent. With the Bartlett correction, the size is close to 5 percent
for several parameter combinations, even with few observations. However, for φ2 = −0.01

and φ2 = −0.04, the size is still considerably higher than 5 percent. The pattern arising
from changing the values of the parameters σ2 and θ is similar to the pattern without the
correction.

In �gure 2, level curves for the empirical size of the Bartlett corrected LR test are
presented. Compared to �gure 1, the curves have moved in an up-left direction. This
re�ects the fact that the empirical size of the Bartlett corrected LR test is lower for a
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Figure 2: Empirical size of the Bartlett corrected LR test for structural hypotheses

given parameter combination than the test without the correction. Now, some parameter
combinations yield an empirical size of 5 percent. Around the 5 percent level, the variation
in the empirical size is very low, which explains the form of the level curve for 5 percent.

5.1.3 The KPSS test

Finally, we apply the KPSS test of stationarity on the constructed variable ut = yt − xt

and analyse the empirical size of the test. As for the LR test, the null hypothesis is true
when β1 = 1.

In table 3, the empirical size of the KPSS test is presented, and we see that the test
su�ers from large size distortions for some parameter combinations. If the adjustment
parameter is �0.01, the empirical size of the test lies in the range 44 percent to 63 percent.
For these parameter combinations, the size is higher for a large sample size compared to
a smaller. This pattern for the empirical size is found by Kwiatkowski et al. (1992) and
Amano and van Norden (1992). In simulation studies, they found that the empirical size
increased with an increasing sample size for a �xed level of truncation parameter `. In our
simulations, there are some exceptions from this pattern, for example when φ2 = −0.2, the
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Table 3: Empirical size of the KPSS test

β1 σ2 θ φ2 T = 50 T = 100 T = 300
1 1 0 −0.01 0.439 0.528 0.627

−0.04 0.342 0.395 0.359
−0.2 0.111 0.112 0.084
−0.5 0.043 0.054 0.053

Note: The table shows the empirical size of the test,
i.e. the rejection frequencies for the test when the
null hypothesis is true.

empirical size is lower for 300 observations than for 50 and 100 observations. The in�uence
on the empirical size from σ2 and θ is of minor importance and the results are therefore
not presented in the table.

Level curves for the empirical size of the KPSS test are shown in �gure 3. The curves
have a di�erent appearance compared to the curves for the LR test. Except when the
number of observations is very small, the curves are fairly constant across the number of
observations, for given values of the adjustment parameter. This implies that for many
values of the adjustment parameter, the test will never reach the nominal size even with
a large number of observations. When the absolute value of the adjustment parameter
increases, the empirical size decreases. In the area below the lowest curve, the empirical
size is below 5 percent.

The KPSS test has large size distortions for parameter combinations common in empir-
ical studies, especially for small absolute values of the adjustment parameter. Under these
circumstances, the distortions are larger than for the LR test and the Bartlett corrected
LR test. With fast adjustment processes, the empirical size of the KPSS test is somewhat
closer to 5 percent, compared to the LR test. For many values of φ2 the empirical size
depends almost solely on the value of the adjustment parameter and not on the number of
observations.
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Figure 3: Empirical size of the KPSS test

5.2 Power
5.2.1 The LR test for structural hypotheses

The power of a test is the ability to detect a false null hypothesis. In this section, we
evaluate the LR test when the parameter in the cointegration relation β1 6= 1, so that the
generated data does not support the restriction in the null hypothesis.

The power of the LR test is presented in table 4. The rejection frequencies shown
are the number of times we reject the null hypothesis β =

[
1 −1

]
for each parameter

combination, divided by the total number of trials the test is done, i.e. 10000.8 The power
of the LR test depends to a large extent on the value of the adjustment parameter. For
very small absolute values of φ2, the rejection frequencies are around 5 percent, regardless
of the number of observations. In the case when σ2 = 1, θ = 0 and φ2 = −0.2, the power is
never larger than 20 percent, even if the number of observations are 300, i.e. we reject only
20 percent of the false null hypotheses with 300 observations and a fairly fast adjustment
process. The power is also largely a�ected by the sample size. With few observations, the

8When calculating the rejection frequencies we use critical values from our simulations, forcing the
empirical size of the test to be 5 percent.
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Table 4: Power of the LR test for structural hypotheses

β1 σ2 θ φ2 T = 50 T = 100 T = 300
0.95 1 0 −0.01 0.050 0.051 0.051

−0.04 0.050 0.050 0.055
−0.2 0.053 0.063 0.203
−0.5 0.074 0.151 0.671

0.95 0.5 0 −0.01 0.050 0.050 0.051
−0.04 0.050 0.051 0.054
−0.2 0.051 0.058 0.124
−0.5 0.062 0.102 0.469

0.95 2 0 −0.01 0.053 0.051 0.052
−0.04 0.052 0.053 0.060
−0.2 0.056 0.079 0.326
−0.5 0.093 0.246 0.850

0.8 1 0 −0.01 0.050 0.052 0.056
−0.04 0.052 0.058 0.105
−0.2 0.090 0.226 0.851
−0.5 0.319 0.758 0.999

0.8 0.5 0 −0.01 0.050 0.051 0.053
−0.04 0.052 0.054 0.081
−0.2 0.071 0.146 0.680
−0.5 0.200 0.575 0.993

0.8 2 0 −0.01 0.050 0.053 0.058
−0.04 0.056 0.065 0.158
−0.2 0.120 0.362 0.948
−0.5 0.492 0.895 1.0

Note: The table shows the power of the test, i.e.
the rejection frequencies for the test when the null
hypothesis is false. The critical values used are simu-
lated, giving an empirical size of the test of 5 percent
for every parameter combination.
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Figure 4: Power of the LR test for structural hypotheses when β1 = 0.95

test has very low power, but as the the number of observations grow, the power of the test
increases.

For the power of the LR test, the relative variance of the two disturbances, σ2, matters
to a large extent. The power is lower if σ2 < 1, compared to if σ2 = 1, and higher
if σ2 > 1. This indicates that if the relative variance of the variable adjusting to the
cointegration relationship is high, we more often get an incorrect outcome from the test.
The incorrectness in the test arises from the high variation in εyt, which leads to a relatively
high variation in yt, so that yt−β1xt is more often far from the cointegration relationship.9

In �gure 4, we present level curves for the power of the LR test when β1 = 0.95.
The level curves are calculated based on the same simulations as the level curves for the
empirical size in section 5.1. For many combinations of adjustment parameters and sample
sizes, the power is lower than 10 percent, represented by the area above the curve marked
'0.1'. A power over 40 percent is never reached if the absolute value of the adjustment
parameter is larger than �0.3, regardless of the number of observations.

9The value of the covariance parameter, θ, also matters for the power of the test. The result for di�erent
values of θ is, for space-saving reasons, not presented in the table. The di�erences in power are very small,
but the pattern is that the power of the test increases if the absolute value of the θ-parameter increases.
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Figure 5: Power of the LR test for structural hypotheses when β1 = 0.8

We also examine the power when the true value of the parameter β1 in equation (19)
is further away from 1. The power of the test for β1 = 0.8 is shown in the lower panel
of table 4. Not surprisingly, the power is generally higher compared to β1 = 0.95. For
large numbers of observations and high absolute values of the adjustment parameter, the
power is close to 100 percent when σ2 = 1. Troublesome is the low power still arising when
the number of observations is small and the adjustment process is slow. For σ2 = 1, the
power is still about 5 to 10 percent if φ2 = −0.01 or φ2 = −0.04, even for 100 and 300
observations. Changing the value of σ2 yields the same pattern as for β1 = 0.95; when
σ2 < 1, the power is lower compared to when σ2 > 1.

The power level curves for β1 = 0.8 are shown in �gure 5. Compared to �gure 4,
the curves have moved in an up-left direction, re�ecting a higher power to detect a value
of the β1-parameter of 0.8 than 0.95. Still, in the upper left corner, we see that many
combinations of φ2 and T yield a power less than 10 percent.

If the number of observations is large and the absolute value of the adjustment pa-
rameter is high, the power of the LR test to detect a false null hypothesis is high, but in
empirical applications, these circumstances are not fairly common. In the PPP literature,
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values of the adjustment parameter of �0.04 on a quarterly basis are common and under
this circumstance, the power of the test is only around 5 percent. In table 4, the result
for β1 = 0.95 and β = 0.8 is presented. If the true value of β1 is 0.5 or 0.3, the test has
higher power. However, when the absolute value of the adjustment parameter is very low,
the power is around 5 to 10 percent for 50 or 100 observations even for those values of the
β1-parameter.

5.2.2 The Bartlett corrected LR test for structural hypotheses

The power of the LR test corrected with the Bartlett factor is shown in table 5. The power
di�erences compared to the test without the correction are marginal, which can be seen
after a comparison between table 4 and 5.10 In section 5.1.2, we saw that the Bartlett
correction had a signi�cant impact on the empirical size. Since the correction does not
have a large negative impact on power, it is advisable to apply the Bartlett correction to
the LR test, especially if the sample size is small.

5.2.3 The KPSS test

Finally, in table 6, the power of the KPSS test to detect a false cointegration vector is
presented. Starting with β1 = 0.95, shown in the top panel of the table, we see that the
power of the test is often very low. For 50 observations, the power is never higher than
6 percent and for 100 observations never higher than 8 percent. For φ2 = −0.01 and
φ2 = −0.04, the power is around 5 percent across all sample sizes. Only if the number
of observations is 300 and the adjustment process is fast, the power reaches 30 percent.
The picture emerging from changing the value of the relative variance σ2 is the same as
for the LR test. Compared to when σ2 = 1, the power is lower if σ2 < 1 and the power i
higher if σ2 > 1. For the KPSS test, changing the value of σ2 results in rather small power
di�erences. Also changing the values of the covariance parameter θ results in very small
power di�erences and this is not shown in the table.

Level curves for the power of the test when β1 = 0.95 are shown in �gure 6. The power
10Since the power is almost the same as for the test without the correction, the power level curves for

the Bartlett corrected test are not presented from the paper.
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Table 5: Power of the Bartlett corrected LR test for structural hypotheses

β1 σ2 θ φ2 T = 50 T = 100 T = 300
0.95 1 0 −0.01 0.050 0.051 0.051

−0.04 0.049 0.051 0.056
−0.2 0.053 0.063 0.202
−0.5 0.073 0.151 0.670

0.95 0.5 0 −0.01 0.050 0.050 0.050
−0.04 0.051 0.052 0.054
−0.2 0.052 0.058 0.122
−0.5 0.063 0.101 0.469

0.95 2 0 −0.01 0.050 0.050 0.051
−0.04 0.051 0.052 0.058
−0.2 0.056 0.078 0.326
−0.5 0.093 0.245 0.850

0.8 1 0 −0.01 0.050 0.053 0.057
−0.04 0.051 0.059 0.102
−0.2 0.086 0.215 0.848
−0.5 0.307 0.753 0.999

0.8 0.5 0 −0.01 0.050 0.052 0.052
−0.04 0.051 0.056 0.078
−0.2 0.070 0.140 0.673
−0.5 0.195 0.568 0.993

0.8 2 0 −0.01 0.050 0.051 0.058
−0.04 0.056 0.063 0.146
−0.2 0.113 0.345 0.947
−0.5 0.484 0.893 1

Note: The table shows the power of the test, i.e.
the rejection frequencies for the test when the
null hypothesis is false. The critical values used
are simulated, giving an empirical size of the test
of 5 percent for every parameter combination.
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Table 6: Power of the KPSS test

β1 σ2 θ φ2 T = 50 T = 100 T = 300
0.95 1 0 −0.01 0.051 0.050 0.052

−0.04 0.051 0.051 0.053
−0.2 0.053 0.055 0.098
−0.5 0.060 0.079 0.294

0.95 0.5 0 −0.01 0.050 0.051 0.052
−0.04 0.050 0.050 0.051
−0.2 0.052 0.053 0.078
−0.5 0.055 0.068 0.227

0.95 2 0 −0.01 0.051 0.051 0.052
−0.04 0.052 0.051 0.054
−0.2 0.053 0.056 0.115
−0.5 0.060 0.091 0.342

0.8 1 0 −0.01 0.052 0.054 0.059
−0.04 0.053 0.055 0.085
−0.2 0.074 0.123 0.446
−0.5 0.160 0.340 0.689

0.8 0.5 0 −0.01 0.051 0.054 0.057
−0.04 0.052 0.053 0.074
−0.2 0.066 0.100 0.378
−0.5 0.125 0.279 0.648

0.8 2 0 −0.01 0.054 0.055 0.063
−0.04 0.057 0.057 0.100
−0.2 0.082 0.145 0.496
−0.5 0.187 0.387 0.715

Note: The table shows the power of the test, i.e.
the rejection frequencies for the test when the
null hypothesis is false. The critical values used
are simulated, giving an empirical size of the test
of 5 percent for every parameter combination.
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Figure 6: Power of the KPSS test when β1 = 0.95

increases with an increasing number of observations and increasing absolute values of the
adjustment parameter. For many parameter combinations, represented by the area above
the highest power curve, the power is less than 10 percent and the power almost never
reaches 50 percent.

Turning to β1 = 0.8, in the lower panel of table 6, the power is higher compared to
when β1 = 0.95. If the adjustment process is very slow, the power is still very low and the
power is lower than 10 percent for φ2 = −0.01 and φ2 = −0.04.11 Comparing the �gures
6 and 7, we see the higher power of the test to detect the false cointegration vector when
β1 = 0.8. For β1 = 0.8, the power reaches 70 percent for some parameter combinations,
but is still less than 10 percent for many values of the parameters φ2 and T .

Both the LR test for structural hypotheses and the KPSS test have very low power to
detect a false null hypotheses if the adjustment parameter is very low in absolute terms.
The low power is present if the true value of the β1-parameter is 0.95 or 0.8, but also if
the true value of β1 is far from the null hypotheses (β1 = 0.5 or β1 = 0.3). For faster

11If the β1-parameter is equal to 0.5 or 0.3, the power increases. For the lowest values of the adjustment
parameter, the power is still around 5 to 10 percent for 50 and 100 observations, and somewhat higher for
300 observations.
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Figure 7: Power of the KPSS test when β1 = 0.8

adjustment behaviour, the power of the tests is higher and sometimes reaches high levels.
The power of the KPSS test is generally lower than the power of the LR test.

6 Conclusions
In this study, we examine two di�erent tests that can be used when testing structural
hypotheses on cointegration vectors. The two tests are the Johansen LR test and the
KPSS test for stationarity applied to residuals from a long-run relationship in an Engle�
Granger framework. We also analyse the consequences of applying a Bartlett correction
factor to the LR test. The tests are evaluated according to their size and power properties
and the analysis is performed in a Monte Carlo study. When setting up the simulations,
the aim is to choose parameter values for our generated data that corresponds to common
results in empirical applications. Therefore, values of the adjustment parameter in the
cointegration equation that correspond to a slow adjustment process are included in the
analysis, and we also work with small sample sizes.

The results show that both tests are in�uenced by the value of the adjustment parameter
to a large extent. Both the empirical size and the power of the tests are heavily a�ected
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by this parameter. The sample size also plays an important role for the properties of the
tests.

The empirical size of the LR test is often higher than the nominal one. With a slow
adjustment process and few observations, this size distortion is very large. For some pa-
rameter combinations, using critical values intended to make us reject 5 percent of the
true null hypotheses actually make us reject 30 to 40 percent of the true null hypothe-
ses. The Bartlett correction factor helps to correct the empirical size of the test, but the
empirical size is still larger than the nominal size for parameter combinations common
in empirical applications, particularly when the speed of adjustment is slow. The KPSS
test su�ers from large size distortions when the speed of adjustment is slow as well. With
faster adjustment, however, the empirical size of the KPSS test is close to the nominal 5
percent. For many parameter combinations, the KPSS test will never reach the nominal
size, regardless of the number of observations.

When the speed of adjustment is slow, the size distortions are largest for the KPSS
test and smallest for the Bartlett corrected LR test. Otherwise, the empirical size for all
tests decreases to around 5 percent. The KPSS test is then closer to the nominal size
than the LR test but although the KPSS test has empirical sizes close to 5 percent for few
observations, the Bartlett corrected LR test seems to have the best size properties.

The power of the LR test can be rather high even for detecting values of the parameters
in the cointegration vector close to the one speci�ed in the null hypothesis, if we have a large
number of observations and fast adjustment behaviour. When the adjustment parameter
is low, the power of the test is very low, even for detecting values of the cointegration
parameters far from the values in the null hypothesis. The Bartlett corrected LR test has
almost the same power as the test without the correction. The KPSS test also exhibits
very low power to detect a false cointegration vector if the speed of adjustment is low. The
low power is still present if the true value of the cointegration parameter is far from the
one speci�ed in the null hypothesis. With faster adjustment, the power of the KPSS test
increases and reaches fairly high levels, but it never reaches the power of the LR test.

Under favourable circumstances, the power of the two tests to detect a false null hy-
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pothesis can be rather high. The LR test seems to have best power properties, although
both tests have low power under circumstances frequently arising in empirical applications,
i.e. low adjustment parameters in absolute terms and small sample sizes. The low power
is important to keep in mind when drawing conclusions from empirical studies.

The size and power properties are better for the LR test compared to the KPSS test,
even if the di�erences sometimes are rather small. The LR test would therefore be preferred
in empirical studies. The Bartlett correction factor helps reducing the size distortions, but
does not in�uence the power. Therefore, this correction of the LR test is desirable when
applying the test in empirical studies.
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