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Strategy-Proof and Fair Wages

Lars-Gunnar Svensson ∗

This version: March 9, 2004

Abstract

A fair division problem with indivisible objects, e.g. jobs, and one
divisible good (money) is considered. The individuals consume one
object and money. The class of strategy-proof and fair allocation rules
is characterized. The allocation rules in the class are like a Vickrey
auction bossy and like the Clark-Groves mechanisms in general not
"budget balanced". The efficiency loss due to fairness and strategy-
proofness becomes measurable in monetary terms.
Two interpretations of the formal model is discussed. First, it is a

situation where a given sum of money has to be distributed as wages
and fair wages are to be implemented. Second, it is as an auction
model where a number of objects are simultaneously traded.

JEL Classification: C6, C68, C71, C78, D61, D63, D71, D78.
Keywords: Indivisibilities, fairness, strategy-proofness, wages, Vickrey-auction.

1 Introduction

This study analyses the implementation of fairness. In the economy there
is a finite number of large indivisible objects and there is a limited quantity
of a perfectly divisible private good. The individuals consume one object
each and a quantity of the divisible good. The problem is to characterize
the entire class of allocation rules1, the outcome of which are strategy-proof

∗I would like to thank Bo Larsson for helpful comments. Financial support from The
Jan Wallander and Tom Hedelius Foundation is gratefully acknowledged. Address: De-
partment of Economics, Lund university, P.O. Box 7082, S-22007 LUND, Sweden; Fax:
+46 46 222 4118; e-mail: lars-gunnar.svensson@nek.lu.se

1"Allocation rule" is used here synonymously with "allocation mechanism". We do not
exclude, however, that the outcome of the "allocation rule" may be multi-valued.

1



and fair, and where available resources are never exceeded. Fairness is de-
fined as a situation where no individual envy the consumption of any other
individual, and strategy-proofness entails that no individual has incentive to
misrepresent his preferences.
The model has a number of interpretations. A common one is that the

objects are houses, and the classical Shapley-Scarf model of house allocation
is an example (Shapley and Scarf (1974)). In the present study implementa-
tion of fair allocations is the problem and our main interpretation is that the
objects are jobs or positions that the individuals are assigned (cf. Hylland
and Zeckhauser (1979), Crawford and Knoer (1981), Leonard (1983)). The
divisible good is called "money" and used to compensate for differences in
the various objects. When the objects are jobs, the monetary compensations
allocated to the various objects are called wages.
Alternatively the model may be regarded as an auction model where

multiple objects are simultaneously traded. In that case fairness is simply
equilibrium prices in the market and money is paid for the objects. With
this interpretation, all strategy-proof auction rules satisfying a weak efficiency
condition are characterized and a generalized form of a Vickrey auction is
the result.
A requirement for fairness in the model is no-envy. The no-envy criterion

cannot, however, in general be used as the sole test of fairness. For instance,
envy-free allocations are in many cases not unique. A simple example illus-
trates this. Suppose there are two jobs, 1 and 2, and there are two individuals
A and B. Both individuals are qualified to do the jobs and a given quantity
x0 of money has to be allocated to the jobs as wages. Let x0 = x1 + x2
be the distribution of money. Individual A is indifferent between the two
jobs if x1 = x0/3 while B is indifferent if x1 = x0/2. Obviously an envy-free
allocation of jobs and wages prevails if A is assigned job 1, B is assigned job
2, and x0/3 ≤ x1 ≤ x0/2.
As we can see the envy-free criterion alone cannot select a unique value

of x1, so an additional criterion is needed. Then a second problem with
implementing fair wages becomes obvious. The indifference points, x1 = x0/3
for individual A and x1 = x0/2 for individual B, are private information and
an implemented wage structure may depend on this information. Hence,
depending on by what type of rule the choice of the wage structure is made,
the individuals may have incentive not to reveal their preferences truthfully.
The class of strategy-proof allocation rules found in this study solves

both these problems. Strategy-proofness means that the individuals have
incentive to reveal their true preferences, and strategy-proofness is consistent
with fairness for precisely one of the various distributions of money satisfying
the no-envy criterion. Of course, the resource constraint concerning available
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quantity of money has also to be satisfied.
The fair and strategy-proof allocation rule can roughly be described in

the following way. If x = (x1, . . . , xn) is a distribution of the divisible good
across the objects (x is the wage structure), then x has to be chosen so
that there is an envy-free assignment of the individuals to the objects (jobs).
Moreover, the sum Σjxj has to be chosen as large as possible, but satisfying
an inequality x ≤ x̄. The upper bound x̄ is implicit in every fair and strategy-
proof allocation rule and independent of which preferences are reported by
the individuals. If x0 is the available quantity of money in the economy,
budget balance x0 = Σjxj is achieved only for some individual preferences,
but the inequality Σjxj ≤ x0 is always satisfied. Hence, the outcome of the
allocation rule is in general inefficient. This, however, reflects the well-known
conflict between efficiency and strategy-proofness. Assuming efficiency and
strategy-proofness often leads to dictatorial allocation rules and variations of
the Gibbard-Satterthwaite theorem (Gibbard (1973), Satterthwaite (1975))2.
The impossibility of budget balance for the present allocation rule is similar
to the result for the Clark-Groves mechanism for public goods (Clark (1971),
Groves (1973)).
A closer analysis of this allocation rule also shows that the wage an in-

dividual receives to a large extent depends on the preferences of other indi-
viduals. This means that the allocation rule is "bossy"3 and behaves very
much like a "Vickrey auction" (Vickrey (1961)), where the price the highest
bidding individual pays for an object equals the second highest bid.
Various forms of the allocation rule described above have earlier been

analyzed with respect to strategy-proofness in a number of studies. In most
studies equilibrium prices, which are equivalent to fair distributions of money,
are considered and minimal equilibrium prices are proved to be incentive com-
patible. That is the case e.g. in Leonard (1983) for quasi-linear preferences
and in Demange and Gale (1985) for general preferences. With quasi-linear
preferences, prices are similar to the incentive compatible prices in the Clark-
Groves mechanism for revealing preferences for public goods. One also ob-
tains generalization of the Vickrey auction for a single object to the case
with multi objects. Recently, Sun and Yang (2003) defined a fair allocation
mechanism as the one described here and proved it to be strategy-proof for
general preferences.

2However, in the classical Shapley-Scarf model for house allocation, strategy-proofness,
efficiency and individual rationality are three consistent conditions. See e.g. Ma (1994) or
Svensson (1999).

3Bossiness means that an individual can change the allocation without changing the
bundle he receives himself. Non-bossiness was introduced by Satterthwaite and Sonnen-
schein (1981).
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The mentioned studies show the existence of a fair and strategy-proof
allocation rule in this context (Theorem 1 here). Assuming a weak form
of efficiency, we find in the present study that the types of allocation rules
described above are in fact the only ones which are fair and strategy-proof,
and also satisfy a given resource constraint concerning the divisible good
(Theorem 2 here).
The model with large indivisible objects and money used in the present

paper has previously and in various studies been analyzed also with respect
to strategy-proofness, with respect to fairness, or with respect to Walrasian
equilibrium.
Miyagawa (2001) and Svensson and Larsson (2002) also consider a model

with indivisible objects and money and characterize the class of strategy-
proof allocation rules under some additional conditions. A basic assumption
there is "non-bossiness" and as a consequence of this assumption, there is
only a finite number of distributions of money. This property excludes fair
allocation rules. Instead the allocation rules are serially dictatorial, or if a
primary distribution of property rights is assumed (individual rationality),
the outcomes of the allocation rules are fixed-price allocations, where Gale’s
top trading cycle procedure determines the final allocation of the objects and
money.
For proofs of existence and analysis of fair allocations (with general pref-

erences), see e.g. Svensson (1983), Maskin (1987) or Alkan, Demange, and
Gale (1991). For existence of a Walrasian equilibrium see e.g. Gale (1984),
Quinzii (1984) or Svensson (1984) and for Nash implementation of price equi-
librium in this type of model, see Svensson (1991).
The paper is organized in the following way. In Sections 2 and 3 the formal

model is introduced and some basic results derived. Section 4 introduces the
concept of an allocation rule, while Section 5 contains the main result. In
Section 6 the interpretation of the model as a multi object auction is to some
extent discussed. The proofs can be found in an Appendix.

2 The model

There is a finite number of individuals, N = {1, 2, ..., n} , and the same
number of indivisible objects (jobs for instance) in the economy. The index
set N is used to label the objects as well, so j ∈ N denotes object j. There
is also a divisible good (called money), available in a finite quantity x0 ∈ R.
An individual consumes one object and an amount of money. Preferences

over consumption bundles (j, xj) ∈ N×R are quasi-linear, and represented by
total utility functions, uij + xj for i ∈ N. The number uij denotes the utility
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individual i derives from object j. A list u = (u1, u2, . . . , un) of individual
utility functions is a preference profile, or for short a profile. A profile is
an element in U = Rn2 . A profile u = (u1, u2, . . . , un) can also be denoted
(ui, u−i) for i ∈ N.
An allocation is a list of consumption bundles. It is a pair (a, x), where

a : N → N is a bijective mapping assigning the object ai to individual i, and
where x ∈ Rn distributes the quantity xj of money to object j, and hence
also xj to the individual i with ai = j.We call a the assignment function and
x the distribution function. The set of all conceivable allocations is denoted
A. An allocation (a, x) is feasible if the resource constraint Σjxj ≤ x0 is
respected. If Σjxj = x0 the allocation is budget balanced.

3 The fair set

For a given profile u ∈ U , an allocation (a, x) is defined to be fair if it is envy-
free4, i.e. if uiai + xai ≥ uij + xj for all i and j. If (a, x) is a fair allocation, a
is the fair assignment and x the fair distribution. For a given profile u ∈ U ,
the set of fair allocations is denoted Φ(u), and the corresponding set of fair
distributions, called the fair set, is denoted F (u). Formally,

F (u) = {x ∈ Rn; (a, x) ∈ Φ(u) for some assignment a} .

If the fair set is non-empty it contains also several distributions and a fair
selection may require some additional criterion. In this study distributions
called fair and optimal are of particular interest. Let x̄ ∈ Rn be a fixed
distribution of money. Given this as an upper bound on fair distributions,
an element in the fair set is called optimal if it maximizes the total sum
S(x) = Σjxj of money. Formally, for a given vector x̄ of quantity restrictions
and a preference profile u ∈ U , a distribution x is fair and optimal5 with
respect to x̄ if x ∈ F (u) and

S(x) = maxS(x0) s.t. x0 ≤ x̄ and x0 ∈ F (u).

Correspondingly, a fair allocation (a, x) is optimal with respect to x̄ if the
distribution x is optimal with respect to x̄. The following proposition collects
some essential properties of the fair set.

4In some cases the term fair is reserved for allocations that are envy-free and efficient,
see e.g. Varian (1974) or Svensson (1983). However, the term fair meaning envy-free was
introduced by Foley (1967).

5The concept of fair and optimal allocations was introduced by Sun and Yang (2003).
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Proposition 1 (i) For each profile u ∈ U , the fair set F (u) is a non-empty
and closed subset of Rn, (ii) If x, y ∈ F (u) and (a, x) is a fair allocation,
then (a, y) is also a fair allocation. (iii) If x, y ∈ F (u) then z ∈ F (u), where
zj = max [xj, yj] . (iv) A fair and optimal distribution is unique.

The second point in the proposition says that even if the fair set contains more
than one fair distribution, and hence also several utility distributions, one and
the same assignment is fair for all fair distributions. If there is an interior
point in the fair set the statement immediately follows from continuity of
preferences, but in other cases some more arguments are required. This
point will simplify the analysis to come.

4 Fair allocation rules

By an allocation rule (AR) we mean a non-empty correspondence ϕ which,
for each profile u ∈ U , selects a set of allocations, ϕ(u) ⊂ A. Below some
conceivable properties of an allocation rule are defined.
An AR ϕ is essentially single-valued (ESV) if all elements selected by ϕ

are identical from a utility point of view for all individuals. Hence, for each
profile u, the outcome of an essentially single-valued AR is a unique utility
distribution. Formally, for all u ∈ U , for all (a, x), (b, y) ∈ ϕ(u), and for all
i ∈ N, it is true that uibi + ybi = uiai + xai .
An AR ϕ is Pareto-indifferent (PI) if for any two allocations, which all

individuals are indifferent between, either both or none belong to the outcome
set of the AR. Formally, ϕ is PI if for all u ∈ U and (b, y) ∈ A,

(b, y) ∈ ϕ(u) if (a, x) ∈ ϕ(u) and uibi + ybi = uiai + xai for all i ∈ N.

An AR ϕ is fair if all allocations in the set ϕ(u) are fair, i.e. ϕ(u) ⊂ Φ(u)
for all u ∈ U .
We also define strategy-proof allocation rules. An AR ϕ is manipulable

if there is an individual i ∈ N, two profiles u, v ∈ U , and two allocations
(a, x) ∈ ϕ(u) and (b, y) ∈ ϕ(vi, u−i), such that uibi + ybi > uiai + xai . This
definition of manipulation means that some element in ϕ(vi, u−i) is strictly
better than some element in ϕ(u), according to i’s preferences ui. Note that
if ϕ is an ESV allocation rule then manipulation means that some element in
ϕ(vi, u−i) is strictly better than each element in ϕ(u) for some individual6.
If the AR is not manipulable, it is strategy-proof (SP).

6In fact, under the ESV assumption manipulation means not only that some element
in ϕ(vi, u−i) is strictly better than each element in ϕ(u) for i but also that no element
in ϕ(u) is strictly better than an element in ϕ(vi, u−i) according to preferences ui. For a
proof of this result, see Bogomolnaia, Debt, and Ehlers (2002).
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Throughout the paper we will consider fair allocation rules that are ESV
and PI. The following proposition shows that such an AR not only selects a
unique utility distribution but also a unique distribution of money for each
preference profile. Moreover, the PI property implies that all fair assignments
corresponding to the (unique) fair distribution also belongs to the outcome
set of the AR.

Proposition 2 Let ϕ be a fair, ESV and PI allocation rule and let u ∈ U .
If (a, x), (b, y) ∈ ϕ(u) then x = y. If (a, x) ∈ ϕ(u) and (b, x) ∈ Φ(u), then
(b, x) ∈ ϕ(u).

Hence for fair and ESV allocation rules ϕ there is a unique distribution of
money for each profile u ∈ U . Denote this relationship by f , i.e. (a, x) ∈ ϕ(u)
if and only if x = f(u). The function f is called a fair distribution rule (FDR).
For allocation rules ϕ that are fair, ESV and PI, the corresponding FDR f
and the AR ϕ will be used interchangeably.
Finally, we define efficiency for fair distribution rules. Call a fair distri-

bution rule f efficient7 at a profile u ∈ U if f(u) = x and y < x8 imply that
f(v) 6= y for all v ∈ U . Hence if the distribution x is the outcome at some
profile and x strictly dominates a distribution y then y is never the outcome
at any profile. The following is an example of a strategy-proof AR that is
fair and optimal w.r.t. the vector (1, 1). With minor modifications, the ex-
ample will also be used later in the paper to illustrate various properties of
allocation rules.

Example 1 A strategy-proof, efficient, fair and optimal allocation rule.

Consider a case with two individuals. Normalize the utility functions so
ui2 = 0, u11 = 1− α and u21 = 1− β represent the preferences of individual
1 and 2 respectively. Let ϕ be a fair, ESV and PI allocation rule where the
corresponding distribution rule f(u) = x is defined as follows. For α ≤ β :

x1 = β if β ≤ 1, x2 = 1 if α ≤ 1,
x1 = 1 if β ≥ 1, x2 = 2− α if α ≥ 1.

When α ≤ β the assignment is a1 = 1. Let the allocation rule be symmetric,
so when α ≥ β, the assignment is a1 = 2 and the distribution above is
changed so α becomes β and vice versa. One easily sees that ϕ is strategy-
proof — the money one individual receives depends only on the preferences of

7Note that the outcome of an efficient FDR is not necessarily Pareto optimal — for
many profiles the outcome is not budget balanced.

8y < x iff yj < xj for all j.
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the other individual as far as the assignment does not change. The outcome
is also envy-free. In addition, the AR is obviously efficient at all profiles —
the range of f is the set

S =
©
x ∈ R2; xj ≤ 1, j = 1, 2, x2 = 1 when x1 ≤ 1, x1 = 1 when x2 ≤ 1

ª
.

The following figure illustrates the situation in Example 1 for the case α <
β < 1. The line u1 (u2) indicates the distributions where individual 1 (2)
is indifferent between the two bundles (1, x1) and (2, x2). The fair set is the
area F (u) between the lines u1 and u2, and the star denotes the fair and
optimal distribution (β, 1). The FDR is efficient at all profiles but budget
balance does not prevail; 1 + β < 2. So the allocation is not efficient.

F(u)

(1,1)

x 2

x 1

u 1 u 2

The main objective of this study is to characterize the set of strategy-proof
and fair distribution rules. The theorem below shows that this set is non-
empty and in next section we give the full characterization of the set. Various
forms of the theorem have been proved for different preference domains.
Leonard (1983) prove the theorem assuming preferences to be quasi-linear
and x̄ = 0. Proofs with general preferences can be found in Demange and
Gale (1985) and in Sun and Yang (2003).

Theorem 1 Let x̄ ∈ Rn and let f(u) be the distribution rule which is fair
and optimal w.r.t. x̄. Then f is strategy-proof and efficient at all profiles.
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5 The main result

Now consider the class of fair and strategy-proof allocation rules that are es-
sentially single-valued and Pareto-indifferent. Denote this class F . Theorem
1 shows that F is non-empty, and the question is now whether all elements
in the class are of this type, i.e. fair and optimal w.r.t. some quantity re-
strictions. This is in fact the case if some "inefficient" allocation rules are
excluded. The example below shows an AR in F that is not efficient.

Example 2 A strategy-proof and fair allocation rule that is not efficient.

Consider the following modification of the allocation rule in Example 1. In-
dividual preferences are the same — ui2 = 0, u11 = 1 − α and u21 = 1 − β
— but the distribution rule f(u) = x corresponding to the fair, ESV and PI
allocation rule ϕ is now defined as follows. For α ≤ β :

x1 = β if β ≤ 0, x2 = 1 if α ≤ 0,
x1 = β/2 if 0 ≤ β ≤ 2, x2 = (2− α)/2 if 0 ≤ α ≤ 2,
x1 = 1 if β ≥ 2, x2 = 2− α if α ≥ 2.

When α ≤ β then the assignment is a1 = 1. Let the allocation rule be
symmetric, so when α ≥ β, the assignment is a1 = 2 and the distribution
above is changed so α becomes β and vice versa. One easily sees that ϕ
is strategy-proof — the money one individual receives depends only on the
preferences of the other individual as far as the assignment does not change.
The AR is, however, not efficient. For instance, let u be given by α = 0 and
β = 2. Then f(u) = (1, 1). On the other hand, if v is defined by α = β = 1,
then f(v) = (1, 1)/2 < (1, 1) = f(u), and hence, f is not efficient at the
profile v. In Example 1 the range of the distribution rule f is the set S, while
the range is now S ∪ T , where T is the triangle

T =
©
x ∈ R2; xj ≤ 1, j = 1, 2 and x1 + x2 ≥ 1

ª
.

Clearly all distributions in T, except when x1 = 1 or x2 = 1, are inefficient.

The example points at a potential inefficiency for allocation rules in F . An-
other type of inefficiency is budget imbalance, i.e. if not all available money
is used. It is, however, not possible to achieve budget balance for AR in F for
all profiles, but only for some. In the characterization theorem below, those
allocation rules in F which achieve budget balance at least at some profile
and is also efficient at that particular profile, are considered. The main result
is then the following.
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Theorem 2 Let ϕ ∈ F be such that for some ū ∈ U , Σjfj(ū) = x0, and f is
efficient at the profile ū. Then for all u ∈ U , f(u) is the unique distribution
that is fair and optimal w.r.t. x̄, where x̄ = f(ū).

As Theorem 2 shows, budget balance is not consistent with strategy-proofness
and fairness for all profiles. A measure of the magnitude of inefficiency the
fair and optimal allocation rule contains is the difference between available
money and the money actually used by the AR at various profiles, i.e. the
nonnegative number x0 − Σjfj(u).
A question is how severe this lack of budget balance is. To illuminate

this issue we consider the class of strategy-proof and budget balanced, but
not necessarily fair, allocation rules in a two individual economy. Denote
by W (u) = u1a1 + u2a2 + x1 + x2 the (utilitarian) welfare sum an allocation
rule yields. In the example below we calculate W (u) for various allocation
rules and various profiles u. We find that there is no allocation rule with a
dominating welfare sum for all profiles.
Allocation rules in the two individual economy which are budget balanced

are also non-bossy. Then strategy-proofness implies that there is only a finite
(at most two) number of allocations in the range of the allocation rule. Let
(a, x) and (b, y), with x0 = x1+ x2 = y1+ y2, be the two possible allocations
in the range. There is also only two types of allocation rules. In the first one
the outcome is (a, x) unless not both individuals prefer (b, y). The second
one is dictatorial, e.g. individual 1 always makes the choice between the
two allocations. This class of strategy-proof and budget balanced allocation
rules in the two individual economy was derived by Schummer (2000). In the
example below we let x̄ = (1, 1) be the quantity restriction in the fair and
optimal AR, and hence budget balance means that x1 + x2 = 2.

Example 3 Aggregate welfare for different allocation rules.

Once more consider the case with two individuals and preferences according
to: ui2 = 0 while u11 = 1 − α and u21 = 1 − β. Let ϕ be the AR that is
fair and optimal w.r.t. x̄ = (1, 1). Moreover, let ϕ0 and ϕ00 be two allocation
rules, both having a range {(a, x̄), (b, x̄)} where a1 = 1 while b1 = 2. In the
allocation rule ϕ0, (a, x̄) is the outcome unless not both individuals prefer (one
strictly) (b, x̄) to (a, x̄). The allocation rule ϕ00 is dictatorial and individual 1
makes the choice. Individual 2 makes the choice if individual 1 is indifferent
between the two allocations.
Now let us calculate the aggregate welfare for these three allocation rules.

Denote by Wϕ(u) = u1a1 + u2a2 + x1 + x2 the welfare sum, where ϕ is the
optimal and fair AR.Wϕ0 andWϕ00 denotes the welfare sum for the two other
allocation rules. One easily finds

10



α, β Wϕ Wϕ0 Wϕ00 Wϕ −Wϕ0 Wϕ −Wϕ00

α < β < 1 2− α+ β 3− α 3− α < 0 < 0

α < 1 < β 3− α 3− α 3− α = 0 = 0

1 < α < β 4− 2α 3− α 3− β < 0 < 0

β < α < 1 2− β + α 3− α 3− α 2α− β − 1 2α− β − 1
β < 1 < α 3− β 3− β 3− β = 0 = 0

1 < β < α 4− 2β 3− α 3− β 1 + α− 2β < 0

Let

A = {(α, β) ∈ R2; β < α < 1 and 2α > 1 + β} ,
B = {(α, β) ∈ R2; 1 < β < α and 2β < 1 + α} ,
C = {(α, β) ∈ R2; α < 1 < β} and D = {(α, β) ∈ R2; β < 1 < α} .
ThenWϕ−Wϕ0 > 0 if and only if (α, β) ∈ A∪B.MoreoverWϕ−Wϕ0 = 0

when (α, β) ∈ C ∪D, and finally, Wϕ −Wϕ0 ≤ 0 for profiles where (α, β) ∈
R2 − (A ∪ B ∪ C ∪ D). So the fair and optimal AR performs better than
the alternative with budget balance for certain preference profiles while its
aggregate utility sum is equal or smaller for other profiles. Hence, from
an efficiency point of view there is no obvious choice between the various
possible strategy-proof allocation rules. There are efficiency losses due to the
strategy-proofness property of similar magnitude in all allocation rules (in
this example).

6 Multi object auctions

One interpretation of the model with money and indivisible objects is as
an auction model where multiple objects are simultaneously traded. In this
section we shortly compare the fair and optimal allocation rule in this context
with similar or equivalent allocation rules in some previous studies. In this
context it is also natural to talk about equilibrium prices p instead of fair
distributions x. The relationship is of course p = −x. In the analysis so
far sellers’ reservation prices and buyers’ willingness to participate in the
allocation procedure have not played any role. Now, however, those values
are important. We conclude the section with an example of how the multi
object auction can be designed.
In Koopmans and Beckmann (1957) (equilibrium) prices supporting an

efficient allocation of the objects are derived, and in Leonard (1983) those
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prices are examined with respect to incentive compatibility. Leonard also
provides an extensive discussion on the interpretation of the model as a multi
object auction. Below we will compare the incentive compatible selection
of equilibrium prices in Leonard, called Clark-Groves (CG) prices, to the
outcome of the fair and optimal allocation rule. We find that the CG prices
are equal to the outcome of the fair and optimal allocation rule if the implicit
quantity restrictions x̄ that characterize each such rule is chosen zero, x̄ = 0.
With the multi object auction interpretation of the model there are sellers and
buyers of the objects. A main difference between the two rules of selecting
prices is how the sellers’ reservation prices and buyers’ willingness to pay for
the objects are treated. With CG-prices it is individually rational for the
buyers to participate in the auction while the sellers’ reservation prices are
not directly related to the outcome. On the other hand, with optimal and
fair allocation rules, the implicit quantity restrictions x̄ may be chosen equal
to the sellers’ reservation prices (except for the sign, p = −x). But then
the outcome of the rule is not related to any participation constraints of the
buyers.
In Demange and Gale (1985), however, the role of the sellers’ as well as

the buyers’ reservation prices are explicitly analyzed. By definition their set
of equilibrium price vectors, say E, contains only prices respecting all reser-
vation prices. The set E is a lattice and has precisely one maximal element p̄
and one minimal element p

¯
. The minimal price vector p

¯
is exactly the same,

except for the sign, as the outcome of the fair and optimal distribution rule;
p
¯
= −f(u), where −x̄ is the sellers reservation price vector. Demange and
Gale also show that this selection of equilibrium prices is incentive compati-
ble, i.e. our Theorem 1.
Let us more formally compare the incentive compatible selection of equi-

librium prices in Leonard (1983) and in Demange and Gale (1985) with the
fair and optimal distribution rule.

Suppose there are n sellers of the various objects and denote by r ∈ Rn

the vector of reservation prices, rj for object j, j = 1, 2, . . . , n. Furthermore,
denote by ui0 individual i’s utility of consuming "no object", which implicitly
also defines i’s reservation prices for the various objects. Hence, a utility
profile u is now an element in Rn(n+1). Let E(r, u) be the set of equilibrium
prices defined by

E(r, u) = {p ∈ Rn; p ≥ r} ∩ F̄ (u),
where

F̄ (u) = {p ∈ Rn; uiai − pai ≥ max(uij − pj, ui0) for all i, j, for some a}
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is the set of "fair" prices which are individually rational (uiai − pai ≥ ui0).
Provided that the set E(r, u) of equilibrium prices is non-empty, there is

precisely one price vector p
¯
which is minimal in E(r, u), i.e. p

¯
≤ p for all

p ∈ E(r, u). Demange and Gale (1985) show that the minimal price vector
also defines incentive compatible prices. Hence with x̄ = −p

¯
this is the

content in our Theorem 1.
A variant of Theorem 1 can also be found in Leonard (1983). There

equilibrium prices are those which support an efficient assignment of the
objects. This analysis is based on Koopmans and Beckmann (1957). Given
the set of equilibrium prices, Leonard selects one price vector and shows that
it is incentive compatible. The procedure is the following.
Efficiency requires that the assignment a of objects to individuals is cho-

sen so that the utility sum Σiuiai is maximal. To obtain equilibrium prices
Koopmans and Beckmann solve the following linear programming problems
for nonnegative utility profiles, u ≥ 0 (and hence assume ui0 = 0). The
solution to the first problem identifies an efficient allocation of the objects:

max
δ

Σijδijuij s.t.

Σjδij ≤ 1, for all i, Σiδij ≤ 1 for all j, and δij ≥ 0.
This problem has at least one integer solution, where δij = 1 or 0. δij = 1
means that individual i is assigned object j.Denote by ai = j this assignment.
The second problem is the dual to the first one and identifies equilibrium
prices p supporting the efficient allocation:

min
s,p
(Σiti + Σjpj) s.t.

ti + pj ≥ uij for all i, j, and t, p ≥ 0.
If a is the assignment for an integer solution to the primal problem and (t∗, p∗)
a corresponding solution to the dual problem then Σiuiai = Σit

∗
i + Σjp

∗
j ,

and one easily sees that the allocation (a, x∗), with x∗ = −p∗, is envy-free
(t∗i +p∗ai = uiai). Typically there are several solutions and several equilibrium
prices. The set of equilibrium prices obtained as solutions to the dual linear
programming problem above isE(r, u) if ui0 = 0 and e.g. r = 0. Now Leonard
(1983) shows that if p∗ ∈ E(r, u) is the selection of equilibrium prices such
that Σjp

∗
j is minimal, then the individuals have no incentive to misrepresent

their preferences. Since p ≥ 0 is a restriction for the choice of prices, we see
that the rule for selecting p is exactly the same as the one for selecting the
fair distribution x in the fair and optimal allocation rule if we let p = −x
and x̄ = 0. Leonard also shows that this type of prices is of the same kind as
the incentive compatible Clark-Groves prices for public goods.

13



Example 4 An auction method for multiple objects

An advantage with the fair and optimal allocation rule used as an auction
method is that the sellers’ reservation prices can be set to p

¯
(= −x̄). The

problem with this is that there is no guarantee that potential buyers want
to participate. To overcome this problem we can simply give the buyers the
option to refrain from buying the object assigned to him by the allocation
rule if he prefers not to trade, i.e. for individual i, ui0 > uiai − pai . In that
case the seller of the object keeps the object.
Hence the auction method now consists of three steps:

1. The sellers report their reservation prices, say p
¯
∈ Rn, and the buyers

their preferences u ∈ U , to the auctioneer.
2. The prices and assignments according to the fair and optimal allocation
rule is applied based on the complete profile u. The allocation becomes
(a, p).

3. Individual i receives object ai and pay the price pai provided that uai−
pai ≥ ui0. Otherwise the object assigned to him remains at the seller.

At step 1 the sellers’ choices are strategic. To optimize they have to
guess the preferences of the potential buyers. The buyers, however, have
no incentives to misrepresent their preferences. They also have the option
not to buy when the outcome of the auction is revealed, so it is individually
rational to participate. If there is only one seller the auction reduces to the
usual Vickrey auction where the second highest bid determines the price.
This bid, however, can be the sellers reservation price.

Remark 1 It is well-known that generalizations of Vickrey’s sealed bid single
object auction may be incentive compatible for sellers or for buyers but not
for both. See e.g. Demange and Gale (1985).

7 Appendix — the proofs

Proposition 1 (i) For each profile u ∈ U , the fair set F (u) is a non-empty
and closed subset of Rn. (ii) If x, y ∈ F (u) and (a, x) is a fair allocation,
then (a, y) is also a fair allocation. (iii) If x, y ∈ F (u) then z ∈ F (u), where
zj = max [xj, yj] . (iv) A fair and optimal distribution is unique.
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Proof. (i) For a proof of F (u) 6= ∅, see e.g. Svensson (1983). F (u) is closed
since preferences are continuous.
(ii) Let x, y ∈ F (u) and (a, x) be a fair allocation. Without loss of

generality (abbreviated: w.l.g.), we assume that ai = i for all i ∈ N and
yj = xj + δj with δj ≥ δj+1 for all j ∈ A. If δj = δj+1 for all j, (a, y) is
obviously a fair allocation, so assume that δj = δ1 if j ≤ k and δk > δk+1.
Also let (b, y) be a fair allocation. Then we can choose bi = i for i ≤ k, since
(a, x) is fair and uii+ xi ≥ uij + xj if and only if uii+ xi+ δi ≥ uij + xj + δj.
Moreover, a fair assignment b cannot be chosen so that bi > k for i ≤ k
because if chosen so then uibi + xbi + δbi < uii + xi + δi. In summary, for
individuals i ≤ k, bi ≤ k is necessary and bi = i possible for a fair assignment
b. Now we can repeat the the arguments above for the group of individuals
i with k < i ≤ k0, where δj = δk+1 if k < j ≤ k0 and δk0 > δk0+1. We then
obtain bi = i also for those individuals. Repeating the arguments now leads
to bi = i for all individuals.
(iii) Since x, y ∈ F (u), (a, x), (a, y) ∈ Φ(u) for some assignment a by (ii)

above. W.l.g. let ai = i for all i. Then for all i ∈ N,

uii + xi ≥ uij + xj and uii + yi ≥ uij + yj for all j,

and hence,

uii + zi = max[uii + xi, uii + yi] ≥ max[uij + xj, uij + yj] = uij + zj for all j.

(iv) Let u ∈ U and x̄ ∈ Rn be given and let y, y0 ∈ F (u) be fair and optimal
w.r.t. x̄. Then z = max(y, y0) ∈ F (u) by property (iii) above. Moreover,
z ≤ x̄. If z 6= y then S(y) < S(z), so z = y = y0 must be the case.

Proposition 2 Let ϕ be a fair, ESV and PI allocation rule and let u ∈ U .
If (a, x), (b, y) ∈ ϕ(u) then x = y. If (a, x) ∈ ϕ(u) and (b, x) ∈ Φ(u), then
(b, x) ∈ ϕ(u).

Proof. Let (a, x), (b, y) ∈ ϕ(u). Then uiai + xai = uibi + ybi for all i ∈ N
since ϕ is ESV, while uiai +xai ≥ uibi +xbi since ϕ is fair. But then ybi ≥ xbi
and for symmetry reasons, xbi ≥ ybi . This shows that x = y.
Now assume that (a, x) ∈ ϕ(u) and (b, x) ∈ Φ(u). Then for all i ∈ N,

uiai + xai ≥ uij + xj for all j and uibi + xbi ≥ uij + xj for all j

and hence, uiai + xai = uibi + xbi . Then by PI, (b, x) ∈ ϕ(u). .

Theorem 1 Let x̄ ∈ Rn and let f(u) be the distribution rule which is fair
and optimal w.r.t. x̄. Then f is strategy-proof and efficient at all profiles.
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Proof. Let f(u) be optimal and fair w.r.t. x̄. W.l.g. we let x̄j = 1 for
all j. Moreover by Proposition 1 (iv), f(u) is unique. Now let ϕ be the
corresponding fair AR that is ESV and PI. Suppose that ϕ is not SP. Then
there are profiles u, v ∈ U , an individual l ∈ N, and two fair allocations
(a, x) ∈ ϕ(u) and (b, y) ∈ ϕ(vl, u−l) such that ulbl + ybl > ulal + xal . Since
ulal + xal ≥ ulbl + xbl , ybl > xbl must be the case.
W.l.g. we let ai = i for all i and l = 1, and hence yb1 > xb1. Also let

G = {j ∈ N ; yj > xj} .We now prove that for all i ∈ N−G, uii+xi > uij+xj
for all j ∈ G.
For i > 1 and i ∈ G :

uibi + ybi ≥ uii + yi > uii + xi ≥ uij + xj ≥ uij + yj for all j ∈ N −G.

Hence by fairness, for i > 1, bi ∈ G when i ∈ G. Moreover, yb1 > xb1 and
hence b1 ∈ G. Then by fairness, i ∈ G if and only if bi ∈ G. Then also
i ∈ N −G if and only if bi ∈ N −G. Now we have for i ∈ N −G :

uii + xi ≥ uibi + xbi ≥ uibi + ybi ≥ uij + yj > uij + xj for all j ∈ G.

Hence for i ∈ N −G, uii+ xi > uij + xj for all j ∈ G. Moreover, xj < yj ≤ 1
for all j ∈ G. This shows that x is not optimal - a contradiction. Hence ϕ
must be strategy-proof.
Finally suppose that f is not efficient at a profile u ∈ U . Then there is a

profile v ∈ U such that f(u) = x < y = f(v). But yj ≤ 1 for all j so xj < 1
for all j. Then obviously z ∈ F (u) and zj ≤ 1 if zj = xj + � and � > 0 is
sufficiently small. This shows that x is not optimal — a contradiction. Hence
f must be efficient at all profiles.

Theorem 2 Let ϕ ∈ F be such that for some ū ∈ U , Σjfj(ū) = x0, and f is
efficient at the profile ū. Then for all u ∈ U , f(u) is the unique distribution
that is fair and optimal w.r.t. x̄, where x̄ = f(ū).

To prove the theorem a number of lemmas will be useful. The presump-
tions for the lemmas are the same as in Theorem 2, and are not repeated.
Moreover, by choice of units we let x̄ = e, where ej = 1 for all j. Hence,
x0 = n.

Lemma 1 Let u, v ∈ U and f(u) = x. Then f(v) ≤ f(u) if vij = −xj for
all i, j.

Proof. Let f(u) = x and a be the assignment where ai = i for all i.With no
loss of generality, we assume that (a, x) ∈ Φ(u). Let f(v) = y. Then obviously

16



(a, y) ∈ Φ(v). Also let vk = (v1, . . . , vk, u0k+1, . . . , u
0
n) and x

k = f(vk).We first
prove that (a, xk) ∈ Φ(vk) for all k.
If (a, xk) ∈ Φ(vk) then also (a, xk) ∈ Φ(vk−1), because:

vkk + xkk ≥ vkj + xkj for all j ⇔ xkk − xk ≥ xkj − xj for all j,

and then

ukk + xkk = ukk + xk + xkk − xk ≥ ukj + xj + xkj − xj = ukj + xkj for all j.

But then xk, xk−1 ∈ F (vk−1), and hence by Proposition 1(ii), (a, xk−1) ∈
Φ(vk−1) since (a, xk) ∈ Φ(vk). By induction it now follows that (a, xk) ∈
Φ(vk) for all k.
By fairness we have for all i ≤ k,

vii + xki ≥ vij + xkj for all j, i.e. x
k
i − xi ≥ xkj − xj for all j,

and by strategy-proofness,

u0kk + xk−1k ≥ u0kk + xkk and vkk + xkk ≥ vkk + xk−1k , i.e. xkk = xk−1k .

Thus

xkk − xk = xk−1k − xk ≤ xk−1k−1 − xk−1 and hence, xnn − xn ≤ x11 − x1.

But x11 = x1 so xnn ≤ xn.We also have xnn−xn ≥ xnj −xj for all j, and hence,
xn ≤ x which means that f(v) ≤ f(u).

Let u ∈ U be a profile, α ∈ R a given number and k ∈ N. Then a distribution
x ∈ F (u) is fair and minimal w.r.t. α if xk ≥ α and there is no nonempty
group G ⊂ N and y ∈ F (u) such that yk ≥ α and yj < xj for all j ∈ G.
This means that as little money as possible consistent with fairness has

been distributed across the objects j 6= k for a fixed minimal amount of
money to object k.

Lemma 2 If f(u) = x and y ∈ F (u) is fair and minimal w.r.t. xk, then
f(v) = y if vij = −yj.

Proof. W.l.g. let k = 1 and (a, y) ∈ Φ(u) with ai = i for all i. Then
(a, x) ∈ ϕ(u). Moreover, (a, y) ∈ Φ(v1, u−1) and hence, y ∈ F (v1, u−1). Now
let z = f(v1, u−1). Then (a, z) ∈ ϕ(v1, u−1) by Proposition 1(ii). Then by
strategy-proofness,

u11 + x1 ≥ u11 + z1 and v11 + z1 ≥ v11 + x1 and hence, z1 = x1.
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Then by fairness, z1− y1 ≥ zj− yj for all j, and hence, z ≤ y since y1 = z1 =
x1. Moreover, (a, z) ∈ F (u) since y1 = x1. But then z = y since y is fair and
minimal.
Now let vk = (v1, . . . , vk, uk+1, . . . , un) and xk = f(vk). We prove by

induction that xk = y. The statement is true for k = 1 according to the first
part of the proof. Assume that xk−1 = y and (a, y) ∈ Φ(vk−1). Then obviously
(a, y) ∈ Φ(vk). Moreover, xk = f(vk) so (a, xk) ∈ Φ(vk) by Proposition 1(ii)
and hence, (a, xk) ∈ ϕ(vk) by PI. Then by fairness for i ≤ k, xki − yi =
δ = maxj(x

k
j − yj). By strategy-proofness we have ukk + xk ≥ ukk + xkk and

vkk + xkk ≥ vkk + xk and hence, zk = xkk. But x1 = y1 so δ = 0 and hence,
xki − yi = 0 for i ≤ k and xk ≤ y. Moreover, (a, xk) ∈ F (u) since xki = yi
for i ≤ k. But then xk = y since y is fair and minimal. Then by induction,
xk = y for all k and hence y = xn = f(v).

Let E = {x ∈ Rn; xj ≤ 1 for all j and xj = 1 for some j} .

Lemma 3 Let f(u) = x and uij = −xj for all i, j. Then x ∈ E.

Proof. W.l.g. assume that x1 ≥ xj for all j.Moreover let ai = i for all i ∈ N
be an assignment. Let y ∈ E and y = x + te for some t ∈ R (and hence,
y1 = 1). Then (a, x) ∈ ϕ(u). Let δ ∈ R and define a profile v ∈ U according
to:

v11 = −y1 + δ and v1j = −yj for j > 1,
vi1 = −y1, vii = −yi, and vij = −δ for j ∈ N − {1, i}, when i > 1.

Then (a, y) ∈ Φ(v) if δ is sufficiently large because,

v11 + y1 = δ − 1 ≥ v1j + yj = 0 for j > 1,

vii + yi = vi1 + y1 = 0 ≥ vij + yj = yj − δ for j ∈ N − {1, i} , when i > 1.

Moreover, (a, e) ∈ Φ(v) if δ is sufficiently large because,

v11 + 1 = 1− y1 + δ ≥ v1j + 1 = 1− yj ´for j > 1,

vii + 1 = 1− yi ≥ vi1 + 1 = 1− y1 = 0 ≥ vij + 1 = 1− δ for j ∈ N − {1, i} ,
when i > 1.
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But the FDR f is weakly efficient at the distribution e by assumption
and hence, (a, e) ∈ ϕ(v).
Now let z ∈ F (v) be fair and minimal w.r.t. z1 = y1 = 1. G =

{j ∈ N ; zj < yj} . Then for i ∈ G,

vii + zi < vii + yi = vi1 + y1 = vi1 + z1.

Hence, G = ∅ and z ≥ y. But z is minimal w.r.t. z1 = y1 and y ∈ F (v) so
z = y. Moreover, f(v) = e and hence by Lemma 2, f(u0) = y if u0 ∈ U and
u0ij = −yj. But f(u0) = f(u) by strategy-proofness, and hence, f(u) ∈ E.

Also let g(u) ∈ E ∩ F (u) be the optimal and fair distributions for profiles
u ∈ U . Then,
Lemma 4 Let f(u) ∈ E for all u ∈ U . Then f(u) = g(u) for all u ∈ U .
Proof. The lemma is proved by induction. Let

Id: f(u) = g(u) if uij = −yj for at least k individuals i, where y = g(u).

Id is trivially true when k = n. Now assume that Id is true for k. Let
u ∈ U , y = g(u) and ui = vi for k − 1 individuals i, where vij = −yj. Also
let (a, x) ∈ ϕ(u) and assume that x 6= y. W.l.g. we assume that ai = i and
x1 < y1.
Now u1 6= v1 must be the case, because if u1 = v1 then u11+x1 = x1−y1 <

0 and u1j + xj = xj − yj = 0 for some j. But then (a, x) 6∈ ϕ(u), which is a
contradiction.
Let z = f(v1, u−1). According to Id, z = g(v1, u−1). But then

(a, x) ∈ ϕ(u)⇒ (a, y) ∈ Φ(u)⇒ (a, y) ∈ Φ(v1, u−1)⇒ (a, z) ∈ ϕ(v1, u−1).

Hence, y ≤ z. Moreover by strategy-proofness,

u11 + x1 ≥ u11 + z1 and v11 + z1 ≥ v11 + x1 and hence, z1 = x1.

But y1 ≤ z1, z1 = x1 and x1 < y1 is a contradiction. Thus the assumption
x1 < y1 is false and x = y must be the case.

Proof of Theorem 2. Let u ∈ U and f(u) = x. If xj > 1 for some j then
let y ∈ F (u) minimal w.r.t. yj = xj. Also let v ∈ U with vij = −yj. Then
f(v) = y by Lemma 2, and hence, y 6∈ E. But this is a contradiction to
Lemma 3. Hence x ≤ e. If x < e then f(v) < e by Lemma 1 if v ∈ U with
vij = −xj. This is also a contradiction to Lemma 3. Then by Lemma 4, f is
optimal w.r.t. f(u) ≤ e.
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