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Abstract

This paper seeks to investigate and remedy the apparent inability of Markov
regime switching models to predict future states in the medium to long term. We
show that projected time varying transition probability series in the model may be
biased towards predicting regime switches with high probability in the short run,
and as a consequence it is hard or impossible to obtain longer run inference. We
propose a penalized maximum likelihood estimator where non-smoothness in the
transition series has negative influence on the likelihood function, which is shown
to remedy the short run bias. In an empirical investigation of U.S. real GDP, the
penalized model works better in terms of forecasting future recessions as defined by
the NBER business cycle dating.
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Introduction

Few non-linear time series models have attained the same level of popularity as the
the Markov regime switching model of Hamilton (1989) . The division of economic
variables into different states, such as contraction and expansions phases of GDP,
enjoys a intuitive advantage over more continuos models. A very large part of con-
temporary research focuses on improving the Hamilton model by including various
extensions from other parts of the time-series literature in order to match the mo-
ments in the data.

A less probed but equally important area emphasizes the other novel invention
following the Hamilton model: the determination of states. We may very well match
moments of the model perfectly but if we assume an incorrect or non-optimal struc-
ture to determine the probability of states, the performance of the model will suffer.
In the plain vanilla Hamilton model, the transition between states is governed by a
constant probability. This assumption is rarely questioned, although intuitively we
accept that the probability that a bull-market continues is higher after only a few
months of rising stock prices than when the bull-market has persisted for a longer
period of time. To reflect this in the model, one may let the transition probability
be time varying. The first published paper to recognize this possibility is Diebold,
Lee and Weinbach (1994).

A number of papers have applied the Diebold et al. methodology: Gray (1996)
for interest rates, Tronzanon, Psaradakis and Sola (2003) for target zones and Abiad
(2003) in the currency crisis context. Results have been mixed, and it seems that
one of the main reasons for the relatively infrequent use of this approach is the
difficulty to obtain sensible parameter estimates. The problems are exacerbated in
the multivariate transition equation setting. Statistical inference in this environ-
ment can be very difficult, since the model in essence tries to estimate a model with
two unobserved variables. As always in the Markov regime switching (henceforth
denoted MS) model, we try to estimate the unobserved state variable. Moreover,
we seek the relation between exogenous variables and the dependent variable in the
transition equation which also is unobserved.

This paper seeks to establish that the maximum likelihood estimator will be
biased toward finding a parameterization of the model that leads to a projected
transition probability series with very abrupt shifts. In general, a parameterization
that produces a high probability to switch regimes a short time interval prior to
an observed shift will be preferred to a parameterization with a lower probability
to switch but during a longer time period, irrespective of the true data generating
process.

Although the bias reflects an optimal moment-matching, the use of the model
becomes deeply restricted due to this bias. For policy purposes, parameter values
may be of lesser importance than the ability to obtain early warnings of an up-
coming switch. The exact size of the contraction/expansions trends in a model of
GDP are relatively unimportant to a policy maker who intends to take measures
that only have lagged effects. The average time before an interest rate change gives



effect is estimated to be around 12-24 months. For a central banker, early warnings
of the type ”"with a 50% probability, GDP growth will enter the contraction phase
within the next 18 months” will be preferred to a statement of the type ”with 95%
probability, we will enter the contraction phase next month.”

We provide a possible solution to the short run bias problem by introducing a
penalty term in the log likelihood function. It penalizes non-smooth behavior of the
transition probabilities series with a weight chosen by the researcher. In that sense,
it is a subjective approach, but our results indicate that this addition remedies a
number of problems inherent in the standard estimation procedure. Foremost, it
increases the correlation between the projected transition probability series and the
true data-generating transition probability process.

In an empirical exercise, we investigate U.S. real GDP in a regime switching set-
ting. The penalized maximum likelihood method finds a different and much smaller
set of variables predicting switches to recession to include in the final model than
the ordinary maximum likelihood does. When forecasting the NBER recessions,
the penalized model exhibits better performance than the benchmark models for
horizons exceeding 4 quarters, both in- and out-of-sample.

In section 2, we introduce the baseline model and the maximum likelihood esti-
mation procedure. Thereafter we discuss MS models with time varying transition
probabilities (TVP) as a bounded model similar to the the popular Threshold Au-
toregression family models. Section 4 is dedicated to a proof in a simple model
that the maximum likelihood estimator will select a short-run variable prior to a
longer run one, irrespectively of the underlying data-generating process (DGP). In
section 5, simulation evidence corroborates these results in the stochastic setting.
We propose a remedy to the short run bias as well, and analyze the effects of using a
penalty term in various settings using Monte Carlo analysis in section 6. We apply
the proposed method on actual data in section 7. Section 8 concludes.

Model and Estimation Procedure

We base the discussion on a simple form of the Hamilton (1990) Markov regime
switching model. The baseline model with constant transition probabilities:

Ay, = Mg, T € (1)

where S, is a state variable that follows a first order Markov chain with transition

probability matrix:
p—|Pu P2 (2)
P21 P22

where, in turn, p;; denotes the probability to go from state ¢ to state j. The iterative
procedure to estimate this kind of model is presented in Hamilton (1994).

The number of extensions made to this simple model, and the combinations
thereof, can be counted in the hundreds. Most of these seek to engineer to model in



a way as to have a better fit to the data, modifying the elements of equation 1, e.g.
by introducing exogenous variables, auto-regressive parameters and ARCH effects.
A smaller number of studies, e.g. Diebold, Lee and Weinbach (1994) , have focused
on modelling the probability to switch to other regimes, as in equation 2, noting
that P by no means have to be constant. In the general 2 state case:

Pz = | | ®)

where g, h — [0,1].! This will be referred to the time-varying transition probability
(TVP) model. The functional form of f, g is usually chosen to be of probit of logit
type. We will assume the logit style functional form for both h, g such that:

he) =g () = oo~ ) ()

In order to estimate the Hamilton Markov regime switching model we iterate on
the equations:

10O
€t = Eje—1 O My (5)
v (ft\tfl © 771&)
and
§t|t71 = Ptfl(ztfl)l ) 6t71|t71 (6)

where 7, is a (INxT') matrix of each N states conditional density based on the
parameter vector 6. For the 2 state case:

1 —(yr—p)*
210 exp{ ( 207 )2} (7)
1 — —

V2rog exp { y;gé@ }

n =

The log likelihood to be maximized is given by:

T
L(0) = Zlog 1 <§t|t—1 © 77t> (8)
t=1

A number of other estimation methods are available, see e.g. Filardo and Gordon
(1998) for a Gibbs sampling approach in the time varying transition probability
context.

!Extending the number of states to N is straightforward in theory, but harder in practice since the
number of coefficients grows with a factor of 2N rendering estimation sdifficult.



Bounded Regime Switching Processes

To be able to conduct simulation excercises, we now introduce a regime switching
parameterization where the projected time-series is only dependent upon the para-
meter vector and a single vector of random disturbances.

The process will be based on the previously considered model in equation 1:

Ay, =pg, +6 =y, =y 1+ g, + € 9)

The long run drift of y, can be calculated using the ergodic (unconditional) proba-
bilities:
1— 2 — —
P(S,=j)=m= (1= p22)/(2 = P11 — P22) (10)
(1 =p11)/(2 = P11 — P22)
which can be obtained by solving the eigenvalue problem |P — AI,| = 0. Explicitly,
the long drift in the N state model becomes

N
HZZP(St:j)':U’j
j=1

Using the long term drift, it easy to see that in the long-run, this process will
mimic a random walk with drift. For many purposes, however, it seems unreasonable
that a variable - in the long run - should follow such a process. Examples could
be trade balance, debt-to-GDP ratios and real exchange rates. One could also use
the same argument to build a model of financial bubbles as in Schaller and van
Norden (2002). It is likely to be some reversion back to some, yet undefined, mean
once we reach a level that is much higher or lower than the posited mean. Assume
that py = —pq and g > 0. Moreover, assume that there is a bound a > 0 so
that P (S,y1 =2y, > a) =1 and P (S,; = 1]y, < a) = 1. In words, if the level
process ¥y, exceeds/goes below a/—a, we automatically switch back to a state that
reverts the process in the other direction. This is analogously to a Threshold Auto-
Regressive (TAR) model. Another way to express this is that the boundary model
in effect has time varying transition probabilities. The two transition matrices are:

01 .

[ P11 P12

if |yl <a
P21 P22

The long run mean 3 of the bounded process can be calculated but most note-
worthy here is the fact that the process y, will never be ’far’ away from its long-run
mean, which makes an argument for the variable to posses a form of stationarity.
The conditions for stationarity of this process can be found in Karlsen (1990).

An even more flexible and sensible,? version of the bounded model is where the

2The discrete boundaries previously considered cannot be estimated with gradient based optimization
algorithms. As in the TAR case, one usually would resort to grid-based estimation procedures.



probability to go to the reversion state is dependent upon the distance the process
is from its long run mean. Hence, we would posit, with || - || denoting an appropri-
ate metric, that P (S, = j|S, = i; ||y, — yt||) is large when ||y, — yt|| is. We can
translate this to the more general form of the transition matrix in equation 3:

S By llye—wtl) 1= 7B llye —wtl)
I - (12)
L—f By llye—wtl)  f(Ba-llye —wtll)
By setting 3, # 5, the boundaries are allowed to be asymmetric. Once the process
y, goes 'far’ off from the long run mean, the probability that we will switch to the

P, (5; lye = 9tll) =

state where we revert back increases. In the limit, this switch will happen with prob-
ability 1. Hence, the same argument for global stationarity as in the fixed threshold
setting applies. We also note that the process does not have to have both an upper
and lower bound in order to be globally stationary. If the long run drift term is
positive/negative, the process will be globally stationary if there is an upper/lower
bound.

Using the baseline model (1) with the associated transition matrix in (12), we
see that we have a process that is only a function of the parameter vector 6 € {u, 5}
and the vector of disturbances €. Besides the advantage of being parsimonious, this
model can function as a vehicle for simulation studies, since artificial data is easily
generated.

Regime switches and short-run indicators

Now we will consider a simple case of the TVP model which brings about a paradox
with serious economic implications. Consider the growth of the debt-to-GDP ratio.
We assume that there are two states: the first where debt is growing, and a second
where debt is decreasing. Economic theory suggest that there is an upper bound
to how much debt in relation to income can grow, since rational lenders will not
supply more credit once debt-to-GDP reaches an ’'unsustainable’ level. The point
in time where credit dries up due to unsustainability will be depicted as a regime
switch, where the ratio cannot rise anymore, but switches to the decreasing state
as the government is forced by creditors to impose policies to this end. There will
be some heterogeneity in opinion of what is a sustainable level; hence the exact
timing of the switch is not predictable, although the probability to switch is. One
motivation for the sudden shift is that there seems to be herding effects. Once a
large investor stops buying a certain country’s debt, other investors tend to follow
to avoid a liquidity squeeze.

To estimate such a model on empirical data, we would use the set-up (state 1
corresponds to the rising debt state):

Ayt = HSt + €t (13)

30f course, GDP can decrease with the effect of the ratio rising, but this is not likely to happen for
extended periods of time. We will not consider that case here.



with
flag+ B8y y1) 1= f(og+ B ya)
P21 P22
where Ay, is the growth of the debt-to-GDP ratio. In this case, it seems unlikely

P, (0;y,_,) =

that there is a long-run drift of the dependent variable, so & in equation (12) is set
to zero.

In empirical work, however, we do not have the luxury of knowing exactly what
variables to include in the transition equations, but have to discriminate between a
number of possible candidates. Besides using the dependent variable itself, let us
assume we also observe a binary variable called x; that takes on the value 1 one
unit of time prior to the crisis and is zero otherwise. In our setting, an example
of this could be a negative change in the credit rating of the country’s debt. The
causality of this in relation of the probability to switch to the credit constrained
regime is ambiguous. One one hand, the change is induced by the gradual rise in the
probability to enter the credit constrained state. On the other hand, a worsening
in the credit rating could be argued to lead to a rising probability to switch to the
constrained regime, ceteris paribus. So one could argue that both variables - i.e.
the total debt-to-GDP and the change in credit rating - should be included in the
model. The former variable depicts long-run fundamentals and the latter short-run
sentiments.

Hence, we would like to estimate the model with the following transition prob-
ability parameterization:

flay+06y -y +0y-2 1) 1= f(ay 481y 1+ 022 1)
P21 D22

In this model, we will find that (3, is very significant and (3, insignificant, even if
the data is generated using the model the model in (13)! The reason for this will
be shown below. At this stage, we want to note that for policy purposes, a model

P, (0;y,1) =

that gives us as much advance warning of an oncoming debt crisis as possible will
preferred to one that gives us very little time to react. But paradoxically the best
econometric fit is obtained with a model that is more or less worthless for policy
purposes since it only gives advance warning in the period prior to the crisis.

To see why we by traditional econometric criteria will select the variable with the
short duration prior to the shift, we should observe the likelihood function. Suppose
there occurs a regime shift at time 7" and that S, =1fort =1,2,....T—-2,T—-1. We
have two binary possible candidates: x4 that produces a low probability (1 — ;) =
1 — f(z*) to switch to regime 2 from time T —j : T — 1, j > 1; and 2% that
produces a very high probability (1 —m,) = 1 — f(x?) to switch at time T'— 1 but a
0 probability otherwise, and (1 —m) < (1 —my) = @ > my. The corresponding
transition matrices are

(A)

m l—m ™ 11—
PA = 1 1 N pA = 1 1
Tyt [pzl D22 1 Pa1 P22



and

(B)

1 1-
e L I S o

We furthermore assume that we are certain to have been in regime one for the
whole period prior to the switch so that &, = 1 0] fort=1,2.,T—27T—1.
Because of that, if we disregard the mean zero random part, we can simplify 7, in
(7) to

m=la 0
for t = 1...T' — 1 and we also have that a > b > 0. For the time t = T...T + k, we
have

ne = [b a]/

Just looking at the time 7' — 1 transition matrices, (B) gives us a better expla-
nation of the dependent variable than (A). To verify this, we note that at time T,
the inner part of the likelihood functions is:

Lyp=1 <€T\T—1 © UT) =1 (P/T—15T—1|T—1 © 77T> (14)

For the case (A) and (B) this reduces to: mb+ (1 —m)a and mb+ (1 — my)a.

A B
LT LT

Setting these equal and solving yields:

7T1 (b - a) - 7T2 (b - a/)
T —— T ——
+ - + -

so that
L4 < LB

It is straightforward to verify that also L# jr—1 < L?_j:T_l. Hence, an ordi-
nary maximum likelihood estimator would prefer variable (B) to variable (A) in this
setting. So far, this is not controversial.

But what happens if we try to estimate a model where both z4, 2z are in-
cluded in the transition equations? To do this we need to elaborate on the rela-
tion between the transition matrix and the functions producing it. Consider that
7, = f(ay —B1x?), so that a higher value of 3; means a higher probability to switch
regimes, and my, = f(ay — Byx?). We assume that both x variables are positive. We
first note that a change of (3, has effects on two likelihood elements. The first is at
time T' — 1:

oLg, _ —wiae (o1~ Arait) (a—b)<0 (15)
= 2
96 [1 + exp (ozl — ﬁlazﬁfl)}
and OLP
Ly 4
=0 16
06, 1o



In essence, equation (15) means that if there is a probability for a regime switch
but none occurs, this affects the likelihood value negatively irrespective of the true
underlying transition probability process.

The derivative of L?_l has been calculated using the fact that az?_l = 0. Looking
at time 7T derivatives instead we obtain:

oLy —x7 exp (Oﬁ - 5135%)
0, [1+exp(aq — ﬁlxﬁﬁ)]

s-(b—a) >0 (17)

and
oL% —zf exp (az - 5233%) . 0 18
o L -a)> (13
2 [1+exp (ay — Box?)]

Looking at the global likelihood, using equations (15)-(18), we obtain:

LA 0Ly, 9L
Ipy o, 9Py

and
oL® oLP_, oLE

9By 9Py 9P

>0

Note that for when using the variable 2? the maximum likelihood will be found as
parameter (3, goes towards infinity, which is not the case for the z4.

Now we proceed to the situation where the transition equation consists of both
variables:

™, = fla— Byt — Boxf) = f(O)

What we will show is that the effect stemming from z£ will act very much more
strongly than the effect of x%. First, we consider the derivatives of the likelihood

function: oL oL oL
T—1 T
— = + L 19
0B 96, 95 (19)
and oL oL oL oL
T—1 T T
— = +—=04+—>0
0By 95y 9By 95y

Again, the effect of this will be a solution in which 3, — oo and a more ambiguous
solution for ;.

. oL . OLp_, . OLyp
1 — =1 1 —= 20
5213100 oJon ﬁzlinoo oJoR * ﬁzlinoo a0, (20)
where
. OLp_4 _$?—1 exp (O) A 1 exp (©)
| = (a—10b) = _ —-b
a8, Brep@f )T T T I ep©) e ©)] ¢
—1 —0



and

. OLp  —afexp(O) b a) = —gh 1 exp(©) 4=
A B, Lrep@P U T T [rew @) [ ren®)] "9
—1 —0

Using these results, we see that (20) will converge towards zero. When maxi-
mizing the likelihood function, we will see the impact of the variable ;! diminish as
the more and more weight is put on x through the parameter 3,. It follows that
the standard error of 3; will become very large.

To summarize, the above discussion has assumed that we have a variable that is
a perfect short-run predictor of future state switches. From this it has been shown
that any other variable, although better resembling the true data generating process
of transition probabilities, will be crowded out and deemed non-significant in a joint
estimation.

Simulation evidence

Let us illustrate this is an applied setting. Consider the following simple 2 state

model:

Ay, = pg, + €gy (21)
where 1 < 0, 1y > 0 > pg, ¢ ~ N(O,a?gt), 0? = 0.5 and 05 = 1. The transition
matrix is

> () 1 fon)

“l1- flag +By;—1)  flag+ Byi—q)

In words, this process would have a negative drift were it not for the lower probability
boundary that reverts the process back into the positive mean state. In figure 1
panel (a), a simulated series with the parameters p; = 0.5, uy = —0.3, 5 = 0.1 and
o] = ag = 3.4761 = p;; = 0.97 is plotted.

To proceed, we have constructed a binary indicator variable x; that takes on the
value 1 the time period prior to a switch to state 1 and is 0 otherwise. We have
then estimated three different setups of transition equations of the model:

(i) f(ag + Bryi—1)
(i) f(ag + Bryi—1 + Pozy_1)
(iii) f(cg + Bowy_1)

It is apparent from table 1 that the predicted effect of including the binary indi-
cator variable exists in the simulated data, even if the form of the long-run variable
is different than from the theoretical set-up. The addition, the difference in the
likelihood value between case (ii) and (iii) is virtually zero and the standard error
of the parameter 3, is very high indicating that the binary indicator dominates the
long-run indicator.

The correlation coefficient has been computed as: p = Corr [A f(O);Af ((:))}

10
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Figure 1: Simulated data. In panel (a): solid line indicates the y, process (right scale);
bars indicate the positive mean reversion state and the dotted line indicates the true tran-
sition probability process (left scale). In panel (b): Thin line marks the DGP transition
probabilities as in panel (a), thick line marks the projection of transition probabilities
from model (i) and dotted line marks the projection from model (iii). The projected
transition probabilities from model (ii) are virtually identical to those of model (iii).

where A denotes the first difference operator and ° denotes empirical estimates. It
indicates that the model without the short run indicator has a high correlation with
the true process, whereas the other models - which should be preferred in terms of
statistical significance - have much lower correlation coefficients. The importance
of this effect can be seen in figure 1 where the true and projected transition prob-
abilities have been plotted. As can be expected, the model including z, signals a 0
probability to stay in state 1 one period prior to the actual shift but signals a stay
probability of 1 otherwise. Model (i) shows a transition probability pattern similar
to the DGP, but is more extreme in its projections. Specifically, it projects a much
lower probability for transition to the second state when the actual transitions are
'far’ off in the future, but the probability increases more rapidly as the switch comes
closer, and close to the switch the probability becomes much higher than it is in
the data-generating process. This can be indicative of an overfitting process, where
the estimation process actually tries to mimic the behavior in the binary variable
case. We saw that the binary case lead to a higher log likelihood value, so it is of
no surprise that the estimation procedure behaves this way. The magnitude of this

11



Model (i) (ii) (iii) CTP
Param. Value p Value p Value p Value p

iy 0.5967  0.00 0.6040  0.00 0.6040  0.00  0.6009  0.00
Lo -0.2255  0.00 -0.2273 0.00 -0.2273  0.00 -0.2260 0.00
0, 1.1414 0.00 1.1373 0.00 1.1373 0.00 1.1418 0.00
o 0.4838 0.00 0.4846  0.00 0.4846  0.00 0.4833  0.00
ay 3.3733  0.00 3.4369 0.00 3.4369  0.00 3.2719  0.00
Qg 21.3593  0.09 25 n.a. 14.6708 0.00 4.3380  0.00
o 0.7064 0.13 0.4221 0.94
B -25 n.a. -25 n.a.

Logl.  -236.5861 -232.0960 -232.0961 -240.7682
p 0.6311 0.2335 0.2335 n.a.
RQ

Table 1: Parameter values when models (i), (ii) and (iii) are estimated on the simulated
data. The optimization procedure has been constrained to not allow parameters in the
transition equation to exceed 25 in absolute value. Correlation denotes the correlation
coefficient between the simulated TVP series and the empirically projected series.

effect will be explored further below.

Proposed Remedy

The previous investigation has shown that there is a bias towards selecting variables
that induce changes in the transition equation very close and abruptly to a regime
switch. We have argued that in empirical work, one may have the opposite objec-
tive. Also, including non-stationary variables in the transition equation results in an
inference problem similar to that of standard spurious regressions. In this section,
we will suggest a simple solution to remedy these problem. To do this, we require
the researcher’s prior about how important the long-run effects are in relation to
the short-run ones.

We begin with the cases considered initially, cases (i) and (ii). As we saw both
in the theoretical and empirical setting, the problem with case (ii) was that maxi-
mization of the likelihood function led to a corner solution for 3,. A natural way
to avoid this is to introduce a penalty in the likelihood function so that there exist
a finite solution for (18)= 0. The problem is to decide upon the magnitude and
functional form of the penalty. The simple approach suggested here uses a prior
about how the projected transition probability series should look. To begin with,
we assume that fundamental economic variables evolve slowly over time. Then,
if these fundamentals govern the probability to switch economic states, we would
expect the series of probabilities to correspondingly move slowly. In a graphical
depiction of the probabilities, a smooth series implies slow movements in the under-

12



lying variable one measures. For example, the Hodrick-Prescott filter decomposes
a time-series into a slowly moving, smooth trend component and a faster moving,
non-smooth cyclical component.

Hence, we proxy the prior of slowly moving fundamentals with a term in the like-
lihood function that penalizes non-smooth behavior. The penalized log likelihood
takes on the following form:

L(0) = ET: {log 1 (ft‘t,l ©) 771;) — €71’ [diag (P,) — diag (Ptfl)]Z} (22)

where diag(-) denotes the principal diagonal operator and v is the weight of the
prior given by the econometrician. The first drawback of this approach is obvious:
traditional likelihood ratio testing will not possible using the expression in (22) since
the penalty term will make it be lower than the the baseline model’s log likelihood.
However, since this change of the likelihood is always negative, a likelihood ratio
statistic based on it will be more conservative in the sense that it rejects too many
variables. One way to reduce this drawback is to use the estimation results obtained
from maximizing (22) and evaluate the non-penalized likelihood function with the
corresponding parameter vector.? Still, the size of the test will be biased down-
wards. Erlandsson (2004) shows, however, that even in relatively large samples, the
likelihood ratio test for the transition equation regressors is oversized in the time-
varying transition probability Markov switching model. Consequently, the penalty
can actually have the effect of bringing the test closer to its nominal size, than
otherwise. The exact magnitudes of the downward and upward biases remain to be
investigated, but it should be noted that the upward bias on the size is positively
correlated to sample size and persistence of the transition regressor ceteris paribus.

Both panels of figure 2 show how applying the penalty results in a more smooth
transition probability function. It also shows the trade-off between smoothness and
magnitude of the predicted probabilities. Once the functions becomes more smooth,
it is less capable of inducing a large transition probability. For penalties of 15 and
more, the stay probability is always more than 98%. In table 2, the results show -
up to a certain level for the penalty - that the penalized models increase the corre-
lation between the true DGP and the projected stay probabilities. The coefficient
estimates are reduced and come closer to their true value as well, and the modified
likelihood values decrease as the penalty increases.

From the bottom panel of figure 2, where model (ii) has been estimated and
used to project stay probabilities, the importance of the penalty becomes more pro-
truding. The unconstrained model has the binary looking transition series, whereas
the prior constrained series exhibit patterns (and by looking in table 3 correlations)
closely linked to the true DGP.

So far, we have only seen the effect of the penalty in one data-set. The next
logical step is to study the effects in a generalized setting. We now use a new

4The latter case will be denoted with an additional *.
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Figure 2: Stay probabilities with different priors (7 = G) ; model (i) (upper panel) and
model (ii) (bottom panel).
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ay B4 p® R?! MSE LogL*

v=0 19.8316 0.6570 0.7143 -235.7250
v=1 16.7850 0.5375 0.7579 -235.7753
v=3 13.0636 0.3874 0.8323 -236.0339
v = 9.9710 0.2556 0.9184 -236.5826
v = 7.8733 0.1574 0.9826 -237.3949
v=10 5.2109 0.0330 0.9739 -239.0265
v=15 43393 0.0002 0.9403 -239.7009

Table 2: Diagnostics for different penalty priors; model (i), simulated data set as in figure
1.

) By By P Log-L*
v=0 23.8403 0.3839 -25.0000 0.1811 -231.0568
v=1 25.0000 0.0000 -24.1682 0.1811 -233.4431
v=3 129989 0.3768 -0.6987 0.8039 -235.6277
v = 10.1913 0.2608 -0.3066 0.9064 -236.3956
vy=7 80139 0.1612 -0.1501 0.9784 -237.2978
v=10 5.2474 0.0339 -0.0320 0.9751 -238.9969
v=15 43394 0.0002 -0.0002 0.9410 -239.7007

Table 3: Diagnostics for different penalty priors; model (ii), simulated data set as in figure
1.
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set of parameters for the model in (21). We set py = 1, puy = —1, 02 = 1,
a; = 3.89 & pj; = 098, ay, = 5 and § = —0.1. We simulate a large number
of data-series based on these parameters and with sample sizes 150, 250, 500 and
1000. We then estimate the model with penalties 0,1,3,5,7 and 10 and produce a set
of statistics for the transition probability projections vis-a-vis the true transition
probabilities.> The results are collected in figure 3.
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Figure 3: Effects of penalty. Sample sizes 150 (solid), 250 (long broken), 500 (broken) and
1000 (crosses). Panel (a) outlines the average R? values in a regression of the TVP pro-
jection and a constant on the data-generating transition probabilities. Panel (b) contains
the average p® measure; panels (c) and (d) the average estimates of o, and f3.

The tendencies outlined in the simple example are clearly systematic. First, we

5We drop the penalty v = 15 since those estimations often run into numerical problems.
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note that sample size has a marked effect on the impact of the penalty. For the
150 observation sample, the R? of the TVP regression rises from .821 in the non-
penalized model to .947 when v = 5. The R? for the longest sample rises from .968
(v=0) to .982 (v = 3), which is a much lower increase.

Another result with implications for selecting v protrudes from panels (c¢) and
(d). We note that for the shortest sample length, v ~ 6 yields coefficient estimates
close to the true ones. As sample-length increases the necessary - for this condition
to be fulfilled decreases. For the 1000 observation sample length, v &~ 3 seems to
be more appropriate. When the R? and correlation graphs are more closely scruti-
nized, one can see this pattern also appearing there. Again, this should be related
to the size-distortions found in Erlandsson (2004): a larger penalty means a larger
downward bias in the in the size of the test. But, inversely, a shorter sample leads
to a higher upward size bias.

In the end, this could indicate a future possible way to pick an ”optimal” value
for «: one could simply choose the v that reduces the size-distortion of the likelihood
ratio test. Whether this would actually generate the v that maximizes the correla-
tion between projected transition probabilities and the the true ones remains to be
studied. This may also conflict with the objective of obtaining long-run predictors.
Hence, for the remainder of the paper we will hold on to the subjective selection of .

Empirical Application

The original Hamilton (1989) paper established the usefulness of the Markov regime
switching model to replicate business cycles. A wider discussion of the relevance of
Markov switching in modelling asymmetrical GDP growth is available in Hamilton
and Raj (2002). We choose to study quarterly real GDP data from 1964:1 to 2002:4
for a total of 150 observations.®, which is a similar data-set to that studied in Coe
(2002). The baseline model is

Ayt = MSt + ERt (23)

where Ay, is the logarithmic change in real GDP per capita and S;,R, are unob-
served state variables. The error term ep, is distributed according to N (0, a?%t). The
first state variable, St c [SEzpansion7SContraction]; SContraction < SE:Bpa’n,sion7 gov-
erns the intercept and the second one R, governs volatility. Initially, the transition
matrix P, is kept constant as in equation (2). The transition matrix Q associated
with the R process is assumed to be constant trough out the remainder of the pa-
per.

In order to test for the existence of Markov switching dynamics in the data,
we apply the Monte Carlo testing procedure discussed in Cheung and Erlandsson

6Nominal GDP and inflation as measured by the consumer price index are obtained through the IMF’s
International Financial Statistics database.
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LR HY — HY
N=1;M=2 339970 0.0040 0.5737
N =2 M=4* 15.8450 0.0080 0.9920

Table 4: Test for Markov switching dynamics. 250 Monte Carlo runs.

(2005), which is an extension of the Rydén, Terisvirta and Asbrink (1998) proce-
dure. The results in table 4 indicate strong evidence of Markov switching dynamics
in the data. Diagnostic testing rejects the hypothesis that variances are equal across
states for the standard 2 state setting. Consequently, we also investigate the possi-
bility of variance following a regime switching process of its own so that S, # R, for
some t, thus allowing for a total of 4 states.” The results of this test are also clear.
We reject the 2 state MS model, but are unable to reject the 4* state counterpart.
One could also suspect even more states in the data, but limited computational
capacity restricts us from investigating these suspicions. An alternative is to look
at the diagnostics of the model in the proposed specification. With 4* states, nei-
ther significant residual autocorrelation as measured by the Ljung-Box Q statistic
(p-value 0.074, nor ARCH effects as measured by Engle’s LM test (p-value 0.173),
is present in the standardized residuals. For the 2 state model the corresponding
p-values are 0.001 and 0.311 respectively. Thus, it seems unnecessary to add more
states in order to capture the dynamics of the first, second and fourth moments.

Another diagnostic measure to validate the model is how well it replicates busi-
ness cycles as measured elsewhere. The by all standards most common benchmark
in the literature is the National Bureau of Economic Research (NBER) business
cycle dates., which we will denote as S't. The smoothed probabilities, computed
according to the algorithm of Kim (1994) of the the contractionary state of real-
GDP in our model is plotted against the NBER dates in figure 4. As can be seen,
the model replicates the dates quite well. Only using 2 states produces a graph
that does not resemble the NBER dates.® The reason for this seems to be a shift
from the low volatility state to the high volatility states in 1984:1-1984:2. The high
volatility state seems to be absorbant within the sample, meaning that the volatility
process does never return to the low state after 1984. The simpler model produces
probabilities that are a mix of the level and volatility states in the more general
model.

To proceed with investigating factors that predict recession, we convert the base-
line model to a restricted TVP parameterization. The transition matrix for the S,
process is
flog +8Xy) 1= flog +6X; )

Pe=170 7 fay) f(s)

“This parameterization is constricted however so that the 4 state transition matrix is the Kronecker
product of the two separate processes’ respective transition matrices. Since the resulting transition matrix
is constrained, we will denote these 4 states with a subscript * — 4*.

8Graph available upon request.
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Figure 4: NBER dates (black) and smoothed probabilities of the contractionary state
(grey) using the constant transition probability model. U.S. real GDP is plotted with
dots (normalized to 0 in 1965Q4).

where X, _; is a set of possible leading indicator candidates. This structure means
that the transition probability from the expansionary phase of the economy to the
contractionary is time varying, whereas the reverse is constant.

The next step is to specify X. In table 8, we present 31 variables suggested
by Economagic to be related to the business cycle. Monthly data has been trans-
formed to quarterly by taking the end of quarter monthly value. Each variable in
first differences, an 8 quarter moving average, and in levels has been tested indi-
vidually through likelihood ratio tests,” and with differing penalty terms. 12 of the
candidates have median p-values below 20%.19 Of these, 10 are 8 quarter moving
averages and 2 are in levels. This should be viewed in the light that 18 variables in
first differences are significant at the 10% level when estimating the model without
a penalty term, but all of them turn insignificant once the penalty term is applied.

We choose to be conservative when setting v. A low v will mean smaller de-
viances from the standard application procedure, but given the results in our earlier
simulations we should be able to outline the positive effects of the penalty even at
low levels of . Consequently, we set v = 2. Using this prior, we have conducted

9To obtain better convergence properties all variables have been normalized. The level variable has
been calculated as the cumulative sum of normalized first differences so that any time trends have been
removed. The moving average has been calculated the same way, but as the average of the 8 last
observations.

10The median p-values are calculated as the median of the p values for one variable, one transformation
and 6 different penalty settings (ranging from 0 to 5).
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a testing down procedure of X. The least significant variable has been removed
until the reduction in the likelihood ratio statistic is below 5% level.'! The final
specification that are reached are presented in table 5, column 2. The results from
a number of benchmark models are also presented. The first column, v = 0, refers
to the results when estimating the specification obtained from the penalized setting
but setting v = 0. The CTP model is the constant transition probability model. In
the fourth column, denoted v = 0(x), a final specification has been obtained using
the same testing down procedure as above, but with v = 0.

The results indicate that all TVP model estimates have more severe contrac-
tionary phases than in the CTP case. When using the penalized version, two
variables are found significant as leading indicators of a recession: the seasonally
adjusted production price index of finished goods and the number of unemployed
civilians.'? A rise in the production prices decreases the probability to stay in the
expansionary state, as does an increase in unemployment. One interpretation of
these indicators is that the probability of recessions is strongly linked to shortages
in both goods and labor markets.

Using the traditional approach of testing down the model’s TVP variables, a
very different conclusion is reached. First, many more variables are deemed sig-
nificant, which also was the prediction of the simulation results in the previous
section. Second, for the one variable that the specification have in common, the
signs are opposite. The difference is likelihood values is large, even when applying
the non-penalized value on the penalized specification.

Using the above specifications of the model and its benchmarks, we register dates
t at which the predicted probability to proceed to the contraction state in the time
interval ¢t + 1 : £ + k exceeds a certain threshold level in percent, denoted w. The
forecasted probability for ¢t 4+ 1 is calculated as:

Pr(5t+1 =1|Q,) = pll,tPr(St = 1[€) +p21’tPr(St = 2[) (24)

For the k > 1 step ahead forecast, we focus on the probability that we will at least
one crisis period within the time interval t +1,¢+ 2,...,t + k — 1,t + k. This equals
1 minus the probability that we see no crises within the time interval:

Pr(min(StH,__’Hk) =1[) =1~ Pr(5t+1,...,t+k = 2[Q) = (25)
=1- [p12,tp§2_,thr(St = 1]€) +p12€2,tPr(St = 2|Qt)}

Four cases of signals from the model vis-a-vis the actual development can then be
constructed:!?

1Tn this non-linear setting, the likelihood ratio statistic has been shown to be more robust than

statistics based on the variance-covariance matrix, such as the Wald statistic.

12The latter variable reflects the number of unemployed civilians compared to the trend, and is conse-

quently similar to an ordinary unemployment rate figure.

BThe first letter in each case’s acronym stands for the prediction of the model, the second for the
actual development. C refers to at least one contraction within the time interval, E (as in expansions) to

a time interval with no contraction.
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vy=0 y=2 CTP v = 0(x)
Value p Value p Value p Value p
pFepansion 107308  0.00 | 0.7394  0.00 | 0.7459 0.00 | 0.7396  0.00
pContraction |0 7681  0.00 | -0.7118  0.07 | -0.6064 0.14 | -0.9062  0.00
o? 1.0213  0.00 | 1.0186 0.00 | 1.0397 0.00 | 0.9701  0.00
o3 0.4866  0.00 | 0.4818 0.00 | 0.4765 0.00 | 0.4759  0.00
af 100 0.00 | 3.8072 0.00 | 2.9896 0.00 [ 100  n.a.
% -1.6376  0.00
h 0.6659  0.00
. -0.4281  0.00
5 -0.5264  0.00
o -0.743  0.00 | -0.0129  0.00
5 1.4974  0.00
o 0.9836  0.01 | 0.0157  0.00 -0.2270  0.00
o -0.5538  0.00
oy 0.2332 0.80 | 0.7867 0.26 | 0.9697 0.13 | -0.6939 0.68
alt 4.2969  0.00 | 4.2967 0.00 | 4.2960 0.00 | 4.2981  0.00
ol 100 n.a. 100 n.a. | 100 0 100 n.a.
LogL -167.84 -175.77 -181.06 -161.52
R? 0.5775 0.5825 0.5494 0.5973
LR 26.4300 0.00 | 10.5670 0.01 0 n.a. | 39.0743  0.00
LR* 26.4300 0.00 | 12.9619 0.00 0 n.a. | 39.0743  0.00

Table 5: Estimation results. The optimization procedure has been bounded so that
—100 < «, B < 100. Standard errors of the stay probability parameter in the low volatility
state, o, are not computable since the state is absorbant within the data range. Subscript

indices on [ refers to the index number of exogenous variables in table 8.

1. The model signals a contraction, and a contraction occurs (CE):
Pr(min(st+1,...,t+k) — SContraction’Qt) > w and min(5t+1:t+k) — GContraction

2. The model signals a contraction, but no contraction occurs (C'E):
Pr(min(st+1,...,t+k) — SContraction’Qt) > w and min(5t+1:t+k) — SE'zpansion

3. The model signals no contraction, but a contraction occurs (EC'):
Pr<min(st+l,...,t+k) — SContraction’Qt) < w and min(St+1:t+k) — SContraction

4. The model signals no contraction, and no contraction occurs (EE):
Pr(min(st+l,”.,t+k) = SCO””aCti‘m’Qt) — G Ezpansion

Using these definitions, a number of benchmarks of the model’s performance can
be constructed. We will focus on two; the first being the ratio of correct sig-
nals to the total number of signals (CC + EFE)/(CC + CE + EC + EE). In
our setting this benchmark answers the question: "How reliable is the predictions
of the model?” The second benchmark, the noise-to-signal ratio, is calculated as
[EC/(EC + EE)]/[CC/(CC + CFE)], and returns a measure of how strong infer-
ence on the true development the model gives. A model that perfectly predicts the
future would have a noise-to-signal ratio of 0. The threshold for when a signal is
given, w, may be set to different values than the traditional 50% to reflect different
sensitivities to recessions.

< w and min(S; 1.444)
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Figure 5: Forecasts of the probability that a contraction will occur within the next 8
quarters.

Table 6 presents the results of various models. We first note that the only instance
where the CTP model outperforms the TVP model in terms of correct forecasts is
for the 1 quarter ahead predictions with a threshold of 50%. For prediction horizons
of greater than 4 quarters, the CTP model exhibits much worse performance than
the TVP models. This is a matter of pure arithmetics: with the 50/25% threshold,
the model always predicts the probability to enter the contractionary phase within
12/8 quarters to be greater than the threshold.

The trend for the TVP models based on variable selection found with the pe-
nalized likelihood function (i.e. the cases v = 0 and v = 2) is that as the prediction
horizon expands, the better the v = 2 model is relative to the v = 0 model. This
also hold for the relation between the v = 2 and v = 0(x) models. Looking at
what types of errors the models make, we note that the penalized model for these
horizons predicts a larger number of recessions, resulting in fewer case 3 errors.

Figure 5 provides a graphical illustrations on the forecasting performance at the
8 quarter horizon. As has been sought for, the penalized model exhibits a much
smoother projection of transition probabilities than the benchmark models. The
probabilities also seem to rise earlier prior to recession than for the benchmarks.

A more reliable way to evaluate the model’s performance is to observe the out-
of-sample forecasting properties. If the model reflects a relation that is stable over
time, out-of-sample forecasts will resemble the corresponding in-sample forecasts.
Otherwise, we have an indication of overfitting. The out-of-sample forecasting per-
formance is tabulates in table 7. We have selected to produce forecasts of the two
last recessions in the sample, ending the in-sample at 1988:2 and forecasting 1988:3
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Figure 6: Out-of-sample forecasts of the probability that a contraction will occur within
the next 8 quarters.

to 2002:4. Since the latest recession has occurred so recently, this means that the
performance of the 8 quarter and 12 quarter forecasts cannot be evaluated for that
recession.

The penalized model consistently outperforms the benchmark models in this
setting at all horizons. When viewing the graphical evidence as in figure 6, it turns
out that the penalized model is alone among the time varying probability models
in being able to predict the 2001 recession. It is also more consequent in predicting
the 1990 recession, with a gradual increase in probabilities rather than the jagged
projection of the other TVP models.

Conclusion

This paper illustrates the inability of the Markov regime switching model to make
inference on the probability of states occurring in the medium to long term. For
policy purposes, short run predictors of future states may be irrelevant, since many
tools such as fiscal policy and interest rate changes only have effects in the medium
to long term. Hence, the model has not been a commonly used tool when predicting
future states of the economy.

Rather than not being able to make inference in the longer run at all, the model
with time varying transition probabilities possesses a bias towards selecting short
run variables for predicting future states. This also leads to estimation problems in
the maximum likelihood setting, where bounded optimization procedures often has
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parameter estimates of the TVP variables on the boundaries. Summed together:
the estimated model seems to be unable to depict a highly useful dimension of the
theoretical model, and it may be hard to obtain estimates at all.

We propose a simple penalty term, based on the smoothness of the projected
time varying probabilities, in the maximum likelihood function which aims to rem-
edy this problems. Simulation evidence indicates the usefulness of the penalty: the
correlation between the true transition probability process, and the projections ob-
tained from the penalized model is notably higher than for the non-penalized model.
This effect is diminishing as the sample size grows. We also argue that the penalty’s
distortion of the distributional properties of the likelihood ratios may very well just
counterweigh the distortion of the test shown elsewhere to appear in limited sam-
ples.

In an empirical application, we use a number of suggested leading indicators
to predict contractionary states of U.S. real GDP. The standard ML estimates are
shown to possess the problems shown in the simulation exercise. A large number of
variables show up as significant, and the projected transition probabilities are very
non-smooth. Applying the proposes penalized estimator yields a final model speci-
fication with fewer variables and smooth transition probabilities. In the in-sample
forecasting exercise, the penalized model performs better for longer (8-12 quarter)
horizons. When calculating out-of-sample forecasts, the penalized models exhibits
better performance irrespective of the horizon. It is the only model that is able to
predict the 2001 recession out-of-sample.
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Threshold 50% v=0 =2 CTP v =0(%)
k=1
Correct obs. ratio 0.8919 0.8716 0.9054 0.8581
Noise-to signal ratio 0.0853 0.1491 0.0856 0.1776
# CC/CE/EC/EE | 20/9/7/112 13/5/14/116 19/6/8/115 10/4/17/117
k=4
Correct obs. ratio 0.8621 0.8414 0.8414 0.8483
Noise-to signal ratio 0.1667 0.1912 0.1915 0.1831
# CC/CE/EC/EE | 27/2/18/98  24/2/21/98  25/3/20/97  25/2/20/98
k=38
Correct obs. ratio 0.7376 0.7943 0.6809 0.7092
Noise-to signal ratio 0.3356 0.2770 0.4612 0.3654
# CC/CE/EC/EE | 27/2/35/77  37/4/25/75 27/10/35/69 23/2/39/77
k=12
Correct obs. ratio 0.6131 0.7445 0.5693 0.5839
Noise-to signal ratio 0.5072 0.3943 n.a. 0.5338
# CC/CE/EC/EE | 27/2/51/57  48/5/30/54 78/59/0/0  22/2/55/57
Threshold 25% v=0 v =2 CTP v =0(%)
k=1
Correct obs. ratio 0.9054 0.8919 0.8716 0.9122
Noise-to signal ratio 0.0499 0.0853 0.0601 0.0578
# CC/CE/EC/EE | 23/10/4/111 20/9/7/112 23/15/4/106 22/8/5/113
k=4
Correct obs. ratio 0.8690 0.8897 0.7103 0.8414
Noise-to signal ratio 0.1532 0.0562 0.2075 0.1906
# CC/CE/EC/EE | 30/4/15/96  41/12/4/88  37/34/8/66  26/4/19/96
k=38
Correct obs. ratio 0.7589 0.8227 0.4397 0.7021
Noise-to signal ratio 0.3131 0.1938 n.a. 0.3923
# CC/CE/EC/EE | 30/2/32/77 50/13/12/66  62/79/0/0  24/4/38/75
k=12
Correct obs. ratio 0.6423 0.7956 0.5693 0.5912
Noise-to signal ratio 0.4811 0.3031 n.a. 0.5446
# CC/CE/EC/EE | 31/2/47/57 62/12/16/47  78/59/0/0  25/3/53/56

Table 6: In-sample prediction results.
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Threshold 50% v=0 =2 CTP v =0(%)
k=1
Correct obs. ratio 0.8772 0.8772 0.8772 0.8421
Noise-to signal ratio 0.1887 0.1224 0.1224 0.4528
# CC/CE/EC/EE | 2/2/5/48  4/4/3/46  4/4/3/46  1/3/6/47
k=4
Correct obs. ratio 0.7963 0.8333 0.7778 0.7222
Noise-to signal ratio 0.2667 0.2029 0.3200 0.9600
# CC/CE/EC/EE | 3/1/10/40 6/2/7/39 5/4/8/37 1/3/12/38
k=38
Correct obs. ratio 0.6800 0.7800 0.7000 0.6800
Noise-to signal ratio 0.4348 0.2744 0.4390 0.4348

# CC/CE/EC/EE
k=12

3/1/15/31 8/1/10/31 6/3/12/29 3/1/15/31

Correct obs. ratio 0.6522 0.7609 0.5870 0.6522
Noise-to signal ratio 0.4762 0.3041 0.7879 0.4762
# CC/CE/EC/EE | 3/1/15/27 8/1/10/27 6/7/12/21 3/1/15/27
Threshold 25% v=20 v=2 CTP v =0(%)
k=1
Correct obs. ratio 0.8772 0.8947 0.8596 0.8596
Noise-to signal ratio 0.1887 0.0750 0.0492 0.2404
# CC/CE/EC/EE | 2/2/5/48 5/4/2/46  6/7/1/43  2/3/5/47
k=4
Correct obs. ratio 0.7963 0.9074 0.7778 0.7407
Noise-to signal ratio 0.2667 0.0636 0.2404 0.5612
# CC/CE/EC/EE | 3/1/10/40 11/3/2/38 8/7/5/34 2/3/11/38
k=38
Correct obs. ratio 0.6800 0.8800 0.3600 0.7000
Noise-to signal ratio 0.4348 0.1496 n.a. 0.3889
# CC/CE/EC/EE | 3/1/15/31 13/1/5/31 18/32/0/0 4/1/14/31
k=12
Correct obs. ratio 0.6522 0.8043 0.3913 0.6739
Noise-to signal ratio 0.4762 0.2514 n.a. 0.4268

# CC/CE/EC/EE

3/1/15/27 10/1/8/27 18/28/0/0 4/1/14/27

Table 7: Out-of-sample prediction results.
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