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Strategy-proofness and Fixed-price Allocation
of Indivisible Goods - a characterization proof

Lars-Gunnar Svensson¤y

This version: June 7, 2002

Abstract

In this paper we considered the classical Shapley-Scarf (1974) ”house
allocation model”, where in addition there is a perfectly divisible good
(money). The problem is to characterize all strategy-proof, nonbossy
and individually rational allocation mechanisms. The …nding is that
only a …xed-price allocation mechanism is consistent with these pre-
sumptions. Miyagawa (2001) …rst proved this result. Here we give
an alternative and comparatively short proof of the characterization
result.

Keywords: Strategy-proof, Indivisible object, Housing market.
JEL Classi…cation Numbers: C71, C78, D71, D78.

1 Introduction
In two recent studies, Miyagawa (2001) and Svensson and Larsson (2002),
the class of strategy-proof, nonbossy, individually rational and surjective al-
location mechanisms for the classical Shapley-Scarf (1974) ”house allocation
problem”, where a divisible good called money was added, was examined.
The outcomes of the mechanisms were …xed-price allocations, and hence, the
existence of a divisible good did not alter the …ndings in the original house
allocation model substantially; in that case the class was the class of core
mechanisms (Ma (1994), Svensson (1999)).
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However, the proof of the characterization was substantially more de-
manding in the case with a divisible good than without. The basic proof was
given in Miyagawa (2001), while Svensson and Larsson (2002) used an addi-
tional assumption called weak decentralization. The objective of the present
study is to give an alternative to Miyagawa’s proof. This alternative takes
as a point of departure the model without money. Given this, the arguments
become rather simple for the model with money and the proof comparatively
short.

The paper is organized in the following way. In Section 2 the formal model
is shortly introduced, while Section 3 contains some results from previous
studies used in the proof of the theorem in this paper. The proof is also
given in Section 3.

2 The model
Here notation and assumptions made in the basic model are shortly presented
- for a more detailed presentation, see e.g. Svensson and Larsson (2002). We
also gather some known results which will be used in the proof of the theorem.

2.1 Basic concepts
There is a …nite number n of individuals, N = f1; 2; :::; ng ; and the same
number of objects (called houses), A = fa1; a2; :::; ang. We simply let A = N .
Sometimes we will use a ”no object” denoted a0 or 0: There is also a …xed
quantity e0 2 R+ of a divisible good (called money) initially distributed
among the individuals. The endowments of individual i 2 N are (ai; ei); with
e0 = §iei: The individuals have quasi-linear preferences over consumption
bundles (a; x) 2 (A[ f0g)£ R represented by utility functions ui(a) + x for
i 2 N; with ui(a) > ui(0) for all a 2 A and all i 2 N: Hence the individuals
consume at most one house and an amount of money. The set of all such
utility functions ui de…ned in A [ f0g is denoted U . Preference pro…les,
or for short pro…les, are elements in U = Un: A pro…le u = (u1; u2; : : : un)
can also be denoted (ui; u¡i) for i 2 N; or (uS; u¡S) for S ½ N; where uS
contains utility functions ui with i 2 S and u¡S contains the remaining utility
functions.

An allocation is a mapping ® = ('; ¿) from N to A £ R; such that ' is
injective and (resource balance) §i¿ i = e0: ' is the allocation of the objects
(a permutation of N); while ¿ is called the income distribution. Incomplete
allocations of objects is called assignments, i.e. ' : N ! A [ f0g is an
assignment if '(i) = '(j) implies that i = j or '(i) = 0. Note that an
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assignment ' is an allocation of the objects if '(i) 6= 0 for all i 2 N: An
allocation of the objects is also called a complete assignment. Let A denote
the set of assignments.

For two assignments '; ± 2 A such that '(i) = 0 if ±(i) 6= 0; the sum '+±
is de…ned as the assignment ('+±)(i) = '(i) if '(i) 6= 0 and ('+±)(i) = ±(i)
if ±(i) 6= 0:

An assignment ' is a cycle in G ½ N if #G ¸ 2 and there is a bijection
¼ : N ! N such that

² G = fi0; i1; : : : ; ing with i0 2 N and ij+1 = ¼(ij) for all j < n;

² '(ij) = aij+1 for all j < n; and '(i) = 0 for i =2 G:

Obviously each complete assignment ' can be decomposed into a number
of disjunct cycles 'j ; j = 1; 2; : : : ; l ¡ 1; and a residual 'l with 'l(i) = ai or
0; such that ' = §lj=1'j : Each 'j is a reallocation of the objects within a
group Gj and N = [jGj; Gj \Gk = ? if j 6= k:

Of particular interest are the …xed-price allocations.

De…nition For a given pro…le u 2 U ; an allocation ® = ('; ¿ ) is a …xed-
price allocation if there is a price vector p 2 Rn and a decomposition in
cycles ' = §lj=1'j such that for an i with 'j(i) 6= 0;

² ¿ i = ei + pi ¡ p'(i);

² ui('(i)) ¡ p'(i) = max fui(a) ¡ pa; a = 's(k) for some k with s ¸ jg :

This type of rationing method is the well-known Gale’s top trading cycle
principle (TTCP). If e.g. p = 0 the cycle '1 contains the top ranked objects
in A of the individuals in the cycle, while the cycle '2 contains the top ranked
objects among the remaining objects (A¡f'1(i)gi) of the individuals in that
cycle. Similarly for the other cycles. On the other hand, if p is chosen so
that all individuals receive their top ranked object in A; then ® = ('; ¿) is
a Walrasian allocation.

2.2 Allocation mechanisms
An allocation mechanism, or for short a mechanism,1 is a mapping f = (g; t)
from the set of pro…les U to the set of allocations, where g(u) is the allocation

1An alternative name of ”allocation mechanism” in this context is social choice function
or allocation rule.
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of the objects (called the assignment function) and ti(u) (called the transfer
function) denotes the quantity of money individual i 2 N receives by f:

A mechanism f = (g; t) is manipulable if there is a pro…le u 2 U such
that for some individual i 2 N;

ui(gi(vi; u¡i)) + ti(vi; u¡i) > ui(gi(u)) + ti(u)

for some preferences vi 2 U: If the mechanism is not manipulable, it is
strategy-proof (SP).

A mechanism f is nonbossy2(NB) if for all preferences vi 2 U and pro…les
u 2 U ; f(vi; u¡i) = f(u) when fi(vi; u¡i) = fi(u): (A strategy-proof and
nonbossy mechanism will be abbreviated a SPNB mechanism.)

A mechanism f is individually rational (IR) if for all i 2 N and for all
u 2 U ;

ui(gi(u)) + ti(u) ¸ ui(ai) + ei:
We will also consider assignment functions g that are surjective, i.e. functions
such that for each allocation ' of the objects there is a pro…le u 2 U such
that g(u) = ':

3 The theorem
The theorem of this paper can now be formulated as:

Theorem If f = (g; t) is a strategy-proof, nonbossy and individually rational
mechanism with g surjective, then f(u) is a …xed-price allocation for almost
all u 2 U .

Remark. The mechanism is determined for almost all pro…les. This means
that we consider only those pro…les where there is a strict ranking of the
various commodity bundles. Due to Proposition 1 below, the range of the
mechanism contains only a …nite number of income distributions so the out-
come of the mechanism is determined for almost all pro…les.

There is one simple idea, which is used throughout the proof of the theorem.
We show that if not all outcomes of the mechanism are characterized by the
same trading prices, it is very easy to obtain inconsistency with strategy-
proofness by letting all but one individual have ”ordinal” preferences. In
that case the outcome of the mechanism is determined by well-known rules
from the case without money, rules that are gathered in the next section.

2The concept of nonbossiness is due to Satterthwaite and Sonnenschein (1981).
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3.1 Some well-known results
The following results will be used in the proof of the theorem and are well-
known from other studies. They are stated without a proof.

Proposition 1 Let f = (g; t) be a SPNB mechanism. There is then is a
(distribution-) function T mapping complete assignments on income distri-
butions such that for all u 2 U ; T (g(u)) = t(u):

The proposition entails that the distribution of the divisible good is com-
pletely determined by the allocation of the objects. Of course, this also
entails that the outcome of a SPNB mechanism in general cannot by Pareto
e¢cient. For a proof of this fundamental proposition, see Ohseto (1999) in
the case with one indivisible good or in the general case, Schummer (2000), or
Miyagawa (2001), or Svensson and Larsson (2002). The theorem of this pa-
per shows that the range of T is restricted in a particular way by, in addition
to SPNB, also assume IR.

Proposition 2 Let f = (g; t) be a SPNB and IR mechanism with g surjec-
tive and t constant. The assignment function g(u) is then given by the TTCP
for all u 2 U representing strict preferences among the objects.

The condition t(u) constant for all umeans of course that the model is the
original Shapley-Scarf house allocation model with no money to allocate: The
outcome g(u) is also the core allocation given the preference pro…le u: This
result was …rst proved in Ma (1994). Ma’s proof did not presume nonbossi-
ness and surjectivity but instead Pareto e¢ciency. However, a nonbossiness
assumption simpli…es the proof somewhat, see Svensson (1999).

The content of the following lemma is also well-known.

Ordinal and cardinal monotonicity (M):

Lemma 1 Let f = (g; t) be a SPNB mechanism and u 2 U : Then, for any
i 2 N , f(vi; u¡i) = f(u) if vi 2 U and vi(gi(u)) ¡ vi(a) > ui(gi(u)) ¡ ui(a)
for all a 2 A ¡ fgi(u)g: If ui; vi 2 U¤ and gi(u) = a; then f(vi; u¡i) = f(u)
if vi(b) > vi(a) for all b 2 A such that ui(b) > ui(a):

Here U¤ ½ U denotes a set of ”ordinal” preferences, i.e. preferences where
the ranking of the commodity bundles is uniquely dertermined by the ranking
of the objects. For an exact de…nition U¤, see below.

For a proof of the …rst (cardinal) part of the lemma, see e.g. Svensson
and Larsson (2002) (see also Roberts (1984) in a somewhat di¤erent context).
Proofs for the (ordinal) second part of the lemma can be found in many places
in the literature, e.g. in Svensson (1999).
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3.2 Proof of the theorem
In the proof of the theorem some arguments are used frequently and they
are collected in a number of lemmas below. In all lemmas 2 - 7 we consider
a SPNB and IR mechanism f = (g; t) with g surjective, a presumption that
is no further repeated in the formulations of the lemmas.

First let us de…ne a subset U¤ ½ U of ”ordinal” preference pro…les. Since
the available quantity of money is bounded and because of Proposition 1, the
income distribution will not in‡uence the individual rankings of the various
allocations in a SPNB mechanism if the utility distances between the objects
are su¢ciently large. Therefore, for a SPNB mechanism f; let m 2 R+ be a
number such that m > 2max jTi(')j ; i 2 N; ' 2 A; where ' is a complete
assignment and T the distribution function corresponding to f:Moreover let,

U¤ = fu 2 U ; ju(a) ¡ u(b)j > m for all a; b 2 A; a 6= bg

and U¤ = U¤n : Of course, the number m and the sets U¤ and U¤ depend on
f: To simplify notation we will write a Â b if u(a) > u(b) and a < b if a Â b
or a = b; for preferences u 2 U¤:

Also let Mi(a) = fui 2 U¤; a < ai < b for all b 6= a; aig, i.e. the set of
”ordinal” preferences of i 2 N such that the object a 2 A is top ranked by i
(i.e. is a maximal element), while i’s endowment ai is ranked …rst or second
best.

In the proof of the theorem two allocations will be used to ”calibrate” the
model; is the allocation '0 of the endowments, i.e. '0(i) = ai for all i; and
it is a cycle '¤ de…ned by '¤(i) = ai+1 if i < n and '¤(n) = a1: We will
…rst (Lemma 5 - 7 below) consider mechanisms where T ('0) = T ('¤) = 0:
The objective is to prove that an implication of this is that T (') = 0 for all
complete assignments ': The complete proof will then easily follow.

The following notation will also be usefull: Call a cycle dense if for some
p; q 2 N; ¼(q) = p while ¼(i) = i + 1 or ¼(i) = 0 for i 6= q. A cycle
is called a transposition if only two individuals have received a non-zero
object. Note that for a dense cycle the corresponding group of individuals is
G = fi 2 N ; p · i · qg if p < q and G = fi 2 N ; i ¸ p and i · qg if p > q.

Top trading cycle procedure for U¤ (TTCP):

Lemma 2 If u 2 U¤ then g(u) is given by the TTCP.

Proof. Consider the restricted mechanism f ¤ = (g¤; t¤) : U¤ ! A; where
g¤(u) = g(u) and t¤i (u) = ei for u 2 U¤: First, f ¤ is SP since ui(gi(vi; u¡i)) +
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ei > ui(gi(u))+ei implies that ui(gi(vi; u¡i))+ti(vi; u¡i) > ui(gi(u))+ti(u) for
u 2 U¤ and f is SP. Second, f ¤ is NB since f is NB and t¤ constant. Third, the
mechanism f ¤ is IR because f is IR and ui(gi(u))+ ti(u) ¸ ui(ai)+ei implies
that ui(gi(u))+ei ¸ ui(ai)+ei for u 2 U¤: Finally, that g¤ is surjective follows
from monotonicity and the fact that g is surjective. Now by Proposition 2,
g¤(u) is given by the TTCP.

Independence (I):

Lemma 3 Let ' 2 A be a complete assignment and let G ½ N be such
that 'G is a cycle in G: If u 2 U and for all i 2 G; ui 2 Mi('(i)); then
gG(uG; v¡G) = 'G for all pro…les v 2 U :

Proof. Let v 2 U and suppose that g(uG; v¡G) = ±: Also let wi 2 Mi(±(i))
for all a 6= ±(i); for all i 2 N ¡ G: Then for su¢ciently large wi(±(i)),
g(uG; w¡G) = ± by monotonicity. But (uG; w¡G) 2 U¤ so by Lemma 2,
±G = 'G:

Pareto dominance (PD):

Lemma 4 Let '; ± 2 A and k 2 N; and let uk 2 U; ui 2 U¤ for all i 6= k be
such that '(i) <i ±(i) for all i 6= k while uk('(k))+Tk(') > uk(±(k))+Tk(±):
Then g(u) 6= ±:

Proof. Let g(u) = ± and vi 2Mi('(i)) for all i 2 N: Then by (ordinal) mono-
tonicity (Lemma 1), g(uk; v¡k) = ±: Moreover, g(v) = ' by TTCP (Lemma
2). This is not consistent with SP since uk('(k))+Tk(') > uk(±(k))+Tk(±):
Hence, g(u) 6= ± must be the case.

Lemma 5 Let ' 2 A be complete assignment with ' = '1 + '2 being the
corresponding partition in cycles. If '1 is a dense cycle and T ('0) = T ('¤) =
0, then T (') = 0:

Proof. ' = '1+'2 means that '1 is a cycle while '2(i) = ai or 0: To simplify
notation we can, with no loss of generality, assume that the set of individuals
involved in the cycle is G = fi 2 N ; 1 · i · qg ; and hence '1(i) = '¤(i) for
i < q: Moreover, for q = n; ' = '¤ and then T (') = 0; so consider q < n:
Assume that T (') = ¿ 6= 0: Then by the resource balance condition and IR,
¿ i < 0 for some i 2 G:

Now separate three cases; (i) there is a number r < q with ¿ r < 0; (ii)
¿ q < 0 and ¿ s > 0 for some s < q; and (iii) ¿ q < 0 and ¿ s > 0 for some s > q:
Also let u 2 U¤ satisfy ui 2Mi('¤(i)) for all i 2 N .

(i) In this case, let vr 2 U and vq 2 U¤ satisfy
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vr('(r)) > vr(ar) > vr('(r)) + ¿ r > vr(a) +m for all a 6= ar; '(r);

vq : a1 Â aq+1 Â aq Â a for all a 6= a1; aq; aq+1:

Then g(vq; u¡q) = ' by TTCP (Lemma 2) and g(vr; vq; u¡r;q) = '¤ by IR
and Pareto dominance (Lemma 4). But this is a contradiction to strategy-
proofness since 0 = Tr('¤) > Tr(') and '(r) = '¤(r):

(ii) Now let vs 2 U and vq 2 U¤ satisfy

vs('(s)) + ¿ s > vs(as) > vs('(s)) > vs(a) +m for all a 6= as; '(s);

vq : aq+1 Â a1 Â aq Â a for all a 6= a1; aq; aq+1:

Then g(vq; uq) = '¤ by TTCP and g(vq; vs; u¡q;s) = ' by IR and Pareto
dominance. But this is a contradiction to strategy-proofness.

(iii) Finally, let vq 2 U¤ be as in (ii) and vs 2 U¤ satisfy

vs(as+1) + ¿ s > vs(as) > vs(as+1) > vs(a) +m for all a 6= as; as+1:

Then gs(vq; vs; u¡q;s) = as or as+1 by Pareto dominance and IR. If gs(vq; vs; u¡q;s) =
as then g(vq; vs; u¡q;s) = ' by Pareto dominance. But g(vs; u¡s) = '¤ and
hence i = q can manipulate. If gs(vq; vs; u¡q;s) = as+1 then g(vq; vs; u¡q;s) =
'¤ by Pareto dominance. But g(vq; u¡q) = ' and hence i = s can manipulate.

In conclusion, T (') 6= 0 leads to a contradiction in any case and hence
T (') = 0 must prevail.

Lemma 6 Let ' 2 A be complete assignment with ' = '1+'2 being the cor-
responding partition in cycles. If '1 is a transposition and T ('0) = T ('¤) =
0; then T (') = 0:

Proof. Let '(p) = aq; '(q) = ap and '(i) = ai for the remaining i:s.
Assume that p < q. If p = q ¡ 1; the proof follows from Lemma 5. Now
consider p < q ¡ 1 and assume that T (') = ¿ 6= 0: Then ¿ p < 0 or ¿ q < 0
by IR and resource balance. If ¿ q < 0 let u 2 U¤ be a pro…le that satis…es:
ui 2Mi(ai+1) for p < i < q; uq 2Mi(ap); ui 2Mi(ai) for i < p and for i > q
while for i = p; aq Âp ap+1 Âp ap Âp aj for all j 6= q; p; p + 1: Moreover, let
vq 2 U satisfy

vq(ap) > vq(aq) > vq(ap) + ¿ q > vq(aj) +m for all j 6= p; q:
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Denote by ± 2 A the assignment: ±(i) = ai if i < p or i > q; ±(i) = ai+1

if p · i < q and ±(q) = ap:
Then g(u) = ' by TTCP and g(vq; u¡q) = ± by Pareto dominance and

Lemma 6. But this is a contradiction to strategy-proofness. This means that
T (') = 0 must prevail also in this case.

In the case ¿p < 0 we can argue in the same way as above; for p < q ¡ 1;
let ±0 be a dense cycle in the group fq; q + 1; : : : n; 1; : : : pg ½ N:

Lemma 7 Let ' 2 A be a complete assignment. Then T (') = 0 if T ('¤) =
T ('0) = 0:

Proof. The lemma will be proved by induction over the number of exchanges
in a complete assignment ': We will assume that T (') = 0 if at most k
individuals in the assignment ' have changed their objects and prove that
then also T (') = 0 if k+1 individuals have changed objects in an assignment
'. If k = 2 then T (') = 0 by Lemma 6, and then the lemma follows by
induction. So our induction assumption is

T (') = 0 for all complete ' 2 A such that # fi 2 N ; '(i) 6= aig · k:

Let ' be a complete assignment such that # fi 2 N ; '(i) 6= aig = k + 1:
There is a decomposition ' = §lj=1'j in cycles 'j ; j < l and 'l(i) = ai or 0:
To prove the lemma, assume that T (') = ¿ 6= 0: Then by resource balance
and IR, ¿ i < 0 for some i 2 Gj =

©
i; 'j(i) 6= 0

ª
; j < l: We consider two

cases separately; (i) #Gj > 2 for some j < l; (ii) #Gj · 2 for all j:s:
(i) To simplify notation and with no loss of generality, we can assume that

#G1 > 2, that '1 is a dense cycle inG1 = f1; 2; : : : ; qg ; and that ¿1 < 0: Now
let u 2 U¤ satisfy ui 2 Mi('(i)) for all i 6= 2; while '(2) <2 a1 <2 a2 <2 a
for all a 2 A¡ fa1; '(2)g : Also let v1 2 U satisfy

v1('(1)) > v1(a1) > v1('(1)) + ¿1 > v1(a) +m for all a 2 A¡ fa1; '(1)g :

Denote by ± 2 A the assignment: ±(1) = '(1) = a2; ±(2) = a1; ±(i) = ai
for 2 < i · q; and ±(i) = '(i) for i > q:

Then g(u) = ' by TTCP and g(v1; u¡1) = ± by IR and Pareto dominance.
This is a contradiction to strategy-proofness, and hence, T (') = 0 must
prevail in this case.

(ii) Now #Gj = 2 for all j < l: If l = 2 then T (') = 0 by Lemma
6, so consider l > 2: Then, with no loss of generality, we can assume that
' = '1 + '2 + ::: , G1 = f1; 2g ; G2 = f3; 4g and T1(') = ¿1 < 0:

Let u 2 U¤ satisfy u1 2M1(a2); u4 2M4(a3) and for i = 2; 3; a1 <2 a3 <2

a2 <2 a and a1 <3 a4 <3 a3 <3 a for all remaining a 2 A; while ui 2Mi('(i))
for i > 4: Moreover, let v1 2 U satisfy
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v1(a2) > v1(a1) > v1(a2) + ¿ 1 > v1(a) +m for all a 2 A¡ fa1; a2g :

Denote by ± 2 A the assignment: ±(1) = a2; ±(2) = a3; ±(3) = a1;
±(4) = a4 and ±(i) = '(i) for i > 4:

Then g(u) = ' by TTCP and g(v1; u¡1) = ± by IR and Pareto dominance.
This is a contradiction to strategy-proofness, and hence, T (') = 0 must
prevail also in this case. This completes the proof.

Proof of the theorem. Let p; q 2 Rn and, given the set A of objects and
the mechanism f , de…ne a set A0 = f(aj ; pj); aj 2 Ag : Also let f 0 = (g0; t0)
be a derived mechanism, where g0i(u) = (aj; pj) if gi(u) = aj and t0i(u) =
¿ i + pj + qi, where ¿ i = ti(u): The utility of the bundle [(aj ; pj); x]; x 2 R;
is ui(aj)¡ pj + x: This entails that the utility of the outcome of f 0i for i 2 N
is:

ui(gi(u)) ¡ pj + ¿ i + pj + qi = ui(gi(u)) + ¿ i + qi;
i.e. equal to the utility of the outcome of fi minus the constant qi:

Now it immediately follows that f 0 is SPNB with g0 surjective. Moreover,
let (a0i; e0i) with a0i = (ai; pi) and e0i = ei + pi + qi be the endowments of i in
the mechanism f 0: Then IR of f implies IR of f 0:

ui(gi(u)) + ¿ i + qi ¸ ui(ai) + ei + qi = (ui(ai) ¡ pi) + e0i:

Finally, let p and q be chosen according to

p1 = 0 and pi+1 = pi + ei ¡ ¿¤i where T ('¤) = ¿ ¤; and qi = ¡ei ¡ pi:

Then T 0('0) = 0 (e0i = 0) and T 0('¤) = 0 because

T 0i ('
¤) = Ti('¤) + pi+1 + qi = ¿¤i + pi+1 + qi = pi + ei + qi = 0:

The presumptions for Lemma 7 are now satis…ed for f 0 and then T 0(') = 0
for all complete assignments ': But then, 0 = T 0i (') = ¿ i + p'(i) ¡ (ei + pi)
and hence, ¿ i = ei + pi ¡ p'(i): Moreover, by Proposition 2, g0(u) is given
by the TTCP for all u 2 U such that ui(aj) ¡ pj 6= ui(ak) ¡ pk if j 6= k.
This means that there is a decomposition ' = §j·l'j such that for an i with
aj = 'k(i) 6= 0;

ui(aj)¡pj = max fui(as) ¡ ps; as = 'r(i0) for some i0 2 N and some r ¸ kg :

Hence, the allocation ('; ¿) is a …xed-price allocation. This completes the
proof.
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