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Abstract

In this paper we use a Bayesian approach to test for mean reversion in the

Swedish stock market on monthly data 1918-1998. By simply account for the het-

eroscedasticity of the data with a two-state hidden Markov model of normal dis-

tributions and taking estimation bias into account via Gibbs sampling we cannot

find support of mean reversion. This is a contradiction to previous result from Swe-

den. We find that a tranquil and a volatile regime can characterize the Swedish

stock market and within the regimes the stock market is random. This finding of

randomness is in line with recent evidence for the U.S. stock market.
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1 Introduction

This paper addresses the question of whether or not the Swedish stock market is mean

reverting. Previous research by Frennberg and Hansson (1993) concludes that this is the

case. Utilizing the variance ratio test, hereafter VR, of Cochrane (1988) they find evidence

that the Swedish stock market is mean reverting with increasing investment horizon. In

other words the stock market is less risky in the long run. This have implications for

portfolio selection as well as the pricing of options. However, later research by Berg

and Lyhagen (1998) has questioned their findings. Notwithstanding, the evidence of

mean reversion via variance ratio is controversial because the test of the null hypothesis

of random walk is only valid under the assumption of constant expected return. The

return series from financial markets are well known to exhibit time variation, especially

in volatility (for Sweden see Hansson and Hördahl (1997))

Poterba and Summers (1988) and Lo and MacKinlay (1989) use Monte Carlo simula-

tion to show that the distribution of the VR statistic is unaffected by heteroscedasticity in

returns. Kim et al (1991) points out that Monte Carlo simulation while retaining, the de-

gree persistence in the heteroscedasticity in monthly stock returns destroys the historical

pattern of heteroscedasticity.

Kim et al (1991, 1998a) questions the often used assumption of homoscedastic volatility

and argues that the significant divergences some times found when using VR statistic

might in fact be explained by the historical pattern of variance shifts. Malliaropulos and

Priestley (1999) utilize a bootstrap approach to account for the small sample distributions

of variance ratio test of Southeast Asian stock markets. They find that mean reversion is

due to time-variation and they point out the danger of testing market efficiency without

adjusting returns for time-variation in expected return. Hence, mean reversion might be

explained by the historical pattern of time-variation, or regime switches in volatility, and

taking this aspect into consideration might influence the VR test statistic.

This study differs from previous studies on the Swedish stock market in that we employ

a Bayesian approach to test for mean reversion on standardized excess returns as suggested

by Kim et al (1998a). The idea is to capture the time variation in the variance by a regime

switching model, also known as hidden Markov model, of Gaussian mixtures. Thus we

assume two regimes: low and high volatility.

Goldfeld and Quandt (1973) introduced the Markov switching models in economics but

its breaktrough in economics and finance came with Hamilton’s (1989) seminal paper. The

drawback with regime switching models is that ordinary optimization of the likelihood
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function can be difficult.1 Albert and Chib (1993) address this problem with a Gibbs

sampling approach in order to estimate the two-state regime switching model suggested

by Hamilton (1989).2 The Bayesian framework in combination with Geman and Geman’s

(1984) numerical integration technique of Gibbs sampling is very advantageous. First,

we can use prior information in the estimation of the conditional distribution of the

parameters without estimation of a likelihood function. Second, all inferences in Gibbs

sampling are made from joint distributions of the variates and the unknown parameters of

the model. Thus, we are able to account for the parameter uncertainty of the underlying

parameters in the model.

In our analysis we find no support of mean reversion and our two-state regime switching

model of normal distributions suggests that mean reversion if found in the Swedish stock

market can be explained by the historical pattern of time variation in the volatility.

The outline of the chapter is as follows: The underlying assumptions of the variance

ratio test are presented in section 2. In section 3 we describe the regime switching model

and give a brief presentation of Bayesian statistics. The Gibbs sampler and the prior dis-

tributions are specified in this section along with a presentation of the Bayesian resampled

variance ratio tests of Kim et al (1998a). Section 4 presents the data and the results and

section 5 concludes the chapter.

2 Variance ratio

The variance ratio test, VR, of Cochrane (1988) has been frequently used as a test of

mean reversion. The variance ratio is a test of linear dispersion of the asset price and the

asset price is said to be a random walk if the variance is linearly increasing with time. If

the VR is less than unity the dispersion is less than in the random walk case and this is

referred to as mean reversion. The advantage of the test is that it allows us to study if

returns follow a random walk and if this property changes with the investment horizon

q. The q period return yq,t is computed as the q period difference between the log of the

monthly prices of the portfolio It and It−q, in our case the Swedish stock market portfolio:

yq,t = ln It − ln It−q (1)

1Ordinary optimization algorithms often fail to estimate the true HMM correct. Another approach is
to employ the simulated annealing, SA, algorithm. This is also a MCMC approach and thus, computer
intensive.

2Kim et al (1998a, 1998b) extended Albert and Chib’s model to a three-state HMM.
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Let y1,t be the monthly return including dividends of the market portfolio. The asset

price, It, is assumed to be a random walk and this implies that the arithmetic return

being a drift µ plus a white noise term εt. In this context the q-month arithmetic return

is:

yq,t = qµ+ εt + . . .+ εt−q+1 (2)

yq,t = yq,t−1 + εt (3)

The expected q period return is equal to the monthly mean return times the holding period

q and the variance of the q period return is q times the variance of monthly returns.

E
£
yq,t
¤
= qµ, V ar

£
yq,t
¤
= qσ2 (4)

The variance ratio statistic, VR, is defined as:

V R (q) =
V ar

£
yq,t
¤

q · V ar £y1,t¤ (5)

= 1 under random walk

Under the null hypothesis, the V R(q) statistic is equal to unity for all q and V R(q) is

asymptotically normal distributed. In our investigation we have chosen the investment

horizon q to range from two to twelve months and yearly up to ten years. This enables us

to study the random walk hypothesis, with respect to dispersion, both in the short-run

and the long-run.

3 Methodology

3.1 Hidden Markov Model

Let the monthly de-meaned excess stock returns yt be described as a k-state hidden

Markov model (HMM) of Gaussian mixtures. Where St is an unobserved state variable

following a Markov process.

yt ∼ N
¡
0, σ2i

¢
(6)
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σ2t =
kX
i=1

σ2iSit (7)

subject to the restriction:

σ1 < σ2 < ... < σk (8)

The probability for the Markov process to move from one state i at time t − 1 to
state j at time t is called transition probability, pij = Pr [St = j|St−1 = i]. The transition
probabilities pij are collected in the transition matrix P, which forms the nucleus of the

Markov model.

Pr [St = j|St−1 = i] = pij; i, j = 1, ..., k (9)

and

kX
J=1

pij = 1, i = 1, ..., k (10)

P =

 p11 · · · p1k
...

. . .
...

pk1 · · · pkk

 (11)

This is a standard Markov switching model or regime switching model of Hamilton

(1994). In our case we have chosen two states (k=2).3

3.2 Bayesian statistic

The fundamental idea behind Bayesian statistic is to condition on the observed data, Y ,

and regard the parameters, θ, as random variables. Suppose that p (θ) is a probability

distribution of the parameter θ.

p (Y | θ) p (θ) = p (Y, θ) = p (θ | Y ) p (Y ) . (12)

The probability distribution of θ conditional on the observed data is expressed by Bayes

theorem:

3We have also done estimations using three-state hidden Markov model. The results suggest that a
two-state hidden Markov model being more appropriate. The results of the estimations are available on
request.
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p (θ | Y ) = p (Y | θ) p (θ)
p (Y )

. (13)

where p (θ) is the prior probability density function and describes the information in θ

without any knowledge about the data, Y . p (θ | Y ) is the posterior probability density
function and gives a description of what is known about θ given the data, Y . Given the

data, Y , the conditional probability distribution p (Y | θ) can be seen as a function of the
parameters θ and this is the likelihood function of θ, L(Y | θ). As p (Y ) is constant the
posterior probability density function is proportional to the likelihood function times the

prior probability density function.

p (θ | Y ) ∝ L (Y | θ) p (θ) . (14)

This yields an appealing property of the Bayesian approach as we do not need a specifica-

tion of the likelihood function to sample from the marginal distributions of the parameters.

In general, the joint posterior distribution, p (θ | Y ), is unknown, but can be simulated
using Gibbs sampling

3.3 The Gibbs sampler

Gibbs sampling is a special case of the Metropolis-Hastings algorithm, see Metropolis et

al (1953) and Hastings (1970), the difference being that in Gibbs sampling we always

accept the candidates. Its breakthrough came with the papers by Gefland and Smith

(1990) and Gefland et al (1990).4 The Gibbs sampler provides the analyst with the

tools to sample from the marginal distribution of the parameters of interest. The idea

behind the algorithm is to sample from the conditional distribution of the parameter space

{θ1, θ2, . . . , θk}. After specifying initial values σ(0)1 , σ(0)1 , P and augment the data with a
randomly generated state vector S, the parameters are generated recursively by cycling

through the conditional distributions.

Step 1: Specify arbitrary initial values,
³
θ
(0)
1 , θ

(0)
2 , . . . , θ

(0)
k

´
, and set n = 1.

Step 2: Cycle through the full conditionals by drawing:

(1) θ
(n)
1 from

h
θ1 | θ(n−1)2 , . . . , θ

(n−1)
k

i
(2) θ

(n)
2 from

h
θ2 | θ(n)1 , θ

(n−1)
3 , . . . , θ

(n−1)
k

i
...
(k) θ

(n)
k from

h
θk | θ(n)1 , . . . , θ

(n)
k−1
i

4See also Casella and George (1992) for an explanation of the Gibbs sampler
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Step 3: set n = n+ 1, and go to step 2 until n = N.

The simulated series are ergodic Markov chains, and so after a large number of iter-

ations, the simulated series represent drawings from their respective marginal distribu-

tions. The recursion is continued in order to generate samples of each parameter from

their marginal distributions. In our case N is set to 20.000 iterations and we obtain the

sample values
n
θ
(N)
i

ok
i=1
.5 The firstM iterations when the chains have not converged are

discarded leaving us with a sample of (N −M) useful iterations. For a large number,
(N −M), the simulated values,

n
θ
(N−M)
i

ok
i=1
, can be treated as an approximate sample

from marginal distribution of the parameters, see Tierney (1994).

3.4 Priors and prior distributions

We use conjugate prior distributions and the specification of the prior parameters and

their distributions follows from Albert and Chib (1993), Tanner (1996), Kim et al (1998a)

and Robert and Casella (1999).6 Each row of the transition probability matrix P is

generated as random draws from a Dirichlet distribution.7

P(i) ∼ D (ui1 + ni1, ui2 + ni2) , i = 1, 2 (15)

where nij, is the number of transitions from state i to state j. We consider uij, i = 1, 2,

j = 1, 2, as non-informative priors and set them equal to 1.

In order to satisfy the constraint, σ21 < σ22, we need to first generate σ
2
1 and re-define

σ22 conditional on σ21.

σ22 = σ21 (1 + h) (16)

where h > 0. Where σ21 and h = (1 + h) are random draws from the inverse-gamma, IG,

5This is a computer intensive simulation. All simulations are done in MATLAB and the estimation

time is approximately 6 hours on a standard Intel PII 450 MHz.
6See also Gilks et al (1996) ”Markov Chain Monte Carlo in Practice”.
7The Dirichlet density function has the property that it can assume a large number of various shapes

in the sample space [0, 1]. Another property of the multivariate Dirichlet distribution is that the sampled

probabilities sum to unity. This makes the Dirichlet distribution family very suitable in representing any

experiments on multivariate continuous random variables in the [0, 1] space.
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distribution family.8

Y1t =
ytp

σ21 (1 + S2th)
(17)

h
σ21 | eY1T , eST ,eθj 6=σ21i ∼ IG

Ã
v1 + T

2
,
δ1 +

PT
t=1 Y

2
1t

2

!
, (18)

Y2t =
ytp
σ21

(19)

We define N2 as the number of times state 2 occurs N2 = {t : St = 2} and T2 is the sum
of the elements in N2.

h
h | eY2T , eST ,eθj 6=hi ∼ IG

Ã
v2 + T2
2

,
δ2 +

PN2
t=1 Y

2
2t

2

!
I[h>1], (20)

We use non-informative priors and set v1, v2, δ1, and δ2 equal 1.
9

3.5 Missing data simulation

As we cannot observe the two regimes we have to regard the states as a missing data

problem. However, we can compute the probability of a given observation yt belong to

state i, i = 1, 2, and from this information construct forecast probabilities of which state

j, j = 1, 2, observation yt+1 belong to. The probabilities are computed for all observations

yt, t = 1...T, with the local updating algorithm of Robert (1993).10 This is repeated for

every Gibbs sweep. The local updating algorithm is a forward algorithm in which each

state is simulated from the full conditional (1 6 i 6 k).

p (S1 = i | S2, ...,P) ∝ ρipiS2f (y1 | 0, σi) (21)

p
¡
S1 = i | ..., St−1, St+1,...,P

¢
∝ pSt−1ipiSt+1f

¡
yj | 0,σi

¢
, (1 < t < T ) (22)

8A draw from any (inverse)gamma distribution is always positive. This makes them an ideal distrib-

ution family for generating second order moments.
9Non-informative prior refers to a prior with little influence on the shape of a prior distribution.
10This is a considerable more efficient algorithm than the forward backward algorithm suggested by

Kim and Nelson (1998).
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p (ST = i | ..., ST−1,P) ∝ pST−1if (yT | 0,σi) (23)

Where (ρi, ..., ρk) is the stationary distribution of the transitionmatrixP and f (· | 0, σi)
denotes the density of the normal distribution, see Hamilton (1994). Thus, the ρi’s are

computed from the transition matrix, P, at each sweep of the Gibbs sampler. Using the

probabilities from the local updating algorithm we generate the two states S = 1, 2, from

a two point distribution. The states are generated by drawing random numbers from a

uniform distribution. We set the state St = 1; if the generated number is less or equal to

p1/ (p1 + p2). If it is greater than p1/ (p1 + p2) , we set St = 2. This is repeated for all

observations t = 1...T .

3.6 A Bayesian approach to variance ratio test

The following two resampled based variance ratio tests have been suggested by Kim et

al (1998a). At the end of each sweep of the Gibbs-sampling algorithm the following

procedure is computed:

Step 1: We divide the monthly returns yt by the standard deviation σt in order to get

the standardized returns y∗t .

Step 2: Scramble the standardized returns y∗t to yield a new randomized vector y
r∗
t .

Step 3: Create a new series of de-standardized randomized monthly returns yrt by scaling

the randomized-standardized returns yr∗t by the standard deviation σt.

We now have four return series, first original returns yt, second standardized orig-

inal returns y∗t , third randomized standardized returns y
r∗
t and fourth randomized de-

standardized returns yrt . Next we calculate the q-month variance ratio for the four return

series.

3.6.1 Is the Variance Ratio test sensitive to randomization?

If we scramble a time series its time series properties will be destroyed and by construction

a typical randomized series will behave as a random walk. The idea of the Gibbs sampler

is to preserve the historical pattern of the time variation in volatility of the data. However

as this is repeated 20.000 times the volatility and the volatility structure, or state vector,

is subject to sampling variation. Thus, the re-standardized series are subject to both
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randomization and parameter uncertainty. Computing the VR and repeating 20.000 times

will result in a distribution of V Rrq statistics representing the null hypothesis of mean

reversion due to randomization. These values are compared to the variance ratio statistic

computed from the original data, V Rq.

3.6.2 Is the Variance Ratio test sensitive to randomization and standardiza-
tion?

The second test is based upon the standardized returns. We first compute the variance

ratio test on the standardized returns, V R∗q. This is a variance ratio test statistic filtered

by the historical pattern of the volatility. However as mentioned above each sweep of the

Gibbs sampler provides a new sample of parameters and after a large number of iterations

we have an empirical distribution of the variance ratios V R∗q computed on the standardized

returns. This distribution is compared with the empirical distribution of V Rr∗q computed

on the standardized randomized returns. The later distribution is representing the null

hypothesis as a randomized series will behave as a random walk. Hence, if the V R∗q-test

is not sensitive to the filtering of volatility and the volatility structure, the distribution of

the V R∗q will be below the distribution of the V R
r∗
q on randomized standardized returns.

The significance levels of the two one-sided VR-tests, ofH02: no mean reversion against

H1: mean reversion, are estimated as the fraction of VR for the artificial returns that fall

below the VR of the original historical returns. Thus we will have two tests for every

q-month horizon. First, a test based on original returns,

P (H0) =
#(V Rq < V R

r
q)

(N −M) (24)

Second, a test based on standardized returns,.

P (H0) =
#(V R∗q < V Rr∗q )

(N −M) (25)

At the end of the Gibbs sampling we will have 20.000 realizations of each of the two tests

for each of the 20 q-month test horizons. An advantage with our Bayesian approach is

that we are able to account for the parameter uncertainty in θ as well as the effect of the

randomization.
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4 Empirical results

4.1 Data

We use 80 years of monthly value weighted Swedish stock market returns including div-

idends and the Swedish risk-free rate from December 1918 to December 1998. All data

are from the Frennberg and Hansson (1998) database. From this data set we compute the

monthly excess return of the Swedish stock market and subtract the mean of the excess

return to get de-meaned excess return.

4.2 Bayesian inference on parameter estimates

The convergence of the Gibbs sampler or burn in time is determined via monitoring

techniques. We run several Gibbs sequences and use different values of the priors in

order to reveal possible slow mixing of the Markov chain. We monitor all parameters of

the Gibbs sequence, Figure 2, and the convergence is based on the worst scenario, the

parameter with the slowest mixing. Figure 2 displays the convergence, or mixing, as the

average parameter value versus the number of iterations, for the transition probabilities,

p11 and p22, and the two variances. The variance parameters converge quickly, but the

transition probabilities exhibits slow convergence. Thus the burn in time is based on the

later andM is set to 8.000 iterations, leaving 12.000 Gibbs sequences from which to make

statistical inference.

The stability of the states is quite clear from Figure 3a and Figure 3b. The graph,

Figure 3a, is called assignment map and plot the assignment of the states at a given

observation against the iterations as black for state 1 and white for state 2, see Robert

and Mengersen (1998).11 If there is no information at all the state vectors are random and

the assignment map blurred. Figure 4 is a vizualization of the non-informative case and

presents randomly generated states vectors. Figure 4a is the assignment map and Figure

4b the probability of state 1. If the Gibbs sampling algorithm has problems identifying

the states the assignment map will have horizontal stripes. However, if the Gibbs sampler

at each sweep assigns the same state to the same observation the assignment map will

have vertical bars, see Figure 3a compared to Figure 4a.

11Robert and Mengersen refer to allocation maps. Recent literature (Bilio, Monfort and Robert (1999))

calls them assignment maps.
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Our Gibbs sampler is able to find stable assignments for the data set, see Figure 3a.

Thus, we have quite clear allocation of the low-volatility state and a bit blurred picture

of the allocations to the high-volatility state. This is also confirmed by Figure 3b, the

probabilities of a specific observation being allocated to state 1.

The mean, median and the 2.5 upper and lower percentiles of the posterior distribution

of the transition probabilities are presented in Table 1. Given that we are in a specific

regime S we can compute the expected duration of the regime by 1/
¡
1− pij

¢
conditional

on i = j, see Kim and Nelson (1999) p 71-72. The last column in Table 1 shows the

persistence or duration of a state. The expected duration of the states is 2.6 months

and 1.7 months for state 1 and state 2. Both the duration of the states, Table 1, and

the assignment map, Figure 3, indicates that the model frequently switches between the

regimes with different volatility.

Table 1
Transition probabilities.

Parameter Posterior
mean median duration

p11 0.620
[0.620, 0.620]

0.621 2.639

p22 0.413
[0.413, 0.413]

0.413 1.704

Note: 2.5 and 97.5 percentiles within brackets

The mean, median and the 2.5% upper and lower percentiles of the conditional dis-

tributions of the estimated volatility parameters are presented in Table 2. There is a

significant difference in the volatility between the two-states with 8.0% for state 1 and

36.6% for state 2. The posterior distributions of the volatility parameters are presented

in Figure 5.

Table 2
Volatility.

Parameter Posterior
mean median

σ1 7.954
[6.677, 9.631]

7.876

σ2 36.622
[30.749, 44.341]

36.259

Note: 2.5 and 97.5 percentiles within brackets
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4.3 Variance Ratios

We will exemplify the sampled distributions of the different variance ratios using his-

tograms of the results from the five-year horizon, q = 60 months. Figure 6 shows the

distributions of the variance ratio test computed for the five-year horizon on the random-

ized standardized returns, the randomized de-standardized returns and the standardized

original returns. The mean, median and 95% interval of the variance ratios for all twenty-

investment horizons is presented in Table 3 and Table 4.

Table 3
Variance ratios of de-standardized returns.

Investment horizon, Variance ratio VR(q)
q (months) Original Scrambled Prob. Value
2 1.164 1.001

[0.939, 1.068]
0.999

3 1.202 1.001
[0.909, 1.100]

0.999

4 1.237 1.001
[0.885, 1.128]

0.999

5 1.255 1.001
[0.869, 1.150]

0.999

6 1.265 1.001
[0.850, 1.168]

0.997

7 1.297 1.001
[0.833, 1.188]

0.998

8 1.324 1.001
[0.819, 1.206]

0.998

9 1.350 1.001
[0.806, 1.222]

0.998

10 1.389 1.001
[0.795, 1.235]

0.998

11 1.435 1.000
[0.783, 1.249]

0.999

12 1.484 1.000
[0.773, 1.265]

0.999

24 1.623 0.993
[0.677, 1.383]

0.998

36 1.532 0.982
[0.604, 1.467]

0.984

48 1.428 0.967
[0.545, 1.534]

0.951

60 1.269 0.951
[0.501, 1.592]

0.869

72 1.093 0.935
[0.457, 1.638]

0.733

84 0.901 0.918
[0.421, 1.684]

0.536

96 0.779 0.902
[0.387, 1.735]

0.413

108 0.763 0.888
[0.355, 1.769]

0.423

120 0.765 0.875
[0.329, 1.801]

0.449

Note: 2.5 and 97.5 percentiles within brackets

The probability values of the VR-test decrease as the horizon q increase. This is

expected as the randomization of the returns leads to flatter distributions of the VR as
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the investment horizon q increases. The maximum and minimum values of the original

VR are 1.623 at 24 months and 0.763 at 108 months. This is an unexpected result

especially as the high VR occur at 12, 24, and 36 months. Thus, it justifies our approach

of utilizing computations of monthly VR with short-run horizons of 2-12 months and

long-run horizons of 1 to 10 years.

Table 4
Variance ratios of standardized returns.

Investment horizon, Variance ratio VR(q)
q (months) Standardized Scrambled standardized Prob. Value
2 1.179

[1.140, 1.218]
0.999

[0.936, 1.062]
1.000

3 1.247
[1.178, 1.317]

0.997
[0.906, 1.094]

1.000

4 1.303
[1.203, 1.403]

0.996
[0.883, 1.117]

0.999

5 1.342
[1.219, 1.470]

0.995
[0.865, 1.138]

0.999

6 1.371
[1.224, 1.525]

0.994
[0.847, 1.154]

0.999

7 1.418
[1.252, 1.593]

0.992
[0.831, 1.172]

1.000

8 1.467
[1.280, 1.663]

0.991
[0.817, 1.188]

1.000

9 1.513
[1.306, 1.727]

0.990
[0.807, 1.202]

1.000

10 1.567
[1.343, 1.799]

0.989
[0.796, 1.214]

1.000

11 1.628
[1.392, 1.877]

0.988
[0.782, 1.228]

1.000

12 1.691
[1.440, 1.954]

0.986
[0.771, 1.242]

1.000

24 2.004
[1.613, 2.418]

0.973
[0.668, 1.350]

1.000

36 2.049
[1.588, 2.548]

0.961
[0.599, 1.435]

0.999

48 2.010
[1.527, 2.548]

0.948
[0.542, 1.504]

0.997

60 1.853
[1.386, 2.390]

0.934
[0.489, 1.559]

0.988

72 1.644
[1.189, 2.187]

0.921
[0.452, 1.610]

0.960

84 1.444
[0.982, 2.002]

0.906
[0.416, 1.652]

0.899

96 1.321
[0.860, 1.890]

0.891
[0.384, 1.695]

0.845

108 1.309
[0.841, 1.886]

0.877
[0.354, 1.739]

0.841

120 1.310
[0.835, 1.896]

0.862
[0.329, 1.773]

0.843

Note: 2.5 and 97.5 percentiles within brackets

A general result is that the p-values from the standardized returns are lower then the

p-values computed from the VR-test of the original returns. Our lowest p-value is 0.413 at

96 months horizon for standardized returns to be compared with the p-value of 0.845 for

original returns. Our highest p-values are all from the short run horizons and the p-values
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decay with the investment horizon. However, we cannot reject the null hypothesis of

random walk for any horizon q and this result is robust to VR computed on standardized

or de-standardized returns.

Frennberg and Hansson (1993) find support of mean reversion in the Swedish stock

market and that the mean reversion increases with the length of the investment horizon.

This they conclude indicates that the risk in the Swedish stock market decreases with

the holding period. Our analysis offsets their result. By simply accounting for the het-

eroscedasticity of the data and taking estimation bias into account we can find no support

of mean reversion. On the contrary the historical pattern of heteroscedacity in Swedish

stock market excess returns can be characterized by two regimes, a tranquil and a volatile.

We find that the historical pattern of heteroscedasticity affects the variance ratio test this

finding is in line with what Kim et al (1998a) finds for the U.S. stock market 1926-1986.

Thus, accounting for time-variation in volatility and estimation bias improves the variance

ratio test.

5 Conclusion

This paper addresses the question if the Swedish stock market is subject to mean rever-

sion. Previous studies find support of mean reversion in the Swedish stock market and

that the mean reversion increases with the length of the investment horizon. However the

results of these studies are controversial as they ignore the assumption of constant ex-

pected return. Resent research have found that the historical pattern of heteroscedasticity

seriously affects the probability of the variance ratio test to reject the null hypothesis of

random walk.

We model the well-known heteroscedasticity of the Swedish stock market return with

a two-state hidden Markov model of normal mixtures. We use a Bayesian approach and

estimate the model by Gibbs sampling, a computer intensive Markov chain Monte Carlo

method. Our two-state hidden Markov model is clearly specified along with the priors

and prior distributions employed in the Gibbs sampler. Further we use the information

at each run of Gibbs sampler to compute variance ratios test on standardized as well as

de-standardized returns.

Our analysis finds no support for mean reversion and we cannot reject the null hypoth-

esis of random walk for any of the investment horizons. This result is robust to variance

ratios computed on standardized or de-standardized excess returns. Our two-state regime
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switching models of normal distributions capture the heteroscedasticity by a tranquil and

a volatile state and suggests that mean reversion if found in the Swedish stock market

can be explained by time-variation in volatility and estimation bias of the variance ratio

test.
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Figure 1: Percentile histogram of de-meaned monthly stock market excess returns

1919-1998.
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Figure 2: Ergodic avererage of estimated parameters vs. # itererations
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Figure 3: (a) Assignment map: Stacked state vectors after burn in time, state 1 black.
(b) Probabilities of state 1 prevailing, state 1 black.

Figure 4: (a) Assignment map: Non informative randomly generated states. (b)
Probabilities of a state 1 prevailing, state 1 black.
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Figure 5: Posterior distribution of low and high volatility for Sweden
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Figure 6: Posterior distribution of 5-year VR for Sweden
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