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Abstract

We develop an asset market participation model in which investors base their
market entry decisions on the momentum, value and risk of the market. Despite
our behavioral framework, the model’s fundamental steady state is characterized
by standard present-value relations between expected future payouts and the
model-implied risk-adjusted return. We derive conditions under which endoge-
nous asset market participation waves and co-evolving boom-bust cycles emerge.
Moreover, we show that the asset market may display spontaneous, sharp and
permanent downturns if investors react sensitively to risk, an outcome that goes
hand in hand with low asset market participation rates and excess volatility.

Keywords: Boom-bust cycles; asset market participation waves; momentum,
value and risk; herding behavior; feedback loops.
JEL classification: D84, G12, G41.

“I define a speculative bubble as a situation in which news of price increases
spurs investor enthusiasm, which spreads by psychological contagion from

person to person, and, in the process, amplifies stories that might justify the
price increase and brings in a larger and larger class of investors, who, despite

doubts about the real value of the investment, are drawn to it partly through
envy of others’ success and partly through a gambler’s excitement.”

Robert Shiller (2015, page 2)

1. Introduction

There is broad evidence for the occurrence of significant boom-bust cycles across
a wide range of asset classes, encompassing stock markets, housing markets and

∗Corresponding author’s contact information: Feldkirchenstrasse 21, 96045, Bamberg, Ger-
many, �+49951 863 2748.
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commodity markets. For detailed historical accounts and in-depth discussions
of such events, see, amongst others, Glaeser (2013), Brunnermeier and Schnabel
(2016) and Greenwood et al. (2019). Although boom-bust cycles can have disas-
trous effects on the real economy, the economic profession still lacks a profound
understanding of what causes them. Motivated by Shiller’s (2015) inspiring open-
ing statement, we demonstrate that investors’ market entry and exit behavior
may lead to endogenous asset market participation waves and co-evolving boom-
bust cycles. Since the starting point of our investigation – that an asset market
experiencing an inflow (outflow) of investors buying (selling) the asset goes up
(down) – is in line with basic economic reasoning and is strongly supported
by empirical and laboratory evidence, see, e.g. Haruvy and Noussair (2006),
Bouchaud et al. (2009), Kirchler et al. (2015) and Razen (2017), a crucial ques-
tion is: What determines investors’ asset market participation? While investors’
market entry and exit behavior may depend on a number of influence factors,
four of them are particularly relevant for our study.

First, and presumably foremost, Galbraith (1994), Kindleberger and Aliber
(2011) and Shiller (2015) point out that investors’ asset market participation
depends on the asset’s momentum. Kindleberger and Aliber (2011) report that
a follow-the-leader process may arise during a boom in which investors observe
others benefiting from speculative purchases. Hence, more and more investors
who had previously been aloof from the market begin to participate in the race
for profits, and their market entry pushes asset prices to higher and higher lev-
els. Shiller (2015) adds the finding that asset prices and investors’ opinions about
their best investment alternative are indeed strongly related. For instance, the
fraction of investors who believe that stocks are the best investment alternative
rises when stock prices increase. After reviewing the history of financial eupho-
ria, Galbraith (1994) also concludes that a booming market constantly attracts
new investors, thereby generating its own momentum. Unfortunately, investors’
reaction to market momentum may set a dangerous positive feedback loop in
motion: price increases result in an inflow of additional investors who buy the
asset, and in doing so push prices even higher.

Second, although asset markets are not well anchored by their fundamental
values, it is clear to investors that booms and busts cannot continue forever.
Shiller (2015) argues that quantitative anchors – such as dividend-price ratios
for stock markets – give investors indications for the appropriate level of the asset
market, whether the asset market is overvalued or undervalued, and whether it
is a good time to sell or buy. Amongst others, Shiller (2015) provides striking
evidence according to which investors’ valuation confidence, represented by an
index that measures investors’ view on whether the stock market is not overval-
ued, drops during booms and increases during busts. Apparently, investors are
aware of the mispricing of a market, particularly if mispricing becomes extreme;
and eventually they react to it. Note also that the whole concept of fundamen-
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tal analysis, such as value investing (Graham and Dodd 1951, Greenwald et al.
2001), is based on this perspective. Fortunately, quantitative anchors may ulti-
mately limit the positive feedback from price changes to further price changes
that amplify booms and busts. Put differently: investors’ attention to the value
of an asset adds a stabilizing negative feedback to the dynamics.

A third factor that affects for investors’ behavior is risk. As pointed out by
Ang et al. (2005), Cohn et al. (2015) and Guiso et al. (2008, 2018), psychological
aspects such as fear, lack of trust, and disappointment, resulting from financial
turmoil, may prevent investors from participating in risky asset markets. For in-
stance, Guiso et al. (2008) argue that a collapse of a major company, such as the
bankruptcy of Enron in 2001 or the notorious Madoff scandal, may change not
only investors’ views about the distribution of expected payouts, but also their
fundamental trust in the entire system that generates those payouts. However,
asset markets are also subject to endogenous risk. If the volatility of an asset
market increases, for example, investors may exit the asset market, triggering
a downward spiral. In fact, Dimson et al. (2002) present data showing that
asset market participation is lower in countries with higher asset market volatil-
ity. Moreover, laboratory experiments by Guiso et al. (2018) reveal that past
risk experiences may prevent investors from participating in risky engagements.
The evidence discussed in Cohn et al. (2015) shows a similar direction, causing
them to explicitly stress the role that self-reinforcing feedback loops may play in
understanding asset market dynamics.

Fourth, Hong et al. (2004), Brown et al. (2008) and Shiller (2015) report that
investors’ asset market participation depends on their social interactions. Clearly,
the more investors’ peers participate in an asset market, the more attractive that
market seems to those investors. Although the exact dynamic consequences of
herding behavior are difficult to anticipate, we can imagine that herding behavior
may create inertia. If a market attracts many investors and, consequently, is in a
boom state, investors may remain in the market, preventing it from crashing, at
least for a while. In a bust state, when only a few people have invested money,
the market may remain unpopular for quite a while, delaying a fundamentally
justified price recovery. Obviously, investors may temporarily ignore a market’s
value. To explain this puzzling behavior, Shiller (2015) states that investors may
not worry much about apparent contradictions among the views they hold. He
argues that there is a willingness to free ride in this case, i.e. to suppose that
other investors have already thought through the apparent contradictions and
therefore to assume that the others know why such behavior is acceptable.

In this paper, we provide a general asset market participation model that may
help us to better comprehend the repeating and potentially harmful phenomenon
of boom-bust cycles driven via the inflow and outflow of investors who react to
the momentum, value and risk of the market, but who also herd together. Our
framework is based on only a few elementary and empirically supported building
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blocks. Investors can choose between a safe asset and a risky asset. The price
of the safe asset, guaranteeing a fixed rate of return, is constant. The price of
the risky asset, generating an uncertain payout, increases if additional investors
enter the market. Investors’ market entry and exit decisions depend on the
momentum, value and risk of the risky asset. Risk plays an important role
in our model. It contains not only a fundamental component, caused by the
uncertainty surrounding future payouts from the asset, but also a speculative
component, resulting from price fluctuations induced by investors’ market entry
and exit behavior. Moreover, investors herd together: the risky asset becomes
more popular as investors’ asset market participation grows. As it turns out, the
dynamics of our model is driven by the iteration of a four-dimensional nonlinear
deterministic map, capturing complex interactions between positive and negative
feedback loops.

Despite the general characterization of investors’ behavioral market entry
and exit decisions, our model remains analytically tractable and consistent with
standard valuation approaches and risk-return relations. We may summarize our
main results as follows:

• Fundamental steady state: Our model possesses a unique interior funda-
mental steady state according to which the risky asset price is equal to the
discounted value of expected future payouts. As we will see, investors enter
the risky asset market up to the point where the price of the risky asset
has reached a level that makes them indifferent between the risky asset
and the safe asset. To achieve this outcome, not all investors are needed
to enter the risky asset market, implying that asset market participation
is limited. Moreover, the discount factor, respectively the risk-adjusted re-
turn, emerges endogenously within our model. In our model specifications,
we can express the risk-adjusted return as the sum of the risk-free interest
rate and a risk premium, consisting of the product of the market price for
risk and the volatility of the risky asset market. It is interesting to see
that such classical textbook relations may reappear in a behavioral asset
market participation model such as ours.

• Stability of the fundamental steady state: Even though investors’ market
entry and exit decisions and the price adjustment process of the risky asset
depend on a host of factors, it is remarkable that the stability of the model’s
fundamental steady state critically hinges on a straightforward and easy-
to-interpret relation that involves the product of four interrelated forces. In
fact, we are able to prove analytically that the model’s fundamental steady
state becomes unstable and gives rise to endogenous oscillatory motion if
the fraction of outside investors multiplied by their intensity of switching
multiplied by their reaction to the risky asset’s momentum multiplied by
their price impact on the risky asset exceeds a critical threshold level.
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To give an example of this chain of arguments: the fundamental steady
state loses its stability if investors react too strongly to the risky asset’s
momentum. However, the fraction of outside investors and their price
impact depend on several market characteristics. Amongst others, our
model also predicts that a rise in the total number of investors (or the
funds available to them) increases the fraction of outside investors, and
may thus lead to instability.

• Functioning of the model : We can explain the co-evolution of endogenous
asset market participation waves and boom-bust cycles as follows. Sup-
pose that the price of the risky asset increases. Some investors then get
excited about the risky asset and seek to make a speculative profit by buy-
ing it. The resulting demand pressure keeps the momentum of the risky
asset alive, at least for a while. At some point, however, the fundamental
condition of the risky asset market appears unhealthy, and investors start
to sell the risky asset, initiating a downturn. Due to its endogenous price
dynamics, the risky asset market appears more risky than is fundamen-
tally warranted. Asset market participation and, consequently, the price of
the risky asset may therefore circle below their fundamental steady-state
values. Moreover, investors’ herding behavior may prolong the duration of
boom and bust states. During a boom, for instance, many investors partic-
ipate in the risky asset market. Since it appears to be popular to be part
of the crowd, investors’ herding behavior may delay a fundamental price
correction.

• Endogenous risk beliefs : Investors’ reactions to endogenous risk may lead
to non trivial and quite surprising effects involving co-existing regimes and
tipping points. For instance, the model gives rise to a low-volatility regime
with relatively high risky asset prices and asset market participation rates
that co-exists with a high-volatility regime with relatively low risky asset
prices and asset market participation rates. Small exogenous shocks may
then lead to the crossing of tipping points, materializing in spontaneous,
sharp and permanent changes in key market characteristics. Clearly, in-
vestors’ reactions to risk constitute part of the riskiness of asset markets.

To sum up, our model provides a new and quite general perspective about the
connection and consequences of investors’ asset market participation behavior
and the formation of risky asset prices, including the steady state and stability
properties of such an environment, as well as its out-of-equilibrium behavior.

A related stream of literature that also seeks to explain the boom-bust na-
ture of asset markets involves the behavior of heterogeneous interacting investors
relying on simple extrapolative and regressive expectations rules to forecast the
future direction of a market. For seminal contributions in this direction, see,
amongst others, Beja and Goldman (1980), Frankel and Froot (1990), Day and
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Huang (1990), Kirman (1993), Lux (1995), Brock and Hommes (1997, 1998) or,
more recently, Anufriev and Hommes (2012), Burnside et al. (2016), Glaeser and
Nathanson (2017) and Barberis et al. (2015, 2018).1 While these models also
take momentum, value, risk and herding elements into account, our model jointly
considers them in a very natural and general way, ensuring that our main results
can be observed for various model specifications. Moreover, asset market partici-
pation usually remains constant in these models. In fact, in most of these models
it is assumed that market participants switch between heterogeneous expectation
rules subject to their past profitability, the state of the market or depending on
investors’ actions. In a nutshell, asset price fluctuations are explained as follows.
During periods when destabilizing extrapolative expectations dominate the mar-
ket, asset prices are pushed away from their fundamental values. In contrast,
in periods when stabilizing regressive expectations are dominant, asset prices
revert back to their fundamental values. A permanent evolutionary competition
between these kinds of expectation rules may then keep the cyclical behavior of
the market alive. See Dieci and He (2018) for a recent survey.

More closely related to our paper is the work by Schmitt and Westerhofff
(2016) and Dieci et al. (2018a), who started taking into account some of the afore-
mentioned observations. In particular, Schmitt and Westerhoff (2016) sketch a
quite simple asset market participation model in which an investor’s decision
whether to enter a risky asset market depends on current market movements and
on its mispricing, illustrating that asset market participation waves may trigger
and amplify boom-bust cycles. By adding a second risky asset market to such an
environment, Dieci et al. (2018a) show that investors’ switching between mul-
tiple risky asset markets may engender countercyclical dynamics between them.
In line with Shiller (2015), investors may take their enthusiasm from one spec-
ulative market, say the stock market, to another speculative market, say the
housing market, creating a bust in the former market and a boom in the latter
one. In contrast to these contributions, we study a considerably more general
model framework. Moreover, we explicitly take into account investors’ reactions
to exogenous and endogenous risk, resulting in a number of new insights.

Our paper also sheds light on the limited participation puzzle. Standard
financial theory predicts that all investors, no matter how risk-averse, should hold
some risky assets as long as the risk premium is positive. However, actual asset
market participation rates appear surprisingly low. Haliassos and Bertaut (1995)
and Campbell (2006) report that less than half of US households possess risky

1The noise trader approach, summarized by Shleifer and Summer (1990), studies interac-
tions between boundedly rational investors and fully rational investors. Since rational investors
face limits to arbitrage, boundedly rational investors can create boom-bust cycles. See, for in-
stance, the influential work by DeLong et al. (1990a, 1990b), Shleifer and Vishny (1997) and
Barberis et al. (1998). Limits to arbitrage may also play an important role in our model.
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assets, while Guiso and Sodini (2013) present similar evidence for a broad set
of European countries. Moreover, asset market participation varies considerably
over time. Hong et al. (2004) report that 31.6 percent of US households owned
stock in 1989, increasing to 49.8 percent in 1998. Asset market participation costs
in combination with risk aversion can partially explain the limited participation
puzzle (Attanasio et al. 2002, Vissing-Jørgensen 2002), although households’
risk aversion has to be quite strong to explain the data. Another explanation
may be that households make investment mistakes (Calvet et al. 2007), e.g. due
to a lack of financial literacy, or, more generally, owing to cognitive constraints
(Grinblatt et al. 2011, van Rooij et al. 2011). However, our model reveals that
asset market equilibrium is compatible with a situation in which a large fraction
of investors do not participate in the risky asset market. If prices accurately
mirror the discounted value of expected future payouts – which is the case at the
model’s interior steady state – outside investors have no incentive to enter the
risky asset market. In a broader sense, this argument is reminiscent of the no-
trade theorem by Grossman and Stiglitz (1980). If an additional investor tried
to squeeze into the market, it would be overvalued. Moreover, out-of-equilibrium
asset market participation rates depend on momentum, value, risk and herding
effects, as most prominently reported by Galbraith (1994), Kindleberger and
Aliber (2011) and Shiller (2015), and tend to oscillate below their steady-state
values, on average.

Our model also offers insights for understanding the behavior and impact
of the discount factor of a risky asset. In an ideal world, risky asset prices
should equal their expected discounted payouts. While finance theory has long
tried to explain variations in risky asset prices by variations in expected pay-
outs, Campbell and Shiller (1988, 1989) and Cochrane (2011) argue that what
really matters is the variability of the discount rate. Within our model, investors’
payout expectations are constant. Nevertheless, fluctuations in the risky asset
price create fluctuations in the risk premium, which, via a time-varying discount
factor, translate into fluctuations of the risky asset’s fundamental value. Also
consistent with Campbell and Shiller (1988, 1989) and Cochrane (2011), fluctu-
ations in the fundamental value of the risky asset are considerably weaker than
fluctuations in the risky asset price, i.e. there is excess volatility.

The remainder of our paper is organized as follows. In Section 2, we develop
our model, followed by a discussion of our main analytical results in Section 3.
In Section 4, we numerically investigate the dynamic properties of our model. In
Section 5, we conclude our work. Appendices A, B and C contain a number of
proofs and robustness checks.

2. A general asset market participation model

Let us first outline investors’ trading environment and their investment behav-
ior. Trading environment : Investors can choose between a safe asset and a risky
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asset. The safe asset, e.g. a government bond, is perfectly elastically supplied,
and guarantees a fixed rate of return r, while the risky asset generates uncertain
payouts dt. As an example, we may consider the dividend process of a stock mar-
ket index. Moreover, we assume that investors perceive the mean and variance
of these payouts with d and νd, respectively.2 Since the price of the risky asset
adjusts endogenously with respect to investors’ market entry and exit behavior,
the risky asset market also offers speculative profit opportunities. Accordingly,
the risky asset possesses a fundamental and a speculative gain potential, associ-
ated with a fundamental and a speculative risk component. Investment behavior :
Shiller (2015) remarks that investors have cognitive limitations that may render
them unable to create optimal portfolios. Although standard economic theory
predicts that all investors should hold some risky assets if the risk premium is
positive, the fact that actual asset market participation rates are relatively low
supports Shiller’s (2015) view. Within our model, some investors may enter
the risky asset market, while others do not. The number of investors that hold
the risky asset, called active investors, is given by nt. Setting the total number
(mass) of investors to N , it follows that the number of inactive investors, also
called outside investors, is equal to N − nt.3

The starting point of our model is that the price of the risky asset increases in
line with the number of active investors, a view that is consistent with elementary
economic reasoning and is strongly supported by empirical observations (Haruvy
and Noussair 2006, Bouchaud et al. 2009, Kirchler et al. 2015 and Razen 2017).
Thus, we model the price of the risky asset as

pt = h(nt), (1)

where function h is such that h(0) ≥ 0 and h′ > 0. While this price adjustment
function establishes a quite natural relation between investors’ asset market par-
ticipation and the price of the risky asset, it also forms the basis for modeling
the boom-bust perspective offered by Galbraith (1994), Kindleberger and Aliber
(2011) and Shiller (2015). The only additional restriction we make is that the
price of the risky asset does not become negative. Clearly, our price adjustment
function is quite general. Amongst others, it may be reconciled with a market
maker scenario (Kyle 1985), assuming that each investor buys (sells) a positive

2Note that Campbell and Shiller (1988, 1989) and Cochrane (2011) state that investors’
dividend expectations are rather constant. However, our model does not rely on whether
investors are right or wrong with respect to their mean and variance beliefs about risky asset
payouts nor on the exact nature of the payout-generating process.

3An alternative interpretation of our model could be that N represents the total money
investors are willing to invest in the risky asset market. The actual money invested in the
risky asset market is then given by nt, and depends on the momentum, value and risk of the
risky asset, as well as on the amount of money that investors have already invested in the risky
asset market.
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amount of the risky asset when he enters (exists) the market.
Investors repeat their market entry and exit decisions at the beginning of

each period, depending on the attractiveness of the safe asset relative to the
attractiveness of the risky asset. Since the safe asset guarantees a fixed rate of
return, its attractiveness depends on the risk-free interest rate, i.e.

ASt = AS = f(r), (2)

where f ′ > 0. Hence, the safe asset becomes more attractive as the risk-free
interest rate increases; for a given value of r, attractiveness of the safe asset is
constant.

As highlighted by Galbraith (1994), Kindleberger and Aliber (2011) and
Shiller (2015), investors become excited about the risky asset if its price in-
creases. Therefore, the attractiveness of the risky asset depends positively on its
momentum. However, investors are also aware that asset prices cannot increase
forever. According to Graham and Dodd (1951), Greenwald et al. (2001) and
Shiller (2015), investors abstain from markets that are (too) overvalued, rep-
resented, e.g. by unhealthy payout-price ratios. Undervalued markets, on the
other hand, appear attractive to investors because they expect prices to return
to fundamentals, at least in the long run. Moreover, Ang et al. (2005), Guiso et
al. (2008, 2018) and Cohn et al. (2015) report that investors dislike markets that
are subject to a larger risk. Thus, the attractiveness of the risky asset market
decreases with payout uncertainty and price variability. To take these considera-
tions into account, we model the attractiveness of the risky asset by the general
function

ARt = Φ(ρt, δt, νt), (3)

where the momentum and value of the risky asset are captured by ρt := pt−pt−1

pt−1

and δt := d
pt

, respectively, while νt represents its risk. Of course, function Φ is

such that Φρ > 0, Φδ > 0 and Φν < 0.4

The risk that investors associate with the risky asset consists of a fundamental
component, based on their variance beliefs about payouts from the risky asset,
and a speculative component, given by their variance beliefs about its price
dynamics. Since investors treat the two components separately, we model their
risk perception by

νt = νd + νp,t. (4)

Note that investors use standard updating rules to estimate the variance of the
risky asset’s price dynamics. Following Chiarella et al. (2007), investors keep

4While in Section 4 we simulate our model using an attractiveness function which is ad-
ditive in the momentum, value and risk component, Appendix B suggests that an alternative
multiplicative specification produces similar results. A further robustness check is performed in
Appendix B by replacing return ρt in the attractiveness function by a more general geometric
weighted average of past returns.
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track of the variance by computing

νp,t = mνp,t−1 +m(1−m)(pt − ut−1)2, (5)

where their mean estimation satisfies

ut = mut−1 + (1−m)pt. (6)

Investors’ memory parameter in the updating process of (5) and (6) is restricted
to 0 < m < 1. Since repeated substitutions yield νp,t =

∑∞
s=0 ωs(pt−s − ut)

2

and ut =
∑∞

s=0 ωspt−s with ωs = (1 −m)ms and
∑∞

s=0 ωs = 1, investors update
their estimation of the variance and mean as time averages with exponentially
declining weights. See, e.g., Bretschneider (1986) for related models of joint
estimation of mean and variance via exponential smoothing, and the technical
report by Finch (2009) for a summary of such techniques.

The higher the relative attractiveness of the risky asset, the more investors opt
for that investment alternative. However, investors are also subject to herding
behavior. As documented by Hong et al. (2004), Brown et al. (2008) and Shiller
(2015), the more investors’ peers participate in a market, the more attractive
that market seems to those investors. We therefore use exponential replicator
dynamics, as put forward by Hofbauer and Sigmund (1988) and Hofbauer and
Weibull (1996), to model the number of active investors. As a result, we have

nt = N
nt−1 exp[λARt−1]

nt−1 exp[λARt−1] + (N − nt−1) exp[λASt−1]
, (7)

where parameter λ > 0 reflects investors’ intensity of switching.5 Exponential
replicator dynamics has a number of economically desirable properties. First, the
number of investors opting for the risky asset increases as the risky asset becomes
more attractive, ceteris paribus. Second, an increase in investors’ intensity of
switching implies that more investors enter the more attractive market. Third,
a higher (lower) participation in the risky asset market in the previous period
tends to lead to a higher (lower) participation in the current period, even if
the attractiveness of the risky asset market is relatively low (high).6 Such a
view is reminiscent of herding models invoking word-of-mouth and observational
learning, as developed, for instance, by Banerjee (1992), Bikhchandani et al.
(1992) and Ellison and Fudenberg (1995).

5Note that, by defining xt := nt

N , the exponential replicator equation (7) can be immediately
rewritten in terms of population shares of each strategy, as is common in evolutionary game
theory.

6In fact, a consequence of the exponential replicator dynamics is that the relative growth of
market participation between periods t and t+ 1 increases with the attractiveness differential
(see Appendix B for a discussion).
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3. Analytical results

In this section, we characterize the fundamental steady state of our model and
its local asymptotic stability properties. In order to do so, we must first derive
the dynamical system of the model. Introducing the auxiliary variable zt = nt−1
allows us to express the dynamical system of the model as

S :


nt+1 = N

nt exp(λAR
t )

nt exp(λAR
t )+(N−nt) exp(λAS

t )
:= F (nt, zt, νp,t)

zt+1 = nt

ut+1 = mut + (1−m)h
(
F (nt, zt, νp,t)

)
:= G(nt, zt, ut, νp,t)

νp,t+1 = mνp,t +m(1−m)
(
h
(
F (nt, zt, νp,t)

)
− ut

)2
:= H(nt, zt, ut, νp,t)

,

(8)

where ASt = AS, ARt = Φ(ρt, δt, νt), ρt = h(nt)
h(zt)
− 1, δt = d

h(nt)
and νt = νd + νp,t.

Accordingly, the model’s dynamics is driven by the iteration of a four-dimensional
nonlinear deterministic map.

Let us denote steady-state quantities with an overbar. At any steady state,
we obviously have that n = z, u = h(n) = p, ρ = 0, νp = 0 and, consequently,
ν = νd. In the following, we focus on the existence of a hypothetical interior
steady state, i.e. 0 < n < N . By imposing the steady-state condition n =
nt+1 = nt to the first equation in (8), we obtain

A
R

= AS, (9)

which implies that the risky asset and the safe asset are equally attractive at the
interior steady state.7 We can also express the no-arbitrage equation (9) by

ϕ(δ) := Φ(0, δ, νd) = AS, (10)

where δ = d/p. Due to our assumptions about the attractiveness function Φ,
it is clear that function ϕ strictly increases in δ. We can therefore define the
payout-price ratio at the interior steady state as

δ =
d

p
=

d

h(n)
= ϕ−1(AS) := ra, (11)

7Note that there also exists a boundary steady state n = N . This boundary steady state
may even be stable if the steady-state attractiveness of the risky asset is higher than the
attractiveness of the safe asset. Although all investors have entered the risky asset market
(and no investor has an incentive to exit it), the price of the risky asset remains below its
fundamental value. Clearly, limits to arbitrage, as stressed by Shleifer and Vishny (1997),
prevent investors’ demand pressure from sufficing to push the price of the risky asset towards
its fundamental value. See Dieci et al. (2018b) for more insights into such a scenario for a
related yet much simpler model framework. The economically uninteresting boundary case
n = 0 is outside the domain of map (8).
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provided that AS belongs to the range of ϕ. Note that ra can be interpreted as
the risk-adjusted return that investors require at the steady state. Suppose, for
instance, that the attractiveness of the risky asset is due to a high payout-price
ratio too far above that of the safe asset. We would then expect an inflow of
investors, which elevates the price of the risky asset up to the point where the
attractiveness of the risky asset mirrors that of the safe asset. If the payout-price
ratio is equal to the risk-adjusted return, investors are indifferent between holding
the risky asset and the safe asset, or, put differently, they have no incentive to
enter or exit the risky asset market.

The expression defined in (11) further reveals that p = d
ra

and, consequently,

that n = h−1(p) = h−1( d
ra

). In the following, the model’s unique interior fun-
damental steady state is denoted by FSS. Note that the fundamental value of
the risky asset price, given by the discounted value of expected future payouts,
is consistent with standard asset valuation approaches. Obviously, p and n in-
crease with d. For instance, if investors expect the risky asset to generate higher
payouts, they enter the risky asset market and the resulting demand pressure
elevates the price of the risky asset. Moreover, p and n decrease with ra.

Given our assumptions about the attractiveness functions of the risky asset
and the safe asset, it follows from (10) and the implicit function differentiation
theorem that the risk-adjusted return increases with the risk-free interest rate
and the volatility of the risky asset’s payout process. For instance, an increase
in the volatility of risky asset payouts makes the risky asset less attractive. As
a result, investors leave the risky asset market, an aspect that depresses the
price of the risky asset and elevates its risk-adjusted return. Of course, the risk-
adjusted return also depends on investors’ risk-return attitudes, represented by

parameters entering A
R

and AS.
To characterize the stability properties of the FSS, it is helpful to introduce

a number of definitions. Let us denote the elasticity of the price adjustment
function of the risky asset with respect to asset market participation at the FSS
by ε := h′(n)

h(n)/n
, the partial derivatives of the general attractiveness function of

the risky asset at the FSS by β := Φρ, γ := Φδ and −θ := Φν , where β, γ, θ > 0,
and the fraction of outside investors at the FSS by y := N−n

N
. In Appendix A,

we prove the following stability result.

Proposition 1. The fundamental steady state of the model, characterized by ra =
ϕ−1(AS), p = u = d

ra
, n = z = h−1(p) and ν = νd, is locally asymptotically stable

if and only if the double inequality raγ
2
− 1
λεy

< β < 1
λεy

holds, where violation of the

first (second) inequality is associated with a Flip (Neimark-Sacker) bifurcation.

The stability properties of the FSS warrant several comments. Since a vio-
lation of the Neimark-Sacker stability condition may set endogenous boom-bust
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cycles in motion, our focus is on the second inequality.8 A simple reformulation
of this condition yields βλεy < 1, i.e. the occurrence of endogenous boom-bust
cycles depends on the product of four directly related forces. The steady-state
fraction of outside investors multiplied by their intensity of switching multiplied
by their reaction to the risky asset’s momentum multiplied by their price impact
on the risky asset at the steady state must remain below unity, otherwise the
FSS becomes unstable and cyclical dynamics are set in motion. Let us discuss
this chain of arguments in more detail:

i) The effect of β: The FSS becomes unstable if investors react strongly to the
momentum of the risky asset, as already anticipated by Galbraith (1994),
Kindleberger and Aliber (2011) and Shiller (2015). However, a stronger
reaction to the value of the risky asset (i.e. an increasing value for γ) does
not re-establish market stability.

ii) The effect of λ: The FSS also becomes unstable if investors’ intensity of
switching becomes large enough, i.e. if they react strongly to differences
in the attractiveness of the safe and the risky asset. Apparently, a higher
value of λ reinforces the effect of β, and vice versa. We remark that Brock
and Hommes (1997, 1998) also stress the destabilizing effect of investors’
intensity of switching.

iii) The effect of y: Our model may generate cyclical dynamics if the steady-
state fraction of outside investors increases, provided that βλε > 1. Since
the fraction of outside investors is given by y = N−n

N
= 1− n

N
, we immedi-

ately see that the FSS may become unstable if the total number of investors
increases. Note that an increase in N merely increases the potential num-
ber of investors that may enter the risky asset market. Moreover, the FSS
may also lose its stability if n decreases. However, for this effect to be
clearly determinable we need to assume that ε is constant (the explanation
follows below). As already discussed in connection with the properties of
the model’s FSS, n decreases if either d decreases or ra increases, which, in
turn, happens if either r or νd increases.

iv) The effect of ε: The stability of the FSS becomes compromised if the elas-
ticity ε of the price with respect to participation n in the risky asset market
(at the FSS) is sufficiently strong. Remember that elasticity is defined by

8The first inequality can be written as γ < 2β
ra

+ 2
raλεy

. For reasonable values of the
risk-adjusted return, say values below 10 percent, a violation of this condition requires that
investors’ reaction to the value of the risky asset is at least 20 times larger than their reaction
to the momentum of the risky asset, a constellation that seems to be quite unlikely. Since a
Flip bifurcation implies the birth of a period-two cycle, it is furthermore not suitable to explain
boom-bust cycles.
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ε := nh
′(n)
h(n)

and depends, therefore, on the parameters characterizing func-
tion h. Since the steady-state fraction of active investors appears in the
nominator and denominator of ε, the effect of n cannot be determined for
our general setup. Thus, in principle, changes in parameters d and ra may
foster or harm the stability of the FSS.

To conclude, it is noteworthy that the FSS of our behavioral asset market partic-
ipation model is consistent with standard asset valuation approaches and that its
stability – despite our general representation of investors’ market entry and exit
behavior – hinges on a straightforward and easy-to-interpret condition involving
the product of four interrelated forces.

4. Numerical results

We are now ready to explore the out-of-equilibrium behavior of the model. In
Section 4.1, we first specify our general asset market participation model. In
Sections 4.2 to 4.6, we then discuss how changes in investor behavior and funda-
mental characteristics of the market may affect the model dynamics. We provide
some robustness checks with respect to possible alternative model specifications
in Appendix B.

4.1. Specification of the model

To be able to simulate the dynamics of our model, we have to specify the price
adjustment function of the risky asset and the attractiveness functions of the
safe and the risky asset. In this section, we assume that the price of the risky
asset is determined according to the isoelastic (power) function

pt = anqt , (12)

where a and q are positive parameters and ε = q for any nt = n. For q = 1,
the price of the risky asset is proportional to the number of active investors.
However, the price adjustment function may also be either strictly concave or
strictly convex, depending on whether q is smaller or larger than one.

For simplicity, the attractiveness of the safe asset is proportional to the risk-
free interest rate r, that is

ASt = AS = γr, (13)

where parameter γ > 0 captures investors’ preference for the fundamental gain
potential of the safe asset. Moreover, we formalize the three arguments of the
general attractiveness function of the risky asset in an additive manner by

ARt = µ arctan
(β
µ
ρt
)

+ γδt − ψ
√
νt. (14)

The first term on the right-hand side of (14) captures the attractiveness of the
risky asset, which arises from its momentum. Since µ := 2κ

π
> 0 and β (=
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Φρ) > 0, a price increase (decrease) makes the risky asset more (less) attractive.
However, the momentum component of the asset’s attractiveness is S-shaped,
reflecting investors’ tendency to react more cautiously to more extreme price
changes, and is bounded between ±κ. The second term on the right-hand side
of (14) reflects the fundamental gain potential of the risky asset. Since γ (=
Φδ) > 0, the risky asset becomes increasingly attractive as its payout-price ratio
increases. Note that investors’ preference for the fundamental gain potential of
the two assets, expressed by parameter γ, appears in (13) and (14). The third
term on the right-hand side of (14) represents the perceived risk of the asset.
Since ψ > 0, investors regard the risky asset as less attractive if its fundamental
or speculative risk component increases.

Our specification of the attractiveness functions of the asset yields a number
of advantages. In particular, the resulting risk-adjusted return at the steady state
is consistent with the one we usually encounter in traditional finance models. To
see this, note first that the no-arbitrage condition Φ(0, δ, νd) = AS directly yields
γδ−ψ√νd = γr, implying furthermore that δ = r+ ψ

γ

√
νd = ra. A “risk-neutral”

setting is recovered in the limiting case ψ → 0. A formal change in our model
parameters in which we define

√
νd = σ d

r
and ψ = τγ

d/r
reveals that ra = r+τσ. As

in standard asset-pricing models, the risk-adjusted return (at the steady state)
comprises the risk-free return and a risk premium, where the risk premium is
given by the product of the market price for risk τ and the volatility of the
risky asset market, which is equal to the risky asset’s fundamental risk σ.9 With
respect to the remaining components of the model’s FSS, we have that p = d

r+τσ
,

n = ( d
a(r+τσ)

)
1
q and ν = νd = (σ d

r
)2.

Of course, the risky asset market may not always be in equilibrium. Note
that we can define a time-varying risk-adjusted return by ra,t = r + τ

d/r

√
νt =

r+τσ
√

νt
νd

, which additionally reflects the risky asset’s speculative (endogenous)

risk component, resulting in a time-varying fundamental value pt = d
ra,t

and,

likewise, in a time-varying fundamental level of the number of active investors,

given by nt = (pt
a

)
1
q . Since the risk-free interest rate and investors’ payout

expectations are constant, it is clear that the variability of pt is directly related
to ra,t, as argued by Campbell and Shiller (1988, 1989) and Cochrane (2011).
Clearly, without endogenous risk perceptions, we always have that ra = ra,t,
p = pt and n = nt. See Appendix C for more details.

We use the following base parameter setting to illustrate the out-of-equilibrium

9Note that, under our formal change in parameters, the fundamental risk σ is expressed
in percentage terms of a benchmark “average” price level p̃, which we take, for simplicity, to
be equal to the “risk-neutral” fundamental price, i.e. d

r . However, the exact choice of p̃ does
not affect the FSS or its stability domain; it only has a mild effect on the out-of-equilibrium
behavior of the model.
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behavior of the model:

r = 0.01, d = 1.2, σ = 0.02, τ = 0.1, a = 1, q = 1, N = 200,
λ = 1, β = 2, γ = 20, κ = 0.05, m = 0.95.

Accordingly, the risk-adjusted return at the steady state is given by ra = 0.012
and the fundamental price of the risky asset is p = 100. Moreover, we have
n = 100, implying that the steady-state fraction of outside investors amounts to
y = 0.5. Consequently, the dynamics of the model is at the border of instability
as βλyq = 1. Since large parts of our simulations rest on a = 1 and q = 1, we face
a convenient parameter constellation, implying that p = n, pt = nt and pt = nt,
i.e. the price of the risky asset is identical to the number of active investors, not
only at the FSS, but also out of equilibrium.

4.2. The model’s dynamics without endogenous risk beliefs

To be able to appreciate the functioning of our complete model, it is helpful to
explore a special case first. Figure 1 depicts the dynamics of the model for our
base parameter values, except that we set β = 2.05, m = 0 and νp,0 = 0. Due to
m = 0 and νp,0 = 0, investors ignore the endogenous (speculative) risk component
of the risky asset, i.e. their risk beliefs are given by νt = νd = ν. Since investors’
reactions to the momentum of the risky asset are slightly above the critical value
βNScrit = 2, our model produces cyclical dynamics. To be precise, the black line in
the left panel of Figure 1 depicts the evolution of the number of active investors,
being equal to the price of the risky asset, while the red line shows its fundamental
steady-state value, being equal to the fundamental steady-state value of the risky
asset price. The right panel of Figure 1 shows the corresponding dynamics in
phase space. Note that the number of active investors and the price of the
risky asset oscillate almost symmetrically around their steady-state values. We
explain the reason for this outcome and its dependence on investors’ risk beliefs
in Section 4.3.

Figure 2 portrays the stability and out-of-equilibrium behavior of the model
with the help of four bifurcation diagrams. From top left to bottom right, the
panels show how the number of active investors (black) and the price of the risky
asset (gray) react to an increase in parameters β, λ, ε = q and N , respectively.
Recall that pt may only deviate from nt if q 6= 1. With the exception of the
bottom left panel, pt is thus superimposed by nt. The remaining parameters
correspond to our base parameter setting, except that we keep investors’ risk
perception constant to the fundamental risk component of the risky asset by
assuming m = 0 and νp,0 = 0. In line with our analytical results, changes in
parameters β, λ and N do not influence the model’s FSS. However, n decreases
with ε = q, while p is independent of ε = q. To understand this, note that p = nq

and n > 1. Hence, the price impact of active investors increases with ε = q,
and fewer investors are needed to push the price of the risky asset towards p.
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Figure 1: Asset market participation waves and boom-bust cycles without endogenous risk
beliefs. The left panel shows the evolution of nt = pt (black) and n = p (red) for 100 time
steps. The right panel depicts the corresponding dynamics in phase space. Base parameter
setting, except that β = 2.05, m = 0 and νp,0 = 0.

As furthermore predicted by Proposition 1, we observe that nt and pt converge
towards the FSS until the parameters under variation cross the critical Neimark-
Sacker bifurcation thresholds βNScrit = 2, λNScrit = 1, εNScrit = 1 and NNS

crit = 200.
In each case, we then see the birth of a limit cycle. In particular, nt and pt
start to oscillate around their steady-state values n and p, and the amplitude
of these oscillations grows with the respective bifurcation parameter. Further
simulations reveal that the underlying dynamics in all of these out-of-equilibrium
scenarios closely resemble the one depicted in Figure 1, i.e. nt and pt circle almost
symmetrically around n and p.

4.3. The dynamics of the model with endogenous risk beliefs

Let us now turn to the behavior of our complete model. Figure 3 shows a
simulation run that rests on our base parameter setting, except that β = 2.05. As
in Figure 1, the model’s FSS is unstable, and endogenous oscillatory movements
occur. However, the dynamics depicted in Figure 3 are qualitatively different to
those depicted in Figure 1. Since investors now update their variance beliefs, also
with respect to the past variability of the risky asset price, the risky asset market
appears less attractive to them. As a result, fewer investors enter the risky asset
market and, consequently, its price oscillates around a lower average price level
than before. In fact, nt = pt (black) oscillates around nt = pt (blue) and not
around n = p (red). Put differently, it is the time-varying fundamental value of
the risky asset that acts as an anchor for the price of that asset. Note furthermore
that fluctuations in ra,t also lead to fluctuations in pt, though the volatility of the
risky asset price is much higher than the volatility of its time-varying fundamental
value. It is important to realize that our model generates all these outcomes,
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Figure 2: Illustration of the stability and out-of-equilibrium behavior of the model without
endogenous risk beliefs. Bifurcation diagrams of nt (black) and pt (gray) against parameter β
(top left), parameter λ (top right), parameter ε = q (bottom left) and parameter N (bottom
right). The remaining parameters correspond to our base parameter setting, except that we
set m = 0 and νp,0 = 0. With the exception of the bottom left panel, pt is superimposed by
nt.

e.g. a limited asset market participation, time-varying discount rates and excess
volatility, endogenously. For constant variance beliefs, i.e. νt = νd, the number
of active investors and the price of the risky asset circle around their constant
fundamental steady-state values, as illustrated in Figure 1.10

We may understand the functioning of our complete model as follows. Sup-
pose that the price of the risky asset starts to increase. Investors then get excited
about the risky asset, and seek to profit from its momentum. Since more and
more investors rush towards the risky asset market, the price increase contin-
ues, lending the risky asset market further momentum. At some point, however,

10Note that the two-dimensional phase plots in Figures 1 and 3 (as well as in the following
figures) represent projections of four-dimensional objects onto a two-dimensional plane.
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Figure 3: Asset market participation waves and boom-bust cycles with endogenous risk beliefs.
The left panel shows the evolution of nt = pt (black), nt = pt (blue) and n = p (red) for 100
time steps. The right panel depicts the corresponding dynamics in phase space. Base parameter
setting, except that β = 2.05.

the price increase ebbs away and the market begins to reverse its direction. In
particular, investors eventually regard the risky asset market as too overvalued,
and start to retreat from it. This triggers a self-fulfilling downward movement.
Investors leave the risky asset market, which drags it further downwards, and so
on, until the payout-price ratio looks so promising again that investors return to
the risky asset market, reversing the direction of the market.11 While investors’
reactions to the momentum and value of the risky asset create endogenous oscil-
lations, their reactions to the risk implied by these fluctuations shift the whole
dynamics of the risky asset market downwards.

It is remarkable how closely the basic functioning of our model mirrors Gal-
braith’s (1994, p. 3) view on this issue. In particular, he writes that, during an
upswing, we observe that “The price of the object of speculation goes up. Securi-
ties, land, objects d’art, and other property, when bought today, are worth more
tomorrow. This increase and the prospect attract new buyers; the new buyers
assure a further increase. Yet more are attracted; yet more buy; the increase
continues. The speculation building on itself provides its own momentum.” The
same holds for Shiller (1990, p. 60) who writes “when market prices as a whole
rise substantially, this creates many success stories of investors, who naively

11As pointed out by Shiller (2015), major turning points of risky asset markets must naturally
occur when almost all investors have entered or exited the market, ending either the demand or
the supply pressure on the market. While we can also observe this effect within our model for
some more extreme parameter constellations, it is worthwhile to note that our model shows that
investors’ reactions to value may be sufficient to stop and eventually to reverse the momentum
of a market.
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imagine that the same success will come to them if they invest too. Substantial
decreases in market prices create many stories of investors’ failures, and these
discouraging stories drive investors away from the market.” Shiller (1990) adds
that such an explanation may seem unattractive to many economists as investors’
behavior appears to be too naive. However, the bull market periods of the 1920s
and 1950s and the periods following the crashes of 1929 and 1987 reflect such a
behavior. In Section 4.6, we show that investors’ market entry and exit behavior
may also result in much more irregular boom-bust cycles, letting their behavior
appear less naive.

One could argue that these boom-bust cycles cannot continue forever, since
investors must eventually learn what is happening and adjust their behavior
accordingly. Citing a famous example of a truly smart outside investor who
bought high and sold low, Kindleberger and Aliber (2011, p. 47) report that
Isaac Newton obtained a large number of shares near the market top of the
South See Bubble in 1720. After realizing a tremendous loss, Newton dryly
remarked that “I can calculate the motions of the heavenly bodies, but not the
madness of people.” Reviewing 300 years of financial euphoria, Galbraith (1994,
p. 11) concludes that investors’ behavior and the associated boom-bust cycles
have occurred “again and again” in the past “in nearly invariant form”, and
will also do so in the future. In fact, Galbraith (1994, p. 108) sadly writes that
“there probably is not a great deal that can be done” by regulators to prevent the
repeating emergence of mass euphoria that leads to boom-bust cycles.

The bifurcation diagrams depicted in Figure 4 illustrate the stability and
out-of-equilibrium behavior of our complete model. Note that we can directly
compare these with those behaviors reported in Figure 2. As before, we observe
the emergence of cyclical dynamics when the critical Neimark-Sacker bifurcation
thresholds βNScrit = 2, λNScrit = 1, εNScrit = 1 and NNS

crit = 200 are crossed. However,
a further increase in these parameters amplifies the amplitude of the cycles,
which, in turn, elevates investors’ risk perception. As a result, the risky asset
market appears less attractive, and the average price level around which the
fluctuations occur gradually declines. Of course, the same is true for investors’
asset market participation. Both nt and pt fluctuate below n and p. In this
sense, the phenomenon depicted in Figure 3 is quite robust, since we observe it
for various values of parameters β, λ, ε = q and N beyond the Neimark-Sacker
bifurcation boundary.

4.4. Sharp reactions to endogenous risk beliefs

Proposition 1 reveals that the model’s FSS becomes unstable for our base pa-
rameter setting if investors’ reactions to the momentum of the risky asset exceed
βNScrit = 2. One intriguing insight offered by our model is that we may already
observe endogenous dynamics for values of β below this threshold, due to the
presence of a coexisting attractor. Figure 5, resting on our base parameter set-
ting, except that β = 1.95 and γ = 5, provides an example of this phenomenon.
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Figure 4: Illustration of stability and out-of-equilibrium behavior of the model with endogenous
risk beliefs. Bifurcation diagrams of nt (black) and pt (gray) against parameter β (top left),
parameter λ (top right), parameter ε = q (bottom left) and parameter N (bottom right). The
remaining parameters correspond to our base parameter setting. With the exception of the
bottom left panel, pt is superimposed by nt.

Its left panel shows the evolution of nt = pt (green) and nt = pt (purple) for 100
time steps, assuming that initial conditions are distant to n = p (red). Clearly,
initial conditions taken close to the FSS yield a convergence of nt = pt towards
n = p (not depicted in Figure 5). While investors’ reactions to the value of the
risky asset does not affect the local asymptotic stability of the FSS, its impact
on the model’s out-of-equilibrium behavior may be profound. In particular, de-
creasing parameter γ from 20 to 5 implies that investors react less aggressively to
deviations from the value of the risky asset and, being less anchored to the FSS,
the risky asset market is subject to oscillations with a larger amplitude (which
can easily be verified by running bifurcation diagrams for pt against parameter
γ). One important consequence of these wilder fluctuations is that the volatility
of the risky asset may increase significantly, making the risky asset market less
attractive, thereby crowding out investors and depressing its average price level
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quite dramatically. For instance, the price of the risky asset fluctuates around
an average value of around 97 in Figure 3, and around 90 in Figure 5. This is
also the case for the time-varying fundamental value pt. Besides its effects on
asset market participation and the price of the risky asset, it is also clear that the
co-existing attractor elevates the risk premium, resulting in a higher variability
of the fundamental value of the risky asset, although the market continues to
display excess volatility.
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Figure 5: Co-existence of a locally stable fundamental steady state and a limit cycle. The left
panel shows the evolution of nt = pt (green) and nt = pt (purple) for 100 time steps; initial
conditions are distant to n = p (red). The right panel depicts the corresponding dynamics in
phase space. Base parameter setting, except that β = 1.95 and γ = 5.

To get an idea why we observe endogenous dynamics despite the fact that
the FSS is locally stable, it is insightful to take a slightly different look at the
stability condition βλεy < 1, by means of a non rigorous, yet suggestive ar-
gument. Clearly, the FSS is locally stable since β = 1.95, λ = 1, ε = 1 and
y = 0.5. However, the fluctuations of nt = pt occur below n = p = 100 and,
therefore, the time-varying fraction of outside investors, i.e. yt = N−nt

N
, is larger

than 0.5. What does this mean for the current setup? For β = 1.95, the FSS
is locally stable as long as y remains below 0.5128. However, the right panel of
Figure 5 reveals that nt never exceeds 96.5 and, consequently, yt always remains
above 0.5175. Put differently: Once such dynamics is set in motion, through
single external shocks, investors’ reactions to endogenous risk may result in rel-
atively low asset market participation rates (i.e. in a relatively high number of
outside investors), which may prevent a convergence to the FSS. This regime is
self-confirming, since it creates an inherently high risk.

Figure 6 shows that we may regard spontaneous, sharp and permanent shifts
of investors’ asset market participation and the average price level of the risky
asset as a robust property of our model. Again, the four panels of Figure 6
report bifurcation diagrams of nt (black and green) and pt (gray and light green)
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Figure 6: Illustration of the stability and out-of-equilibrium behavior of the model in the
presence of co-existing attractors. Bifurcation diagrams of nt (black and green) and pt (gray
and light green) against parameter β (top left), parameter λ (top right), parameter ε = q
(bottom left) and parameter N (bottom right), resulting from different initial conditions. The
remaining parameters correspond to our base parameter setting, except that γ = 5. With the
exception of the bottom left panel, pt is superimposed by nt.

against parameters β, λ, ε = q and N , respectively. We generated the underlying
simulations with our usual parameter setting, except that investor’s reactions to
the value of the risky asset are given by γ = 5. The dynamics represented by
black and gray (green and light green) originates from initial conditions close to
(distant from) the FSS.12 As long as we take initial conditions close to the FSS,
we observe a convergence towards the fixed point of the model – until, of course,
the critical bifurcation thresholds βNScrit = 2, λNScrit = 1, εNScrit = 1 and NNS

crit = 200

12Note that we can also observe such dynamic phenomena for other parameter constellations.
For instance, repeating the simulations depicted in Figure 6 for our base parameter setting and
κ = 0.09 yields quite similar bifurcation routes. Moreover, we have also detected co-existing
attractors for different price adjustment functions and specifications of the attractiveness func-
tions of the safe and the risky asset.
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are crossed. From then on, we witness a spontaneous, sharp and permanent
downward shift of the dynamics. Clearly, asset market participation and the
price of the risky asset start to fluctuate immediately with a high amplitude on a
much lower value than before. Interestingly, these dynamics may emerge before
the critical bifurcation thresholds, as confirmed by the light green color in the
plots. With respect to investors’ reactions to the momentum of the risky asset,
for instance, we can already detect them for β = 1.94.

To sum up, there is robust evidence of co-existing attractors according to
which a locally stable steady state co-exists above a locally stable high-amplitude
limit cycle. Whether the dynamics converges to the one attractor or the other
depends on initial conditions. Of course, exogenous shocks may force the dy-
namics to move from one basin of attraction to another. When these borders,
acting as tipping points, are crossed, a fundamentally different dynamic regime
emerges, which is either much more stable with higher participation rates and
prices or much more volatile with a low participation rate and lower prices.

4.5. Effects of the discount factor

We now explore how the risk-free interest rate and investors’ fundamental risk
perception – two crucial parameters that determine the discount factor – may
influence the dynamics of our model. The top left panel of Figure 7 shows a
bifurcation diagram of nt = pt (black) against parameter r. As can be seen,
an increase in the risk-free interest rate, making the risky asset relatively less
attractive, reduces investors’ asset market participation and, consequently, the
price of the risky asset. Moreover, the FSS loses its local asymptotic stability
as the interest rate exceeds rNScrit = 0.01. At this interest rate level, the steady-
state fraction of outside investors becomes larger than yNScrit = 0.5 and a limit
cycle is born. Further increases in the interest rate enlarge the amplitude of
these fluctuations and push them gradually downwards. The top right panel
of Figure 7 shows a quite similar reaction of the model dynamics as parameter
τ increases. Since an increase in the market price for risk of the risky asset
crowds out investors, the price of the risky asset decreases and the FSS eventually
becomes unstable.

The bottom two panels of Figure 7 repeat this exercise for a slightly different
parameter constellation. For κ = 0.4 and m = 0.5, our model may once again
generate a spontaneous, sharp and permanent transition of rather stable dynam-
ics towards rather unstable dynamics. In contrast to Figure 6, however, we now
observe that both a fixed point attractor and a low-volatility attractor (black)
may co-exist with a high-amplitude attractor (green), where the latter is located
on a much lower level. Such a scenario can also be observed if parameters β, λ,
ε = q or N are used as bifurcation parameters, as well as for other formulations of
the price adjustment function and specifications of the attractiveness functions
of the safe and the risky asset, as introduced in Appendix B.
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Figure 7: Effects of the discount rate on the stability and out-of-equilibrium behavior of the
model. The top left and top right panels show bifurcation diagrams of nt = pt (black) against
parameters r and τ , respectively. All other parameters correspond to our base parameter
setting. The bottom panels show the same, except that κ = 0.4 and m = 0.5. Green shading
represents a co-existing attractor, resulting from different initial conditions.

Figure 8 provides an example of the latter outcome. The left panel of Figure
8 presents the evolution of nt = pt (black and green), nt = pt (blue and purple)
and n = p (red). The two simulation runs, resting on our base parameter setting,
except that r = 0.0103, κ = 0.4 and m = 0.5, only differ with respect to their
initial conditions. One set of initial conditions leads to low-volatility fluctuations
around a relatively high average price level, while the other set of initial condi-
tions leads to high-volatility fluctuations around a relatively low average price
level. The former (latter) constellation is associated with relatively high (low)
asset market participation rates. Given that the dynamics of the model is due
to a four-dimensional nonlinear map, it is difficult to visualize the correspond-
ing basins of attraction of the two limit cycles. Nevertheless, it is clear that
sporadic exogenous shocks may enforce intricate attractor switching dynamics.
For some time, the dynamics may then be characterized by a rather low level of
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Figure 8: Co-existence of two qualitatively different limit cycles. The left panel shows the
evolution of nt = pt (black and green), nt = pt (blue and purple) and n = p (red) for 50 time
steps and two different sets of initial conditions. The top right panel depicts the corresponding
dynamics in phase space.

risk and relatively high asset market participation rates and risky asset prices
and then, out of the blue, by considerably higher risk levels, yielding lower asset
market participation rates and risky asset prices. As highlighted by Ang et al.
(2005), Cohn et al. (2015) and Guiso et al. (2008, 2018), psychological aspects
such as fear, lack of trust, and disappointment, resulting from financial market
turbulences, may prevent investors from participating in risky asset markets. In-
terestingly, our model reveals that investors’ behavior may create risk, and that
their reaction to risk may set a self-reinforcing feedback loop in motion according
to which a substantially lower fraction of investors will participate in the risky
asset market. The right panel of Figure 8 depicts the corresponding dynamics in
phase space.

4.6. Further observations

So far, we have seen that our model can produce a number of surprising dynamic
phenomena with important economic implications. We conclude the numeri-
cal investigation of our model specification by discussing two further fascinating
model implications. The top left panel of Figure 9, resting on our base param-
eter setting, except that λ = 3 and m = 0.5, shows the evolution of nt = pt
(black), nt = pt (blue) and n = p (red) for 40 time steps. Apparently, our
model is also able to generate quite complex asset market participation waves
and boom-bust dynamics. In particular, the amplitude of the cycles may vary
considerably over time. Although it is not our goal to explain the day-to-day
vagaries of actual financial markets, these simulations reveal at least that our
model is able to produce intricate dynamics, as it is also confirmed by the ap-
pearance of the strange attractors in the top right panel of Figure 9. In fact,
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complex dynamics is a robust phenomenon of our model – we can observe them
for many different parameter constellations. Despite the seemingly more erratic
behavior of the market, its general boom-bust nature remains intact. Moreover,
investors’ behavior appears less naive. Between periods 20 and 35, for instance,
the market goes from bottom to top in three consecutive waves. In a broader
sense, this also addresses a widespread criticism raised against feedback mod-
els, namely that the orderly nature of their boom-bust cycles results in highly
predictable price dynamics. Shiller (1990) shows that feedback models do not
necessarily create high serial correlation of short-run price changes if investors
condition their market outlooks on longer time intervals, e.g. with a distributed
lag model. The nonlinearity of our model also yields irregular dynamics, as do
model extensions in which investors use different momentum rules (see Appendix
B).

Figure 9: Complex dynamics and herding behavior. The top left panel shows the evolution of
nt = pt (black), nt = pt (blue) and n = p (red) for 40 time steps. The top right panel depicts
the corresponding dynamics in phase space. Base parameter setting, except that λ = 3 and
m = 0.5. The bottom panels depict the same, except that β = 1000, κ = 0.75 and m = 0.5.

Let us finally turn to some possible effects that investors’ herding behavior
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may have in our model. In the bottom left panel of Figure 9, we see an example
in which investors’ participation in the risky asset market (black, identical to the
price of the risky asset) occasionally increases to very high levels and remains at
those levels for quite a while, until it dramatically crashes. The simulation run
depicted relies on our base parameter setting, except that β = 1000, κ = 0.75
and m = 0.5. What is happening here? At the peak of these booms, the risky
asset market displays almost no momentum and, given that investors’ memory
is limited, the endogenous risk component of their variance beliefs quickly ebbs
away. Although parameters λ and γ are as in our base parameter setting (see
Figures 1 and 3), investors react only slowly to the value of the risky asset. This
is due to investors’ herding behavior. Since many investors are active in the risky
asset market, they show a tendency to remain active in that market. As pointed
out by Hong et al. (2004), Brown et al. (2008) and Shiller (2015), it may simply
be popular for investors to be active in the risky asset market, even if it is grossly
overvalued.

We can also make this argument more explicit. Exponential replicator dy-
namics (7) is equivalent to nt = N nt−1

nt−1+(N−nt−1) exp[λ(AS
t−1−AR

t−1)]
. Ignoring the

momentum and risk component of the risky asset, which play no significant role
in the above dynamics when the market is near its top, and using the current
specification yields nt = N nt−1

nt−1+(N−nt−1) exp[−λγ( d
pt−1

−r)] . Hence, if nt−1 approaches

N , the fundamental conditions of the market no longer play a role in investor be-
havior. Shiller (2015) argues that investors, being part of the crowd, may merely
assume that other investors know what they are doing. Galbraith (1994, p. 80)
recalls a statement by Irving Fisher, expressed in the autumn of 1929, according
to which “stock prices have reached what looks like a permanent high plateau”
and the view by Joseph Stagg Lawrence who commented, as stocks reached their
peak, that “The consensus of judgement of the millions whose valuations function
on that admirable market, the Stock Exchange, is that stocks are not at present
overvalued ... where is that group of men with the all-embracing wisdom which
will entitle them to veto the judgement of this intelligent multitude?”. If that
represents the zeitgeist during a boom, as was apparently the case in 1929, it is
obviously hard for investors to act against it.

Once the risky asset market starts to collapse, however, investors begin to
exit it. The less populated the risky asset market is, the less the persistence-
generating herding effect becomes. Alternative parameter settings may yield
scenarios in which the risky asset market is stuck in bust states (not depicted).
We can therefore conclude that herding may prolong the length of time a risky
asset market remains in a boom or bust state by adding inertia to investors’
behavior.
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5. Conclusions

We develop a quite general and empirically guided asset market participation
model to explain the recurrent and potentially harmful phenomenon of boom-
bust dynamics observed in many different markets throughout the whole world
and at different times. In doing so, we also shed some new light on long-standing
and intertwined puzzles of investors’ limited asset market participation, time-
varying discount factors, excess volatility and high risk premia. Within our
model, we consider a trading environment in which investors can choose between
a safe asset and a risky asset. Investors’ decisions whether to buy the risky asset
depend on the attractiveness of the risky asset relative to the safe asset. While
the attractiveness of the safe asset is constant, that of the risky asset changes
with respect to its momentum, value and risk, where risk contains an exogenous
(fundamental) and an endogenous (speculative) component. However, investors
also display some kind of herding behavior, i.e. their decisions depend on other
investors’ actions. A further natural building block of our model states that the
price of the risky asset increases with the number of investors that buy the risky
asset. Together, these forces create a complex network with multiple intertwined
positive and negative feedback loops that are usually difficult to understand.

Nevertheless, we are able to carry out a rigorous analytical investigation
of our setup, which reveals that the dynamical system of the model admits a
unique interior fundamental steady state. At the fundamental steady state, the
risky asset reflects the present value of its expected future payouts. Remarkably,
the risk-adjusted return, arising endogenously within our behavioral model, is
equal to the risk-free return plus a risk premium, represented by the product
of the market price for risk and the volatility of the risky asset market. We
prove that the fundamental steady state becomes unstable if the product of four
interrelated forces exceeds a critical threshold. To be precise, if the fraction of
outside investors multiplied by their intensity of switching multiplied by their
reaction to the momentum of the risky asset multiplied by their impact on the
price of the risky asset exceeds unity, endogenous asset market participation
waves and co-evolving boom-bust cycles occur.

Roughly speaking, two competing forces are behind such dynamics. First,
investors react to the momentum of the risky asset, a behavior that creates a
destabilizing positive feedback process. If the price of the risky asset increases,
more investors buy the risky asset, prolonging the upward movement of the risky
asset market. In contrast, if the price of the risky asset decreases, the risky asset
market loses investors and therefore continues its downward movement. Second,
investors keep an eye on the value of the risky asset, a behavior that initiates a
stabilizing negative feedback process. If the market is overvalued (undervalued),
investors leave (enter) the risky asset market, reverting the direction of the mar-
ket. The interplay between investors’ reactions to the momentum and value of
the risky asset may already be sufficient for the emergence of endogenous asset
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market participation waves and co-evolving boom-bust cycles.
However, risk plays an important role in the dynamics, too. Once endogenous

dynamics is set in motion, asset market risk builds up. Due to their risk aversion,
investors’ average market participation declines. As a result, the level around
which the aforementioned oscillations occur gradually declines with the volatility
of the risky asset market. Moreover, investors’ herding behavior tends to prolong
the length of time for which the risky asset market may remain in a boom
or a bust state. Interestingly, we may also observe a spontaneous, sharp and
permanent downward shift of the average price level in the presence of large
risk. In technical terms, this is due to the co-existence of multiple attractors and
tipping points. In economic terms, this means that a regime characterized by a
rather low volatility and relatively high asset market participation and average
prices may co-exist with a regime characterized by a rather high volatility and
relatively low asset market participation and average prices. Obviously, single
external shocks may push the dynamics from one attractor to another, e.g. from
a desirable low-volatility attractor with high asset market participation and high
average prices to an undesirable high-volatility attractor with low asset market
participation and low average prices. Changes in the market-implied discount
rate affect the fundamental value of the risky asset. Nevertheless, the risky asset
is excessively volatile and, consequently, goes hand in hand with a high risk
premium. Together, these aspects contribute to the instability and riskiness of
asset markets, and may pose serious threats for the real economy.

Appendix A

To determine the local asymptotic stability of the FSS, we need to build the
Jacobian first. To do so, we compute the derivatives of nt+1, zt+1, ut+1 and νp,t+1

with respect to variables nt, zt, ut and νp,t, respectively. Since we have

nt+1 = N
nt exp(λARt )

nt exp(λARt ) + (N − nt) exp(λAS)
, (A1)

it is useful to regard the right-hand side of (A1) as a function of nt and ARt ,
i.e. nt+1 = M(nt, A

R
t ), where ARt is itself a function of nt, zt and νp,t since

ARt = Φ(ρt, δt, νt) = Φ
(h(nt)
h(zt)
−1, d

h(nt)
, νd+νp,t

)
. By using the chain rule, we obtain

the derivatives of the attractiveness function ARt with respect to its arguments
nt, zt and νp,t, that is

∂ARt
∂nt

= Φρ
h′(nt)

h(zt)
+ Φδ

[
−d h′(nt)

(h(nt))2

]
,

∂ARt
∂zt

= Φρ

[
−h(nt)

h′(zt)

(h(zt))2

]
,

∂ARt
∂νp,t

= Φν .
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Recall that the partial derivatives Φρ, Φδ and Φν at the FSS are denoted by β, γ
and −θ, where β, γ, θ > 0. Moreover, we define α := h′(n) = h′(z). Since, at the

FSS, we also have that p = h(n) = h(z) = d
ra

, d
p

= d
h(n)

= ra and ε := nh
′(n)
h(n)

= nα
p

,
the above derivatives at the FSS are given by

∂ARt
∂nt

∣∣∣∣
FSS

= β
α

p
− γαd

p2
=
α

p
(β − γra) =

ε

n
(β − γra),

∂ARt
∂zt

∣∣∣∣
FSS

= −βα
p

= −β ε
n
,

∂ARt
∂νp,t

∣∣∣∣
FSS

= −θ,

where n = z = h−1( d
ra

). Furthermore, the derivatives of M(nt, A
R
t ) with respect

to nt and ARt are as follows:

∂M

∂nt
= N

Yt exp(λARt )− nt exp(λARt )[exp(λARt )− exp(λAS)]

Y 2
t

,

∂M

∂ARt
= N

ntλYt exp(λARt )− n2
tλ[exp(λARt )]2

Y 2
t

,

where Yt = nt exp(λARt ) + (N − nt) exp(λAS). Since AS = A
R

and Y =
N exp(λAS) at the FSS, we get

∂M

∂nt

∣∣∣∣
FSS

= N
Y exp(λAS)

Y
2 = 1,

∂M

∂ARt

∣∣∣∣
FSS

= N
nλN [exp(λAS)]2 − n2λ[exp(λAS)]2

N2[exp(λAS)]2
= λn

(
1− n

N

)
.

Now, we consider function F , which represents the replicator dynamics equation
(A1). From

∂F

∂nt
=
∂M

∂nt
+
∂M

∂ARt

∂ARt
∂nt

,

∂F

∂zt
=
∂M

∂ARt

∂ARt
∂zt

,

∂F

∂νp,t
=
∂M

∂ARt

∂ARt
∂νp,t

,
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we obtain the following derivatives of function F at the FSS:

∂F

∂nt

∣∣∣∣
FSS

= 1 + λ
(

1− n

N

)
ε(β − γra), (A2)

∂F

∂zt

∣∣∣∣
FSS

= −λβ
(

1− n

N

)
ε, (A3)

∂F

∂νp,t

∣∣∣∣
FSS

= −λθn
(

1− n

N

)
. (A4)

Next, consider function G, which determines the updating of the price average,
i.e.

ut+1 = mut + (1−m)pt+1 = mut + (1−m)h
(
F (nt, zt, νp,t)

)
:= G(nt, zt, ut, νp,t),

from which we get

∂G

∂nt
= (1−m)h′(F (nt, zt, νp,t))

∂F

∂nt
,

∂G

∂zt
= (1−m)h′(F (nt, zt, νp,t))

∂F

∂zt
,

∂G

∂ut
= m,

∂G

∂νp,t
= (1−m)h′(F (nt, zt, νp,t))

∂F

∂νp,t
.

Since F (n, z, νp) = n, h′(n) := α and given derivatives (A2)-(A4) of function F ,
we obtain at the FSS:

∂G

∂nt

∣∣∣∣
FSS

= (1−m)α

[
1 + λ

(
1− n

N

)
ε(β − γra)

]
,

∂G

∂zt

∣∣∣∣
FSS

= −(1−m)αλβ
(

1− n

N

)
ε,

∂G

∂ut

∣∣∣∣
FSS

= m,

∂G

∂νp,t

∣∣∣∣
FSS

= −(1−m)αλθn
(

1− n

N

)
.

Finally, we consider function H, which is given by

νp,t+1 = mνp,t+m(1−m)(pt+1−ut)2 = mνp,t+m(1−m)
(
h
(
F (nt, zt, νp,t)

)
−ut

)2
:= H(nt, zt, ut, νp,t),

and first compute its derivative with respect to νp,t, resulting in

∂H

∂νp,t
= m+m(1−m)2[h(F (nt, zt, νp,t))− ut]h′(F (nt, zt, νp,t))

∂F

∂νp,t
.
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Since h(F (n, z, νp)) = h(n) = p = u, the factor [h(F (nt, zt, νp,t)) − ut] vanishes
at the fundamental steady state, yielding

∂H

∂νp,t

∣∣∣∣
FSS

= m.

The same factor is present in all the remaining derivatives of H, which is why
we also have

∂H

∂nt

∣∣∣∣
FSS

=
∂H

∂zt

∣∣∣∣
FSS

=
∂H

∂ut

∣∣∣∣
FSS

= 0.

The Jacobian matrix of dynamical system (8) at the FSS therefore has the
following structure:

J =


∂F
∂nt

∣∣∣
FSS

∂F
∂zt

∣∣∣
FSS

0 ∂F
∂νp,t

∣∣∣
FSS

1 0 0 0

α(1−m) ∂F
∂nt

∣∣∣
FSS

α(1−m) ∂F
∂zt

∣∣∣
FSS

m α(1−m) ∂F
∂νp,t

∣∣∣
FSS

0 0 0 m

 , (A5)

where ∂F
∂nt

∣∣∣
FSS

, ∂F
∂zt

∣∣∣
FSS

and ∂F
∂νp,t

∣∣∣
FSS

are given by (A2), (A3) and (A4), respec-

tively.
Since the local asymptotic stability of the FSS depends on the eigenvalues

of the Jacobian matrix (A5), we next compute its characteristic polynomial, i.e.
P(η) = det(J−ηI), and consider the equation

det(J−ηI) = (m− η)2P2(η) = 0,

where the second-degree polynomial P2(η) is the characteristic polynomial of the
two-dimensional submatrix C in the upper left corner of (A5), namely

C =

(
1 + λ

(
1− n

N

)
ε(β − γra) −λβ

(
1− n

N

)
ε

1 0

)
.

It follows that two out of the four eigenvalues are equal to m, where 0 < m < 1,
implying that the stability properties of J are fully determined by the remaining
two eigenvalues, say η1 and η2. They are simultaneously smaller than one in
modulus if and only if:

P2(1) = 1− Tr(C) +Det(C) > 0,

P2(−1) = 1 + Tr(C) +Det(C) > 0, (A6)

P2(0) = Det(C) < 1,
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where Tr(C) = 1 + λ
(
1− n

N

)
ε(β − γra) and Det(C) = λβ

(
1− n

N

)
ε. By setting

x := n
N

and λ̃ := λε, conditions (A6) can be rearranged, respectively, as follows:

λ̃(1− x)γra > 0,

γ <
2

ra

[
β +

1

λ̃(1− x)

]
, (A7)

β <
1

λ̃(1− x)
.

While the first condition in (A7) is always satisfied, violation of the second
(third) condition is associated with a Flip (Neimark-Sacker) bifurcation. Using
the original parameters, the second and the third condition can be rewritten and
summarized by

γra
2
− 1

λε
(
1− n

N

) < β <
1

λε
(
1− n

N

) ,
where n = h−1( d

ra
) and ra = ϕ−1(AS).

Appendix B

This appendix provides a brief illustration of the robustness of our model’s main
results to alternative functional specifications of investors’ behavioral rules. It
suggests that our findings about the steady-state structure of the model, the onset
of endogenous fluctuations and the co-existence of different price and volatility
regimes are far more general than is indicated by the selected specifications and
examples presented in the main body of the paper. In particular, we briefly
discuss a different attractiveness specification for the risky asset, a more general
rule for return extrapolation and alternative switching rules based on imitative
dynamics.

Attractiveness based on a multiplicative risk-adjustment rule

Suppose that, other things being equal, the attractiveness of the risky asset is
specified as

ARt = Φ(ρt, δt, νt) =
1

1 + ξ
√
νt

[
µ arctan

(
b

µ
ρt

)
+ cδt

]
,

where, again µ := 2κ
π
> 0, b, c > 0 and ξ > 0. With this specification, the tradeoff

between the (fundamental and speculative) gain potential and the risk is modeled
in a multiplicative fashion. Consistently, we assume AS = cr for the attractive-
ness of the safe asset. Therefore, the no-arbitrage condition Φ(0, δ̄, νd) = AS

yields δ̄ = r(1 + ξ
√
νd) := ra. Similar to our illustration in Section 4.1, a for-

mal change in parameters allows us to rewrite the risk-adjusted discount rate
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in more familiar terms as ra = r + τσ, where, again, νd =
(
σ d
r

)2
and ξ = τ/d.

Likewise, the time-varying risk-adjusted discount rate can again be rewritten as

ra,t = r +
τr

d

√
νt = r + τσ

√
νt
νd

. Of course, the results from our general stability

analysis still hold. However, note that quantities β := Φρ and γ := Φδ to be used
in the steady-state stability conditions (Proposition 1 and equation A7) are now
given by β := Φρ = (1+ξ

√
νd)
−1b = br/ra and γ := Φδ = (1+ξ

√
νd)
−1c = cr/ra.

To illustrate the out-of-equilibrium behavior of the model, we rely again on the
parameter setting of Section 4.1, in which the baseline values of parameters β = 2
and γ = 20 correspond, respectively, to b = 2.4 and c = 24. The panels depicted
in the top line of Figure 10, assuming b = 2.46, reveal that the main features of
the dynamics beyond the Neimark-Sacker bifurcation threshold survive under the
new specification. In particular, we observe the emergence of endogenous asset
market participation waves and co-evolving boom-bust cycles that are located
below their steady-state values.

Return extrapolation through geometric time averages

Assuming again our baseline additive specification of the attractiveness function
of the risky asset, we now generalize the rule by which investors perceive and
update its momentum, based on a longer history of observations. More precisely,
we replace the latest price return ρt := pt

pt−1
−1 in the attractiveness function (14)

by the mean return ρ̄t defined according to the following exponentially weighted
(geometric) moving average:

1 + ρ̄t =

(
pt
pt−1

)1−η (
pt−1
pt−2

)η(1−η)(
pt−2
pt−3

)η2(1−η)
... =

∞∑
s=0

(
pt−s
pt−s−1

)ηs(1−η)
,

or, in a recursive manner:

ρ̄t = (1 + ρt)
1−η (1 + ρ̄t−1)

η − 1,

with 0 ≤ η < 1, where the particular case studied in the main body of our paper
corresponds to η = 0. The larger parameter η is, the more past data investors use
to identify the asset’s return potential. Clearly, the steady state of the model – at
which the average return ρ̄ is equal to zero – is the same as in our baseline model,
although the dimension of the model increases by one. Simulations reveal that
our main qualitative findings survive under this more general setting, provided
that η > 0 is not too large. For instance, the oscillatory dynamics of nt = pt
presented in the second line of panels in Figure 10 are based on our standard
parameter setting, except that β = 2.25 and η = 0.5.
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Figure 10: Asset market participation waves and boom-bust cycles assuming a different at-
tractive specification of the risky asset, a more general rule for return extrapolation and an
alternative switching rule based on imitative dynamics, respectively. The left panels show the
evolution of nt = pt (black), nt = pt (blue) and n = p (red) for 100 time steps. The right
panels depict the corresponding dynamics in phase space. See Appendix B for the underlying
parameter setting.

Fundamental steady state under more general imitative dynamics
Although we derived and illustrated our results under a particular evolutionary
dynamic rule (the exponential replicator dyamics), the (risk-adjusted) funda-
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mental steady state of our model remains the same under a far more general
class of evolutionary dynamics. In fact, the crucial feature of our model behind
the equilibrium payout-price ratio (11) is expressed by condition (9), namely, the
fact that the risky asset and the safe asset are equally attractive at the interior
steady state. A similar property is common to so-called imitative dynamics –
which include the exponential replicator rule as a particular case (see Hofbauer
and Sigmund 2003 and Sandholm 2010). A class of imitative dynamics which
represents an immediate generalization of the exponential replicator rule as well
as of other versions of the replicator dynamics can be represented, in discrete
time, as follows:

xit+1 =
xitw(Ait)
n∑
k=1

xktw(Akt )

, i = 1, 2, ..., n,

where xit is the share of the population that adopts strategy i in period t, Ait
is the payoff or fitness of strategy i and w (the so-called copying weight) is a
strictly positive and increasing function. Even more generally, a characterizing
feature of imitative dynamics is that the relative growth rates of the competing
strategies exhibit so-called payoff monotonicity, namely, the relative growth rates
of strategies are ordered by their payoffs (see Sandholm 2010). For our model
with only two possible ‘strategies’ with payoffs ARt and AS and a fixed total
number of investors N , an imitative dynamics in discrete time can therefore be
equivalently formalized as the following general evolutionary rule:

nt+1 = M(nt, A
R
t ) = ntm(nt, A

R
t ),

where the one-period growth factor of the population of investors who choose
the risky asset, nt+1/nt = M(nt, A

R
t )/nt := m(nt, A

R
t ), is such that:

m(nt, A
R
t ) R 1 ⇐⇒ ARt R AS.

The last condition (capturing payoff monotonicity in our simple case) implies,
at the unique interior steady state, m(n̄, ĀR) = 1 and therefore ĀR = AS, from
which steady-state conditions (10) and (11) follow immediately. As an example,
an alternative model of imitative dynamics is given by

nt+1 = nt + λnt(A
R
t −

1

N
(ntA

R
t + (1− nt)AS)),

i.e.

nt+1 = nt + λnt(1− xt)(ARt − AS) = nt(1 + λ(1− xt)(ARt − AS)),

assuming that parameter λ is set such that nt ∈ ]0, N [. The bottom line in
panels of Figure 10 visualizes such dynamics for our standard parameter setting,
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except that β = 2.05. It is remarkable that other types of evolutionary rules
commonly used in financial market models with behavioral heterogeneity, such
as the logit dynamics and its possible extensions with asynchronous updating
to capture different degrees of inertia (see Hommes 2013), do not belong to the
class of imitative dynamics, and would not result in an interior steady state with
the same properties as ours.

Appendix C

In this appendix, we provide a more formal justification for the time-varying
fundamental value of the risky asset. Suppose that the attractiveness of the risky
asset in period t does not depend on the momentum component, i.e. Φρ = 0 for
any δ, ν, which in our framework is equivalent to β = 0, but only on the current
fundamental conditions δt = d/pt and the current estimate of the risk νt. For a
given risk estimate νt in period t, one may wonder which price level p̄t in period t
would satisfy the no-arbitrage condition between the two markets, ARt = AS. For
the model specified in Section 4, this corresponds to the condition (remember
that β = 0):

γ
d

pt
− ψ
√
νt = γr, (C1)

which results in δt = d
pt

= r + ψ
γ

√
νt = r +

τr

d

√
νt = r + τσ

√
νt
νd

:= ra,t and p̄t =

d/ra,t. Similarly, for the alternative specification of the attractiveness functions
discussed in Appendix B, we obtain for b = 0

c d
pt

1 + ξ
√
νt

= cr, (C2)

implying that δt = d
pt

= r + rξ
√
νt = r +

τr

d

√
νt = r + τσ

√
νt
νd

:= ra,t and

p̄t = d
ra,t

. The above arguments justify why we may regard p̄t as the time-

varying fundamental value of the risky asset. In fact, p̄t has a fundamental
nature in that (i) it does not depend on the current momentum component and
(ii) it is implicitly defined by a hypothetical equilibrium condition in each period,
instead of evolving through ‘disequilibrium’ adjustments of market participation
and asset prices, based on attractiveness differentials. Note that if we set pt =
p̄t in the replicator equation (first equation in (8)) and keep νt constant, then
nt+1 would increase (decrease) with respect to nt only due to the momentum
component, that is, only if ρt > 0 (ρt < 0). This is due to the no-arbitrage
conditions (C1) and (C2) above, by which the attractiveness AS of the safe asset
and the part of the attractiveness ARt of the risky asset that depends on δt and
νt neutralize each other in the replicator equation whenever we set pt = p̄t. If,
in addition, we set the momentum component equal to zero (e.g. β = 0, or
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b = 0), then nt+1 is equal to nt (and the price would not change either). As a
consequence, in each period, the quantity pt− p̄t might be interpreted as a price
bubble component. As discussed in Section 4 and in Appendix B, pt indeed serves
as an anchor for pt, i.e. the price of the risky asset circles around its time-varying
fundamental value. Moreover, the difference (or relation) between the volatility
of pt and the volatility of pt reflects the excess volatility of the risky asset. In line
with Campell and Shiller (1988, 1989) and Cochrane (2011), the driving force
of the variability of pt is ra,t, as the risk-free interest rate and investors’ payout
expectations are relatively constant. Finally, note that nt merely indicates the
number of active investors needed to bring the price of the risky asset towards
its time-varying fundamental value.
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Handbook of financial markets: dynamics and evolution. North-Holland, Am-
sterdam, 57-160.

[11] Bretschneider, S. (1986): Estimating forecast variance with exponential
smoothing: Some new results. International Journal of Forecasting, 2, 349-
355.

[12] Brown, J., Ivkovic, Z., Smith, P. and Weisbenner, S. (2008): Neighbors
matter: causal community effects and stock market participation. Journal of
Finance, 63, 1509-1531.

[13] Brock, W. and Hommes, C. (1997): A rational route to randomness. Econo-
metrica, 65, 1059-1095.

40



[14] Brock, W. and Hommes, C. (1998): Heterogeneous beliefs and routes to
chaos in a simple asset pricing model. Journal of Economic Dynamics and
Control, 22, 1235-1274.

[15] Brunnermeier, M. and Schnabel, I. (2016): Bubbles and central banks: his-
torical perspectives. In: Bordo, M., Eitrheim, Ø., Flandreau, M. and Qvigstad,
J. (eds): Central Banks at a Crossroads: What Can We Learn From History?
Cambridge University Press, Cambridge, 493-562.

[16] Burnside, C., Eichenbaum, M. and Rebelo, S. (2016): Understanding booms
and busts in housing markets. Journal of Political Economy, 124, 1088-1147.

[17] Calvet, L., Campbell, J. and Sodini, P. (2007): Down or out: Assessing the
welfare costs of household investment mistakes. Journal of Political Economy,
115, 707-747.

[18] Campbell, J. and Shiller, R. (1988): Stock prices, earnings, and expected
dividends. Journal of Finance, 43, 661-676.

[19] Campbell, J. and Shiller, R. (1989): The dividend-price ratio and expecta-
tions of future dividends and discount factors. Review of Financial Studies, 1,
195-228.

[20] Campbell, J. (2006): Household finance. Journal of Finance, 61, 1553-1604.

[21] Chiarella, C., Dieci, R. and He, X.-Z. (2007): Heterogeneous expectations
and speculative behavior in a dynamic multi-asset framework. Journal of Eco-
nomic Behavior and Organization, 62, 408-427.

[22] Cochrane, J. (2011): Presidential address: Discount rates. Journal of Fi-
nance, 66, 1047-1108.

[23] Cohn, A., Engelmann, J., Fehr, E. and Marechal, M. (2015): Evidence
for countercyclical risk aversion: an experiment with financial professionals.
American Economic Review, 105, 860-885.

[24] Day, R. and Huang, W. (1990): Bulls, bears and market sheep. Journal of
Economic Behavior and Organization, 14, 299-329.

[25] DeLong, B., Shleifer, A., Summers, L. and Waldmann, R. (1990a): Positive
feedback investment strategies and destabilizing rational speculation. Journal
of Finance, 45, 379-395.

[26] DeLong, B., Shleifer, A., Summers, L. and Waldmann, R. (1990b): Noise
trader risk in financial markets. Journal of Political Economy, 98, 703-738.

41



[27] Dieci, R., Schmitt, N. and Westerhoff, F. (2018a): Interactions between
stock, bond and housing markets. Journal of Economic Dynamics and Control,
91, 43-70.

[28] Dieci, R., Schmitt, N. and Westerhoff, F. (2018b): Steady states, stability
and bifurcations in multi-asset market models. Decisions in Economics and
Finance, 41, 357-378.

[29] Dieci, R. and He, X.-Z. (2018): Heterogeneous agent models in finance. In:
Hommes, C. and LeBaron, B. (eds.): Handbook of Computational Economics,
Volume 4, Heterogeneous Agent Modeling. North-Holland, Amsterdam, 257-
328.

[30] Dimson, E., Marsh, P. and Staunton, M. (2002): Triumph of the optimists:
101 years of global investment returns. Princeton University Press, Princeton.

[31] Ellison, G. and Fudenberg, D. (1995): Word-of-mouth communication and
social learning. Quarterly Journal of Economics, 110, 93-125.

[32] Frankel, J. and Froot, K. (1990): Chartists, fundamentalists, and trading in
the foreign exchange market. American Economic Review, 80, 181-185.

[33] Finch, T. (2009): Incremental calculation of weighted mean and variance.
Technical Report, University of Cambridge.

[34] Galbraith, J. K. (1994): A Short History of Financial Euphoria. Penguin
Books, London.

[35] Glaeser, E. (2013): A nation of gamblers: real estate speculation and Amer-
ican history. American Economic Review, 103, 1-42.

[36] Glaeser, E. and Nathanson C. (2017): An extrapolative model of house price
dynamics. Journal of Financial Economics, 126, 147-170.

[37] Graham, B. and Dodd, D. (1951): Security analysis. McGraw Hill, New
York.

[38] Greenwald, B., Kahn, J., Sonkin, P. and van Biema, M. (2001): Value
investing. From Graham to Buffett and Beyond. Wiley, New York.

[39] Greenwood, R., Shleifer, A. and You, Y. (2019): Bubbles for Fama. Journal
of Financial Economics, 131, 20-43.

[40] Grinblatt, M., Keloharju, M. and Linnainmaa, J. (2011): IQ and stock
market participation. Journal of Finance, 66, 2121-2164.

42



[41] Grossman, S. and Stiglitz, J. (1980): On the impossibility of informationally
efficient markets. American Economic Review, 70, 393-408.

[42] Guiso, L., Sapienza, P. and Zingales, L. (2008): Trusting the stock market.
Journal of Finance, 63, 2557-2600.

[43] Guiso, L., Sapienza, P. and Zingales, L. (2018): Time varying risk aversion.
Journal of Financial Economics, 128, 403-421.

[44] Guiso, L. and Sodini, P. (2013): Household finance: An emerging field.
In: George Constantinides, M., Harris, M. and Stulz, R. (eds.): Handbook
of the Economics of Finance, Volume 2, Part B. North-Holland, Amsterdam,
1397-1532.

[45] Haliassos, M. and Bertaut, C. (1995): Why do so few hold stocks? Economic
Journal, 105, 1110-1129.

[46] Haruvy, E. and Noussair, C. (2006): The effect of short selling on bubbles
and crashes in experimental spot asset markets. Journal of Finance, 61, 1119-
1157.

[47] Hofbauer, J. and Sigmund, K. (1988): The Theory of Evolution and Dy-
namical Systems. Cambridge University Press, Cambridge.

[48] Hofbauer, J. and Weibull, J. (1996): Evolutionary selection against domi-
nated strategies. Journal of Economic Theory, 71, 558-573.

[49] Hofbauer, J. and Sigmund, K. (2003): Evolutionary game dynamics. Bul-
letin of the Americal Mathematical Society, 40, 479-519.

[50] Hommes, C. (2013): Behavioral rationality and heterogeneous expectations
in complex economic systems. Cambridge University Press, Cambridge.

[51] Hong, H., Kubik, J. and Stein, J. (2004): Social interaction and stock-
market participation. Journal of Finance, 59, 137-163.

[52] Kindleberger, C. and Aliber, R. (2011): Manias, Panics, and Crashes: A
History of Financial Crises. Wiley, New Jersey.

[53] Kirchler, M., Bonn, C., Huber, J. and Razen, M. (2015): The “inflow effect”
– trader inflow and price efficiency. European Economic Review, 77, 1-19.

[54] Kirman, A. (1993): Ants, rationality, and recruitment. Quarterly Journal of
Economics, 108, 137-156.

[55] Kyle, A. (1985): Continuous auctions and insider trading. Econometrica,
53, 1315-1335.

43



[56] Lux, T. (1995): Herd behaviour, bubbles and crashes. Economic Journal,
881-896.

[57] Razen, M., Huber, J. and Kirchler, M. (2017): Cash inflow and trading
horizon in asset markets. European Economic Review, 92, 359-384.

[58] Sandholm, W. H. (2010): Population games and evolutionary dynamics.
The MIT Press, Cambridge.

[59] Schmitt, N. and Westerhoff, F. (2016): Stock market participation and en-
dogenous boom-bust dynamics. Economics Letters, 148, 72-75.

[60] Shleifer, A. and Summers, L. (1990): The noise trader approach to finance.
Journal of Economic Perspectives, 4, 19-33.

[61] Shleifer, A. and Vishny, R. (1997): The limits of arbitrage. Journal of Fi-
nance, 52, 35-55.

[62] Shiller, R. (1990): Market volatility and investor behavior. American Eco-
nomic Review, 80, 58-62.

[63] Shiller, R. (2015): Irrational Exuberance. Princeton University Press,
Princeton.

[64] Van Rooij, M., Lusardi, A. and Alessie, R. (2011): Financial literacy and
stock market participation. Journal of Financial Economics, 101, 449-472.

[65] Vissing-Jørgensen, A. (2002): Limited asset market participation and the
elasticity of intertemporal substitution. Journal of Political Economy, 110,
825-853.

44



BERG Working Paper Series (most recent publications) 
 

 

145 Philipp Mundt and Ilfan Oh, Asymmetric competition, risk, and return distribution, Feb-
ruary 2019 

146 Ilfan Oh, Autonomy of Profit Rate Distribution and Its Dynamics from Firm Size 
Measures: A Statistical Equilibrium Approach, February 2019 

147 Philipp Mundt, Simone Alfarano and Mishael Milakovic, Exploiting ergodicity in fore-
casts of corporate profitability, March 2019 

148 Christian R. Proaño and Benjamin Lojak, Animal Spirits, Risk Premia and Monetary 
Policy at the Zero Lower Bound, March 2019 

149 Christian R. Proaño, Juan Carlos Peña and Thomas Saalfeld, Inequality, Macroeconom-
ic Performance and Political Polarization: An Empirical Analysis, March 2019 

150 Maria Daniela Araujo P., Measuring the Effect of Competitive Teacher Recruitment on 
Student Achievement: Evidence from Ecuador, April 2019 

151 Noemi Schmitt and Frank Westerhoff, Trend followers, contrarians and fundamental-
ists: explaining the dynamics of financial markets, May 2019 

152 Yoshiyuki Arata and Philipp Mundt, Topology and formation of production input inter-
linkages: evidence from Japanese microdata, June 2019 

153 Benjamin Lojak, Tomasz Makarewicz and Christian R. Proaño, Low Interest Rates, 
Bank’s Search-for-Yield Behavior and Financial Portfolio Management, October 2019 

154 Christoph March, The Behavioral Economics of Artificial Intelligence: Lessons from 
Experiments with Computer Players, November 2019 

155 Christoph March and Marco Sahm, The Perks of Being in the Smaller Team: Incentives 
in Overlapping Contests, December 2019 

156 Carolin Martin, Noemi Schmitt and Frank Westerhoff, Heterogeneous expectations, 
housing bubbles and tax policy, February 2020 

157 Christian R. Proaño, Juan Carlos Peña and Thomas Saalfeld, Inequality, Macroeconom-
ic Performance and Political Polarization: A Panel Analysis of 20 Advanced Democra-
cies, June 2020 

158 Naira Kotb and Christian R. Proaño, Capital-Constrained Loan Creation, Stock Markets 
and Monetary Policy in a Behavioral New Keynesian Model, July 2020 

159 Stefanie Y. Schmitt and Markus G. Schlatterer, Poverty and Limited Attention, July 
2020 

160 Noemi Schmitt, Ivonne Schwartz and Frank Westerhoff, Heterogeneous speculators 
and stock market dynamics: a simple agent-based computational model, July 2020 



161 Christian R. Proaño and Benjamin Lojak, Monetary Policy with a State-Dependent In-
flation Target in a Behavioral Two-Country Monetary Union Model, August 2020 

162 Philipp Mundt, Simone Alfarano and Mishael Milakovic, Survival and the ergodicity of 
corporate profitability, October 2020 

163 Tim Hagenhoff and Joep Lustenhouwer, The role of stickiness, extrapolation and past 
consensus forecasts in macroeconomic expectations, October 2020 

164 Andrea Gurgone and Giulia Iori, Macroprudential capital buffers in heterogeneous 
banking networks: Insights from an ABM with liquidity crises, October 2020 

165 María Daniela Araujo P., Guido Heineck and Yyannú Cruz-Aguayo, Does Test-Based 
Teacher Recruitment Work in the Developing World? Experimental Evidence from Ec-
uador, November 2020 

166 Jan Schulz and Mishael Milaković, How Wealthy Are the Rich?, December 2020  

167 Nadja Bömmel and Guido Heineck, Revisiting the Causal Effect of Education on Politi-
cal Participation and Interest, December 2020 

168 Joep Lustenhouwer, Tomasz Makarewicz, Juan Carlos Peña and Christian R. Proaño, 
Are Some People More Equal than Others? Experimental Evidence on Group Identity 
and Income Inequality, February 2021 

169 Sarah Mignot, Fabio Tramontana and Frank Westerhoff, Speculative asset price dy-
namics and wealth taxes, April 2021 

170 Philipp Mundt, Uwe Cantner, Hiroyasu Inoue, Ivan Savin and Simone Vannuccini, 
Market Selection in Global Value Chains, April 2021 

171 Zahra Kamal, Gender Separation and Academic Achievement in Higher Education; Evi-
dence from a Natural Experiment in Iran, June 2021 

172 María Daniela Araujo P. and Johanna Sophie Quis, Parents Can Tell! Evidence on 
Classroom Quality Differences in German Primary Schools, August 2021 

173 Jan Schulz and Daniel M. Mayerhoffer, A Network Approach to Consumption, August 
2021 

174 Roberto Dieci, Sarah Mignot and Frank Westerhoff, Production delays, technology 
choice and cyclical cobweb dynamics, November 2021 

175 Marco Sahm, Optimal Accuracy of Unbiased Tullock Contests with Two Heterogeneous 
Players, February 2022 

176 Arne Lauber, Christoph March and Marco Sahm, Optimal and Fair Prizing in Sequen-
tial Round-Robin Tournaments: Experimental Evidence 

177 Roberto Dieci, Noemi Schmitt and Frank Westerhoff, Boom-bust cycles and asset mar-
ket participation waves: momentum, value, risk and herding 


	Introduction
	A general asset market participation model
	Analytical results
	Numerical results
	Specification of the model
	The model's dynamics without endogenous risk beliefs
	The dynamics of the model with endogenous risk beliefs
	Sharp reactions to endogenous risk beliefs
	Effects of the discount factor
	Further observations

	Conclusions

