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Abstract

Recently, Abadie et al. (Am J Polit Sci 59:495–510, 2015) have expanded synthetic control methods by the so-called
cross-validation technique. We find that their results are not being reproduced when alternative software packages
are used or when the variables’ ordering within the dataset is changed. We show that this failure stems from the
cross-validation technique relying on non-uniquely defined predictor weights. While the amount of the resulting
ambiguity is negligible for the main application of Abadie et al. (Am J Polit Sci 59:495–510, 2015), we find it to be
substantial for several of their robustness analyses. Applying well-defined, standard synthetic control methods reveals
that the authors’ results are particularly driven by a specific control country, the USA.

Keywords: Synthetic control methods, Cross-validation

JEL Classification: C23, C52

Background
As a tool for policy evaluation, Abadie and Gardeazabal
(2003) have introduced so-called synthetic control meth-
ods (SCM). For estimating the development of the treated
unit in absence of the treatment, the basic idea of SCM
is to find suitable donor weights which describe how the
treated unit is synthesized by a weightedmix of unaffected
control units. In this context, “suitable” means that treated
and synthetic unit should resemble each other as closely
as possible prior to the treatment, both with respect to
the outcome of interest and with respect to so-called eco-
nomic predictors. The latter are variables of predictive
power for explaining the outcome. The data-driven SCM
approach searches for optimal predictor weights in order
to grant more importance to economic predictors with
better predictive power. Properties of the SCM estima-
tor, like (asymptotic) unbiasedness, have been developed
by Abadie et al. (2010), while Gardeazabal and Vega-
Bayo (2017) find that the SCM estimator performs well as
compared to alternative panel approaches.
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Saarbrücken, Germany
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Over the last few years, many studies have applied
SCM across several fields, e.g., Acemoglu et al. (2016)
(political connections), Cavallo et al. (2013) (natural dis-
asters), Gobillon and Magnac (2016) (enterprise zones),
or Kleven et al. (2013) (taxation of athletes). Recently, the
SCM approach has been expanded by Abadie et al. (2015)
(German reunification) to incorporate cross-validation:
the predictor weights, whose data in the training period
(first part of the pre-treatment period) are used to find
optimal donor weights for synthesizing the treated unit,
are selected such that the out-of-sample error in the vali-
dation period (second part of the pre-treatment period) is
minimized.
When measuring the effect of the 1990 reunifica-

tion on Germany’s GDP per capita using the software
package R, Abadie et al. (2015) found the following pre-
dictor weights: 44.2% (GDP per capita), 24.5% (invest-
ment rate), 13.4% (trade openness), 10.7% (amount of
schooling), 7.2% (inflation rate), and 0.1% (industry share
of value added). These predictor weights led to Ger-
many being synthesized by Austria (42%), the United
States (22%), Japan (16%), Switzerland (11%), and the
Netherlands (9%).
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When trying to replicate these results using the soft-
ware package Stata, however, we found different predictor
weights: 84.5% (GDP), 4.5% (investment), 5.1% (trade),
4.2% (schooling), 0.5% (inflation), and 1.2% (industry).
The corresponding synthetic Germany was slightly dif-
ferent from the one obtained by Abadie et al. (2015): it
consisted of Austria (43%), the USA (22%), Japan (15%),
Switzerland (11%), and the Netherlands (9%)1. We had
sorted the countries alphabetically, while Abadie et al.
(2015) had used a different ordering2. Although, in the-
ory, the ordering should have no effect on the esti-
mation results (neither should the respective software
package), we recalculated all weights using the ordering
that had been used by Abadie et al. (2015). Surpris-
ingly, we got yet another set of predictor weights: 71.0%
(GDP), 11.1% (investment), 7.9% (trade), 6.4% (schooling),
2.7% (inflation), and 0.9% (industry). The correspond-
ing weights for the countries synthesizing Germany were
much closer to, but still different from the values found by
Abadie et al. (2015)3.
Closer inspection shows that the failure to repro-

duce the results of Abadie et al. (2015) is not due to
software problems, but stems from the newly intro-
duced cross-validation technique. In fact, all the above
mentioned predictor weights deliver identical values for
the cross-validation criterion, thus they are all equiva-
lent solutions of the cross-validation approach. Hence,
the cross-validation technique is (in most applications)
not well-defined, since the predictor weights are not
uniquely defined. As the cross-validation technique allows
many different equivalent predictor weights, the results
obtained by Abadie et al. (2015) are arbitrary in the sense
that the authors could have obtained different results
if they had used other software or organized the data
differently.
We therefore investigate the corresponding ambigu-

ity by conducting large-scaled Monte Carlo studies. The
variation of the estimated post-treatment development
of West German GDP is very small, with all estimates
being significantly above Germany’s actual GDP. Con-
cerning several robustness studies of Abadie et al. (2015),
however, we find quite large amounts of ambiguity, in
particular for the so-called in-space placebo and leave-
one-out studies. Developing a rule of thumb, we can show
that the amount of ambiguity depends on the difference
between the number of predictors and the number of
donor units that obtain positive weights in the training
period. In most applications, this difference is positive.
Thus, using the cross-validation cannot be recommended
and standard synthetic control methods should be applied
instead. When doing so, we confirm the main result of
Abadie et al. (2015), indicating a significant drop
in West German GDP due to the reunification. In
contrast to Abadie et al. (2015), however, detecting

such a significant gap crucially hinges on including
US data.
The remainder of the paper unfolds as follows: the

“Methods” section describes the synthetic control method
with and without cross-validation and elaborates on the
reasons why the cross-validation technique is typically not
well-defined, while the standard SCM approach does not
suffer from this problem. We then analyze the extent to
which the results of Abadie et al. (2015) are prone to
ambiguity and compare them to those under the standard
synthetic control approach. The “Conclusions” section
ends the paper.

Methods
Synthetic control methods
In the following, we describe how synthetic control meth-
ods work both with and without the cross-validation
technique. Many additional explanations, in particular on
how to select potential comparison units and predictor
variables, are provided in Abadie et al. (2015)4.
For the synthetic control method, we have two types of

data: the variable of interest, often denoted by the letter Y,
and predictor variables, usually denoted by X. These are
considered both for a unit that has at some point in time
been “treated,” usually denoted by the subscript “1,” and for
so-called donor units. The latter are units not too differ-
ent from the first one, but unaffected from the treatment,
and denoted by the subscript “0.” In the example discussed
throughout this paper, the treated unit is Germany which
has been reunified in 1990, the variable of interest is GDP
per capita, and predictors are (pre-treatment) GDP per
capita, a measure for trade openness, the inflation rate,
the industry share of value added, the amount of school-
ing attained, and the investment rate. The donor units
consist of sixteen OECD countries5 for which the syn-
thetic control method determines non-negative so-called
donor weights W : these weights describe to what extent
each donor country is used to produce a “synthetic” (i.e.,
counterfactual) Germany. Thereby, the weights should be
such that synthetic Germany mimics actual Germany as
well as possible with respect to the (pre-treatment) pre-
dictor variables. For the example at hand, this means that
the differences between actual and synthetic Germany
with respect to GDP per capita, trade openness, infla-
tion rate, industry share, schooling, and investment rate
should be as small as possible. As we have six predic-
tors (k = 6), operationalizing the last statement requires
introducing some weighting scheme. These non-negative
so-called predictor weights are usually denoted by vm orV,
and the cross-validation technique introduced in Abadie
et al. (2015) is a new method to determine such weights.
To this end, the pre-treatment period is divided into two
parts, a training and a validation period. For the case of the
German reunification, the training period is 1971–1980,
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while the validation period is 1981–1990, see Fig. 1 for a
schematic overview of how the cross-validation approach
is defined.
In the training period, one makes use of the

(k × J)-matrix X(train)
0 and the k-dimensional vector

X(train)
1 , containing time averages of the predictors’ data

for the donor units and the treated unit, respectively6.
For any predictor weights V = (v1, . . . , vk), the donor
weights W ∗

(train)(V ) in the training period are defined

as the minimizer of
k∑

m=1
vm

(
X(train)
1m − X(train)

0m W
)2

with

respect to J-dimensional non-negative donor weights W
summing to unity, i.e., as the solution of

min
W

∣
∣
∣
∣
∣
∣V

1
2
(
X(train)
1 − X(train)

0 W
)∣
∣
∣
∣
∣
∣
2
s.t.W ≥ 0,1′W = 1

= min
W

k∑

m=1
vm

(
X(train)
1m −X(train)

0m W
)2

s.t.W ≥ 0,1′W = 1,
(1)

where 1 denotes the vector of ones, while X(train)
1m and

X(train)
0m denote them-th component and row ofX(train)

1 and
X(train)
0 , respectively.
In the validation period, one uses the (L × J)-matrix

Y (valid)
0 and the L-dimensional vector Y (valid)

1 , containing
the variable of interest’s data for the validation period7.
The cross-validation defines predictor weights V ∗ =(
v∗
1, . . . , v∗

k
)
as those weights that minimize the out-of-

sample error
∣
∣
∣
∣
∣
∣Y (valid)

1 − Y (valid)
0 W ∗

(train)(V )

∣
∣
∣
∣
∣
∣
2
over V, i.e., V ∗

is a minimizer of 8

min
V

∣
∣
∣
∣
∣
∣Y (valid)

1 − Y (valid)
0 W ∗

(train)(V )

∣
∣
∣
∣
∣
∣
2
s.t.V ≥ 0,1′V = 1,

(2)

where we have normalized the predictor weights to sum
to unity9.
These predictor weights V ∗ are then used

to determine W ∗
(main) as the minimizer of

k∑

m=1
v∗
m

(
X(valid)
1m − X(valid)

0m W
)2
, i.e., as the solution of

min
W

∣
∣
∣
∣
∣
∣V ∗ 1

2
(
X(valid)
1 − X(valid)

0 W
)∣
∣
∣
∣
∣
∣
2
s.t.W ≥ 0,1′W = 1

= min
W

k∑

m=1
v∗
m

(
X(valid)
1m −X(valid)

0m W
)2

s.t.W ≥ 0,1′W = 1,

(3)

where the (k × J)-matrix X(valid)
0 and the k-dimensional

vectorX(valid)
1 contain time averages of the predictors’ data

for the validation period, which for the application at hand
ranges from 1981 to 1990.
Thus, the synthetic control method with cross-

validation is a two-step procedure. First, in the so-called
“training” step,V ∗ is determined byminimizing the cross-
validation criterion, thereby making use of “training”
weightsW ∗

(train)(V ) as defined by Eq. (1). Then, in the sec-
ond, so-called “main” step, these predictor weights V ∗ are
used to determine the “main” donor weights W ∗

(main)(V
∗)

by Eq. (3). These “main” donor weights W ∗
(main)(V

∗) are
then employed for synthesizing the treated unit. Again,
this is visualized in Fig. 1.

Fig. 1 Schematic overview for the cross-validation technique in SCM. Notes: predictor and donor weights have been named and color-coded
according to the steps during which they are computed, while the data have been named and color-coded according to the different periods they
belong to
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In contrast, the standard synthetic control method con-
sists of only one step, not distinguishing between a train-
ing and validation period.
Instead, all pre-treatment data are used, in our

application those from 1971 to 1990, to build the following
quantities: the (k× J)-matrix X(pre)

0 and the k-dimensional
vector X(pre)

1 , containing time averages of the predic-
tors’ data for the donor units and the treated unit,
respectively, as well as the (L̃ × J)-matrix Y (pre)

0 and
the L̃-dimensional vector Y (pre)

1 , containing the vari-
able of interest’s pre-treatment data for the donor units
and the treated unit, respectively10. For given predictor
weights V = (v1, . . . , vk), the standard SCM approach
defines the donor weights W ∗(V ) as the minimizer of
k∑

m=1
vm

(
X(pre)
1m − X(pre)

0m W
)2
, i.e., as the solution of

min
W

∣
∣
∣
∣
∣
∣V

1
2
(
X(pre)
1 − X(pre)

0 W
)∣
∣
∣
∣
∣
∣
2
s.t.W ≥ 0,1′W = 1

= min
W

k∑

m=1
vm

(
X(pre)
1m − X(pre)

0m W
)2

s.t.W ≥ 0,1′W = 1.

(4)

Optimal predictor weights V ∗ are then determined by
minimizing the in-sample error11, i.e., as a solution of

min
V

||Y1 − Y0W ∗(V )||2 s.t.V ≥ 0,1′V = 1. (5)

The donor weightsW ∗(V ∗) are then used for synthesiz-
ing the treated unit. For a schematic overview of standard
SCM, see Fig. 2.

Well-definedness of synthetic control methods
A crucial insight as to why the cross-validation tech-
nique of Abadie et al. (2015) is not well-defined is the
fact that, typically, there is no unique minimizer of
the out-of-sample error

∣
∣
∣
∣
∣
∣Y (valid)

1 −Y (valid)
0 W ∗

(train)(V )

∣
∣
∣
∣
∣
∣
2
.

Thus, Eq. (2) does not define V ∗ unambiguously. The rea-
son is that the mappingW ∗

(train) defined by Eq. (1) is often
not injective—it regularly happens that W ∗

(train)(Ṽ ) and
W ∗

(train)(V ) coincide although Ṽ and V are different after
scaling. Less formally, it is often the case that different
predictor weights lead to the same “training” weights. The
problem of the cross-validation approach is that such dif-
ferent predictor weights Ṽ and V, although scaled and
entailing identical W ∗

(train)(Ṽ ) = W ∗
(train)(V ), typically

lead to different W ∗
(main)(Ṽ ) �= W ∗

(main)(V ) in the main
step of Eq. (3).
Actually, this is the reason behind the diverging results

described above: all predictor weights given earlier, those
found by Abadie et al. (2015) as well as our results
obtained using Stata with two different orderings for
the donor countries, are equivalent solutions of Eq. (2).
This can be seen from the “W weights training” rows
of columns “ADH,” “Orig.,” and “Alph.” of Table 1 below.
All these different predictor weights produce the same
W ∗

(train) in Eq. (1), leading to an identical out-of-sample
error of 67.7. However, although these different predic-
tor weights V are equivalent with respect to Eq. (1),
i.e., produce the same donor weights W ∗

(train) and there-
fore the same synthetic Germany in the training period,
they are not equivalent with respect to Eq. (3). More
specifically, the corresponding donor weights W ∗

(main)

for the main application do not coincide (cf. the “W

Fig. 2 Schematic overview for the “standard” SCM technique. Notes: data have been named and color-coded according to the different periods
they belong to
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Table 1 Results (predictor weights V, donor weightsW for main
application and in training period, cross-validation criterion)
obtained in different ways

ADH Orig. Alph. Min. Max.

V weights GDP per capita 44.2 71.0 84.5 38.5 87.7

Trade openness 13.4 7.9 5.1 4.4 14.6

Inflation rate 7.2 2.7 0.5 0.0 8.1

Industry share 0.1 0.9 1.2 0.0 1.3

Schooling 10.7 6.4 4.2 3.7 11.6

Investment rate 24.5 11.1 4.5 2.9 27.2

W weights main USA 21.9 22.1 22.0 20.1 22.1

UK 0.1 0.0 0.0 0.0 1.8

Austria 41.8 42.2 43.1 41.6 47.1

Netherlands 9.0 9.2 8.5 0.6 9.4

Norway 0.1 0.0 0.0 0.0 1.9

Switzerland 11.1 10.9 10.8 10.8 13.7

Japan 15.5 15.7 15.4 9.9 15.7

W weights training USA 13.5 13.5 13.5 13.5 13.5

Austria 50.7 50.7 50.7 50.7 50.7

Switzerland 16.6 16.6 16.6 16.6 16.6

Japan 14.6 14.6 14.6 14.6 14.6

Australia 4.5 4.5 4.5 4.5 4.5

C-V criterion RMSPE 67.7 67.7 67.7 67.7 67.7

Notes: “ADH” stands for the results of Abadie et al. (2015), “Orig.” are results from
Stata with the same ordering of donors as in the code of Abadie et al. (2015), “Alph.”
denotes results from Stata with donors sorted alphabetically, “Min.” and “Max.”
denote minimal and maximal values, respectively, found under the condition that
the corresponding predictor weights V lead to identical donor weightsW in the
training period. All numbers are given in percent, suppressing donors with weight
less than 1%

weights main” rows of columns “ADH,” “Orig,” and
“Alph.” of Table 1). Overall, hence, one obtains different
synthetic versions for the treated unit, leading to differ-
ent estimates for the post-treatment development of the
treated unit in absence of the intervention, and potentially
to diverging conclusions about the effect of the inter-
vention. Thus, in the end, the cross-validation technique
introduced by Abadie et al. (2015) is not properly defined,
typically leading to ambiguous estimates of the treatment
effect.
While W ∗

(train) in general is not injective, it depends
on the respective application whether or not there exist
several different predictor weights minimizing the out-
of-sample error. In some applications, there might be
an up to scaling unique minimizer, making the cross-
validation technique well-defined, while in other appli-
cations, there might exist many different minimizers. In
the latter case, it is not clear how large the set of these

minimizers will be. In the Appendix, we therefore elab-
orate on a heuristic rule of thumb that allows to get an
idea about the amount of ambiguity. It turns out that the
decisive quantity in this context is the difference k − α

between the number of predictors used, k, and the num-
ber of donor units that obtain positive weights in the
training period, α := #

{
j : W ∗

(train),j > 0
}
. If the differ-

ence k − α is positive, the predictor weights will typically
not be uniquely defined by the cross-validation technique,
with a generically increasing amount of ambiguity the
larger k − α. In case of the German reunification, six pre-
dictors (GDP, trade openness, inflation, industry share,
schooling, and investment rate) are used, but only five
donor units obtain positive weights in the training period
(the USA, Austria, Switzerland, Japan, and Australia, cf.
Table 1), thus k − α = 6 − 5 = 1 > 0. Con-
sequently, there exist many solutions for determining
the predictor weights by the cross-validation technique,
but the amount of ambiguity is expected to be rather
small.
Eventually, the standard synthetic control method does

not suffer from similar problems. In a nutshell, the reason
is that the standard SCMmethod consists of only one step,
while the cross-validation technique is a two-step pro-
cedure. When using the cross-validation technique, the
non-uniqueness of the predictor weights entails ambigu-
ous donor weights in the second, main step of the cross-
validation technique. In this case, the uniquely defined
donor weights in the first, training step, are of no help. For
the standard method, there are generically many different
solutions V ∗ to Eq. (5), in complete analogy to the cross-
validation method and Eq. (2). Again, the reason is that
the mapping W ∗ defined by Eq. (4) is often not injective:
it regularly happens that W ∗(Ṽ ) equals W ∗(V ) although
Ṽ and V are different after scaling. However, in contrast
to the cross-validation method, this is not a problem, as
predictor weights are not used as input for a second step
with different predictor data. Instead, the unique donor
weights W ∗(V ∗) are the only quantity needed to syn-
thesize the treated unit and estimate treatment effects,
and therefore the standard synthetic control method
leads to well-defined estimators, in contrast to the cross-
validation approach. This can also be seen from Table 3
below, where different predictor weights obtained by dif-
ferent software and different settings all entail identical
donor weights.

Results and Discussion
Ambiguity of results using the cross-validation technique
For the upcoming analysis, we retrieved from the AJPS
Data Archive on Dataverse (https://dataverse.
harvard.edu/dataverse/ajps) both the data and
all code of Abadie et al. (2015).

https://dataverse.harvard.edu/dataverse/ajps
https://dataverse.harvard.edu/dataverse/ajps


Klößner et al. Swiss Journal of Economics and Statistics  (2018) 154:11 Page 6 of 11

We also followed Abadie et al. (2015) by using R
(R Core Team 2014) in combination with package
Synth (Abadie et al. 2011). In particular, we first ran
the code supplied by Abadie et al. (2015), storing all
the results, especially the results for the donor units’
weights in the training period. We then conducted
large-scale Monte Carlo studies, searching for predic-
tor weights that also lead to these donor weights in
the training period, i.e., “training-equivalent” predic-
tor weights which also minimize Eq. (2). These were
then used to calculate the corresponding donor weights
for the main period, GDP estimates, and follow-up
quantities12.
Table 1 summarizes the results for the predictor weights

V and donor weights W : columns “ADH,” “Orig.,” and
“Alph.” contain the results obtained by Abadie et al. (2015),
by Stata using the same ordering of donor countries as
did Abadie et al. (2015), and by Stata using the donor
countries in alphabetical order, respectively. Columns
“Min.” and “Max.” contain the smallest and largest values
obtained in our Monte Carlo study, respectively. We find
the weights of some predictors to vary substantially. For
instance, the V weight of GDP can take values between
38.5 and 87.7%, while the inflation rate may be almost
irrelevant with a weight of nearly zero but may also be
taken into considerable account when its weight is 8.1%.
For the composition of synthetic Germany, we find sim-
ilar ambiguity: the weight of Austria varies between 41.6
and 47.1%, the Netherlands can be essentially unimpor-
tant with a weight of only 0.6% but also contribute 9.4%
to synthetic Germany. In some cases, Germany is even
synthesized by six instead of five countries, when the
UK or Norway are attributed small but positive weights,
respectively.
Figure 3 (the left part of which corresponds to Fig. 3 of

Abadie et al. (2015)) shows the timelines of GDP for actual
Germany as well as several versions of synthetic Germany.
From the original timelines, differences between the var-
ious versions of synthetic Germany are barely visible.
Closer inspection shows that the range due to ambiguous
weights varies between approximately 5.11 and 228.90 US
dollars per capita, on average taking a value of 72.57 dol-
lars. As German GDP per capita rose from roughly 3,000
US dollars in 1960 to almost 30,000 US dollars in 2003,
we accompany these figures and timelines by what might
be called a “relative gap plot,” namely the percentage dif-
ference between actual and synthetic Germany. The gray
area, which displays the range of ambiguity due to differ-
ent but equivalent results, now becomes visible. Overall,
however, it is quite small, taking values between 0.06 and
2.29%, with an average relative difference of 0.64%. Again,
this indicates that although donor weights are ambiguous,
the conclusion with respect to a gap in German GDP after
the reunification remains valid.

We now turn our attention to the in-space placebo
study which artificially reassigns the reunification to all
donor countries, thus treating Germany as a donor coun-
try, while at the same time, one of the donor coun-
tries takes the role of the treated unit. To evaluate the
results, one calculates the ratios of post-treatment dif-
ferences between actual and synthetic GDP values over
corresponding pre-treatment differences. The results are
displayed in Fig. 4 which, as a special case, contains Fig. 5
of Abadie et al. (2015).We find rather large ranges of ratios
for some countries (Germany, Norway, the USA, Spain,
Switzerland, the UK, and the Netherlands), and small to
(almost) no ranges of ratios for other countries13. In line
with our heuristic rule of thumb, the countries with large
ranges are characterized by rather small numbers of donor
countries contributing in the training period: Switzer-
land (one donor country), the USA, Portugal, Spain (two
donor countries), the UK, the Netherlands, Japan (three
donor countries), and Norway (four donor countries).
The range of ratios is largest for Norway, with a value
of 3.28, the average range size is 0.87. Overall, notwith-
standing the significant ambiguity of these ratios, the ratio
for Germany is by far the largest, indicating that the
reunification had a significant impact on German GDP
per capita.
Table 2 and Fig. 5 (the left part of which corresponds

to Fig. 6 of Abadie et al. (2015)) show the results for the
case when the U.S. data is removed from the sample—
a so-called “leave-one-out” analysis which, in the original
Abadie et al. (2015) study, backs up the main finding.
Here, the ambiguity with respect to the predictor weights
W ∗

(main) is quite pronounced. For instance, Austria may be
used for synthesizing Germany with a weight of up to 67%
but may also be completely neglected for synthesizing, as
in the solution found by Abadie et al. (2015). On the other
hand, the country obtaining the largest weight in the solu-
tion of Abadie et al. (2015), Switzerland, may not be used
at all for synthesizing Germany. This rather large ambigu-
ity is again in line with our heuristic rule of thumb, as in
this case, there are only four countries obtaining positive
training weightsW ∗

(train), see Table 2. Correspondingly, the
gray area in Fig. 5 indicating the range of ambiguity now
is very large14 and the original result found by Abadie
et al. (2015) is extreme under all equivalent results: all
other possible results show smaller post-treatment gaps
between actual and synthetic Germany’s GDP per capita,
raising the question whether the gap in GDP due to the
reunification crucially hinges on the U.S. acting as a donor
country synthesizing Germany. The relative gap plot of
Fig. 5 also shows that the gap of approximately 7% in
2003 is not larger than the pre-treatment approximation
error of about 7% in the early 1970s, strengthening the
doubts whether there is still a significant gap in German
GDP per capita after the reunification when the US data
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Fig. 3 GDP timelines of actual Germany and various versions of synthetic Germany. Notes: left part: purchasing power parity (PPP)-adjusted GDP in
2002 US dollars, right part: percentage differences between actual Germany and synthetic Germany. “ADH” denotes the results obtained by Abadie
et al. (2015), “Stata Result (Orig.)” and “Stata Result (Alph.)” stand for the results we obtained using Stata, using the same ordering of the donors as
did Abadie et al. (2015) (“Orig.”), and alphabetical ordering (“Alph.”), respectively

is removed. Correspondingly, the ratio of post-treatment
over pre-treatment differences is only 4.64, quite a small
value as compared to the ratios of the in-space placebo
study. Therefore, in contrast to what Abadie et al. (2015)
find, it seems that including the US data is essential for
obtaining a significant gap in GDP between actual and
synthetic Germany.

Results using standard SCM
As a well-defined alternative to applying the cross-
validation technique, we will now use the standard syn-
thetic control method to analyze the reunification’s effect
on West Germany’s GDP. Applying this method, we
find Germany to be synthesized by Austria, the USA,
Switzerland, Japan, and the Netherlands, see Table 3.
We found identical donor weights when using R, Stata

with the original ordering, and Stata with alphabetical
ordering of donor countries, in line with the standard
SCM technique being well-defined. Furthermore, the
table also shows that, as discussed above, these donor
weights can be obtained by completely different predictor
weights.
The corresponding timelines for GDP per capita are dis-

played in Fig. 6, the results for the in-space placebo study
can be found in the left part of Fig. 7. These results are very
similar to those obtained when using the cross-validation
technique: after the reunification, Germany suffered from
a significant loss in GDP per capita which amounted to
roughly 11% in 2003.
Figure 6 as well as the right part of Fig. 7 show the

results after removing the US data from the sample.
The gap between actual and synthetic Germany reduces

Fig. 4 Ratios of post-treatment over pre-treatment root mean square prediction error (RMSPE) for in-space placebos. Notes: “ADH” denotes the
results obtained by Abadie et al. (2015)
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Table 2 Results (predictor weights V, donor weightsW for main
application and in training period, cross-validation criterion)
obtained in different ways

ADH Min. Max.

V weights GDP per capita 23.0 0.0 23.0

Trade openness 48.5 48.5 63.1

Inflation rate 22.1 22.1 28.9

Industry share 0.0 0.0 1.3

Schooling 0.0 0.0 12.9

Investment rate 6.5 1.3 9.2

W weights main UK 22.1 0.0 22.2

Austria 0.0 0.0 67.0

Denmark 0.0 0.0 17.7

Netherlands 11.9 0.0 29.3

Switzerland 37.6 0.0 37.8

Japan 28.3 22.8 45.9

W weights training Austria 36.1 36.1 36.1

Switzerland 29.3 29.3 29.3

Japan 24.0 24.0 24.0

Australia 10.7 10.7 10.7

C-V criterion RMSPE 84.7 84.7 84.7

Notes: “ADH” stands for the results of Abadie et al. (2015), “Min.” and “Max.” denote
minimal and maximal values, respectively, found under the condition that the
corresponding predictor weights V lead to identical donor weightsW in the
training period. All numbers are given in percent, suppressing donors with weight
less than 1%

to approximately 8%, and the ratio of post-treatment
differences to pre-treatment differences shrinks from
14.9 to 8.2, which is much smaller than the ratio for
Norway (12.7). Therefore, also when using the standard
SCM approach, the US data is essential for detecting a

Table 3 Results from standard SCM (predictor weights V, donor
weightsW) obtained in different ways

R Stata Orig. Stata Alph.

GDP per capita 48.5 62.9 0.0

Trade openness 0.0 0.0 0.0

Inflation rate 0.1 0.0 0.0

Industry share 0.0 0.0 0.0

Schooling 30.5 17.3 92.0

Investement rate 20.9 19.8 8.0

USA 16.0 16.0 16.0

Austria 62.6 62.6 62.6

Netherlands 1.5 1.5 1.5

Switzerland 13.1 13.1 13.1

Japan 6.8 6.8 6.8

Notes: “R” stands for results obtained using R, “Stata Orig.” are results from Stata with
the same ordering of donors as in the code of Abadie et al. (2015), “Stata Alph.”
denotes results from Stata with donors sorted alphabetically. All numbers are given
in percent, suppressing donors with weight less than 1%

significant gap in German GDP per capita caused by the
reunification.

Conclusions
The synthetic control method is an important tool
in policy evaluation which has been expanded by
Abadie et al. (2015), who introduce the cross-validation
technique for selecting predictor weights. In this paper,
we have shown that this technique is not well-defined
because it hinges on predictor weights which in many
applications will not be uniquely defined. When using
synthetic control methods in combination with cross-
validation, one might therefore arrive at ambiguous
results and conclusions.

Fig. 5 GDP timelines of actual Germany and various versions of synthetic Germany, leaving out US data. Notes: left part: purchasing power parity
(PPP)-adjusted GDP in 2002 US dollars, right part: percentage differences between actual Germany and synthetic Germany. “ADH result” denotes the
corresponding result obtained by Abadie et al. (2015), “ADH Main Result” their result obtained for complete data
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Fig. 6 GDP timelines of actual Germany and two versions of synthetic Germany. Notes: left part: purchasing power parity (PPP)-adjusted GDP in
2002 US dollars; right part: percentage differences between actual Germany and synthetic Germany. “Synthetic Germany” stands for the results
obtained when using standard SCM, “Synthetic Germany w/o US” is the corresponding result when the US data is removed from the sample

As far as theory is concerned, we derive a heuristic
rule of thumb which relates non-uniqueness of the pre-
dictor weights to the difference between the number of
predictors and the number of donor units that synthesize
the unit of interest in the training period. If this differ-
ence is positive, which is the case in most applications,
predictor weights based on cross-validation are typically
not uniquely defined, and the ambiguity with respect to
this non-uniqueness usually becomes larger the more this
difference increases.
Empirically, examining the German reunification using

the data of Abadie et al. (2015), we find that the amount
of ambiguity is rather small as far as the main appli-
cation is concerned. With respect to several robustness
studies, however, the ambiguity implied by the predictors’
non-uniqueness is significant, in particular for the leave-
one-out and in-space placebo studies.

The failure of synthetic control methods with cross-
validation is no failure of synthetic control methods
as such. One can simply stick to the standard syn-
thetic control method without cross-validation since it
does not contain a second estimation step for which
the predictor weights’ uniqueness is crucial. When
doing so for the example of the German reunifica-
tion, we mostly confirm the results of Abadie et al.
(2015)—there is a significant gap in German GDP due
to the reunification. With respect to robustness, how-
ever, we find, in contrast to Abadie et al. (2015),
that this result crucially depends on the US data
being included in the estimation. After removing the
US data from the sample, the estimated gap in GDP
after the German reunification becomes much smaller
and is no longer significant according to the in-space
placebo study.

Fig. 7 Ratios of post-treatment over pre-treatment root mean square prediction error (RMSPE) for in-space placebos, using standard SCM. Notes: left
part: results when using all data; right part: results after removing US data from the sample
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Endnotes
1 The seemingly small differences of the countries’

weights delivered by Abadie et al. (2015) (also called ADH
subsequently) and Stata are actually more pronounced,
cf. the “W Weights Main” entries of columns “ADH” and
“Alph.” in Table 1 below.

2The data file used by (Abadie et al. 2015) implicitly
orders the countries by the U.S., the UK, Austria, Belgium,
Denmark, France, West Germany, Italy, the Netherlands,
Norway, Switzerland, Japan, Greece, Portugal, Spain,
Australia, New Zealand.

3 See the “W Weights Main” entries of columns “ADH”
and “Orig.” in Table 1 below.

4As we need a very formal representation of the SCM
techniques for later use, we provide a rather mathematical
translation of the verbal description and R-code given by
Abadie et al. (2015).

5 For more details on variables as well as donor choice,
see Abadie et al. (2015, p. 509).

6 J denotes the number of donor units used to
synthesize the treated unit, for the application under con-
sideration, the German reunification, the J = 16 donor
units are given by the U.S., the UK, Austria, Belgium,
Denmark, France, Italy, the Netherlands, Norway,
Switzerland, Japan, Greece, Portugal, Spain, Australia,
and New Zealand.

7 For the application at hand, annual data from 1981 to
1990 are used, resulting in L = 10.

8Abadie et al. (2015, p. 502): “Intuitively, the cross-
validation technique selects the weights vm that minimize
out-of-sample prediction errors.”

9AsW ∗
(train)(αV ) = W ∗

(train)(V ) for all predictor weights
V and positive constants α > 0, one may assume with-
out loss of generality that predictor weights are always
scaled such that their components sum to unity, see, e.g.,
(Abadie and Gardeazabal 2003, p. 128), (Abadie et al.
2015, Footnote 5, p. 497)

10 For the German reunification, annual data for the
pre-treatment time span 1971–1990 are used, resulting in
L̃ = 20.

11 There exists another method to determine predictor
weights, the so-called regression-based method, which
however is rarely used in practice.

12More precisely, we simulated values for v1, . . . , vk
by independent draws from the Cauchy distribution,
solved Eq. (1), and checked whether W ∗

(train)(v1, . . . , vk)

was up to four digits equal to the “training” weights
given in Table 1. If this was the case, we computed
the corresponding “main” W weights and the other
follow-up quantities like GDP estimates, etc., and stored
the corresponding V weights for later use. The whole
procedure was repeated for several billion draws of
the V weights.

13Note that ranges might be underestimated as these
were calculated from the extensive, yet limited Monte
Carlo study that we conducted.

14 In terms of U.S. dollars, ranges in GDP per capita vary
between 681.8 and 1,979, with an average range of 1,198
dollars. In terms of relative differences between actual and
counterfactual GDP per capita, the smallest and largest
ranges are 2.48 and 33.15 percent, respectively, while the
average range is 14.97 percent.

15 Theoretically, it is possible that W ∗
(main)(Ṽ ) and

W ∗
(main)(V

∗) coincide. However, that would be quite a
coincidence.

16Onemay prove that these conditions are not only nec-
essary, but also sufficient for W ∗ being a minimizer of
Eq. (1).

17 It might be possible to strengthen the results of the
rule of thumb to obtain a rigorous mathematical state-
ment. This, however, is beyond the scope of this paper.

Appendix
Theory on predictor weights by cross-validation
Let V ∗ be a solution to Eq. (2) and W ∗

(train)(V
∗) be the

corresponding minimizer of Eq. (1). We denote by V :={
V : W ∗

(train)(V ) = W ∗
(train)(V

∗), 1′V = 1
}

the set of all
scaled predictor weightsV that lead to the same “training”
weights as V ∗.
The cross-validation technique is typically not well-

defined if predictor weights Ṽ ∈ V exist that
are different from V ∗. Then, Ṽ is also an opti-
mizer of the out-of-sample error, but leading to “main”
weights W ∗

(main)(Ṽ ) which typically do not coincide with
the corresponding “main” weights belonging to V ∗15:
W ∗

(main)(Ṽ ) �= W ∗
(main)(V

∗). Thus, well-definedness of the
cross-validation technique crucially hinges on V being a
singleton. Furthermore, the larger V , the more different
weights for synthesizing, W ∗

(main)(Ṽ ) for Ṽ ∈ V , will typ-
ically exist, and the larger the amount of ambiguity of the
cross-validation approach usually will be.
To develop a rule of thumb which sheds some light on

how large V and thus the resulting ambiguity of the cross-
validation technique are, we state the following Lemma.
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Lemma 1 For any given predictor weights V, an opti-
mizer W ∗ of Eq. (1)must fulfill the following conditions16:

1. for all j running through the components ofW ∗, with
ej denoting the j-th unit vector:

dj(W ∗,V ) :=
k∑

m=1
vm

(
X(train)
1m − X(train)

0m W ∗)

× X(train)
0m (W ∗ − ej) ≥ 0,

(6)

2. dj(W ∗,V ) = 0 for all j withW ∗
j > 0.

Proof For every j, consider

fj(δ) :=
k∑

m=1
vm

(
X(train)
1m − X(train)

0m
(
(1 − δ)W ∗ + δej

))2
.

The derivative of fj at δ = 0,

f ′
j (0) = 2

k∑

m=1
vm

(
X(train)
1m − X(train)

0m W ∗)X(train)
0m (W ∗ − ej)

= 2 dj(W ∗,V ),
must be non-negative, as otherwise the convex combina-
tion (1 − δ)W ∗ + δej would for small positive δ yield a
smaller value in (1) than does W ∗. For j with W ∗

j > 0,
the vector (1− δ)W ∗ + δej will have non-negative compo-
nents summing to unity even for negative δ that are small
enough in absolute value. Therefore, f ′

j (0) must vanish in
that case, as otherwise (1 − δ)W ∗ + δej for small negative
δ would yield a smaller value thanW ∗ in Eq. (1).

Fixing W ∗ := W ∗
(train)(V

∗), Lemma 1 states the condi-
tions V must fulfill to belong to V : dj(W ∗,V ) ≥ 0 for
all j with W ∗

j = 0, and dj(W ∗,V ) = 0 for all j with
W ∗

j > 0. As dj(W ∗,V ) is a linear function of v1, . . . , vk ,
the conditions for V to belong to V thus consist of linear
equations and inequalities: for the k unknown quantities
v1, . . . , vk , we have α linear equations and J − α linear
inequalities, with J denoting the number of donor units,
and α := {j : W ∗

j > 0}, the number of donor units which
obtain positive weights in the “training” period. As a rule
of thumb, we thus have the following17:

Rule of Thumb 1 The cross-validation method is typi-
cally not well-defined if the difference k − α between the
number of economic predictors (k) and the number of donor
units with positive W weight in the “training” period (α)
is positive. The larger the difference k − α, the larger is
typically the ambiguity induced by the cross-validation
technique.

Finally, notice that V is a convex set, as the conditions
in Lemma 1 are linear in the V weights. In particular, this
entails that as soon as V is not a singleton, V contains

infinitely many elements, with its dimension typically
increasing with k − α.
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