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Methods to identify linear network
models: a review
Arun Advani1 and Bansi Malde2*

Abstract

In many contexts we may be interested in understanding whether direct connections between agents, such as
declared friendships in a classroom or family links in a rural village, affect their outcomes. In this paper, we review the
literature studying econometric methods for the analysis of linear models of social effects, a class that includes the
‘linear-in-means’ local average model, the local aggregate model, and models where network statistics affect
outcomes. We provide an overview of the underlying theoretical models, before discussing conditions for
identification using observational and experimental/quasi-experimental data.

Keywords: Networks, Social effects, Peer effects, Econometrics

JEL Classification: C31, C81, Z13

Background
Researchers and policymakers are often interested in
identifying whether and the extent to which direct con-
nections between agents affect their outcomes. For exam-
ple, does the schooling performance of an individual
depend on that of her friends? Does the health seeking
behaviour of one’s relatives influence one’s own health
seeking behaviour? Are firms’ investment and pay deci-
sions influenced by the behaviour of firms in the same
or closely-related industry? The identification and estima-
tion of such social or network effects—direct spillovers
from the characteristics or outcomes of one agent to
the outcome of others—is of central interest in empirical
research on networks in economics.
This paper reviews recent developments in methods to

identify linear peer effect models using networks data—
data with detailed information on the exact interactions
between agents—when a single cross section of data is
available. Linear models are the most widely used in
empirical work, with many econometric methods devel-
oped to work with these, making them a natural choice to
consider in this review1. Moreover, panel data on the net-
work have until recently only rarely been available, so the
majority of methods focus on the case with a single cross
section of data2.

*Correspondence: b.k.malde@kent.ac.uk
2University of Kent, Canterbury and Institute for Fiscal Studies, London, UK
Full list of author information is available at the end of the article

We provide an overview of a number of commonly
used empirical specifications, the underlying theoretical
models that generate them; and the conditions for the
causal identification of parameters with cross-sectional
data. We first consider three ‘local’ models, where only an
agent’s direct connections (or neighbours) affect his out-
come. The three specifications allow this effect to depend
on the average outcome, total outcome, or both, of his
neighbours. In the absence of information on interactions
within a network (or group), identification of social effect
parameters is greatly complicated by the so-called reflec-
tion problem, a form of simultaneity where it is not pos-
sible to identify who influences whom within the network
or reference group (Manski 1993). Information on the
exact interactions within a network can break this simul-
taneity for a wide range of network structures, allowing
for identification of social effect parameters3.
Recent theoretical analyses have shown that the struc-

ture of networks, as well as positions of agents within
them influences agents’ overall outcomes on dimensions
such as information diffusion and risk sharing, among
others (Bloch et al. 2008; Jackson et al. 2012; Banerjee
et al. 2013). The availability of detailed network data has
motivated the testing of implications of these models
in recent work. We thus next discuss models where the
entire structure of the network might matter for an indi-
vidual’s outcome. Finally, we discuss how experimental
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and quasi-experimental variation could be used to
provide additional variation to uncover social effects.
Our objective is to provide an overview of methods

developed under the assumption that the network is
(conditionally) exogenously formed: that is, there are no
unobserved individual variables within the network that
determine who links with whom. This is an important
issue that is the subject of much recent research. A com-
panion paper (Advani and Malde 2016), as well as other
recent reviews (e.g. Graham 2015; Chandrasekhar 2015;
de Paula 2016), provide overviews of this issue and of
possible methods to deal with this.
An important issue in the practical estimation of social

effects relates to the definition and measurement of
the network. Our review proceeds assuming that the
researcher perfectly observes and measures the network
(or network neighbours) relevant for the outcome(s) of
interest. Clearly, the researcher’s choice of network to
use will influence the estimated parameters and poten-
tially lead to different policy implications. However, few
existing datasets collect information on more than one
type of network, so that in practice, researchers are often
restricted in their definition of the network by the avail-
able data. Nonetheless, existing studies indicate that the
definition of the network is important. For example,
Sacerdote (2001) finds that only students’ individual
room-mates affect their college performance, while a
broader set of peers matters for decisions related to social
group participation; Renna et al. (2008) document that
adolescents’ weights are more responsive to those of
their friends of the same gender, while Patacchini et al.
(2016) find that adolescent friendships lasting longer than
1 year have persistent effects on adolescents’ education
outcomes, while shorter-lived friendships do not. Mea-
surement error on the network will also bias parameter
estimates. A more detailed overview of this issue, as well
as of methods to deal with it, is provided in Advani and
Malde (2014) and another companion paper (Advani and
Malde 2016).
To illustrate the practical restrictions imposed by each

of the different models, empirical specifications and con-
ditions for causal identification, we will use a simple and
widely studied question in the education and labour eco-
nomics literatures: How is a teenager’s schooling perfor-
mance influenced by his friends? This is also a question
of great policy interest.4 More specifically, this paper will
provide an overview of methods that can yield answers
to questions such as ‘Is a teenager’s schooling perfor-
mance influenced by the average schooling performance
of her friends?’; ‘Do teenagers gain more utility from
studying if their friends also study?’; ‘What is the rel-
ative importance of the average schooling performance
of a teenager’s friends, and of complementarities aris-
ing from one’s friends’ studying decisions in shaping a

teenager’s overall schooling performance?’; and ‘How does
a student’s popularity influence his/her schooling perfor-
mance?’ The same methods can also be applied to answer
analogous questions about interactions between many
other types of agents.
The literature on methods for networks data is broad

and developing rapidly. We therefore focus our review
on the issues outlined above, leaving aside a number of
other interesting areas, including methods to deal with
endogenous network formation and measurement error
in the network, which we survey elsewhere (Advani and
Malde 2016). In addition, though many of the methods
reviewed here either build on or apply methods developed
in spatial econometrics, it is not our objective to provide
an overview of spatial econometric methods (see instead
Anselin 1988). Boucher and Fortin (2015) provide a com-
plementary review, though they do not cover methods
using experimental and quasi-experimental variation.
The rest of the paper is organised as follows. The

“Notation” section outlines the notation used in this
paper. The “Local average models” section provides an
overview of the local average model, where the average of
neighbours’ outcomes is allowed to affect an individual’s
outcome. In the “Local aggregate model” section, we cover
the local aggregate model, where instead it is the total of
neighbours’ outcomes that matters. In the “Hybrid local
models” section, we consider hybrid local models, which
allow both local average and local aggregate type effects.
We consider models including network statistics that are
not purely local, in the “Models with network characte-
ristics” section. Finally, we show how experimental and
quasi-experimental variation can be used to identify social
effects in the “Experimental variation” section, before
concluding.

Notation
We begin by outlining the notation we use throughout
the paper. We define a network or graph g = (Ng , E g) as
a set of nodes, Ng , and edges or links, Eg .5 The nodes rep-
resent individual agents, and the edges represent the links
between pairs of nodes. In economic applications, nodes
are usually individuals, households, firms or countries.
Edges could be social ties such as friendship, kinship, or
co-working, or economic ties such as purchases, loans,
or trade. The number of nodes present in g is Ng = |Ng |,
and the number of edges is Eg = |Eg |. We define
GN = {g : |Ng | = N} as the set of all possible networks on
N nodes.
In the simplest case—the binary network—any

(ordered) pair of nodes i, j ∈ Ng is either linked, ij ∈ Eg ,
or not linked, ij /∈ Eg . If ij ∈ Eg then j is described as being
a neighbour of i. We denote by neii,g = {j : ij ∈ Eg} the
neighbourhood of node i, which contains all nodes with
whom i is linked. Nodes that are neighbours of neighbours
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will be referred to as ‘second-degree neighbour’. Typically,
it is convenient to assume that ii /∈ Eg ∀i ∈ Ng . Edges
may be directed, so that a link from node i to node j is not
the same as a link from node j to node i; in this case, the
network is a directed graph (or digraph).
Network graphs, whether directed or not, can also be

represented by an adjacency matrix, Gg , with typical ele-
ment Gij,g . This is an Ng × Ng matrix with the leading
diagonal normalised to 0. When the network is binary,
Gij,g= 1 if ij ∈ Eg , and 0 otherwise, while for weighted
graphs, Gij,g = wei(i, j). We will use the notation Gi,g to
denote the ith row of the adjacency matrix Gg , and G′

i,g to
denote its ith column6. Many models defined for binary
networksmake use of the row-stochastic adjacencymatrix
or influence matrix, G̃g , whose elements are defined as
G̃ij,g = Gij,g/

∑
j Gij,g

7.
In what follows, we will frequently work with data from

a number of network graphs. Graphs for different net-
works will be indexed, in a slight abuse of notation, by
g = 1, . . . ,M, where M is the total number of networks
in the data. Node-level variables will be indexed with i =
1, . . . ,Ng , where Ng is the number of nodes in graph g.
Node-level outcomes will be denoted by yi,g , while exoge-
nous covariates will be denoted by the 1 × K vector xi,g
and common network-level variables will be collected in
the 1 × Q vector, zg .
The node-level outcomes, covariates and network-level

variables can be stacked for each node in a network.
In this case, we will denote the stacked Ng × 1 out-
come vector as yg and the Ng × K matrix stacking
node-level vectors of covariates for graph g as Xg . Com-
mon network-level variables for graph g will be gathered
in the matrix Zg = ιgzg where ιg denotes an Ng ×
1 vector of ones. The adjacency and influence matri-
ces for network g will be denoted by Gg and G̃g . At
times we will also make use of the Ng × Ng identity
matrix, Ig , consisting of ones on the leading diagonal, and
zeros elsewhere.
Finally, we introduce notation for vectors and matri-

ces stacking together the network-level outcome vectors,
covariate matrices and adjacency matrices for all net-
works in the data. Y = (

y′
1, . . . , y′

M
)′ is an

∑M
g=1Ng × 1

vector that stacks together the outcome vectors; G =
diag{Gg}g=M

g=1 denotes the
∑M

g=1Ng × ∑M
g=1Ng block-

diagonal matrix with network-level adjacency matrices
along the leading diagonal and zeros of the diagonal, and
analogously G̃ = diag{G̃g}g=M

g=1 (with similar dimensions
as G) for the influence matrices; and X = (

X ′
1, . . . ,X ′

M
)′

and Z = (
Z′
1, . . . ,Z′

M
)′ are respectively,

∑M
g=1Ng × K

and
∑M

g=1Ng ×Qmatrices, that stack together the covari-
ate matrices across networks. Finally, we define the vec-
tor ι as a

∑M
g=1Ng × 1 vector of ones and the matrix

L = diag
{
ιg

}g=M
g=1 , as an

∑M
g=1Ng × M matrix with

each column being an indicator for being in a particular
network.

Local averagemodels
Setup
In local average models, an agent’s outcome (or choice)
is influenced by the average outcome of its neighbours8.
Thus, an individual’s schooling effort or performance
is influenced by the average schooling effort or perfor-
mance of his friends. We characterise the individual as
a node, i, in network g, with outcome yi,g . This out-
come is modelled as being influenced by the individual’s
own observed characteristics, xi,g , scalar unobserved het-
erogeneity εi,g , observed network characteristics zg , an
unobserved network characteristic νg , and the average
outcomes and characteristics of neighbours,

∑Ng
j=1 G̃ij,gyj,g

and
K∑

k=1

Ng∑

j=1
G̃ij,gxj,k,g . Below, we consider identification con-

ditions when data are available from multiple networks,
though some results apply to data from a single network9.
Stacking together data from multiple networks yields

the following empirical specification, expressed in matrix
terms:

Y = αι+ βG̃Y + Xγ + G̃Xδ + Zη + Lν + ε (1)

where Y , ι, G̃, X, Z, L and ν are as defined previously.
Pre-multiplying the vector Y by G̃ gives a vector con-
taining, for each individual, the average outcome of his
neighbours, and similarly G̃X is a vector of the average
characteristics of his friends. The social effect of interest is
β , the effect of an increase in the mean of neighbours’ out-
come on the individual’s outcome. This is often described
as the ‘endogenous social effect’, in contrast to the (vector
of ) ‘contextual effect(s)’ (or ‘exogenous social effect(s)’), δ,
which represent the effect of an increase in neighbours’
characteristics. ν is described as the ‘correlated effect’,
capturing the correlation in individuals’ outcomes due to
common (unobserved) shocks.
Given the simple empirical form of this model, it has

been widely applied in the economics literature. Examples
include:

• Understanding how the average schooling
performance of an individual’s peers influences the
individual’s own performance in a setting where
students share a number of different classes (e.g. De
Giorgi et al. 2010), or where students have some (but
not all) common friends (e.g. Bramoullé et al. 2009).

• Understanding how non-market links between firms
arising from company directors being members of
multiple company boards influence firm choices on
investment and executive pay (e.g. Patnam 2013).
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Although this specification is widely used in the empirical
literature, few studies consider or acknowledge the form
of its underlying economic model, even though parame-
ter estimates are subsequently used to evaluate alternative
policies and to make policy recommendations. Indeed,
parameters are typically interpreted as in the economet-
ric model of Manski (1993), whose parameters do not map
back to ‘deep’ structural (i.e. policy invariant) parameters
without an economic model.

Theoretical foundations
An economic model that leads to this specification is one
where nodes have a desire to conform to the average
behaviour and characteristics of their neighbours (Akerlof
1980; Jones 1984; Bernheim 1994; Patacchini and Zenou
2012). In our schooling example, conformism implies that
individuals would want to exert a similar amount of effort
in their school work as their friends so as to ‘fit in’. Condi-
tional on the individual’s own characteristics which affect
his school effort, if his friends exert relatively low effort
in their school work, he will reduce his effort. Below we
write out this model more formally and demonstrate how
it leads to Eq. 1.
Conformism is commonly modelled by individual pay-

offs that are decreasing in the distance between own
outcome and network neighbours’ average outcomes10.
Payoffs are also allowed to vary with an individual het-
erogeneity parameter, πi,g(Xg , G̃i,g), which captures the
individual’s ability or productivity associated with the
outcome:

Ui
(
yi,g ; y−i,g ,Xg , G̃i,g

)
=

⎛

⎝πi,g
(
Xg , G̃i,g

)

i,g

− 1
2

⎛

⎝yi,g −2β
Ng∑

j=1
G̃ij,gyj,g

⎞

⎠

⎞

⎠ yi,g

(2)

β in Eq. 2 can be thought of as a taste for conformism.
Although we write this model as though individuals are
perfectly able to observe each others’ actions, this assump-
tion can be relaxed. In particular, an econometric specifi-
cation similar to Eq. 1 can be obtained from a static model
with imperfect information (see Blume et al. 2015).
The best response function derived from the first order

condition with respect to yi,g is:

yi,g = πi,g
(
Xg , G̃i,g

)
+ β

Ng∑

j=1
G̃ij,gyj,g (3)

Patacchini and Zenou (2012) derive the conditions
under which a Nash equilibrium exists, and characterise
properties of this equilibrium.

Note that this is not the only economic model that
leads to an empirical specification of this form: a similar
specification arises from, for example, models of perfect
risk sharing11. Here, when preferences are homogeneous
and risk is perfectly shared, the consumption of risk-
averse households will co-move with the average house-
hold consumption in the risk sharing group or network
Townsend (1994).
The individual heterogeneity parameter, πi,g(Xg , G̃i,g),

can be modelled as a linear function of observed and
unobserved individual and network characteristics:

πi,g
(
Xg , G̃i,g

)
= xi,gγ +

Ng∑

j=1
G̃ij,gxj,gδ + zgη + νg + εi,g

(4)

Substituting for this in Eq. 3, we obtain the following
best response function for individual outcomes:

yi,g = β

Ng∑

j=1
G̃ij,gyj,g+xi,gγ+

Ng∑

j=1
G̃ij,gxj,gδ+zgη+νg+εi,g

(5)

Then, stacking observations for all nodes in multiple
networks, we obtain Eq. 1, which can be taken to the data.

Identification
Without network fixed effects
Bramoullé et al. (2009) study the identification and esti-
mation of Eq. 1 in observational data with detailed net-
work information or data from partially overlapping peer
groups.12 To proceed further, one needs to make some
assumptions on the relationship between the unobserved
variables—ν and ε—and the other right-hand side vari-
ables in Eq. 1.
We first consider identification under the assumptions

that E
[
ε|X,Z, G̃] = 0 and E

[
ν| X,Z, G̃] = 0, i.e. both

the individual level error term, ε and the network level
unobservable are assumed to be mean independent of the
observed individual and network-level characteristics and
of the network. We will later relax the assumption on ν.
Under these assumptions, the parameters {α,β , γ , δ, η}

are identified if
{
I, G̃, G̃2} are linearly independent. Iden-

tification thus relies on the network structure. In particu-
lar, the condition would not hold in networks composed
only of cliques—subnetworks comprising of completely
connected components—of the same size, and where the
diagonal terms in the influence matrix, G̃ are not set to 0.
In this case, G̃2 can be expressed as a linear function of
I and G̃. Moreover, the model is then similar to the sin-
gle peer group case of Manski (1993), and the methods
outlined in Blume et al. (2010) apply.
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In an undirected network (such as that in the left panel
in Fig. 1 below), this identification condition holds when
there exists a triple of nodes (i, j, k) such that i is connected
to j but not k, and j is connected to k. The exogenous
characteristics of k, xk,g , directly affect j’s outcome, but
not (directly) that of i, hence forming valid instruments
for the outcome of i’s neighbours (i.e. j’s outcome) in
the equation for node i. Intuitively, this method uses the
characteristics of second-degree neighbours who are not
direct neighbours as instruments for outcomes of direct
neighbours.
It is thus immediately apparent why identification fails

in networks composed only of cliques: in such networks,
there is no triple of nodes (i, j, k) such that i is connected
to j, and j is connected to k, but i is not connected to k.
In the directed network case, the condition is some-

what weaker, requiring only the presence of an intransitive
triad: that is, a triple such that ij ∈ E , jk ∈ E and ik /∈ E
(as in the right panel of Fig. 1 above).13 This is weaker
than in undirected networks, which would also require
that ki /∈ E .
These conditions impose strong restrictions on

behaviour. The identification condition for undirected
networks, for example, relies on i and k not influenc-
ing one another directly, which might be too strong
an assumption in contexts such as within-classroom
networks, where it is not unreasonable to assume that
all students are likely to interact with one another, and
hence influence one another. Similarly, the identification
assumption in a directed network is likely to hold in spe-
cific contexts only: for example, the effort of check-out
workers who face the same direction (or are arranged in a
circle) would be influenced by that of the colleagues that
they can see, satisfying the identification condition (Mas
and Moretti 2009).
Let us consider how this method could be applied to

identify the influence of the average schooling perfor-
mance of an individual’s friends on the individual. Poten-
tial variables that one might include as controls include
the individual’s age, gender, and parental income; the aver-
age age, gender, and parental income of his friends; and
some observed school characteristics such as expenditure
per pupil. Assume first that the underlying friendship net-
work in this school is undirected as in the left panel of
Fig. 1, so that if i considers j to be his friend, j also consid-
ers i to be his friend. j also has a friend k who is not friends
with i. We could then use the age, gender, and parental

income of k as instruments for the schooling performance
of j in the equation for i. If instead, the network were
directed as in the right panel of Fig. 1, where the arrows
indicate who is affected by whom (i.e. i is affected by j in
the Figure, and so on), we can still use the age, gender, and
parental income of k as instruments for the school perfor-
mance of j in the equation for i even though k is connected
with i. This is possible since the direction of the relation-
ship is such that k’s school performance is affected by i’s
performance, but the converse is not true.

Including network fixed effects
The identification result above requires that the network-
level unobservable term be mean independent of the
observed covariates, X and Z, and of the network, G̃.
However, inmany circumstances, onemight be concerned
that unobservable characteristics of the network might
be correlated with X, so that E

[
ν|X,Z, G̃] �= 0. In the

schooling context, where the network of interest is often
constrained to be within the same school, a large literature
(e.g. Black 1999; Gibbons and Machin 2003; Bayer et al.
2007) indicates that wealthier parents choose to live in
areas with good schools, making it likely that childrenwith
higher parental income will be in schools with teachers
who have better unobserved teaching abilities. A natural
solution is to include network fixed effects, Lν̃, which will
control for the network-level unobservable, Lν, though at
the cost of allowing us to identify η.
Since the fixed effects themselves are generally not of

interest, to ease estimation they are removed using a
within transformation. This is done by pre-multiplying
Eq. 1 by J , a block diagonal matrix that stacks the network-
level transformation matrices Jg = Ig − 1

Ng

(
ιgι′g

)
along

the leading diagonal, and off-diagonal terms are set to
zero. This subtracts the network-level mean of the out-
come, giving a vector JY of deviations from themean. The
resulting model is of the following form:

JY = βJG̃Y + JXγ + JG̃Xδ + Jε (6)

The identification condition here imposes a stronger
requirement on network structure: now, the matrices{
I, G̃, G̃2, G̃3} need to be linearly independent. This

requires that there exists a pair of agents (i, l) such that the
shortest path between them is of length 3. That is, i would
need to go through at least two other nodes to get to l (as
in Fig. 2 below). The presence of at least two intermediate

a b

Fig. 1 Intransitive triad in a undirected network (a, left panel) and a directed network (b, right panel)
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agents allows the researcher to use the characteristics of
third-degree neighbours (neighbours-of-neighbours-of-
neighbours who are not direct neighbours or neighbours-
of-neighbours) as an additional instrument to account for
the network fixed effect.
A concern that arises when applying this method is

that of instrument strength. Bramoullé et al. (2009)
find that this varies with graph density, i.e. the pro-
portion of node pairs that are linked; and the level
of clustering, i.e. the proportion of node triples such
that precisely two of the possible three edges are
connected.14 Instrument strength is declining in den-
sity, since the number of intransitive triads tends to
zero, reducing the variation in the instrument. The
results for clustering are non-monotone and depend on
density.
The discussion thus far has assumed that the network

through which the endogenous social effect operates is
the same as the network through which the contextual
effect operates. It is possible to allow for these two net-
works to be distinct. This could be useful in the school
setting, for instance, where contextual effects could be
driven by the average characteristics of all students in the
school, while endogenous effects by the outcomes of a
subset of students who are friends. Such a formulation
allows for a more flexible representation of the environ-
ment: the contextual effect could operate through, for
example, the resources available to a school, which might
depend on the parental income of all students (if schools
are financed through local taxation), while peer influ-
ences on effort or performance might come only from
friends.
Let GX,g and Gy,g denote the network-level adjacency

matrices through which, respectively, the contextual and
endogenous effects operate. As before, we define the block
diagonal matrices GX = diag

{
GX,g

}g=M
g=1 and Gy =

diag
{
Gy,g

}g=M
g=1 . Blume et al. (2015) study identification of

this model assuming that both networks are (condition-
ally) exogenous and show that when the matrices Gy and
GX are observed by the econometrician, and at least one
of δ and γ is non-zero, then the necessary and sufficient
conditions for the parameters of Eq. 1 to be identified

are that the matrices I, Gy, GX and GyGX are linearly
independent.

Local aggregate model
The local aggregate class of models, studied theoretically
by Ballester et al. (2006), Calvó-Armengol et al. (2009),
and Bramoullé et al. (2014), and empirically by Calvó-
Armengol et al. (2009), Lee and Liu (2010), and Liu et
al. (2012), considers settings where agents’ utilities are
a function of the aggregate outcomes (or choices) of
their neighbours. This is in contrast with local average
models, where utilities are a function of the difference
between own outcome and the average outcome of one’s
neighbours. The local aggregate model thus encompasses
a different assumption on behaviour—it applies to sit-
uations where there are strategic complementarities or
strategic substitutabilities—and allows dyad-level social
effects to aggregate at a network or group level.
Examples of cases where strategic complementarities

and substitutabilities are likely to be at play and thus where
a local aggregate, rather than local average model, would
be more appropriate include:

• An individual’s costs of engaging in crime may be
lower when his neighbours also engage in crime (e.g.
Bramoullé et al. 2014).15

• An agent is more likely to learn about a new product
and how it works if more of his neighbours know
about it and have used it.

• A student gains more utility from undertaking effort
in studying if his friends also undertake more effort
(e.g. Calvó-Armengol et al. 2009).

Setup and theoretical foundations
The local aggregate model corresponds to the following
empirical specification:

Y = αι+ βGY + Xγ + G̃Xδ + Zη + Lν + ε (7)

where Y , G, X and Z are as defined earlier. In contrast
to the local average model, G̃ has been replaced by G.
As before, the social effect of interest is β , which now
represents the effect of the aggregate outcome of one’s
neighbours on one’s own outcome.

Fig. 2 Identification with network fixed effects. The picture on the left panel shows an undirected network with an agent l who is at least three steps
away from i, while the picture on the right panel shows the same for a directed network
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This specification can be motivated by the best
responses of a game in which nodes have linear-quadratic
utility and there are strategic complementarities or sub-
stitutabilities between the actions of a node and those
of its neighbours. A model of this type has been stud-
ied by among others, Ballester et al. (2006) and Bramoullé
et al. (2014). The former focus on the case of strategic
complementarities, while the latter study the case with
strategic substitutabilities and characterise all equilibria of
this game. In this model, the utility function for agent i in
network g takes the following form:

Ui
(
yi,g ; y−i,g ,Xg ,Gg

)
=

⎛

⎝πi,g
(
Xg , G̃i,g

)

− 1
2

⎛

⎝yi,g −2β
Ng∑

j=1
Gij,gyj,g

⎞

⎠

⎞

⎠ yi,g

(8)

where yi,g is i’s action or choice, and πi,g(Xg , G̃i,g) is,
as before, an individual heterogeneity parameter16. This
has the same form as Eq. 2, but with G replacing G̃.
πi,g(Xg , G̃i,g) is again typically parameterised as:

πi,g
(
Xg , G̃i,g

)
= xi,gδ +

n∑

j=1
G̃ij,gxj,gγ + zgη + νg + εi,g

so that individual heterogeneity is a function of a node’s
own characteristics, the average characteristics of its
neighbours, network-level observed characteristics, and
some unobserved network- and individual-level terms.
This model shares some features with the model of Blume
et al. (2015), as different network matrices are used to
capture the effects of neighbours’ outcomes and charac-
teristics, which helps to ease identification.
The quadratic cost of own actions means that in the

absence of any network, there would be a unique opti-
mal amount of effort the node would exert, as in the local
average model. β > 0 implies that neighbours’ actions are
complementary to a node’s own actions, so that the node
increases his actions in response to those of his neigh-
bours. If β < 0, then nodes’ actions are substitutes, and
the reverse is true. Nodes choose yi,g so as to maximise
their utility.
The best response function is:

y∗
i,g

(
Gg

) = β

n∑

j=1
Gij,gyj,g + xi,gδ +

n∑

j=1
G̃ij,gxj,gγ + zgη + νg + εi,g

(9)

Ballester et al. (2006) solve for the Nash equilibrium of
this gamewhen β > 0 and show that when |βωmax(Gg)|< 1,
where ωmax(Gg) is the largest eigenvalue of the matrix

Gg , the equilibrium is unique and the equilibrium out-
come relates to a node’s Katz-Bonacich centrality, which
is defined as b(Gg ,β) = (Ig − βGg)−1(ιg)17,18.
Bramoullé et al. (2014) study the game with strategic

substitutabilities between the action of a node and those
of its neighbours. In this case, when one agent chooses one
action, his neighbours would choose the opposite action,
inducing their neighbours to choose a similar action to the
first agent, and so on. In equilibrium, the agent’s choice is
influenced by the direct choice of his neighbours, as well
as by the aggregated sum of these opposing choices across
different network paths. Bramoullé et al. (2014) charac-
terise the set of Nash equilibria of the game and show that
they depend on the lowest eigenvalue of the network adja-
cency matrix, ωmin(Gg). This eigenvalue is negative and
relates to the aggregated effect of agents’ choices on oth-
ers. When it is large in magnitude, the opposing forces
outlined above could go inmany different directions, lead-
ing to multiple equilibria. When it is sufficiently small,
i.e. β|ωmin(Gg)| < 1, a unique equilibrium exists since
the opposing forces ‘balance out’ to converge to a single
point. Whenmultiple equilibria are possible, they must be
accounted for in any empirical analysis. Methods devel-
oped in the literature on the econometrics of games may
be applied here (Bisin et al. 2011). See de Paula (2013) for
an overview. Below, we focus on conditions under which
the social effect parameter is identified when a unique
equilibrium exists.
When a unique equilibrium exists, this theoretical setup

implies the following empirical model (stacking data from
multiple networks):

Y = αι + βGY + Xγ + G̃Xδ + Zη + Lν + ε (10)

where variables and parameters are as defined above.

Identification
Identification of Eq. 10 using observational data has been
studied by Calvó-Armengol et al. (2009), Lee and Liu
(2010) and Liu et al. (2012). They proceed under the
assumption thatE

[
ε|X,Z,G, G̃

]=0 andE
[
ν|X,Z,G, G̃

] �=
0. That is, the node-varying error component is condi-
tionally mean independent of node- and network-level
observables and of the network, while the network-
level unobservable could be correlated with node- and
network-level characteristics and/or the network itself.
These assumptions imply a two-stage network forma-

tion process. First, agents select into a network based
on a set of observed individual- and network-level char-
acteristics and some common network-level unobserv-
ables. Then in a second stage, they form links with other
nodes. There are no network-level unobservable factors
that determine link formation once the network has been
selected by the node. Moreover, there are no node-level
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unobservable factors that determine the choice of network
or link formation within the chosen network.
To proceed, we assume that data are available for mul-

tiple networks. Then, as in the “Local average models”
section, we replace the network-level observables, Z, and
the network-level unobservable, Lν in Eq. 10 with network
fixed effects, Lν̃, where ν̃ is a M × 1 vector that captures
the network fixed effects.
To account for the fixed effect, a within-transformation

is applied, as in the “Local average models” section.
This transformation is represented by the block diagonal
matrix J that stacks the following network-level transfor-
mation matrices—Jg = Ig − 1

Ng

(
ιgι′g

)
—along the leading

diagonal, with off-diagonal terms set to 0. The resulting
model, analogous to Eq. 6, is:

JY = βJGY + JXγ + JG̃Xδ + Jε (11)

The model above suffers from the reflection problem,
since Y appears on both sides of the equation. However,
the parameters of Eq. 11 can be identified using linear
instrumental variables (IV) if the deterministic part of the
right-hand side, [E(JGY ), JX, JG̃X], has full column rank.
To see the conditions under which this is satisfied, we
examine the term with the endogenous variable, E(JGY ).
Under the assumption that |βωmax(Gg)| < 1, we obtain
the following from the reduced form equation of Eq. 10:

E(JGY ) = J
(
GX + βG2X + . . .

)
γ + J

(
GG̃X + βG2G̃X + . . .

)
δ

+ J
(
GL + βG2L + . . .

)
ν̃

(12)

We can thus see that if the matrices {I,G, G̃,GG̃} are
linearly independent, and γ , δ, and ν̃ each have some non-
zero terms, the parameters of Eq. 10 are identified19. Node
degree (GL), along with the sum of the exogenous charac-
teristics of the node’s direct neighbours (GX), and sum of
the average exogenous characteristics of its second-degree
neighbours (GG̃X) can be used as instruments for the total
outcome of the node’s neighbours (GY ). That node degree
can be used as an instrument follows intuitively from
the theoretical model: when there are dyad-level strategic
complementarities, an individual’s own outcome will be
a weakly increasing function of the number of his direct
neighbours. Moreover, the availability of node degree as
an instrument can allow one to identify parameters with-
out using the exogenous characteristics, X, of second- or
higher-degree network neighbours, which can be particu-
larly advantageous when only sampled data are available,
as shown by Liu (2013).
In terms of practical application, consider using this

method to identify whether there are complementarities
between the schooling performance of an individual and
that of his friends, conditional on his own characteristics
(age, gender, and parental income), the composition of his

friends (average age, gender, and parental income), and
some school characteristics. Then, if there are individu-
als in the same network with different numbers of friends,
and the matrices

{
I,G, G̃,GG̃

}
are linearly independent,

the individual’s degree, along with the total characteristics
of his friends (i.e. total age, gender, and parental income)
and the sum of the average age, gender, and parental
income of the individual’s friends of friends can be used as
instruments for the sum of the individual’s friends’ school-
ing performance. Similar to the local average model, this
strategy relies on a researcher being able to define rea-
sonably well direct, as well as indirect, neighbours, which
might be less clear in some contexts.
Parameters can still be identified if there is no varia-

tion in node degree within a network for all networks in
the data, but there is variation in degree across networks.
In this case, Gg = d̄gG̃g and

[
E(JGY ), JX, JG̃X

]
has full

column rank if the matrices
{
I,G, G̃,GG̃, G̃2,GG̃2} are

linearly independent and γ and δ each have non-zero
terms20. This requires the presence of some pair of nodes
i and k, who are only indirectly connected. Finally, when
there is no variation in node degree within and across all
networks in the data, parameters can be identified using
a similar condition as encountered in the “Local average
model” section above: the matrices

{
I, G̃, G̃2, G̃3} should

be linearly independent.
It is possible to identify model parameters in the local

aggregate model in networks where the local average
model parameters cannot be identified. For example, in a
star network (see Fig. 3), there is no pair of agents that
has a geodesic distance (i.e. shortest path) of three or
more, so this fails the identification condition for the local

Fig. 3 Star network
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average model with fixed effects. However, there is varia-
tion in node degree within the network and the matrices
Ig ,Gg , G̃g ,GgG̃g can be shown to be linearly independent,
thus satisfying the identification conditions for the local
aggregate model.

Hybrid local models
The local average and local aggregate models embody dis-
tinct mechanisms through which social effects arise. One
may be interested in jointly testing these mechanisms, and
empirically identifying the most relevant one for a par-
ticular context. Liu et al. (2014a) present a framework
nesting both the local aggregate and local average models,
allowing for this.

Setup and theoretical foundations
The utility function for node i in network g that nests both
the (linear) local aggregate and local average models has
the following form:

Ui
(
yi,g ; y−i,g ,Xg , G̃i,g ,Gi,g

)
=

⎛

⎝πi,g
(
Xg , G̃i,g

)
+ β1

Ng∑

j=1
Gij,gyj,g

−1
2

⎛

⎝yi,g−2β2

Ng∑

j=1
G̃ij,gyj,g

⎞

⎠

⎞

⎠ yi,g

(13)

where πi,g(Xg , G̃i,g) is node-specific observed heterogene-
ity, which affects the node’s marginal return from the
chosen outcome level yi,g . A node’s utility is thus affected
by the choices of its neighbours through changing the
marginal returns of its own choice (e.g. in a schooling con-
text, an individual’s studying effort is more productive if
his friends also study), as in the local aggregate model, and
by a cost of deviating from the average choice of its neigh-
bours (i.e. individuals face a utility cost if they study when
their friends do not study), as in the local average model.
The best reply function for a node i nests both the

local average and local aggregate terms. Liu et al. (2014a)
prove that under the condition that β1 ≥ 0, β2 ≥ 0 and
dmax
g β1 + β2 < 1, where dmax

g is the largest degree in net-
work g, the simultaneous move game has a unique interior
Nash equilibrium in pure strategies. Note that this rules
out the possibility of individuals’ actions being strategic
substitutes (i.e. β < 0), as for example if one student in
a group needs to supply effort on homework so that the
others can copy him.
The econometric model, assuming that the node-

specific observed heterogeneity parameter takes the form
πi,g

(
Xg , G̃i,g

)
= xi,gγ + ∑Ng

j=1 G̃ij,gxj,gδ + zgηg + νg + εi,g ,
is as follows:

Y = αι+β1GY+β2G̃Y+Xγ +G̃Xδ+Zη+Lν+ε (14)

using the same notation as before.
With data from only a single network it is not possible

to separately identify β1 and β2 and hence test between
the local aggregate and local average models (or indeed
find that the truth is a hybrid of the two effects). Iden-
tification of parameters is considered when data from
multiple networks are available under the assumption that
E

[
εi,g |Xg ,Zg ,Gg , G̃g

] = 0 and E
[
νg |Xg ,Zg ,Gg , G̃g

] �= 0.
Thus, as in the “Local average models” and “Local aggre-
gate model” sections above, the individual error term,
εi,g is assumed to be mean independent of node- and
network-level observable characteristics and the network.
The network-level unobservable, νg , by contrast is allowed
to be correlated with node- and network-level character-
istics and/or the network.

Identification
To proceed, as in the local average and local aggre-
gate model, Zη and Lν are replaced by a network-level
fixed effect, Lν̃, which is then removed using the within-
transformation, J . The resulting transformed network
model is:

JY = β1JGY + β2JG̃Y + JXγ + JG̃Xδ + Jε (15)

When there is variation in the degree within a
network g, the reduced form equation of Eq. 15 implies
that JG(I − β1G − β2G̃)−1L can be used as an instru-
ment for the local aggregate term JGY and JG̃(I − β1G −
β2G̃)−1L can be used as an instrument for the local
average term JG̃Y . The model parameters may in prin-
ciple thus be identified even if there are no node-level
exogenous characteristics, X, in the model, as long as
β1 �= 0. However, if β1 = 0, the model excluding exoge-
nous characteristics, X, is tautological—in this case one
is simply regressing individuals’ outcomes on the mean
of the outcomes (see Angrist 2014, for further discus-
sion). The availability of such characteristics offers more
possible IVs: in particular, the total and average exoge-
nous characteristics of direct and indirect neighbours can
be used as instruments. These are necessary for identi-
fication when all nodes within a network have the same
degree, though average degree may vary across networks.
In this case, parameters can be identified if the matrices
{
I,G, G̃,GG̃, G̃2,GG̃2, G̃3} are linearly independent21. If,
however, all nodes in all networks have the same degree,
it is not possible to identify separately the parameters β1
and β2.
This specification nests both the local average and local

aggregate models, so a J-test for non-nested regression
models can be applied to uncover the relevance of each
mechanism. The intuition underlying the J-test is as fol-
lows: if a model is correctly specified (in terms of the set
of regressors), then the fitted value of an alternative model
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should have no additional explanatory power in the orig-
inal model, i.e. its coefficient should not be significantly
different from zero. Thus, to identify which of the local
average or local aggregate mechanisms is more relevant
for a specific outcome, one could first estimate one of
the models (e.g. the local average model), and obtain the
predicted outcome value under this mechanism. In a sec-
ond step, estimate the other model (in our example, the
local aggregate model) and include as a regressor the pre-
dicted value from the other (i.e. local average) model. If
the mechanism underlying the local average model is also
relevant for the outcome, the coefficient on the predicted
value will be statistically different from 0. The converse
can also be done to test the relevance of the second model
(the local aggregate model in our case) (see Liu et al.
(2014a) for more details).

Models with network characteristics
The models considered thus far allow for a node’s out-
comes to be influenced only by outcomes of its neigh-
bours, so-called local models. However, the broader net-
work structure may affect node- and aggregate network-
outcomes through more general functionals or features of
the network. Depending on the theoretical model used,
there are different predictions on which network features
relate to different outcomes of interest. For example, the
DeGroot (1974) model of social learning implies that a
node’s eigenvector centrality, which measures its ‘impor-
tance’ in the network by how important its neighbours are,
determines how influential it is in affecting the beliefs of
other nodes.
Empirical testing and verification of the predictions of

these theoretical models has greatly lagged the theoretical
literature due to a lack of datasets with both information
on network structure and socio-economic outcomes of
interest. The recent availability of detailed network data
from many contexts has begun to relax this constraint.
The following types of specification are typically esti-

mated when assessing how outcomes vary with network
structure, for node-level outcomes:

Y = f y(wy(G, Y ),X,wx(G, X),Z) + ε (16)

and network-level outcomes:

Ȳ = f ȳ(w̄ȳ(G), X̄, w̄x̄(G, X̄)) + u (17)

f y(.) and f ȳ(.) are functions that specify the shape of the
relationship between the network statistics and the node-
and network-level outcomes. Though, in principle, the
shape of f y(.) should be guided by theory (where possi-
ble), through the rest of this section, we take f y(.) to be
a linear index in its argument, as is common in the liter-
ature. wy(G, Y ) is an

(∑M
g=1Ng × R

)
matrix stacking the

(1 × R) node-level vector of network statistics that vary

at the node or network level and that may be interacted
with Y 22. w̄ȳ(G) is an (M × R̄) matrix containing the R̄
network statistics in the network-level regression. X is a
matrix of observable characteristics of nodes, wx(G, X)

interacts network statistics with exogenous characteris-
tics of nodes, and Z and X̄ are network-level observable
characteristics. w̄x̄(G, X̄) interacts network statistics with
network-level observable characteristics.
The complexity of networks poses an important chal-

lenge in understanding how outcomes vary with network
structure. In particular, there are no sufficient statistics
that fully describe the structure of a network. For example,
networks with the same average degree may vary greatly
on dimensions such as density, clustering and average path
length among others. Moreover, the adjacency matrix, G,
which describes fully the structure of a network, is too
high-dimensional an object to include directly in tests of
the influence of broader features of network structure.
Theory can provide guidance on which statistics are likely
to be relevant, and also on the shape of the relationship
between the network statistic and the outcome of inter-
est. A limitation though is that theoretical results may not
be available (given currently known techniques) for out-
comes one is interested in studying. This is a challenge
faced by, for instance Alatas et al. (2016) who study how
network structure affects information aggregation.
Below we outline methods that have been applied to

analyse the effects of features of network structure on
socio-economic outcomes. We do so separately for node-
level specifications and network-level specifications. This
literature is very much in its infancy and few methods
have been developed to allow for identification of causal
parameters.

Node-level specifications
Many theoretical models predict how node-level out-
comes vary with the ‘position’ of a node in the network,
captured by node varying network statistics such as cen-
trality; or with features of the node’s local neighbourhood
such as node clustering; or with the ‘connectivity’ of the
network, represented by statistics that vary at the network
level such as network density.
A common type of empirical specification used in the

literature correlates network statistics with some rele-
vant socio-economic outcome of interest. This approach
is taken by, for example, Jackson et al. (2012) who test
whether informal favours take place across edges that
are supported (i.e. that nodes exchanging a favour have
a common neighbour), which is the prediction of their
theoretical model.
This corresponds with wy(G,Y ) in Eq. 16 above being

defined aswy(G,Y ) = ω, whereω is thematrix of network
statistics of interest, andwx(G,X) being defined as ι. Here,
wy(G,Y ) is defined to be a function of the network only.
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When f y(.) is linear, the specification is as follows:

Y = αι+ωβ + Xγ + Zη + ε (18)

where the variables and parameters are as defined
above and the parameter of interest is β . Defining
W = (ω,X,Z), the key identification assumption is that
E

[
ε′W

] = 0, that is that the right-hand side terms are
uncorrelated with the error term. This may not be satis-
fied if there are unobserved factors that affect both the
network statistic (through affecting network formation
decisions) and the outcome, Y or if the network statistic is
mismeasured. Both of these are important concerns that
we cover in detail in Advani and Malde (2016).
In some cases, one may also be interested in estimat-

ing a model where an agent’s outcome is affected by the
outcomes of his neighbours, weighted by a measure of
their network position. For example, in the context of
learning about a new product or technology, the DeG-
root (1974) model of social learning implies that nodes’
eigenvector centrality determines how influential they are
in influencing others’ behaviour. Thus, conditional on the
node’s eigenvector centrality, its choices may be influ-
enced more by the choices of his neighbours with high
eigenvector centrality. Thus, one may want to weight the
influence of neighbours’ outcomes on own outcomes by
their eigenvector centrality, conditional on own eigenvec-
tor centrality. If we model this linearly, it implies a model
of the following form:

Y = αι+wy(G, Y )β + X̃γ̃ +wx(G, X̃)δ̃ +Zη +Lν + ε

(19)

wy(G, Y ) is an
∑

g Ng × R matrix, with the (i, r)th
element being the weighted sum of i’s neighbours’ out-
comes,

∑
j �=iGij,gyj,gωr

j,g or
∑

j �=iG̃ij,gyj,gωr
j,g , with weights

ωr
j,g being the neighbour’s rth network statistic (e.g. the

neighbour’s eigenvector centrality in the DeGroot model
of social learning). X̃ =

(
X̃ ′
1, X̃

′
2, . . . , X̃

′
M

)′
, where X̃g =

(Xg ,ωg) is a matrix stacking together the network-level
matrices of exogenous explanatory variables and (own)
network statistics of interest. wx(G, X̃) could be defined
as GX̃ or G̃X̃. Note that this formulation allows for the
influence of neighbours’ background characteristics on
the outcome to be weighted by the values of their network
statistics. Identification of parameters in this case is com-
plicated by the fact thatwy(G, Y ) is a (possibly non-linear)
function of Y , and thus endogenous. It may be possible to
achieve identification using network-based instrumental
variables, as above, though it is not immediately obvious
how such an IV could be constructed. Further research is
needed to shed light on these issues.

Network-level specifications
Aggregate network-level outcomes, such as the degree of
risk sharing or the aggregate penetration of a new product,
may also be affected by how ‘connected’ the network is, or
the ‘position’ of nodes that experience a shock or who first
hear about a new product.
Empirical tests of the relationship between aggregate

network-level outcomes and network statistics involve
estimating specifications such as Eq. 17. The shape of the
function f ȳ(.) and the choice of statistics in w̄ȳ(G) = ω̄,
where ω̄ is an (M × R̄) matrix of network statistics, are
again, ideally, motivated by theory. With linear f ȳ(.), this
implies the following equation:

Ȳ = φ0 + ω̄φ1 + X̄φ2 + w̄x̄(G, X̄)φ3 + u (20)

where the variables are as defined after Eq. 17. The
parameter of interest is typically φ1. Defining W̄ =(
ω, X̄, w̄x̄

(
G, X̄

))
, the key identification assumption is that

E
[
uW̄

] = 0, which will not hold if there are unobserved
variables in u that affect both the formation of the network
and the outcome ȳ; or if the network statistics are mismea-
sured. Recent empirical work, such as that by Banerjee
et al. (2013), has used quasi-experimental variation to try
and alleviate some of the challenges posed by the former
issue in identifying the parameter φ1.
Since this specification uses data at the network level,

estimation will require a large sample of networks in order
to recover precise estimates of the parameters, even in
the absence of endogeneity from network formation and
mismeasurement of the network. This is a problem in
practice, since networks data are difficult and costly to col-
lect, meaning that in practice researchers have data for a
small number of networks only.

Experimental variation
Thus far, we have considered the identification of the
social effect parameters using observational data. We
now consider identification of these parameters using
experimental data. We focus on the case where a policy
is assigned randomly to a sub-set of nodes in a net-
work. Throughout, we assume that the network is pre-
determined and unchanged by the exogenously assigned
policy23.
We focus the discussion on identifying parameters of

the local average model specified in the “Local average
models” section above, studied by Dieye et al. (2014). The
issues related to using experimental variation to uncover
the parameters of the local aggregate model are similar.
As outlined above, this model implies that a node’s out-
come is affected by the average outcome of its network
neighbours, its own and network-level exogenous char-
acteristics (the latter may be subsumed into a network
fixed effect), and the average characteristics of its network
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neighbours.We are typically interested in parameters β , γ
and δ in the following equation:

Y = αι+ βG̃Y + Xγ + G̃Xδ + Lν̃ + ε (21)

where the variables are as defined previously.
Throughout this section, we assume that the policy

shifts outcomes for the nodes that directly receive the pol-
icy24. To proceed further, we first assume that a node
that does not receive the policy (i.e. is untreated, to use
the terminology from the policy evaluation literature) is
only affected by the policy through its effects on the out-
comes of the node’s network neighbours. This implies the
following model for the outcome Y :

Y = αι+ βG̃Y + Xγ + G̃Xδ + ρt + Lν̃ + ε (22)

where t is the treatment vector and ρ is the direct effect
of treatment. We assume that E

[
ε|X,Z, G̃, t

] = 0. More-
over, random allocation of the treatment implies that
t ⊥⊥ X,Z, G̃, ε. Applying the same within-transformation
as in the ‘Local average models’ section above to account
for the network-level fixed effect leads to the following
specification:

JY = αJι+ βJG̃Y + JXγ + JG̃Xδ + ρJt + Jε (23)

We can use instrumental variables to identify β as long
as the deterministic part of the right-hand side of Eq. 23,[
E(JG̃Y ), JX, JG̃X, Jt

]
has full column rank. JX and JG̃X

can be used as instruments for themselves. We thus need
an instrument for E

[
JG̃Y

]
. We use the following expres-

sion for JG̃Y , derived from the reduced form of Eq. 21
under the assumption that |β| < 1, to construct instru-
ments:

E

[
JG̃Y

]
=JG̃

∞∑

s=0
βsG̃sαι + J

(
G̃Xγ + βG̃2Xγ + . . .

)

+ J
(
G̃2Xδ + βG̃3Xδ + . . .

)

+ J
(
ρG̃t + βρG̃2t + . . .

)
(24)

From this equation, we can see that G̃t, the average
treatment status of a node’s network neighbours, appears
in the reduced form for E[ JG̃Y ]. However, it does not
appear in Eq. 22. It can thus be used as an instrument for
G̃Y , either in addition to, or as an alternative to G̃2X and
G̃3X, the average characteristics of the node’s second- and
third-degree neighbours. Thus, the policy could be used
to identify the model parameters, albeit under a strong
assumption on the mechanism by which it has any effect
(see below)25.
An advantage to using G̃t as an instrument for the

endogenous G̃Y is that, since the treatment is randomly
assigned, and if it only directly affects the treated indi-
vidual’s outcome, it might be a more plausible instrument

than G̃2X and G̃3X. A second advantage of this instru-
ment relative to G̃2X and G̃3X is that it only requires
knowledge of agents’ direct neighbours. The identification
conditions outlined previously in the “Local average mod-
els” to “Hybrid local models” sections hinge on the fact
that within the network of interest, some agents are only
indirectly connected, which might be too strong in some
contexts. Identification here requires sufficient variation
in the proportion of an agents’ direct neighbours that are
treated for it to be a powerful instrument, which imposes
fewer restrictions on network structure (e.g. there should
be variation in degree within the network). As a result, the
social effect parameter can be identified in a wider range
of network structures.
In many cases, however, the assumption that the pol-

icy affects a node’s outcome only if it is directly treated
may be too strong. The treatment status of a node’s neigh-
bours could affect its outcome even when the neighbours’
outcomes do not shift in response to receiving the pol-
icy. An example of such a case, studied by Banerjee et al.
(2013), is when the treatment involves providing individ-
uals with information on a new product, and the outcome
of interest is the take-up of the product. Then neigh-
bours’ treatment status could affect the individual’s own
adoption decision by (1) shifting his neighbours’ decision
(endorsement effects) and also (2) through neighbours
passing on information about the product and letting the
individual know of its existence (diffusion effect)26. In
this case, which is studied by Dieye et al. (2014), a more
appropriate model would be as follows:

Y = αι + βG̃Y + Xγ + G̃Xδ + ρt + G̃tμ + ε (25)

where ρ captures the direct treatment effect, i.e. the effect
of a node itself being treated, and μ is the direct effect
of the average treatment status of social contacts. This
highlights the limits to using exogenous variation from
randomised experiments to identify social effect parame-
ters. We might want to use the exogenous variation in the
average treatment allocation of a node’s neighbours, G̃t,
as an instrument for neighbours’ outcomes, G̃Y . However,
this will identify β only under the assumption that μ = 0,
i.e. there is no direct effect of neighbours’ treatment sta-
tus. This rules out economic effects such as the diffusion
effect.
We can still make use of the treatment effect for identi-

fication, by using the average treatment status of a node’s
second-degree (and higher-degree) neighbours, G̃2t, as
instruments for the average outcome of his neighbours
(G̃Y ). This is the same identification result as discussed
earlier, from Bramoullé et al. (2009), and simply treats G̃2t
in the same way the other covariates of second-degree
neighbours, G̃2X. Such instruments rely not only on varia-
tion in treatment status, but also on the network structure,
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with identification not possible for certain network struc-
tures as we saw in the “Local average models” section. As
before, note that instruments based on random treatment
allocation and network structure (e.g. G̃t and G̃2t) will be
more plausible than those based on the exogenous char-
acteristics, X, and the network structure (e.g. G̃2X) since
t has been randomly allocated, whereas X need not be27.
Thus far, we have discussed how exogenous variation

arising from the random assignment of a policy can
be used to identify the social effect associated with a
specific model—the local average model—which, as we
saw, arises from an economic model where agents con-
form to their peers. In empirical work, though, it is
common for researchers to directly include the aver-
age treatment status of network neighbours, rather than
their average outcome, as a regressor in the model.
In other words, the following type of specification is
usually estimated:

Y = b1ι + b2G̃t + Xb3 + G̃Xb4 + b5t + u (26)

A non-zero value for b2 is taken to indicate the presence
of some social effect. However, without further modelling,
it is not possible to shed light on the exact mechanism
underlying this social effect, or the value of some ‘deep’
structural parameter.
When within-network experimental variation is used

to identify social effects, careful attention must be paid
to the important issue of inference. At one extreme, a
researcher might have many (often thousands) of nodes
embedded in the same network, and construct a valid
comparison group using similar nodes embedded in a
different part of the network to the treated node. The
complication in computing standard errors comes from
the fact that all nodes are embedded within the same
network, and may face correlated unobserved shocks.
Though these shocks may not affect identification, they
will generate correlations in the outcomes of units, and
must be accounted for when conducting inference. The
availability of only a single network makes it very dif-
ficult to derive large sample approximations of distri-
butions and thereby to calculate valid standard errors.
Athey et al. (2015) extend the method of randomisa-
tion inference, which calculates exact p values, to this
setting. Under randomisation inference, the distribution
of the test statistic is generated by considering all pos-
sible realisations of the treatment assignment, keeping
the potential outcomes and characteristics of units fixed.
A drawback of this procedure is that it allows for test-
ing of sharp null hypotheses—e.g. the treatment has no
effect whatsoever—only. However, we often want to test
non-sharp hypotheses. Athey et al. (2015) develop meth-
ods for the computation of p values for three specific
null hypotheses.

Conclusions
In this paper, we provide an overview of methods to iden-
tify social effects in linear social effect models using a
single cross section of data. For a number of the most
commonly used specifications of linear local models,
we provide an overview of the theory models that
could generate the empirical linear local specification,
before outlining the conditions under which the social
effect parameters of interest are identified. Thereafter,
we describe what is known so far about non-local mod-
els, before considering how experimental and quasi-
experimental variation can be used to identify the social
effects. Our focus is on methods that take the network to
be (conditionally) exogenous as well as perfectly observed
by the researchers.
When data are available only on agents and the refer-

ence groups to which they belong, researchers have for
some time worried about how social effects might be
identified. However, when detailed data on nodes and
their individual links are present, identification of social
effects (taking the network as conditionally exogenous)
is generic, and estimation is relatively straightforward.
Three broader conceptual issues exist in this case.
First, theory is often silent on the precise form that

peer effects should take when they exist. Since Manski
(1993), many people have focused on the ‘local aver-
age’ framework, often without discussion of the impli-
cations for economic behaviour, but social effects might
instead take a local aggregate, or indeed local maxi-
mum/minimum form where the best child in a class-
room provides a good example to all others, or the
worst disrupts the lesson. Until a non-parametric way
of allowing for social effects is developed, researchers
need to use theory to guide the empirical specification
they use.
Second, researchers typically treat the observed net-

work as the network which mediates the social effect,
and where many networks are observed the union of
these is taken. However, this could generate important
biases if the actual network is different to that observed,
either due to measurement error or because a different
type of relationship is the relevant one for mediating a
particular effect. Here again it is important that some jus-
tification is given for why the network used should be the
appropriate one.
Finally, the observed network is typically treated as

exogenous, or at least the errors are treated as being mean
independent of the network. In many circumstances, one
might imagine that agents choose which links to form,
and these choices may depend on characteristics that are
neither observed by the econometrician nor independent
of the outcome. This creates a problem for identifica-
tion strategies that rely on the absence of links (i.e. using
friends-of-friends), since the absence of a linkmay contain
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some information about the difference in the unobserv-
ables. For instance, more motivated pupils in a school may
choose to link with other motivated pupils, or individuals
may choose to become friends with other individuals who
share a common interest (such as an interest in reading,
or mathematics) that is unobserved in the data available
to the researcher. In such examples, the absence of a link
is due to the unobserved terms of the two agents being
correlated in a specific way rather than the absence of
correlation between these terms. Recent literature, includ-
ing Goldsmith-Pinkham and Imbens (2013), Blume et al.
(2015), Arduini et al. (2015) and Horace et al. (2015)
among many others, has begun considering solutions to
this issue. Many of these methods are reviewed in a longer
working paper version of this article (see Advani and
Malde 2014).
Muchwork has been done to developmethods for work-

ing with network data, both in economics and in other
fields. Applied researchers can therefore take some com-
fort in knowing thatmany of the challenges they face using
these data are ones that have been considered before,
and for which there are typically at least partial solu-
tions already available. While the limitations of currently
available techniques mean that empirical results should
be interpreted with some caution, attempting to account
for social effects is likely to be less restrictive than simply
imposing that they cannot exist.

Endnotes
1 Brock and Durlauf (2001); Brock and Durlauf (2007)

study identification of social effects in models with dis-
crete outcomes.

2 Panel data on networks are becoming increasingly
available. Such longitudinal information can be useful
in making identification more credible by, for example,
allowing for models that account for fixed unobserved
variables that affect both the network and the outcomes
of interest. Studies making use of such data to estimate
peer effects include Patnam (2013); Goldsmith-Pinkham
and Imbens (2013); Comola and Prina (2014). The for-
mer studies use the panel data to account for network
endogeneity. More commonly, studies often have avail-
able data with a panel dimension of outcomes, but only
a single measurement of the network. The methods out-
lined in this paper can be applied in these cases, though
stronger restrictions could also be imposed improving the
credibility of identification.

3 It is possible to overcome the reflection problem with-
out detailed networks data. Possible methods include
using conditional variance restrictions as in Graham

(2008), or using variation in network/group size as in
Lee (2007). Blume et al. (2010) provide a more complete
overview of the different methods.

4 See Sacerdote (2011) for an overview of this literature.
5 In a slight abuse of notation, we will also use g to index

individual networks when data from multiple networks
are available.

6G′
i,g is the ith row of G′

g , which is the ith column of Gg .
7 A row stochastic (also called ‘right stochastic’ matrix)

is one whose rows are normalised so they each sum to one.
8 Identification of parameters in such a model was first

systematically considered by Manski (1993).
9When data on only a single network are available,

the empirical specification is as follows: yg = ν̃gι +
βG̃gyg + Xgγ+G̃gXg δ+ εg , where ν̃g = α + zgη + νg
in our earlier notation, capturing all of the network-level
characteristics.

10Notice that in Eq. 2,
∑Ng

j=1 G̃ij,gyj,g is identical to the ith

row of G̃gyg , which appears in Eq. 1.
11Consumer demand models where, given prices, an

individual’s demand increases with average demand of
some reference group also generate a similar specifica-
tion (see Gaertner 1974; Pollak 1976; Alessie and Kapteyn
1991; Case 1991).

12 Similar identification results have been independently
described by De Giorgi et al. (2010), who have data with
overlapping peer groups of students who share a number
of classes.

13 Equivalently, a triple such ji ∈ E , kj ∈ E and ki /∈ E

forms an intransitive triad.
14 This definition is also referred to as the clustering

coefficient.
15 The games considered in both Bramoulle and Kranton

(2007) and Bramoullé et al. (2014) are not strictly linear
models, since there are corner solutions at zero.

16Notice that
∑Ng

j=1Gij,gyj,g = Gi,gyg .
17A more general definition for Katz-Bonacich central-

ity is b(Gg ,β , a) = (Ig − βGg)−1(aGgιg), where a > 0 is a
constant (Jackson 2008).

18 The condition that |βωmax(Gg)| < 1 ensures that
positive feedback loops set off by these complementari-
ties don’t diverge without bound. The extent to which it
binds will depend on the underlying network topology:
the largest eigenvalue increases with additional links so
that in larger and denser networks the largest possible
value of β for which the condition holds will be smaller.
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19 See Liu et al. (2012) for a different identification con-
dition that allows for some linear dependence among
these matrices under additional restrictions.

20With additional restrictions, identification can still be
achieved when there is some linear dependence in these
matrices. See Liu et al. (2012) for details.

21As with the local average and local aggregate model,
this identification assumption imposes that there are pairs
of individuals who influence the other (or each other)
indirectly only, which might be very strong in some con-
texts.

22 The termwy(G, Y )will be endogenous when network
statistics are interacted with Y .

23 This assumption is not innocuous. Comola and Prina
(2014) provide an example where the policy intervention
does change the network.

24 Below, we will consider identification conditions in
the case where a node may be affected by the treatment
status of his network neighbours even if their outcomes
do not shift in response to the treatment.

25 Similar results can be shown for the local aggregate
model when |βωmax(G)| < 1. However, as shown above,
node degree can also be used as an additional instrument
in this model.

26 The study of how to use these effects to maximise the
number of people who adopt relates closely to study of the
‘key player’ in work by Ballester et al. (2006) and Liu et al.
(2012).

27However, it is important to remain aware that if
some variables in X are not exogenous (and so not suit-
able instruments when combined with network matrices),
then their inclusion in estimation equation will already be
a problem.
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