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Abstract.
We propose a test for time-varying impulse responses in heteroskedastic struc-

tural vector autoregressions that can be used when the shocks are identified by
external proxy variables as a group. The test can be used even if the shocks are
not identified individually. The asymptotic analysis is supported by small sample
simulations which show good properties of the test. An investigation of the impact
of productivity shocks in a small macroeconomic model for the U.S. illustrates the
importance of the issue for empirical work.
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1 Introduction

Using external instruments or proxies to identify shocks of interest in structural vector
autoregressive (VAR) analysis has become increasingly popular lately and is now
sometimes signified as proxy VAR analysis. In some studies, a set of proxies is used
to identify a group of shocks collectively. In that case, it is typically necessary to
provide additional information to identify the shocks of interest individually. Such
additional information can have the form of zero restrictions on the impact effects
(see, e.g., Mertens and Ravn (2013)) or the long-run effects of the shocks. Also
sign restrictions may be considered (see, e.g., Piffer and Podstawski (2017), Braun
and Brüggemann (2020), or Arias, Rubio-Ramı́rez and Waggoner (2021)). If such
restrictions are controversial or not available, one may also want to take advantage of
identifying information extracted from the distributional features of the data. Notably
heteroskedasticity has been used in this context (see, e.g., Kilian and Lütkepohl (2017,
Chapter 14) or Lütkepohl and Netšunajev (2017)).

In many proxy VAR analyses, it is assumed that the impulse responses of the
structural shocks are time-invariant even if there are changes in the volatility of the
shocks, that is, even if there is heteroskedasticity. In much of the literature this as-
sumption is used without further investigation. However, some authors question this
time-invariance assumption (Bacchiocchi, Castelnuovo and Fanelli (2018), Bacchioc-
chi and Fanelli (2015)). In a recent article, Lütkepohl and Schlaak (2021) propose a
statistical test to explore the validity of such an assumption in the context of het-
eroskedastic proxy VAR models. Their test works under the premise that a specific
single shock is identified by one or more proxies. They note that the situation, where
a number of shocks are identified collectively and not individually by a set of proxies,
is more difficult to handle because, in order to apply their test, additional information
is needed to identify the shocks individually. Hence, their test cannot be used if a set
of proxies identifies a collection of shocks jointly but not individually.

In this study we propose a test for time-varying impact effects which can even be
applied if a set of shocks is collectively identified by proxies, i.e., a linear transfor-
mation of the shocks is identified by the proxies, but the shocks are not individually
identified. In other words, we propose a test for time-varying impact effects of the
shocks that works even if the impact effects are not point identified and, hence, cannot
be estimated consistently. We confirm good small sample size and power properties
of the test in a Monte Carlo study.

The test is applied to investigate the impact of productivity shocks on a small
macroeconomic model for the U.S. economy based on a benchmark study by Lunsford
(2015). He considers two shocks to total factor productivity (TFP), one based on the
consumption sector without durable goods and the other one based on durable goods
and investment. He uses two proxies to identify the two TFP shocks and compares
the dynamic effects on the variables of a small U.S. macroeconomic system. Given
the volatility change in many U.S. macro data in the middle of the 1980s when the
Great Moderation (GM) started, we apply our new test to explore the time-invariance
of the impulse responses of the two structural shocks. We find evidence against time-
invariance and show that, allowing for a change in the dynamic effects of the shocks
leads to markedly different dynamic responses in some of the variables in the pre- and
post-GM periods, in particular a weaker response of inflation in the post-GM period.

The remainder of this study is structured as follows. In the next section, we
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present the general model framework. In Section 3, the test for time-varying impact
effects of structural shocks at times of volatility change is presented and its small
sample properties are investigated by means of a Monte Carlo study in Section 4.
The empirical study follows in Section 5 and conclusions are drawn in Section 6. The
Appendix contains a number of theoretical derivations, details for the Monte Carlo
simulations, and additional simulation results.

2 Heteroskedastic Proxy VAR Models

The basic model is a K-dimensional reduced-form VAR process,

yt = ν + A1yt−1 + · · ·+ Apyt−p + ut, (1)

where ut is a zero mean white noise process with nonsingular, possibly time-varying
covariance matrix Σt and ν is a time-invariant intercept vector. In short, ut ∼ (0,Σt).
In other words, there may be heteroskedasticity. The heteroskedasticity is assumed
to be such that

E(utu
′
t) = Σt = Σu(m) for t ∈ Tm, m = 1, . . . ,M, (2)

where Tm = {Tm−1 + 1, . . . , Tm} (m = 1, . . . ,M) are M volatility regimes. The
volatility changes at the end of time periods Tm for m = 1, . . . ,M − 1, with T0 = 0
and TM = T , the overall sample size. In our theoretical setup, the change points, Tm,
are assumed to occur exogenously and are known to the analyst.

The structural errors, wt = (w1t, . . . , wKt)
′, have a diagonal covariance matrix

and are obtained from the reduced-form errors, ut, by a linear transformation which
may depend on the volatility regime, ut = B(m)wt, such that B(m) is the matrix of
impact effects of the structural shocks in volatility regime m. We partition wt in K1−
and K2−dimensional subvectors w1t = (w1t, . . . , wK1t)

′ and w2t = (wK1+1,t, . . . , wKt)
′

such that w′t = (w′1t,w
′
2t) and we partition B(m) = [B1(m) : B2(m)] accordingly

such that B1(m) is (K ×K1) and B2(m) is (K ×K2), where K2 = K −K1. In other
words, Bi(m) contains the impact effects of the shocks in wit, i = 1, 2, in volatility
regime m.

The impact effects, B(m), of the structural shocks are crucial for determining the
dynamic effects of the shocks because the structural impulse responses for propagation
horizon h are obtained as

Θh(m) = ΦhB(m),

where the Φi =
∑i

j=1 Φi−jAj, with Φ0 = IK , may be obtained recursively for h =
0, 1, . . . , from the reduced-form VAR coefficients Aj, with Aj = 0 for j > p (see,
e.g., Lütkepohl (2005, Sec. 2.1.2)). Thus, the impact effects enter the structural
impulse responses at all propagation horizons and make them regime-dependent if
the impact effects are time-varying. Identifying and estimating them is therefore
of central importance for estimating impulse responses and for the related dynamic
analysis.

Suppose there is a set of N instrumental variables (proxies) zt = (z1t, . . . , zNt)
′

satisfying, for t ∈ Tm,

E(w1tz
′
t) = Cm 6= 0, Cm (K1 ×N), rk(Cm) = K1 (relevance), (3)

E(w2tz
′
t) = 0 (exogeneity). (4)

2



The relevance condition allows the covariance between the structural shocks w1t and
the proxies to depend on the volatility regime. It implies that, for t ∈ Tm,

E(utz
′
t) = B(m)E(wtz

′
t) = B1(m)Cm. (5)

Hence, the proxies contain identifying information for the first K1 < K structural
shocks collectively, but the shocks are not necessarily individually identified by the
proxies, zt, in each of the volatility regimes. Obviously, there must be at least as many
proxies as there are identified shocks such that N ≥ K1 to satisfy the rank condition
for Cm which ensures that the N proxies contain actually identifying information for
all shocks in w1t. For individual rather than collective identification of the shocks in
w1t, further information is required which could take the form of exclusion restrictions
on the impact effects or the long-run effects of the shocks or sign restrictions.

Such additional information can also come from heteroskedasticity if the impact
effects are time-invariant such that B(m) = B for all or some m ∈ {1, . . . ,M}. To
see that, let Λm = diag(λ1,m, . . . , λK,m) (m = 1, . . . ,M) be the covariance matrix of
wt for t ∈ Tm. Then our assumptions imply that

Σu(m) = B(m)ΛmB(m)′, m = 1, . . . ,M. (6)

If the impact effects are invariant across volatility regimes such that B(m) = B, then
Σu(m) = BΛmB

′, for m = 1, . . . ,M . These relations uniquely identify the structural
parameters B up to column sign and Λm, m = 1, . . . ,M , if the regime dependent
variances of the structural shocks are ordered uniquely and are sufficiently heteroge-
neous (see Lanne, Lütkepohl and Maciejowska (2010) for precise conditions). Thus, if
the impact effects of the structural shocks are time-invariant, heteroskedasticity may
identify the shocks and the information in the proxies may overidentify the shocks
w1t, which can potentially be used to sharpen inference (see Carriero, Marcellino and
Tornese (2021)). In fact, it is enough that heteroskedasticity identifies the shocks
of interest to combine the information in the proxies with the volatility features to
improve inference. For that to be possible, it is important that the impact effects
B1(m) of w1t are time-invariant. Hence, having a test for time-varying impact effects
of w1t is also of interest in the context of identification through heteroskedasticity.
We will propose such a test in the following section.

The previous analysis is also relevant for models with volatility changes driven by
a Markov switching process as in Lanne et al. (2010) and Herwartz and Lütkepohl
(2014), where also a finite number of volatility regimes is assumed.

3 Testing for Time-varying Impact Effects

We abbreviate the (K × N) product matrix B1(m)Cm by D(m) and estimate this
matrix as

D̂(m) =
1

τmT

∑
t∈Tm

ûtz
′
t, (7)

where the ût are OLS residuals of the reduced-form VAR model (1). Thus, D̂(m) is
an estimator of the covariance matrix E(utz

′
t) in volatility regime m ∈ {1, . . . ,M}.
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Assuming that τm = (Tm − Tm−1)/T is a fixed fraction of the sample size such that
Tm − Tm−1 →∞ with T ,

√
Tvec

(
D̂(m)−D(m)

)
d→ N (0, τ−1m ΣD(m)), (8)

where vec denotes the column stacking operator and
d→ signifies convergence in dis-

tribution. Under general conditions, this result follows from a central limit theorem.
We also assume that utz

′
t is such that

Σ̂D(m) =
1

τmT

∑
t∈Tm

vec(ûtz
′
t − D̂(m))[vec(ûtz

′
t − D̂(m))]′

is a consistent estimator of ΣD(m) of dimension (KN ×KN).
As explained earlier, for time-invariant impulse responses and for identification

through heteroskedasticity, it is essential that B1(m) is time-invariant and does not
depend on the volatility regime. Thus, we would like to test

H0 : B1(m) = B1(k) versus H1 : B1(m) 6= B1(k) (9)

for some m, k ∈ {1, . . . ,M}, m 6= k. The challenge is to derive a test for the pair
of hypotheses in (9) that works although we can only estimate the product matrix
D(m) consistently but not the B1(m) matrix. The test should work regardless of
possible time-variation of D(m) and Cm. In other words, we don’t need to assume a
time-invariant covariance between proxies and shocks.

If B1(m) is not fully identified via the proxies, we take advantage of the fact that
B1(m) will be time-varying if a linear transformation is time-varying. We partition
the matrix B1(m) as

B1(m) =

[
B11(m)
B12(m)

]
,

where B11(m) is (K1 × K1) and B12(m) is ((K − K1) × K1). We assume that the
variables are arranged such that B11(m) is nonsingular. This is always possible as
B1(m) has rank K1. Then we consider the transformed matrix[

IK1

B12(m)B11(m)−1

]
= B1(m)B11(m)−1

= B1(m)CmQC
′
m(CmQC

′
m)−1B11(m)−1

= B1(m)CmQC
′
mB11(m)′(B11(m)CmQC

′
mB11(m)′)−1

= D(m)QD1(m)′[D1(m)QD1(m)′]−1 (10)

for any positive definite (N ×N) matrix Q. Here D1(m) is the upper (K1 ×N) part
of

D(m) =

[
D1(m)
D2(m)

]
and D2(m) is a ((K − K1) × N) matrix. Note that Cm has rank K1 due to the
relevance condition (3) and, hence, all inverses in equation (10) exist. Note that the
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left-hand side of expression (10) does not involve elements of Cm but just elements of
B1(m), while the right-hand side of (10) consists of quantities that can be estimated
consistently. Hence, we can also estimate the left-hand side consistently. Using this
result, we test

H0 : B12(m)B11(m)−1 = B12(k)B11(k)−1 vs. H1 : B12(m)B11(m)−1 6= B12(k)B11(k)−1

(11)

instead of the pair of hypotheses in (9). If the H1 in (11) holds, then B1(m) must
be regime-dependent and, hence, time-varying as well. It turns out that the latter
pair of hypotheses can be tested without individually identifying the shocks in w1t

and regardless of Cm which does not show up in the quantities considered under
H0. Hence, a rejection of H0 indicates time-variation in the identified impact effects,
B1(m), of the w1t shocks while remaining silent about possible time-variation in the
covariance of shocks and proxies, Cm.

Of course, viewing this test as a test of H0 : B1(m) = B1(k), it is a test which does
not have power against alternatives for which B12(m)B11(m)−1 = B12(k)B11(k)−1.
Hence, H0 in (11) is only a necessary condition for H0 in (9) to hold. For example, if
a change in volatility from regime m to regime k changes B1(m) to B1(k) = cB1(m),
that change would cancel in (11). In practice, a change in the impact effects due to a
change in volatility that cancels in B12(k)B11(k)−1 may not be very likely. Thus, if H0

in (11) cannot be rejected, this finding is a stronger indication that the assumption
of time-invariant impulse responses is reasonable than just taking for granted that
time-invariance holds.

The reason for being able to test H0 in (11) is that we can estimate

B12(m)B11(m)−1 = D2(m)QD1(m)′[D1(m)QD1(m)′]−1

consistently as

̂B12(m)B11(m)−1 = D̂2(m)QD̂1(m)′[D̂1(m)QD̂1(m)′]−1, (12)

where we choose

Q =

(∑
t∈Tm

ztz
′
t

)−1
in the absence of a more plausible alternative. Given the asymptotic normality of
D̂(m) in (8), Slutsky’s theorem implies consistency and asymptotic normality of the

estimator ̂B12(m)B11(m)−1, i.e.,

√
Tvec

(
̂B12(m)B11(m)−1 −B12(m)B11(m)−1

)
d→ N (0, V (m)) , (13)

where

V (m) =
1

τm

∂vec[B12(m)B11(m)−1]

∂vecD(m)′
ΣD(m)

∂vec[B12(m)B11(m)−1]′

∂vecD(m)

is the (K1(K − K1) × K1(K − K1)) asymptotic covariance matrix. A closed-form
expression of the matrix of partial derivatives ∂vec[B12(m)B11(m)−1]/∂vecD(m)′ is
derived in Appendix A and can be used to estimate the covariance matrix V (m).
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The covariance matrix V (m) is nonsingular. Defining the K1(K−K1)-dimensional
vector

β(m) = vec[B12(m)B11(m)−1]

and using the asymptotic independence of β̂(m) and β̂(k) under general conditions,
for m 6= k, the null hypothesis in (9) can be tested using the test statistic

η(m, k) = T
(
β̂(m)− β̂(k)

)′ (
V̂ (m) + V̂ (k)

)−1 (
β̂(m)− β̂(k)

)
d→ χ2(K1(K−K1)).

(14)

Thus, we can use this statistic for testing the pair of hypotheses (11). In the test
statistic in expression (14), the estimators of the covariance matrices may be obtained
as

V̂ (m) =
1

τm

∂̂β(m)

∂vecD(m)′
Σ̂D(m)

∂̂β(m)′

∂vecD(m)
,

by replacing the partial derivatives by estimates based on D̂(m) and using Q =(∑
t∈Tm ztz

′
t

)−1
, as for the estimator of β.

If there is only one proxy identifying a single shock, then the test statistic η re-
duces to the corresponding test statistic proposed by Lütkepohl and Schlaak (2021)
for testing for time-varying impact effects of the shock identified by the proxy. They
mention that an extension of their test to the case of more than one proxy identi-
fying multiple shocks would require additional information to uniquely identify the
shocks individually. It is therefore worth emphasizing that our test does not require
separately identified individual shocks. It does, however, require that the variables
are ordered in such a way that B11 is a nonsingular matrix which is not necessarily
automatically the case. It requires for example that the shocks w1t have nonzero
impact effects on the first K1 variables. For the case of a single proxy which identifies
a single shock, that condition corresponds to the assumption that the identified shock
has a nonzero impact effect on the first variable, as assumed in Lütkepohl and Schlaak
(2021).

One practical problem is the choice of the number of volatility regimes and the
volatility change points. In our derivations of the test statistic we assume that the
investigator knows the volatility change points which may not be realistic in practice.
The consequences of misspecifying the change points will be explored further in the
next section. In practice, one may be inclined to base the choice of the volatility
regimes on statistical procedures. However, that strategy may lead to a pretest-
ing issue. Alternatively, volatility models such as the Markov switching model of
Lanne et al. (2010) may be of interest to avoid specifying the volatility regime ex-
ogenously. We note that such a model requires alternative asymptotic considerations
that may result in a different asymptotic distribution of the test statistic. In any case,
the asymptotic analysis requires that the sample size associated with each volatility
regime goes to infinity. Hence, the test may not be suitable for volatility regimes with
just a few sample points.
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4 Monte Carlo Simulations

We set up a Monte Carlo experiment to investigate the small sample properties of
our test. As we expect the actual size and power properties of the test to depend on
the sample size, the size of the VAR process (number of variables and lag order), the
number and strength of the proxies as well as their correlation (among themselves and
with the shocks) and the choice of the volatility change points, we use two different
data generating processes (DGPs) to investigate the dependence of the small sample
properties of our test on all these features.

4.1 DGP1

4.1.1 Setup

The first DGP (DGP1) is based on DGP1 of Lütkepohl and Schlaak (2021). It has
M = 3 volatility regimes and involves three variables (K = 3) and two proxies
(N = 2) by which two (K1 = 2) structural shocks are identified. We keep K, K1,
and N fixed for this DGP and we also assume that the volatility change points are
known. These choices enable us to focus attention on changes in the sample size, the
lag order, the strength of the proxies and their correlation. The dependence of the
small sample properties on other features will be explored in the context of DGP2.

As assumed by Lütkepohl and Schlaak (2021), DGP1 follows a three-variate
VAR(1). We employ the same parameter values as Lütkepohl and Schlaak (2021)
for A1, B(m), and Λm, i.e.,

A1 =

 0.79 0.00 0.25
0.19 0.95 −0.46
0.12 0.00 0.62

 ,
B(m) = I3 under H0, and

B(1) = I3, B(2) =

1 0 1
2 1 4
4 6 6

 , B(3) =

 4 2 1
−2 2 8

2 1 10


under H1. Hence,

B12(1)B11(1)−1 = [0, 0], B12(2)B11(2)−1 = [−8, 6], B12(3)B11(3)−1 = [0.5, 0],

under H1. Clearly, β(1) = (0, 0)′ is distinctly different from β(2) = (−8, 6)′ and the
latter vector is clearly distinct from β(3) = (0.5, 0)′, while β(1) and β(3) are much
closer together and we expect to have low power for testing H0 : β(1) = β(3) given
also our other parameter settings. Thereby we may get some insight in the power
properties of our test under difficult scenarios where little power can be expected.

The other parameter settings are

Λ1 = I3, Λ2 =diag(4, 9, 12), Λ3 =diag(1, 4, 9),

and the proxies are generated as

zt = Φw1t + vt, vt ∼ N(0,Σv), Φ =

[
1 0
ρ 1

]
.
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As Φ is the covariance matrix cov(zt,w1t), a nonzero ρ implies nonzero correlation
between the second proxy, z2t, and the first structural shock, w1t. A value of ρ = 0
corresponds to the settings used by Lütkepohl and Schlaak (2021). We also consider
ρ = 0.5 to investigate the implications of a single proxy being correlated with more
than one structural shock and thereby violating the conditions of Lütkepohl and
Schlaak (2021).

The error vt of the process generating the proxies is independent of the structural
shocks and we choose covariance matrices

Σv = κ

[
1 0.5

0.5 1

]
.

Thus, the components of vt are correlated and so are the proxies. For κ = 1 the proxies
are of intermediate strength, while for κ = 3, they are weaker and for κ = 0.2346,
they are a bit stronger. The precise correlations between the structural shocks and
the proxies are provided in Table 1, where it can be seen that the correlations range
from below 0.5 to more than 0.9 and allow us to explore the impact of the strength
of the proxies on the properties of our test.2

Table 1: Correlations of zt and w1t for DGP1

κ zt t ∈ T1 t ∈ T2 t ∈ T3
w1t w2t w1t w2t w1t w2t

ρ = 0

0.2346
z1t 0.900 0.000 0.972 0.000 0.900 0.000
z2t 0.000 0.900 0.000 0.987 0.000 0.972

1
z1t 0.707 0.000 0.894 0.000 0.707 0.000
z2t 0.000 0.707 0.000 0.949 0.000 0.894

3
z1t 0.500 0.000 0.756 0.000 0.500 0.000
z2t 0.000 0.500 0.000 0.866 0.000 0.756

w1t w2t w1t w2t w1t w2t

ρ = 0.5

0.2346
z1t 0.900 0.000 0.972 0.000 0.900 0.000
z2t 0.410 0.821 0.313 0.938 0.236 0.944

1
z1t 0.707 0.000 0.894 0.000 0.707 0.000
z2t 0.333 0.667 0.302 0.905 0.218 0.873

3
z1t 0.500 0.000 0.756 0.000 0.500 0.000
z2t 0.243 0.485 0.277 0.832 0.186 0.743

Following Lütkepohl and Schlaak (2021), we generate samples of size T = 150,
300, 600, 1200. In the first volatility regime, we generate T1 = T/3 + p observations,
where p is the lag length used for estimation. We set T2 = 2T/3. The estimated
model includes a constant term, although the term is zero in the DGP. We use lag
orders p = 1 and 12 to explore the impact of having to deal with larger lag orders.
The number of replications for each simulation design is 5000.

2In Table S.1 of the Online Supplement, Lütkepohl and Schlaak (2021) present the estimated
correlations between proxies and structural shocks for a number of proxy VAR studies. These
correlations range from 0.4 to 0.76. Thus, the correlations used for DGP1 are in the range of models
used in applied work.
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4.1.2 Results for DGP1

Some results of our simulations based on DGP1 are summarized graphically in Figures
1 and 2. The corresponding numerical results are presented in Tables C.1 and C.2 in
Appendix C. From the figures, the following observations emerge:

Sample size: The sample size has the expected effect. Increasing it generally moves
the rejection frequencies closer to the 5% nominal level (see Figure 1) and it
improves the power (see Figure 2). Note, however, that the relative rejection
frequencies are close to 5% already for relatively small sample sizes if the null
hypothesis holds. Clearly, although T = 150 is a rather standard sample size
in macroeconometric analysis, it is a small sample size for our test. It leaves
only 50 observations for each of the three volatility regimes, which is not very
much for a 3-dimensional VAR(12) model. Even for such small samples, the
simulated rejection frequencies are close to the 5% nominal level. For sample
size T = 600 the relative rejection frequencies under H0 are all between 0.044
and 0.061 in Figure 1 and Tables C.1 and C.2 in Appendix C.

Distance from H0: As one would expect, the distance of parameter values under
the alternative from the parameter space under the null hypothesis is crucial
for the power of the test. In Figure 2 it is obvious that the power for testing
H0 : β(1) = β(3) is much lower than for the other null hypotheses. As discussed
in the previous subsection, under H1, β(1) and β(3) are relatively close together
and this is very clearly reflected in the low relative rejection frequencies in Figure
2. In fact in panels (h) and (k) of the figure, the rejection frequencies are less
than the nominal significance level of 5% for small sample sizes. In other words,
the test may have very low power in small samples if the transformed impact
effects to be tested are close to each other in both volatility regimes under test.

Lag order: Larger lag orders lead to more parameters in the model and, hence,
increase the overall estimation uncertainty. Thus, it is not surprising that our
test tends to have reduced power for longer lag orders, as can be seen in Figure
2 (compare the upper panels to the panels in the lower half). On the other
hand, the results in Figure 1 indicate that the rejection frequencies under H0

are not much affected by the lag order.

Proxy strength: In Figure 2, it can also be seen that weaker proxies (larger κ)
lead to a reduction in the power of our test in smaller samples, as one would
expect. The effect is reduced or vanishes for the larger sample sizes reported
in the figure. Again, the relative rejection frequencies under H0 in Figure 1 are
not much affected by the proxy strength. Although there are differences in the
rejection frequencies for varying κ under H0, the empirical frequencies are still
all close to the nominal 5%.

Proxy-shock correlation: Comparing the situation where each proxy is correlated
only to a single shock (ρ = 0) to a simulation design where the second proxy
is correlated with both shocks (ρ = 0.5) in Figures 1 and 2, shows that there
is not much difference in the outcomes of the tests. In other words, the panels
in the second and fourth rows (corresponding to ρ = 0.5) of the two figures
are qualitatively similar to the first and third rows (corresponding to ρ = 0),
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respectively. We conclude that, whether or not a proxy is correlated with more
than one structural shock does not seem to matter much for the small sample
properties of our test. In further simulations we also consider ρ = 0.9 and
got similar results which are therefore not presented. Given these results, we
consider the situation where each proxy is correlated only with a single shock
in the scenarios studied for DGP2.

In summary, the results for DGP1 show that our test has rejection frequencies close
to the nominal significance level when the null hypothesis holds, even for relatively
small samples. The power of the test increases with the sample size, is reduced for
increasing lag order and improves with the strength of the proxies. It depends also on
how far apart the relevant parameters are from the parameter space under H0. The
next DGP, in addition, will allow us to study the dependence of the small sample
properties of the test on the number of variables in the model, the number of proxies,
and the choice of the volatility change points.

4.2 DGP2

4.2.1 Setup

The second DGP is informed by an empirical model from Lunsford (2015) which
is used as benchmark study for our empirical application in Section 5. This model
employs five variables at quarterly frequency from 1948Q2 - 2015Q2, giving T = 269
observations. Lunsford (2015) uses N = 2 proxies to separately identify K1 = 2
structural shocks. We fit a VAR(1) process with a constant to the data and use the
estimated A1 matrix and intercept term as parameters for our DGP2. The precise
parameter values are given in Appendix B. The largest eigenvalue of A1 is 0.7444,
implying a stable process with medium persistence.

We search for a single volatility break point by minimizing the criterion function

ψ(T1) = T1 log det Σ̂u(1) + (T − T1) log det Σ̂u(2) (15)

over T1 ∈ {0.15T, . . . , 0.85T}. Here

Σ̂u(m) =
1

Tm − Tm−1

∑
t∈Tm

ûtû
′
t,

where ût are the OLS residuals of the VAR(1) model. Thereby we find a volatility
change point in 1982Q4. The state-dependent covariance matrices Σu(1) and Σu(2)
corresponding to this change point are used as parameters for our DGP2 and are also
provided in Appendix B.

The structural matrix of impact effects is chosen to be time-invariant under H0

and dependent on the volatility regime under H1. The actual matrices used are
constructed as follows.

Under H0: We decompose Σu(1) and Σu(2) such that

Σu(1) = BB′ and Σu(2) = BΛ2B
′,

where B is a (5× 5) matrix and Λ2 = diag(λ1,2, . . . , λ5,2) is diagonal. We order
the λk,2 and the columns of B such that λ1,2 and λ2,2 are clearly distinct giving
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Λ2 = diag(0.57, 0.15, 0.18, 0.35, 0.39). Thereby the first two columns of B are
uniquely identified. The precise values of the elements of B are also given in
Appendix B. We choose B1(1) = B1(2) as the first 2 columns of B.

The structural shocks are generated as wt ∼ N (0, I5) for t ∈ T1 and wt ∼
N (0,Λ2) for t ∈ T2 and then we generate the reduced form errors as ut = Bwt

for t = 1, . . . , T . The volatility change point is placed in the middle of the
sample.

To generate proxies similar to Lunsford (2015), we compute

Dm =
1

τmT

∑
t∈Tm

ûtz
′
t

and note that

Cm = (B′1B1)
−1B′1Dm (= E(w1tz

′
t) t ∈ Tm)

is clearly nonzero for m = 1, 2, for our dataset (see again Appendix B for
details). Hence, the proxies satisfy the relevance condition (3) and are, thus,
suitable for our purposes.

As for DGP1, we generate the proxies as

zt = Φ(m)w1t + vt

with vt ∼ N (0, κΣv), t = 1, . . . , T .

For K1 = 2, we choose Φ(1), Φ(2), and Σv(1) = Σv(2) = Σv, such that, for
κ = 1 the covariance matrix of the proxies,

Σz = Φ(1)Φ(1)′ + Σv = Φ(2)Λ2Φ(2)′ + Σv

is very similar to the empirical covariance matrix of Lunsford (2015),

T−1
T∑
t=1

ztz
′
t =

[
9.95 5.41
5.41 36.88

]
.

Given our simulation results for DGP1, the matrices Φ(1) and Φ(2) are chosen
to be diagonal matrices. Based on the results for DGP1, choosing them to be
diagonal or not should not make much difference for the simulation results. In
contrast, Σv is not a diagonal matrix. Precise values and precise details on how
they are computed are provided in Appendix B.

For κ we use values 0.1, 0.5, and 1, corresponding to high, intermediate and
low strength of the proxies. The resulting correlations between proxies and
structural shocks for the different values of κ are shown in Table B.1 in Ap-
pendix B. They range from a low 0.368 for corr(z2t, w2t) and κ = 1 to a high
corr(z1t, w1t) = 0.897 for κ = 0.1.

To investigate the role of the number of shocks being identified, we construct
additional proxies, employing one proxy to identify one shock. To do so, we
augment the bivariate Φ(m) and Σv(m) matrices as specified in Appendix B.
We use these settings to explore the small sample properties of our test for
K1 = 3 and K1 = 4.
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Under H1: We use a Cholesky decomposition of Σu(1) for B(1) and choose B(2) as
under H0. Apart from that, we use the same setup as under H0.

We generate samples of size T = 150, 300, 600, 1200 (in addition to all required
pre-sample observations). The lag orders of VAR models fitted to the data are p = 1,
and 12. The nominal significance level is α = 5%, κ = 0.1, 0.5, 1, and 5000 Monte
Carlo replications are employed.

In some of our simulations, the true volatility change point T1, is again assumed
to be known, as for DGP1. We now also investigate the situation where the volatility
change point is misspecified. More precisely, we use T1 = 0.4T as the change point
instead of the correct T1 = 0.5T to investigate the implications of misspecifying
this quantity. In addition, we also mimic the situation where the change point is
preselected by a statistical criterion. We use the criterion function ψ(T1) in (15)
for that purpose. In each simulation, we compute the criterion function for every
1
30
T -th sample point, e.g., for every fifth sample point for T = 150, and choose the

change point T1 for which ψ(T1) is minimized over this rough grid. Note that this
procedure estimates the overall minimizing sample period only very roughly which
is likely to be an additional handicap for the test and might work against the test
having good properties. Once the volatility change point is chosen, we perform our
test for time-varying impact effects conditionally on that change point. Note that we
are explicitly not pretesting for the change point. Instead we use a statistical criterion
for the determination of the change point which does not involve our test statistic.3

Our procedure is meant to mimic an approach occasionally encountered in practice
and we are interested to see whether it leads to biased test results.

4.2.2 Results for DGP2

Results for DGP2 are depicted in Figures 3 - 5 and precise numbers are given in Tables
C.3 - C.5 in Appendix C. In Figure 3 and Table C.3 the correct volatility change
point is assumed to be known, while it is misspecified in Figure 4 and Table C.4 and
it is estimated in Figure 5 and Table C.5. These results underscore the findings based
on DGP1 in that larger samples and stronger proxies (smaller κ) improve power,
while larger lag orders undermine power. Thus, these features carry over to the
higher-dimensional DGP2. In addition, the following observations emerge.

Number of variables: A larger number of variables, i.e., a higher-dimensional pro-
cess tends to make the test more conservative in small samples. The first six
panels of Figures 3 - 5 show results for a true null hypothesis. For small sam-
ples the rejection frequencies are sometimes considerably smaller than 5%. In
particular, if the proxies are relatively weak (κ = 1), the rejection frequencies
are even below 1% for T = 150 and p = 12. Admittedly, this is a rather difficult
case, where many parameters have to be estimated from a very small sample.
In such situations, the test tends to be conservative.

Number of proxies: In Figures 3 - 5, the number of proxies increases from 2 to
4, respectively, when we move from left to right. Looking at the figures it

3Alternatively, one could choose the break point which maximizes our test statistic. In a related
context, Andrews (1993) shows that such an approach would change the asymptotic distribution of
the test statistic. Therefore we explicitly do not use that strategy.
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is apparent that the rejection frequencies under H0 are not much affected by
this increase while the power tends to decline when there are more proxies.
Increasing the number of proxies for a VAR model of given dimension affects
the power in two ways. First, it reduces the number of restrictions that are to be
tested, thereby making the test more focussed and potentially more powerful. A
second effect is, however, that it increases the dimension of the parameter space
where the test does not have power and, hence, the true parameter values may
get closer to the parameter space without power, thereby reducing the power.
The latter effect dominates in our simulations.

Misspecifying the change point: Comparing Figure 4 to Figure 3, it can be seen
that misspecifying the volatility change point does not affect the results very
much. The rejection frequencies under H0 as well as under H1 (power) in Figure
4 are similar to the case of a correctly specified volatility change point in Figure
3. This finding is remarkable because, in Figure 4, we specify the change point
at 40% of the sample length while the true change point is in the middle of the
sample. In other words, the misspecification is substantial.

Change point preselection: Similarly, comparing Figure 5 to Figure 3 shows that
preselecting the change point by our rough statistical procedure does not affect
the results very much. Again the rejection frequencies are similar to the case
of a correctly specified volatility change point, although we are not even trying
to find the optimal change point according to the criterion ψ(T1) in (15) across
the complete sample, but search over a very rough grid only. Thus, at least for
DGP2, the preselection of the change point by the statistical criterion does not
bias the test results.

Overall our results based on DGP2 confirm the main conclusions from the simula-
tions of DGP1 regarding the impact of the sample size, the lag order, and the proxy
strength and also show that increasing the dimension of the process or the number of
proxies tends to reduce the power of the test for time-varying impact effects.

4.3 Summary of Simulation Results

In summary, our simulations based on two types of DGPs suggest that the test for
time-varying impulse responses has small sample rejection frequencies close to the
nominal significance level under H0 and good power under H1 for moderate and large
samples. For large models, small samples, and relatively weak proxies, the test tends
to be conservative. To ensure good power, the parameter values under H1 have to be
clearly distinct from the values under H0. Generally the strength of the proxies (their
correlation with the structural shocks to be identified) is important for achieving good
power properties. A higher-dimensional model with more parameters tends to reduce
the power and also having more proxies to identify more shocks may reduce the power
of the test. Finally, the correct choice of the volatility change point is of very limited
importance for the small sample properties of the test. Moreover, preselecting the
change point by our statistical criterion has very little impact on the properties of
the test. The latter finding is potentially important for empirical work because, in
practice, it is often uncertain where exactly a volatility change has occurred so that
the actual change point is estimated by a statistical procedure or placed not exactly
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in the correct period. In the next section, we discuss an empirical example which
illustrates the virtue of the test for applied work.

5 The Impact of TFP Shocks on the U.S. Economy

We use a benchmark study of Lunsford (2015) to illustrate the benefits of applying
our test in a proxy VAR analysis. Lunsford (2015) investigates the dynamic effects of
two types of total factor productivity (TFP) shocks. The quarterly SVAR model uses
data from 1948Q2 to 2015Q2 which implies a total of 269 observations. The num-
ber of endogenous variables is K = 5 (GDP growth, employment growth, inflation,
consumption growth, investment growth, see Figure 6), that is, yt is 5-dimensional.
There are N = 2 proxies to identify K1 = 2 TPF shocks and the VAR model has
p = 4 lags4 and a constant.5

The two proxies are based on two utilization-adjusted TFP measures constructed
by Fernald (2014), one for the consumption sector excluding durable goods (con-
sumption TFP) and the second one for durable goods and equipment investment
(investment TFP). The proxies are constructed by regressing consumption TFP and
investment TFP on four lags of the yt and a constant and using the resulting residuals
as proxies.

Figure 6 plots the endogenous variables and the two proxies. Figure 7 plots the
OLS residuals of the VAR(4) model. Clearly, the residuals display some change in
volatility around the time when the Great Moderation (GM) started. The GM is
typically assumed to have started in the middle of the 1980s, but the exact date
is not clear and different authors make different assumptions regarding the starting
date. McConnell and Perez-Quiros (2000) and Gaĺı and Gambetti (2009) place it at
the beginning of 1984.6 Therefore, in the following, the period up to 1983Q4 will
be referred to as the pre-GM period and the period from 1984Q1 will be called the
post-GM regime.

Computing the test statistic η(1, 2) for the possible volatility change point 1983Q4,
the resulting test value is η(1, 2) = 12.364, which corresponds to a p-value of 0.054
for a χ2-distribution with 6 degrees of freedom and, thus, the test rejects the null
hypothesis at a significance level of 10%. As it is not clear where exactly the GM
started, we also compute the test statistic η(1, 2) for neighbouring quarters of 1983Q4
and show the results in Table 2. Obviously, most p-values are below 10% and the
p-values for 1984Q1-1985Q1 are even below 5%. These results are consistent with our
simulation results which indicate that slight misspecifications of the actual change in
volatility do not make much of a difference for the test outcome in small samples.

We also use the likelihood based criterion ψ(T1) in (15) for choosing the volatility
change point. It has its lowest values in the period 1982-1983 and is minimized for a
change in 1982Q4. That change point results in a p-value of our test statistic of 0.08
which is again below 10%.

4Lunsford (2015) states that he uses 3 lags. However, in a later revised version of the paper,
p = 4 is claimed. Thus, we use the latter lag length.

5The dataset is available at https://sites.google.com/site/kurtglunsford/research.
6Using monthly data in monetary studies, Bernanke and Mihov (1998) and Christiano, Eichen-

baum and Evans (1999) consider a potential regime change in 1984M2, while Stock and Watson
(2003) assume that the GM started in 1983-1985. Specifically they point out that tests on quarterly
GDP growth suggest a change in 1982Q4 to 1985Q3 (see p. 161 of their article).
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Table 2: Tests for Time-varying Impact Effects

T1 test statistic p-value

1982Q3 11.004 0.088
1982Q4 11.282 0.080
1983Q1 10.980 0.089
1983Q2 10.600 0.102
1983Q3 11.953 0.063
1983Q4 12.364 0.054
1984Q1 13.013 0.043
1984Q2 13.730 0.033
1984Q3 13.712 0.033
1984Q4 13.679 0.033
1985Q1 12.987 0.043
1985Q2 12.533 0.051
1985Q3 12.512 0.051
1985Q4 12.234 0.057

Given that the sample size for the present example is relatively small and taking
into account our simulation findings regarding the power of the test, the results in
Table 2 provide substantial evidence for a change in the impact effects of the TFP
shocks around 1983Q4. Despite this evidence, we compute impulse responses under
both alternative scenarios, with time-varying as well as time-invariant impact effects,
to compare time-invariant to time-varying dynamic responses of the variables.

Computing impulse responses raises the question of how to separately identify the
two TFP shocks. Lunsford (2015) uses the two proxies individually to identify one
shock at a time. He justifies his approach by pointing out the low empirical correlation
of each proxy with the structural shock estimated with the other proxy. If each of
the two TFP proxies is only correlated with one of the two TFP shocks, such an
approach is indeed justified. In that case, E(w1tz

′
t) = Cm would be a diagonal matrix

which in turn implies that the columns of D(m) = B1(m)Cm are scalar multiples of
the impact effects of the two TFP shocks. In other words, using D(m) as matrix of
impact effects of the two shocks would be justified if we are only interested in the
shape of the impulse responses but not in the size of the shock or if the shock size
is fixed by some other consideration anyway. For instance, one may be interested
in a unit shock of some sort which would only require rescaling the impact effects.
Hence, we use the estimator D̂(m) from equation (7) for the impact effects of the
two structural shocks in our impulse response analysis. If the true underlying Cm
matrices are not diagonal, this may lead to distortions. However, it may still offer
insights whether accounting for a possible shift in the impulse responses at the time
of the volatility change makes a difference because, if there is a shift in the actual
structural impulse responses, the distorted impulse responses are likely to also have
a shift.7

7Alternatively, one could standardize the impact response of one of the variables to 1 (e.g., Paul
(2020)). A drawback of that approach is that we have to take a stand on which variable has a
nonzero impact response across all volatility regimes. As we are primarily interested in changes in
the shape of the dynamic responses of the variables, we prefer our approach which is also more in
line with Lunsford (2015).
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The impulse responses together with 90% confidence intervals are displayed in
Figure 8. The confidence intervals are generated by a residual-based moving-block
bootstrap (MBB) as proposed by Brüggemann, Jentsch and Trenkler (2016) and
Jentsch and Lunsford (2019, 2021). These authors show the asymptotic validity of
the method for inference in structural VAR analysis even under time-varying volatility.
We implement the MBB exactly as in Bruns and Lütkepohl (2020).8

The impulse responses in Figure 8 show that some of the dynamic effects of the
two TFP shocks clearly depend on the regime if we allow for time-varying impulse
responses. For example, the inflation responses to a consumption TFP shock in the
pre- and post-GM regimes have non-overlapping confidence intervals. In the pre-GM
regime, inflation declines in response to a positive consumption TFP shock while it is
not clear that inflation responds at all if a consumption TFP shock hits in the post-
GM period. Likewise, the initial effects of an investment TFP shock on GDP growth
and employment growth are clearly different if we allow for a change in 1983Q4. In
the pre-GM period, the initial effects of investment TFP shocks are clearly stronger
than in the post-GM regime.

Thus, the impulse responses in Figure 8 support the conclusion drawn from our
test for time-varying impulse responses that there may have been a change in the
dynamic responses at the time of the onset of the GM. Interestingly, the impulse
responses obtained under the assumption of time-invariant impulse responses (shown
as a solid black line in Figure 8) lie in between the impulse responses estimated for
the pre- and post-GM regimes. Thus, they may just average the responses in the two
different regimes which leads to a gross distortion in some cases.

Despite some differences in the impulse responses associated with the two differ-
ent volatility regimes, some of the main features observed by Lunsford (2015) are
maintained if we allow for a change in the dynamic responses of the variables to the
TFP shocks in 1983Q4.9 A main feature that is maintained from Lunsford (2015) is
that the consumption TFP shock can be interpreted as a supply shock in the post-
GM regime in that a positive consumption shock leads to an increase in investment
growth, GDP growth, and employment growth as well as a decline in inflation, if the
latter variable is affected at all. The variables respond in a similar manner in the
pre-GM regime. In that regime the inflation response is clearly negative while GDP
growth and investment growth increase initially. The responses of consumption and
employment are less certain as reflected in their larger confidence intervals.

Like in Lunsford (2015), the investment TFP shock is not consistent with a supply
shock because inflation moves in the same direction as the other growth rates. In
Figure 8 the investment TFP shock is clearly a negative shock to all quantities and
inflation in the pre-GM period, while the response of some variables is not clear in
the post-GM regime. In fact, only employment growth declines clearly on impact,
whereas the 90% confidence intervals of all other variables include zero in the post-
GM period. Hence, the impact response to an investment TFP shock is not clear for
these variables. Lunsford discusses a rationalization of the responses to this shock in

8We use the MBB separately for the pre- and post-GM periods. The block length is chosen
according to the rule of thumb from Jentsch and Lunsford (2019), `m ≈ 5.03(τmT )0.25, i.e., we use
`1 = 18 and `2 = 17 for the first and second volatility regime, respectively.

9Note that the solid black line in Figure 8 represents the impulse responses obtained under time-
invariance when both proxies are used jointly as explained earlier. They are very similar but not
identical to the impulse responses in Lunsford (2015) who computes them one at a time.
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the context of a DSGE model.
In summary, it is important to notice that allowing for time-varying impulse re-

sponses leads to evidence of quite distinct dynamic effects before and after the onset
of the GM. Some of these differences are quite relevant for economic policy. For ex-
ample, for a central bank it makes a difference whether a shock to consumption leaves
inflation untouched or moves it up or down. Thus, if there is heteroskedasticity, it
is worth investigating its impact on the impulse responses. In other words, it makes
sense to use our test in this situation in a proxy VAR analysis.

6 Conclusions

In structural VAR analysis based on heteroskedastic models, the dynamic effects of
the structural shocks may change with the volatility of the shocks. We propose a test
for time-varying impulse responses for heteroskedastic proxy VAR models, where a
set of proxies identifies a set of shocks collectively but not necessarily individually. In
such a situation, it is typically necessary to provide further information to identify the
structural shocks of interest individually. The proposed test for time-varying impact
effects does not require such additional information for individually identifying the
shocks and, hence, it can also be applied if such information is controversial or absent.

We have derived the asymptotic properties of the test and also present simulation
results to investigate the performance of the test in small samples. The Monte Carlo
simulations show that larger samples and stronger proxies improve the small sample
power of the test, while larger lag orders, larger dimensions of the underlying VAR
process as well as larger numbers of proxies and shocks to be identified tend to
reduce power. Even substantially misspecified volatility change points as well as
using estimated instead of true change points has very little impact on the power. The
latter property is, of course, particularly helpful for empirical work, where uncertainty
regarding the volatility change points is not uncommon.

Our results suggest that our test is useful for applied work whenever there are
different volatility regimes in a proxy VAR model, provided the volatility regimes
are long enough for reliable estimation of the regime dependent quantities in each
regime. Our simulation results show that the test works even if the volatility regimes
are relatively short. In that case, the power of the test may be low, however. We have
also emphasized that exact knowledge of the volatility change points is not essential
for the performance of the test.

We have applied our tests to investigate the time-invariance of two TFP shocks
in a U.S. macroeconomic model. We have found that the dynamic effects of the
shocks may have changed during the GM period. The impulse responses of some
of the variables to the TFP shocks are clearly distinct if we allow for a change in
1983Q4. For example, a positive consumption TFP shock is found to reduce inflation
in the pre-GM period, while it may have little or no impact on inflation post-GM.
Clearly, such differences would be relevant for economic policy action. Thus, it is
important to explore the time-invariance of the dynamic effects of structural shocks
in heteroskedastic proxy VAR models.

In our study we have assumed a rather simple model for the underlying het-
eroskedasticity in that we assume that there is a finite number of volatility regimes
during the sample period. In practice, more complicated mechanisms may generate
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the volatility change. Examples are smooth changes of the volatility over a number
of periods or conditional heteroskedasticity. Investigations by Lütkepohl and Schlaak
(2021) for the case of a single proxy variable suggest that our test may even work
under such more general volatility models. This issue would be an interesting topic
for future research.
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Appendix

A Construction of the Covariance Matrices V (m)

In this appendix we provide the derivatives needed for the construction of the covari-
ance matrices V (m), V (k) which are part of the test statistic η(m, k) and we drop
the arguments m or k for simplicity. We will make use of commutation matrices
Kij defined such that vec(A′) = Kijvec(A) for any (i × j) matrix A. We use rules
for vector and matrix differentiation from Lütkepohl (1996, Chapter 10) and provide
precise numbers of rules from that source, where they are used in the following.

Note that

∂β

∂vec(D)′
=
∂vec{D2QD

′
1[D1QD

′
1]
−1}

∂[vec(D1)′vec(D2)′]
×

∂

[
vec(D1)
vec(D2)

]
∂vec(D′1)

′vec(D′2)
′ ×

∂

[
vec(D′1)
vec(D′2)

]
∂vec(D)′

(K1(K −K1)×KN)

(see Sec. 10.7, Rule (2)). Moreover,
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′
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′
1]
−1}
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(see Sec. 10.6.3, Rule (3)) with
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′
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(see Sec. 10.5.1, Rule (6)) and

∂vec(D2QD
′
1)

∂vec(D1)′
= (IK1 ⊗D2Q)KK1N (K1(K −K1)×K1N)

(see Sec. 10.4.1, Rule (4)).

∂vec{D2QD
′
1[D1QD

′
1]
−1}

∂vec(D2)′
= [D1QD

′
1]
−1D1Q⊗ IK2 (K1(K−K1)× (K−K1)N)

(see Sec. 10.4.1, Rule (3)).

∂

[
vec(D1)
vec(D2)

]
∂[vec(D′1)

′vec(D′2)
′]

=

[
KNK1 0K1N×(K−K1)N

0(K−K1)N×K1N KN(K−K1)

]
(KN ×KN)
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(see Sec. 10.4.1, Rule (1)). Finally,

∂

[
vec(D′1)
vec(D′2)

]
∂vec(D)′

=
∂vec(D′)

∂vec(D)′
= KKN (KN ×KN)

(see Sec. 10.4.1, Rule (1)).

B Additional Details for DGP2

DGP2 is a 5-dimensional VAR(1) process, yt = ν+A1yt−1 +ut, with slope parameter
matrix

A1 =


0.09 0.17 −0.14 0.65 0.00
0.11 0.61 −0.05 0.35 −0.02
0.05 0.08 0.79 −0.04 −0.02
0.19 0.04 −0.12 0.20 −0.04
0.75 1.03 −1.32 1.12 −0.28


and constant term

ν = (1.07,−0.52, 0.55, 2.42, 4.24)′.

A volatility change is assumed in the middle of the sample. The two reduced
form covariance matrices are estimated from the two volatility regimes found for the
Lunsford (2015) data as follows:

Σu(1) =


18.26 7.37 −0.61 4.04 38.59
7.37 5.55 0.78 1.95 19.35
−0.61 0.78 3.31 0.14 3.65

4.04 1.95 0.14 5.28 10.72
38.59 19.35 3.65 10.72 219.91


and

Σu(2) =


4.69 1.02 0.02 1.52 9.62
1.02 0.85 0.05 0.33 3.42
0.02 0.05 0.65 0.05 −0.35
1.52 0.33 0.05 2.17 3.06
9.62 3.42 −0.35 3.06 69.67

 .
To determine the matrix of impact effects under H0, we have to find a time-

invariant (5× 5) matrix B such that

Σu(1) = BB′ and Σu(2) = BΛ2B
′,

where Λ2 = diag(λ1,2, . . . , λ5,2) is diagonal. We have performed the required de-
composition of Σu(1) and Σu(2) with an algorithm from Golub and Van Loan (1989,
Algorithm 8.7.1). We first computed a Cholesky decomposition of Σu(1), i.e., we com-
puted G = chol(Σu(1)), such that Σu(1) = GG′ and define H = G−1Σu(2)G′−1. Then
we computed the spectral decomposition H = UΛU ′, where Λ = diag(λ1, . . . , λK) and
the λk are the eigenvalues of H while U is the orthogonal matrix of corresponding
eigenvectors. Finally, B = GU and Λ2 = Λ.
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We have ordered the λk,2 and the columns of B such that λ1,2 and λ2,2 are clearly
distinct. Thereby we obtained Λ2 = diag(0.57, 0.15, 0.18, 0.35, 0.39) and the corre-
sponding matrix

B =


1.76 −2.99 1.87 1.25 −1.08
−0.15 −2.30 0.35 −0.17 −0.27

0.34 −0.67 −1.60 0.17 0.39
1.29 −0.69 0.05 −1.32 −1.18
−0.46 −7.64 −1.41 5.55 −11.34

 .
We choose B1(1) = B1(2) as the first 2 columns of this B matrix.

The structural errors wt are generated as standard normal, wt ∼ N (0, I5), for
t ∈ T1, and wt ∼ N (0,Λ2) for t ∈ T2. Using them we get the reduced-form errors as
ut = Bwt for t = 1, . . . , T .

The proxies are generated as

zt = Φ(m)w1t + vt,

with vt ∼ N (0, κΣv), t = 1, . . . , T . Clearly, larger κ’s imply weaker proxies while
smaller κ’s lead to stronger proxies (i.e., proxies more strongly correlated with the
structural shocks).

To obtain proxies similar to Lunsford (2015) for κ = 1, we have computed

Dm =
1

τmT

∑
t∈Tm

ûtz
′
t

and note that

Cm = (B′1B1)
−1B′1Dm (= E(w1tz

′
t), t ∈ Tm).

For our dataset

C1 =

[
0.39 −0.67
−1.31 2.53

]
and C2 =

[
0.50 0.12
−0.73 0.51

]
which are both clearly different from zero and, hence, the generated zt qualify as
proxies. We then determine Φ(1), Φ(2), and Σv(1) = Σv(2) = Σv such that the
covariance matrix of the proxies

Σz = Φ(1)Φ(1)′ + Σv = Φ(2)Λ2Φ(2)′ + Σv

is close to the empirical covariance matrix

T−1
T∑
t=1

ztz
′
t =

[
9.95 5.41
5.41 36.88

]
.

More precisely, Φ(m) and Σν are obtained as follows:

• Compute ŵit = D·,iΣ
−1ût/(D

′
·,iΣ
−1D·,i), where Di,j is the i, j-th element of

D = T−1
∑T

t=1 ûtz
′
t and D·,j is its j-th column. Let ŵ1t consist of the first K1

elements of ŵt = [ŵ1,t, . . . , ŵK,t]
′.
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• For the first volatility regime, normalise the variance of ŵit to be one and

compute Φ(1) =
∑T

t=1 ztŵ
′
1t

(∑T
t=1 ŵ1tŵ

′
1t

)−1
.

• For the second volatility regime, normalise the variance of ŵit to be λi,2 and

compute Φ(2) =
∑T

t=1 ztŵ
′
1t

(∑T
t=1 ŵ1tŵ

′
1t

)−1
.

• Compute Σv = T−1
∑T

t=1 v̂tv̂
′
t, where v̂t = zt − Φ(m)ŵt.

The resulting Φ(m) and Σv matrices are

Φ(1) =

[
1.70 0

0 2.24

]
, Φ(2) =

[
2.26 0

0 5.83

]
,

and

Σv =

[
7.05 5.35
5.35 31.89

]
.

The corresponding covariance matrix

Σz = Φ(1)Φ(1)′ + Σv = Φ(2)Λ2Φ(2)′ + Σv =

[
9.95 5.35
5.35 36.90

]
,

which is very similar to the covariance matrices of Lunsford’s proxies given in Section
4.2.1. The resulting correlations between proxies and structural shocks for variations
in κ are shown in Table B.1.

Table B.1: Correlations of zt and w1t for DGP2

κ = 0.1

w1t w2t

z1t 0.897 0.000
z2t 0.000 0.782

κ = 0.5

w1t w2t

z1t 0.672 0.000
z2t 0.000 0.489

κ = 1

w1t w2t

z1t 0.540 0.000
z2t 0.000 0.368

To investigate the impact of the number of shocks being identified on the small
sample properties of our test, we generate additional proxies, employing one proxy to
identify one shock. To this end, we augment Φ(m) and Σv(m) as follows:

K1 = 3:

Φ(1) =

1.70 0 0
0 2.24 0
0 0 1

 , Φ(2) =

2.26 0 0
0 5.83 0
0 0 1

 ,
Σv(1) = Σv(2) =

7.05 5.35 0
5.35 31.89 0

0 0 1

 .
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K1 = 4:

Φ(1) =


1.70 0 0 0

0 2.24 0 0
0 0 1 0
0 0 0 1

 , Φ(2) =


2.26 0 0 0

0 5.83 0 0
0 0 1 0
0 0 0 1

 ,

Σv(1) = Σv(2) =


7.05 5.35 0 0
5.35 31.89 0 0

0 0 1 0
0 0 0 1

 .
Under H1 we use a Cholesky decomposition of Σu(1) for B(1) and maintain the

B(2) matrix used under H0. Apart from that, the same setup as under H0 is used.
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(a) H0 : β(1) = β(2),
ρ = 0, p = 1

(b) H0 : β(1) = β(3),
ρ = 0, p = 1

(c) H0 : β(2) = β(3),
ρ = 0, p = 1

(d) H0 : β(1) = β(2),
ρ = 0.5, p = 1

(e) H0 : β(1) = β(3),
ρ = 0.5, p = 1

(f) H0 : β(2) = β(3),
ρ = 0.5, p = 1

(g) H0 : β(1) = β(2),
ρ = 0, p = 12

(h) H0 : β(1) = β(3),
ρ = 0, p = 12

(i) H0 : β(2) = β(3),
ρ = 0, p = 12

(j) H0 : β(1) = β(2),
ρ = 0.5, p = 12

(k) H0 : β(1) = β(3),
ρ = 0.5, p = 12

(l) H0 : β(2) = β(3),
ρ = 0.5, p = 12

Figure 1: Relative rejection frequencies for DGP1 under H0. Nominal level 5%.
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(a) H0 : β(1) = β(2),
ρ = 0, p = 1

(b) H0 : β(1) = β(3),
ρ = 0, p = 1

(c) H0 : β(2) = β(3),
ρ = 0, p = 1

(d) H0 : β(1) = β(2),
ρ = 0.5, p = 1

(e) H0 : β(1) = β(3),
ρ = 0.5, p = 1

(f) H0 : β(2) = β(3),
ρ = 0.5, p = 1

(g) H0 : β(1) = β(2),
ρ = 0, p = 12

(h) H0 : β(1) = β(3),
ρ = 0, p = 12

(i) H0 : β(2) = β(3),
ρ = 0, p = 12

(j) H0 : β(1) = β(2),
ρ = 0.5, p = 12

(k) H0 : β(1) = β(3),
ρ = 0.5, p = 12

(l) H0 : β(2) = β(3),
ρ = 0.5, p = 12

Figure 2: Relative rejection frequencies for DGP1 under H1. Nominal level 5%.
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(a) H0, K1 = 2, p = 1 (b) H0, K1 = 3, p = 1 (c) H0, K1 = 4, p = 1

(d) H0, K1 = 2, p = 12 (e) H0, K1 = 3, p = 12 (f) H0, K1 = 4, p = 12

(g) H1, K1 = 2, p = 1 (h) H1, K1 = 3, p = 1 (i) H1, K1 = 4, p = 1

(j) H1, K1 = 2, p = 12 (k) H1, K1 = 3, p = 12 (l) H1, K1 = 4, p = 12

Figure 3: Relative rejection frequencies for DGP2. Nominal significance level 5%.
True and assumed volatility change point at T1 = 1

2
T .
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(a) H0, K1 = 2, p = 1 (b) H0, K1 = 3, p = 1 (c) H0, K1 = 4, p = 1

(d) H0, K1 = 2, p = 12 (e) H0, K1 = 3, p = 12 (f) H0, K1 = 4, p = 12

(g) H1, K1 = 2, p = 1 (h) H1, K1 = 3, p = 1 (i) H1, K1 = 4, p = 1

(j) H1, K1 = 2, p = 12 (k) H1, K1 = 3, p = 12 (l) H1, K1 = 4, p = 12

Figure 4: Relative rejection frequencies for DGP2. Nominal significance level 5%.
True volatility change point at T1 = 1

2
T . Assumed volatility change point at T1 = 2

5
T .
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(a) H0, K1 = 2, p = 1 (b) H0, K1 = 3, p = 1 (c) H0, K1 = 4, p = 1

(d) H0, K1 = 2, p = 12 (e) H0, K1 = 3, p = 12 (f) H0, K1 = 4, p = 12

(g) H1, K1 = 2, p = 1 (h) H1, K1 = 3, p = 1 (i) H1, K1 = 4, p = 1

(j) H1, K1 = 2, p = 12 (k) H1, K1 = 3, p = 12 (l) H1, K1 = 4, p = 12

Figure 5: Relative rejection frequencies for DGP2. Nominal significance level 5%.
True volatility change point at T1 = 1

2
T . Volatility change point obtained via min-

imizing the likelihood criterion ψ(T1) given in equation (15) over a rough grid of
sample points.
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Figure 6: Variables and proxies of the Lunsford (2015) dataset.
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Figure 7: OLS residuals from 1949Q2 to 2015Q2 for the VAR(4) U.S. macro model.
The solid red line indicates the possible variance change point in 1983Q4.
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Figure 8: Comparison of responses to TFP shocks assuming time-varying or, alter-
natively, time-invariant dynamic responses with 90% pointwise confidence intervals
based on a MBB. (Volatility regime 1: 1949Q2 - 1983Q4 (blue); Volatility regime 2:
1984Q1 - 2015Q2 (red); Time-invariant impulse responses: solid black line.)

33



C Additional Simulation Results
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Table C.1: Relative Rejection Frequencies for DGP1 with Lag Length p, ρ = 0, and
Nominal Significance Level α = 5%

H0

p = 1 p = 12

κ T β(1) = β(2) β(1) = β(3) β(2) = β(3) β(1) = β(2) β(1) = β(3) β(2) = β(3)

0.2346

150 0.078 0.077 0.076 0.074 0.069 0.072
300 0.067 0.066 0.063 0.064 0.062 0.059
600 0.057 0.057 0.058 0.061 0.060 0.057

1200 0.057 0.054 0.054 0.051 0.049 0.054

1

150 0.068 0.072 0.074 0.062 0.050 0.059
300 0.060 0.057 0.063 0.053 0.053 0.061
600 0.052 0.051 0.049 0.056 0.059 0.056

1200 0.054 0.051 0.055 0.054 0.051 0.053

3

150 0.047 0.044 0.050 0.034 0.026 0.040
300 0.050 0.056 0.054 0.050 0.037 0.045
600 0.055 0.047 0.050 0.047 0.045 0.051

1200 0.054 0.049 0.050 0.051 0.052 0.050

H1

p = 1 p = 12

κ T β(1) = β(2) β(1) = β(3) β(2) = β(3) β(1) = β(2) β(1) = β(3) β(2) = β(3)

0.2346

150 0.716 0.096 0.500 0.402 0.013 0.258
300 0.928 0.146 0.793 0.864 0.061 0.683
600 0.997 0.212 0.971 0.994 0.171 0.953

1200 1.000 0.328 0.999 1.000 0.300 0.998

1

150 0.651 0.068 0.446 0.307 0.010 0.212
300 0.897 0.106 0.725 0.807 0.025 0.592
600 0.991 0.160 0.938 0.988 0.113 0.921

1200 1.000 0.238 0.996 1.000 0.205 0.996

3

150 0.511 0.041 0.335 0.199 0.008 0.159
300 0.821 0.071 0.595 0.671 0.013 0.464
600 0.976 0.114 0.844 0.955 0.048 0.818

1200 1.000 0.166 0.972 0.999 0.133 0.968
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Table C.2: Relative Rejection Frequencies for DGP1 with Lag Length p, ρ = 0.5, and
Nominal Significance Level α = 5%

H0

p = 1 p = 12

κ T β(1) = β(2) β(1) = β(3) β(2) = β(3) β(1) = β(2) β(1) = β(3) β(2) = β(3)

0.2346

150 0.078 0.077 0.079 0.069 0.065 0.069
300 0.059 0.067 0.065 0.061 0.060 0.066
600 0.060 0.057 0.059 0.060 0.058 0.052

1200 0.052 0.053 0.055 0.057 0.051 0.056

1

150 0.070 0.066 0.071 0.066 0.059 0.063
300 0.059 0.057 0.061 0.054 0.060 0.061
600 0.050 0.053 0.056 0.055 0.058 0.057

1200 0.055 0.055 0.053 0.059 0.051 0.052

3

150 0.051 0.045 0.058 0.034 0.024 0.036
300 0.050 0.048 0.053 0.051 0.041 0.046
600 0.052 0.052 0.056 0.054 0.049 0.044

1200 0.049 0.047 0.050 0.053 0.047 0.049

H1

p = 1 p = 12

κ T β(1) = β(2) β(1) = β(3) β(2) = β(3) β(1) = β(2) β(1) = β(3) β(2) = β(3)

0.2346

150 0.712 0.092 0.484 0.419 0.019 0.267
300 0.934 0.155 0.800 0.861 0.073 0.669
600 0.997 0.237 0.968 0.994 0.193 0.958

1200 1.000 0.340 0.999 1.000 0.308 0.998

1

150 0.678 0.079 0.441 0.333 0.015 0.224
300 0.923 0.127 0.731 0.828 0.042 0.587
600 0.994 0.194 0.929 0.989 0.148 0.912

1200 1.000 0.280 0.991 1.000 0.243 0.993

3

150 0.560 0.067 0.346 0.211 0.009 0.176
300 0.860 0.103 0.591 0.723 0.023 0.479
600 0.986 0.156 0.841 0.971 0.080 0.793

1200 1.000 0.209 0.960 1.000 0.189 0.950
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Table C.3: Relative Rejection Frequencies for DGP2 with Lag Length p and Nominal
Significance Level 5%, Correctly Specified Volatility Change Point

κ K1 T = 150 T = 300 T = 600 T = 1200

Under H0 0.1 2 0.063 0.058 0.056 0.053
3 0.067 0.060 0.051 0.056
4 0.062 0.053 0.054 0.050

0.5 2 0.027 0.037 0.038 0.048
p = 1 3 0.031 0.039 0.042 0.046

4 0.039 0.035 0.044 0.054

1 2 0.011 0.014 0.030 0.041
3 0.013 0.025 0.039 0.037
4 0.015 0.027 0.034 0.042

0.1 2 0.030 0.045 0.057 0.050
3 0.034 0.053 0.054 0.053
4 0.031 0.051 0.049 0.054

0.5 2 0.009 0.028 0.036 0.046
p = 12 3 0.007 0.025 0.040 0.050

4 0.011 0.031 0.045 0.046

1 2 0.001 0.011 0.026 0.038
3 0.003 0.013 0.031 0.037
4 0.003 0.015 0.037 0.035

Under H1 0.1 2 0.980 1.000 1.000 1.000
3 0.822 0.995 1.000 1.000
4 0.645 0.959 1.000 1.000

0.5 2 0.697 0.990 1.000 1.000
p = 1 3 0.405 0.848 0.998 1.000

4 0.236 0.704 0.985 1.000

1 2 0.326 0.858 0.999 1.000
3 0.144 0.533 0.950 1.000
4 0.080 0.351 0.867 0.999

0.1 2 0.681 1.000 1.000 1.000
3 0.429 0.970 1.000 1.000
4 0.266 0.885 1.000 1.000

0.5 2 0.202 0.931 1.000 1.000
p = 12 3 0.090 0.679 0.992 1.000

4 0.058 0.491 0.972 1.000

1 2 0.042 0.631 0.996 1.000
3 0.017 0.317 0.904 1.000
4 0.011 0.194 0.780 0.998

37



Table C.4: Relative Rejection Frequencies for DGP2 with Lag Length p and Nominal
Significance Level 5%, Misspecified Volatility Change Point at 0.4T

κ K1 T = 150 T = 300 T = 600 T = 1200

Under H0

p = 1

0.1 2 0.069 0.060 0.051 0.059
3 0.074 0.057 0.053 0.054
4 0.063 0.057 0.051 0.055

0.5 2 0.025 0.042 0.045 0.052
3 0.037 0.042 0.048 0.041
4 0.032 0.046 0.041 0.047

1 2 0.017 0.022 0.031 0.041
3 0.016 0.024 0.030 0.039
4 0.015 0.028 0.034 0.045

p = 12

0.1 2 0.040 0.053 0.054 0.055
3 0.046 0.050 0.057 0.055
4 0.037 0.057 0.054 0.054

0.5 2 0.014 0.029 0.040 0.045
3 0.011 0.030 0.041 0.046
4 0.010 0.029 0.047 0.052

1 2 0.003 0.012 0.026 0.036
3 0.002 0.015 0.031 0.035
4 0.002 0.014 0.032 0.039

Under H1

p = 1

0.1 2 0.983 1.000 1.000 1.000
3 0.827 0.993 1.000 1.000
4 0.675 0.964 1.000 1.000

0.5 2 0.716 0.987 1.000 1.000
3 0.416 0.855 0.996 1.000
4 0.279 0.744 0.986 1.000

1 2 0.350 0.871 0.998 1.000
3 0.142 0.556 0.945 1.000
4 0.092 0.395 0.897 0.999

p = 12

0.1 2 0.726 0.999 1.000 1.000
3 0.480 0.968 1.000 1.000
4 0.309 0.888 0.999 1.000

0.5 2 0.232 0.937 1.000 1.000
3 0.095 0.706 0.993 1.000
4 0.054 0.539 0.970 1.000

1 2 0.063 0.672 0.995 1.000
3 0.019 0.352 0.898 1.000
4 0.012 0.224 0.827 0.999
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Table C.5: Relative Rejection Frequencies for DGP2 with Lag Length p and Nominal
Significance Level 5%, Volatility Change Point Search via Likelihood Criterion

κ K1 T = 150 T = 300 T = 600 T = 1200

Under H0

p = 1

0.1 2 0.085 0.060 0.057 0.053
3 0.093 0.063 0.058 0.053
4 0.087 0.066 0.055 0.052

0.5 2 0.044 0.035 0.047 0.043
3 0.044 0.045 0.047 0.045
4 0.037 0.043 0.048 0.050

1 2 0.012 0.022 0.032 0.035
3 0.017 0.022 0.033 0.044
4 0.018 0.021 0.038 0.040

p = 12

0.1 2 0.094 0.074 0.053 0.048
3 0.111 0.083 0.049 0.055
4 0.090 0.080 0.059 0.051

0.5 2 0.026 0.027 0.039 0.042
3 0.033 0.033 0.040 0.045
4 0.026 0.048 0.043 0.052

1 2 0.008 0.014 0.022 0.031
3 0.010 0.016 0.027 0.034
4 0.011 0.026 0.032 0.041

Under H1

p = 1

0.1 2 0.956 1.000 1.000 1.000
3 0.800 0.997 1.000 1.000
4 0.610 0.942 1.000 1.000

0.5 2 0.688 0.989 1.000 1.000
3 0.372 0.801 0.998 1.000
4 0.266 0.675 0.980 1.000

1 2 0.349 0.858 0.999 1.000
3 0.138 0.549 0.948 1.000
4 0.072 0.368 0.854 1.000

p = 12

0.1 2 0.400 0.922 1.000 1.000
3 0.240 0.781 1.000 1.000
4 0.146 0.538 0.999 1.000

0.5 2 0.133 0.578 1.000 1.000
3 0.054 0.324 0.994 1.000
4 0.028 0.189 0.957 1.000

1 2 0.036 0.287 0.995 1.000
3 0.012 0.129 0.909 1.000
4 0.008 0.050 0.721 0.997
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