
Bottazzi, Giulio; Giachini, Daniele

Working Paper

Strategically biased learning in market interactions

LEM Working Paper Series, No. 2022/02

Provided in Cooperation with:
Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies

Suggested Citation: Bottazzi, Giulio; Giachini, Daniele (2022) : Strategically biased learning in
market interactions, LEM Working Paper Series, No. 2022/02, Scuola Superiore Sant'Anna,
Laboratory of Economics and Management (LEM), Pisa

This Version is available at:
https://hdl.handle.net/10419/259545

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/259545
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


LEMLEM
WORKING PAPER SERIES

Strategically biased learning in market
interactions

    Giulio Bottazzi a

             Daniele Giachini a

        

       

         a Institute of Economics and EMbeDS Department, Scuola Superiore Sant’Anna, Pisa, Italy.

        2022/02                                          January 2022
ISSN(ONLINE) 2284-0400



Strategically biased learning in market
interactions

Giulio Bottazzi1 and Daniele Giachini1

1Institute of Economics & Department EMbeDS, Scuola Superiore Sant’Anna, Piazza
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Abstract

We consider a market economy where two rational agents are able to
learn the distribution of future events. In this context, we study whether
moving away from the standard Bayesian belief updating, in the sense of
under-reaction to some degree to new information, may be strategically
convenient for traders. We show that, in equilibrium, strong under-reaction
occurs, thus rational agents may strategically want to bias their learning
process. Our analysis points out that the underlying mechanism driving ex-
ante strategical decisions is diversity seeking. Finally, we show that, even if
robust with respect to strategy selection, strong under-reaction can generate
low realized welfare levels because of a long transient phase in which the
agent makes poor predictions.
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1 Introduction

In this paper we study whether non-bayesian belief updating can persist in fi-
nancial markets when agents can strategically choose the degree of bias in their
learning process. We focus on a particular type of behavioral bias that has been
widely studied in the literature, both theoretical and empirical: under-reaction
(see e.g. Barberis et al., 1998; Epstein et al., 2010; Massari, 2020; Jiang et al.,
2021). Indeed, Bayesian learning – i.e. updating beliefs according to Bayes rule
– is commonly identified as the “rational” way of incorporating new evidence into
probabilistic predictions: under suitable conditions it makes beliefs eventually ac-
curate (Epstein et al., 2010). According to this analysis, thus, deviations from the
Bayesian benchmark, such as under-reaction, have to be considered biases. The
conditions for the rationality of Bayesian updating include having the true data
generating process in the prior set of models over which the agent is learning or,
equivalently, assigning a non negative initial prior probability to the true model.
If this is not the case, we face model misspecification and, in such a situation,
Bayesian learning generically lets the agent predict according to the most accurate
model in its set (Berk, 1966). Thus, even if not perfect, Bayesian learning still pro-
vides a reasonably good accuracy outcome and can be considered the benchmark
also in misspecified settings.

In complex environments – large worlds, using the language of Savage (1954)
as reported by Gigerenzer and Gaissmaier (2011) – being able to learn the correct
data generating process appears unrealistic and model misspecification should be
considered as a defining characteristic. Under model misspecification, a trader
who under-reacts to information cannot be driven out of the market by a trader
that learns in a Bayesian fashion (Massari, 2020). Thus, under-reaction provides an
evolutionary advantage over Bayesian learning in complex environments character-
ized by model misspecification. A straightforward consequence is that a Bayesian
trader who wanted to increase its prospects to survive the market selection struggle
should bias its learning process toward under-reaction. Still, is deliberately bias-
ing learning somehow rational for the trader? Jouini and Napp (2016) show that
market selection outcome and individual welfare may be negatively related: van-
ishing agents can experience larger expected utility than dominating ones. Hence,
it is not clear whether the advantage in selection under-reaction has over Bayesian
learning in misspecified contexts translates in larger expected utility. Thus, sup-
posing that agents could strategically choose how much under-reaction show in
their belief updating, would they bias their learning process? In this paper we
answer these questions considering a standard economy where agents trade in-
tertemporally. Since the focus of this paper is on strategically biasing learning, we
sterilize other possible factors that may affect the choices – and, thus, the welfare
– of an agent assuming that, apart from learning protocols, agents are ex-ante
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identical. In our setting this translates in assuming an homogeneous discount fac-
tor, logarithmic instantaneous utility, and constant and homogeneous endowments.
Moreover, we focus on the case of two agents, such that the strategic environment
is streamlined. Strategic interaction is introduced letting traders choose (ex-ante)
their degree of under-reaction. Hence, before engaging in trading, agents play a
simultaneous game where they evaluate their prospects and select the degree of
under-reaction that provides the larger welfare in terms of expected utility.

Our results show that in any pure-strategy Nash equilibrium there is a trader
that shows a high degree of under-reaction and a trader that learns in a Bayesian
manner. In the mixed-strategy Nash equilibrium the agents are Bayesian or
strongly under-react with positive and almost equal probabilities. Thus, under-
reaction emerges and persists even in misspecified contexts where agents can strate-
gically choose how much biased their learning process has to be. At the same
time, it pays to be “irrational” – i.e. non Bayesian – only when the opponent
is “rational” – i.e. Bayesian – and vice-versa. That is, the strategical advantage
under-reaction may have stems from the gains of trade that can only be obtained
when agents’ beliefs are sufficiently diverse. Finally, we investigate agents’ realized
utilities assuming a specific exogenous “true” process driving the state of nature.
Our analysis shows that the far away the true process is from the initial prior of
the agents, and the larger is their degree of under-reaction, the lower their real-
ized utility. The reason of this finding is the presence of a long transient phase in
which the predictions of a strong under-reaction agent are very inaccurate. Thus,
even if under-reaction proves to be robust both in evolutionary and strategic sense
when facing model misspecification, it may be quite detrimental in terms of level
of welfare eventually realized by the trader.

Highlighting strategic and welfare issues that may occur in economies popu-
lated by logarithmic traders,1 this paper complements the analyses of evolutionary
dynamics performed in Bottazzi and Dindo (2013, 2014), Bottazzi and Giachini
(2017, 2019a,b) Bottazzi et al. (2018, 2019), Dindo and Massari (2020), Giachini
(2021). Indeed, exploiting the selection results in those contributions, our paper
paves the way to further explorations on the link between heuristic behavioral
rules, evolutionary dynamics, and strategic choices.

2 The Model

Consider a discrete-time pure exchange economy with an infinite horizon. At each
time t ≥ 0 the economy can be in one of S finite states. We denote with 0 the

1Notice that, in many of the aforementioned contributions, agents use behavioral rules.
Nonetheless, those rules can be rationalized using the arguments reported in Bottazzi et al.
(2018), Dindo (2019), and Giachini (2021)

3



certain state of the economy at date 0. Let st ∈ [S] = {1, 2, . . . , S} be the state at
time t > 0, σt = (s1, s2, . . . , st) ∈ Σt = [S]t a partial history of the economy until
time t (a sequence of t elements of the set [S]) and with σ = (s1, s2, . . . , st, . . .) ∈ Σ
a generic infinite history. The economy is populated by N agents that want to
satisfy their consumption need. At each date t a single good is available and each
agent i ∈ [N ] receives an amount ei(σt) > 0 of that good. Let ci(σt) be the
consumption of agent i on the partial history σt. Agent i optimal consumption is
found solving

max
{ci(σt), ∀t,σ}

Ui =(1− βi)
∞∑
t=0

∑
σt∈σt

βtipi(σt) log(ci(σt)/ei(σt))

subject to
∞∑
t=0

∑
σt∈σt

q(σt) (ei(σt)− ci(σt)) ≥ 0,

(1)

where βi ∈ (0, 1) is agent i’s discount factor and q(σt) is the price of the con-
sumption good at date t if σt is realized. All agents adopt the same, logarithmic,
Bernoulli utility to judge the attained level of consumption at eact time step. In
turn, the price of the consumption good contingent on the realization of a given
partial history σt is set by the market clearing condition

N∑
i=1

ci(σt) =
N∑
i=1

ei(σt) = e(σt) . (2)

We assume that all agents receive the same constant endowment: ei(σt) = e > 0
for each i ∈ [N ] and for all σt. Under these assumptions we can solve (details are
in Appendix 1) for agents equilibrium consumption

ci(σt) =
(1− βi) βti pi(σt)∑N
j=1(1− βj) βtj pj(σt)

N e, (3)

and consumption good prices

q(σt) =

∑N
i=1(1− βi) βti pi(σt)∑N

i=1(1− βi)
. (4)

The assumption of identical Bernoulli utilities and endowments make possible the
comparison of the utility levels attained by agents at equilibrium. Indeed for each
agent i, at equilibrium, it is 0 ≤ Ui ≤ log(N). The first inequality comes from the
observation that consuming the endowment is feasible for each agent, and it entails
zero utility. Since the individual consumption choice derives from an optimization,
at equilibrium it must be Ui ≥ 0. At the same time, the best possible outcome
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for each agent is consuming the whole aggregate endowments, thus it must be
Ui ≤ logN . Substituting the consumption (3) in the agent’s utility one obtains
the expected utility at equilibrium

Ui = (1− βi)
∞∑
t=0

∑
σt∈σt

βti pi(σt) log

(
(1− βi) βti pi(σt)∑N

j=1(1− βj) βtj pj(σt)/N

)
. (5)

If agents share the same probabilistic model p and have the same discount fac-
tor β, we are in a no-trade situation: all agents consume their endowment and
Ui = 0 for any i ∈ [N ]. This is the worst case scenario for all agents. More
generally, notice that the quantities Pi(σt) = (1 − βi) β

t
i pi(σt) define a proba-

bility measure on the space of all histories, indeed Pi(σt) > 0 for any σt and
limT→+∞

∑T
t=0

∑
σt∈Σt

Pi(σt) = 1. Defining the average population probability

measure starting from agents’ individual measures P̄ =
∑N

i=1 Pi/N , the expected
utility can be rewritten in terms of the Kullback-Leibler divergence of the agent’s
individual measure with respect to the population average measure

Ui = DKL

(
Pi | P̄

)
= lim

T→+∞

T∑
t=0

∑
σt∈Σt

Pi(σt) log

(
Pi(σt)

P̄ (σt)

)
.

Because, in general, DKL

(
Pi | P̄

)
6= DKL

(
Pj | P̄

)
, the gain from trade is different

for different agents, despite the fact that they have the same endowment and
the same Bernoulli utility. Agents with an individual measure diverging more
from the average are those with a higher expected utility. This consideration
introduce a strategic dimension into the usual GE framework: given the ecology
of agents present in the market, there are individual measures (and intertemporal
discount factors) that assure a higher gain from trade. In the next sections we
will investigate the relative performance, in terms of utility, of agents adopting
different probabilistic models and we will explore which models are characterized
by the best performance in an heterogeneous framework. For definiteness, we will
focus on the role of individual probabilities and we will assume that agents share
the same intertemporal discount factor βi = β for all i ∈ [N ]. In this way, agent’s
preferences are identical and they only differ with respect to the probabilities they
assign to the different possible futures. There is however a practical question to
address before.

2.1 Estimation strategy

Even for relatively simple models, the analytical computation of the expected
utility in (5) can result impossible. Thus, we shall rely upon numerical estimates.
The sum defining Ui is infinite but in the case of homogeneous discount factor we
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can derive an upper bound to the error incurred in truncating it. Let Ui(T ) be the
partial sum of the first T terms in (5), the truncation error reads

εi,T = |Ui − Ui,T | ≤ (1− β)
∞∑

t=T+1

∑
σt∈σt

βtpi(σt)

∣∣∣∣∣log

(
pi(σt)∑N

j=1 pj(σt)/N

)∣∣∣∣∣ .
Assume there exists a π and an π such that πt ≤ pi(σt) ≤ πt for any i and any σt.
This assumption is compatible with a large class of probabilistic models, as it is
sufficient to assume that the conditional probabilities are uniformly bounded away
from zero and one. Then | log(pi(σt)/(

∑N
j=1 pj(σt)/N))| ≤ t log π/π. Substituting

in the previous equation and summing the geometric series one gets

εi,T ≤ βT+1T (1− β) + 1

1− β
log

π

π
∼ T

βT+1

1− β
log

π

π
. (6)

If the discount factor is sufficiently small, one can obtain a good approximation
also with relatively small T . However, the number of realizations that must be
computed grows as ST , making the task daunting even for a moderate value of T .
We exploit the fact that Ui(T ) involve an expectation, hence we can easily provide
estimates of those expectations by means of Monte Carlo approach. We generate a
sample of M independent sequences of realizations σT,r = (s1, s2, . . . , sT ) according
to the probability measure pi, we compute the quantity

ui,r(T ) = (1− β)
T∑
t=0

βt log

(
pi(σt,r)∑N

j=1 pj(σt,r)/N

)
(7)

on each replica r, obtaining a weighted sample of M independent replicas of
agent i (truncated) utility. Then we estimate agent i expected utility as Û i(T ) =∑M

r=1 ui,r(T )/M and the associated standard error dividing the standard deviation

of the sample of (7) by
√
M .

The same procedure can be applied to measure the realized utility, with re-
spect to the “true” model, simply replacing the measure pi used in obtaining the
sequences of realizations (s1, s2, . . . , sT ) with the measure implied by the actual
process driving the states of the economy. To avoid confusion, we shall call R̂i(T )
the estimated realized utility of agent i.

3 Numerical analysis

We investigate the strategic dimension of model selection in GE utility maximiza-
tion by performing theree exercises. In the next Section, we coompare the perfor-
mance of agents with fixed models. This provides a benchmark for the following
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Figure 1: Left: Û1(T ) for different combinations of π1(1) and π2(1). Center:
Û2(T ) for different combinations of π1(1) and π2(1). Right: Û1(T ) − Û2(T ) for
different combinations of π1(1) and π2(1). For each estimate we set β = 0.95,
T = 500, and M = 105. Standard errors are ∝ 10−3 or smaller. The truncation
error is εi,T ≤ 2.0348× 10−7 ∀i.

analysis and will allow to identify the aspects of the probabilistic model that most
contribute to the individual performances of the different agents. Section 3.2 con-
tains our main exercise. We set up a simultaneous game in which players have
the option to select their learning behavior and analyze the strategic implication
of the different choices, identifying the game equilibria. Finally, in Section 3.3, we
compare the expected utility levels attainded by various strategic choices with the
realized ones.

3.1 Fixed models

For simplicity, consider the S = 2 and N = 2 case. Assumes agent have i.i.d.
models: agent i = 1, 2 assign a constant probability πi(s), for s = 1, 2, to the
realization of state s at each date, pi(st|στ−1) = πi(st). Thus if t1 is the number
of time state 1 has been realized on the history σt, it is

pi(σt) =
t∏

τ=1

pi(sτ |στ−1) = πi(1)nπi(2)t−n = πi(1)n(1− πi(1))t−n .

We apply the numerical procedure described in Section 2.1 to estimate the agents’
expected utilities at equilibrium for different values of π1(1) and π2(1). Results
are reported in Figure 1, that shows the estimated utilities of the agents and the
estimated difference between the two utilities. Notice that by moving towards the
bottom right corner, agents’ excess utility increases. Thus, agents experience the
largest (expected) welfare when they have very different beliefs. This derives from
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λ2 = 0 λ2 = 0.5 λ2 = 0.9

Figure 2: Û1(T ) and Û2(T ) as functions of λ1 for λ2 ∈ {0, 0.5, 0.9}. For each
estimate we set π1(1) = 0.3, π2(1) = 0.8, β = 0.95, T = 500, and M = 10000.
Confidence bands are computed adding and subtracting three times the standard
errors. The truncation error is εi,T ≤ 9.5804× 10−8 ∀i.

the fact that having nearly opposite evaluations about future states maximizes the
benefit from trading. Indeed, agents are eager to move consumption from those
states they believe less likely to those they believe more likely and the opposite
evaluations allow them to trade at supposedly inexpensive prices. As expected,
however, the gains are, in general, not evenly distributed. This is made apparent
the right panel of Figure 1, where we notice significant differences in expected
utility when one agent has rather extreme beliefs while the other shows milder
evaluations.

The analysis of the case of fixed models confirm the importance of beliefs for
(ex-ante) welfare evaluation. Beliefs do not have intrinsic merits, but they perform
differently depending on the entire “ecology” of beliefs, that is on the models of
the other agents in the model. The simplest possible model was analyzed here,
however increasing the number of agents N or of states of nature S does not change
the general picture: learning, that is the systematic way in which information is
incorporated in beliefs, can be crucial in shaping the ex-ante welfare considerations
of rational traders.

3.2 Learning Processes

In this section we introduce a strategic dimension by defining a family of learning
models and allow agents to select among them. We assume that agents have access
to a set of K i.i.d. models π1, . . . , πK . These models are defined analogously to
the models of the previous section. Now assume that instead of keeping fixed
their probabilistic model, agents try to learn the true one using all the K existing
models. That is, agents’ individual beliefs derive from a learning process. Agents’
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subjective conditional probabilities are build as a convex combination of models’
predictions, in formal terms

pi(st|σt−1) =
K∑
k=1

πk(st)wi,k(σt−1) ∀t, σ , (8)

with wi,k(σt−1) denoting the weight agent i attaches to model k after having ob-
served the partial history σt−1. Without loss of generality, we set wi,k(σ0) = 1/K
∀i, k. Those weights evolve according to a generalization of Bayes rules that cap-
tures the notion of under-reaction as proposed in Epstein et al. (2010) and Massari
(2020). Hence, one has

wi,k(σt+1) = λiwi,k(σt) + (1− λi)
πk(st+1|σt)wi,k(σt)

pi(st+1|σt)
∀k, t, σ , (9)

with λi ∈ [0, 1). Notice that setting λi = 0 one recovers Bayesian learning. Thus,
such a learning protocol can be considered a form of “moderate” Baysian learning
where the probability attached to the event “model k is the true one” in obtained
taking a convex combination of Bayes rule with the prior probability. As in the
previous section, we shall focus on the case K = S = N = 2.

Following the procedure in Section 2.1, we estimate the agents’ utilities for dif-
ferent values of λ1 and λ2. In Figure 2 we report those estimates as functions of λ1

and for λ2 ∈ {0, 0.5, 0.9}. The case λ2 = 0 identifies the setting of Massari (2020) in
which an under-reacting agent is competing in the market with a Bayesian learner.
In this case, increasing the value of λ1 appears beneficial for both agents. The rea-
son is again beliefs diversity. Indeed, a Bayesian converges rather quickly to the
model with lower relative entropy with respect to true probability measure, while
a under-reacting agent persistently mixes the two models (Massari, 2020). The
higher the value of λ1, the more the models are mixed. This creates opportunities
for trade, supposedly convenient prices, and, as a consequence, higher expected
utility for both agents. In this case, if agent 1 had the possibility of choosing its
degree of under-reaction in an optimal way, it would set λ1 to a value the closest
possible to 1. The positive effects, both at the individual level and for the whole
economy, of larger degrees of under-reaction by agent 1 emerge also in the case
λ2 = 0.5. When, instead, λ2 = 0.9, one notices that lower levels of under-reaction
by agent 1 appear preferable for both agents. This is the situation opposite to the
one seen before: when agent 2 strongly under-reacts, the largest diversity – and,
as a consequence, the largest expected welfare – occurs if we let agent 1 become
Bayesian. Thus, in this case, if agent 1 had the possibility to choose its degree of
under-reaction, it would set λ1 to zero.

A straightforward strategic argument emerges from the previous considera-
tions: suppose agents can strategically and optimally choose their degree of under-
reaction, would such learning bias persist in equilibrium? That is, is biasing belief
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Agent 2

λ2 = 0 λ2 = 0.5 λ2 = 0.9

Agent 1
λ1 = 0 (0 , 0) (U0,0.5 ,U0.5,0) (U0,0.9 ,U0.9,0)
λ1 = 0.5 (U0.5,0 ,U0,0.5) (0 , 0) (U0.5,0.9 ,U0.9,0.5)
λ1 = 0.9 (U0.9,0 ,U0,0.9) (U0.9,0.5 ,U0.5,0.9) (0 , 0)

Table 1: Simultaneous game representation of the strategic choice of the degree
of under-reaction among three given levels. For each entry, the first number in
parenthesis represents the payoff of agent 1, while the second is the payoff of agent
2.

updating (for instance, moving away from Bayesian learning) rational in a strate-
gic setting? To answer those questions, we exemplify our argument as follows.
Suppose each agent i ∈ {1, 2} chooses λi ∈ {0, 0.5, 0.9} such that to maximize
its payoff in a simultaneous strategic interaction setting. Define Ui(λ1, λ2) as the
payoff agent i gets as a function of the degrees of under-reaction of the two agents.
We assume that agents’ payoffs match agents’ expected utilities as in (5) and we
can safely and conveniently use the estimated values reported in Figure 2 to solve
the game. Hence, U1(x, y) = U2(y, x) and we can simplify the notation setting
Ux,y = U1(x, y) and Ux,x = 0 ∀x ∈ {0, 0.5, 0.9}. The simultaneous game that
emerges can be represented as in Table 1. The following inequalities hold:

0 < U0.5,0 < U0.9,0 ; 0 < U0,0.5 < U0.9,0.5 ; 0 < U0.5,0.9 < U0,0.9 .

By direct inspection of Table 1, one realizes that there exist two pure strat-
egy asymmetric Nash equilibria, both characterized by one agent strongly under-
reacting while the other learns in a Bayesian way. To investigate the existence of
Nash equilibria in mixed strategies, we repeat our estimation exercise for λ1, λ2 ∈
{0, 0.5, 0.9} considering M = 106 independent replications, such that we obtain
standard errors in the order of 10−4 and, thus, more accurate estimates. We report
our results in Table 2.

Focus, without loss of generality because of symmetry, on agent 1 and notice
that a mixed strategy that prescribes to play λ1 = 0 with probability 0.5 and λ1 =
0.9 with probability 0.5 provides a strictly larger expected payoff than the strategy
λ1 = 0.5 for any possible choice of agent 2. Thus, λ1 = 0.5 is dominated in mixed
strategies and will not be played with positive probability in equilibrium. Hence,
defining θi as the probability agent i attaches to play the strategy λi = 0, the
unique mixed strategy equilibrium can be found solving the indifference condition
(1− θi)U0,0.9 = θiU0.9,0, that is

θi =
U0,0.9

U0,0.9 + U0.9,0

.
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Agent 2

λ2 = 0 λ2 = 0.5 λ2 = 0.9

Agent 1
λ1 = 0 (0 , 0) (0.0386 , 0.0289) (0.1766 , 0.1705)
λ1 = 0.5 (0.0289 , 0.0386) (0 , 0) (0.0761 , 0.0868)
λ1 = 0.9 (0.1705 , 0.1766) (0.0868 , 0.0761) (0 , 0)

Table 2: Simultaneous game representation of the strategic choice of the degree of
under-reaction among three given levels with estimated payoffs. For each estimate
we set π1(1) = 0.3, π2(1) = 0.8, β = 0.95, T = 500, and M = 106. Estimates are
rounded to the 4th decimal digit and standard errors ∝ 10−4 are not reported.

Directly substituting with the estimated values, one gets θi = 0.5088. We also
provide an interval estimate by means of a Monte Carlo exercise. It is obtained
repeating for 500 times the estimation of expected utilities (setting M = 104) and
computing θi for each one of the 500 independent replicas. Our computations show
that θi = 0.5092± 0.0007 with 99% statistical confidence.

The indications one can get from our game theoretic exercise are that in any
pure-strategy equilibrium, there exists a single agent that strongly under-reacts,
while in the mixed-strategy equilibrium the agents play Bayes or strong under-
reaction with positive probabilities. Interestingly, the agents tend to play Bayes
with slightly higher probability than strong under-reaction.

Overall, again, the largest benefits are generated by heavily differentiating from
the opponent and this, together with the symmetric setting, shapes the strategic
environment. Strategically biasing beliefs may be optimal because it allows one
to differentiate from the opponent. Coupling our findings with those of Massari
(2020), we can conclude that under-reaction is not only robust in an evolutionary
perspective, but it is robust even in a strategical sense. Rational agents may
optimally choose to show such a bias in equilibrium and market dynamics can fail
to select against it. Thus, under-reaction emerges, persists, and can influences
economic dynamics in the long-run.

Notice that our results and argument hold for any possible choice of the true
data generating process. Indeed, so far, no assumption has been made on the true
probability measure p governing the prcess of states of nature. This is because
ex-ante expected utilities are based on subjective probabilistic evaluations. Thus,
in principle, one does not suffer any ex-ante penalty in generating extremely biased
beliefs.
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λ2 = 0

λ2 = 0.5

λ2 = 0.9

Figure 3: R̂1(T ) and R̂2(T ) as functions of λ1 for λ2 ∈ {0, 0.5, 0.9} and p ∈
{0.35, 0.5, 0.75}. For each estimate we set π1(1) = 0.3, π2(1) = 0.8, β = 0.95,
T = 500, and M = 104. Confidence bands are computed adding and subtracting
three times the standard errors. The truncation error is εi,T ≤ 9.5804× 10−8 ∀i.

3.3 Realized utility

Now we try to assess whether biasing beliefs, even if strategically convenient, may
become penalizing when facing true sequences of events. To do that we study
the average realized utility, i.e. the utility level that, on average, agents receive
on a sequence of events generated by the true process. We follow the numerical
procedure outlined in advance, but, in contrast with the previous exercises, here
we have to make assumptions on the true data generating process. In particular,
we assume that the truth p is i.i.d. and, with a little abuse of notation, p shall be
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used to refer to the probability of observing state 1. For our numerical exercise,
we choose p ∈ {0.35, 0.5, 0.75}.

In Figure 3 we report the results of our exercise and, as one can notice, when
p = 0.35 or p = 0.75 large values of λ1 appear detrimental for agent 1. This is a
consequence of the long transient that high degrees of under-reaction entail: a λ1

close to one means that asymptotically agent 1’s beliefs are almost correct, but the
speed of convergence is extremely low.2 Thus, in the first periods agent 2 (with
λ2 < λ1) gets close to the truth faster and takes advantage of that consuming
more and enjoying larger utility, on average. Notice that the uninformative prior
we assumed is crucial in driving such outcome. Indeed, when p = 0.5, initial
beliefs are much closer to the truth than in the previous cases, thus the transient
advantage of the agent with low degree of under-reaction quickly disappears. It
follows that λ1 > λ2 becomes beneficial for agent 1 and detrimental for agent 2.

This exercise shows that ex-ante and ex-post (realized) levels of welfare may be
very different. Thus, under-reaction, even if evolutionary and strategically robust,
does not ensure that the agent showing it effectively experiences high levels of
welfare. Obviously, this strongly depends on the true data generating process
and different instances of model misspecification may severely affect the resulting
welfare outcomes.

4 Conclusion

We investigate whether a seemingly irrational behavior – such as moving away
from Bayesian updating via under-reaction – persists when agents competing in a
market economy can strategically choose to bias their learning process. We find
that in any pure-strategy Nash equilibrium a trader strongly under-reacts while
the other follows Bayes rule. In the mixed-strategy equilibrium the agents ran-
domize between Bayes and strong under-reaction giving slightly higher probability
to Bayes. Thus, under-reaction does not disappear when agents can strategically
choose their learning process. The underlying mechanism that drives our result is
that agents seek to make their probabilistic evaluations diverse in order to gener-
ate gains from trade. Since strategic biasing involve expected utility evaluations,
diversity seeking may let agents generate inaccurate beliefs. We investigate that
estimating agents’ average realized utility and our results show that strong under-
reaction may cause low (realized) welfare because of a long transient phase in
which the agent makes poor probabilistic evaluations.

2The statement is a straightforward consequence of the results in Bottazzi and Giachini (2017,
2019b) and Dindo and Massari (2020) coupled with the interpretation of market economies as
learning algorithms provided by Massari (2021, 2020) and Bottazzi and Giachini (2019b).
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A Appendix 1

Given the properties of the instantaneous utility, the individual problem of agent
i reduces to maximizing with respect to consumption the Lagrangian

Li = Ui + µi

∞∑
t=0

∑
σt∈σt

q(σt) (ei(σt)− ci(σt)) .

Thus, the system of first order conditions is

ci(σ0) =
1− βi
µi

,

ci(σt) =
(1− βi)βti pi(σt)

µi q(σt)
∀t, σ ,

∞∑
t=0

∑
σt∈σt

q(σt) (ei(σt)− ci(σt)) = 0 ,

(10)

while the equilibrium conditions read 1 =
∑N

i=1 ci(σt) ∀t, σ. Substituting in the
budget constraint, one gets

∞∑
t=0

∑
σt∈σt

q(σt)ei(σt) = ci(σ0)
∞∑
t=0

βti
∑
σt∈σt

pi(σt) =
ci(σ0)

1− βi
, (11)

while, from the equilibrium conditions, one obtains

q(σt) =
N∑
i=1

βtipi(σt)ci(σ0) . (12)
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