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Abstract

Government funding of innovation can have a significant impact not only on the rate of technical
change, but also on its direction. In this paper, we examine the role that government grants and
government departments played in the development of artificial intelligence (AI), an emergent
general purpose technology with the potential to revolutionize many aspects of the economy and
society. We analyze all AI patents filed at the US Patent and Trademark Office and develop
network measures that capture each patent’s influence on all possible sequences of follow-on
innovation. By identifying the effect of patents on technological trajectories, we are able to
account for the long-term cumulative impact of new knowledge that is not captured by standard
patent citation measures. We show that patents funded by government grants, but above all
patents filed by federal agencies and state departments, profoundly influenced the development
of AI. These long-term effects were especially significant in early phases, and weakened over
time as private incentives took over. These results are robust to alternative specifications and
controlling for endogeneity.

Keywords: R&D; Technical change; Government subsidies; Technology policy;
General purpose technology

JEL codes: O31; O33; O38; D85

1 Introduction

Innovation is a fundamental driver of economic growth (Romer, 1990; Grossman and Helpman,
1991; Aghion and Howitt, 1992). Because of market failures in the production of knowledge that
underpins technical change (Nelson, 1959; Arrow, 1962), governments have played an important
role in designing appropriate incentives and in supporting R&D activities in the economy (Bloom
et al., 2019). Yet, as argued by Azoulay et al. (2019), in the economic literature more contributions
have focused on firm R&D investments and their spillover effects, than those that have addressed
the impact of public funding. Interest in this topic has grown considerably over the last few years.
The need to address complex societal challenges, for which uncoordinated private investments in

1



new technologies might be insufficient, has been among the causes of this recent scholarly interest
(Mazzucato, 2015; Van Reenen, 2020).

Studies that have focused on the role of government include analyses of the rate of returns of
R&D investments (Hall et al., 2010), and policy evaluations of the effects of R&D subsidies (Bloom
et al., 2002; Wilson, 2009; Dechezlepretre et al., 2016; Akcigit et al., 2018) and of government grants
(Bronzini and Iachini, 2014; Howell, 2017; Santoleri et al., 2020) on private innovation outcomes.
Despite the heterogeneity of results found in this literature, these studies try to quantify the impact
of public funding on the rate of technical change in the economy. Systematic assessments of the
role of government funding on the direction of technical change have proved more difficult. We have
historical evidence of the deep influence that governments had in shaping science and technology
efforts during times of war and crisis (Mowery, 2010; Ruttan, 2006; Gross and Sampat, 2020). We
also have a stream of contributions on the specific role of government in funding breakthrough
biomedical research, recently reviewed in Azoulay et al. (2019). All in all, however, quantitative
studies of the impact of government funding on the direction of technical change are very rare.1

One reason behind the scarcity of systematic evidence on this issue is that the government tends to
intervene early in the R&D process: public funding plays a role in the development of fundamen-
tal knowledge that is typically quite far from having immediate applications, and we can neither
detect its effect through short-term market outcomes, nor gauge its impact in the long run, when
there may be market outcomes, but these cannot be easily connected with early public investments
(Griliches, 1992). It is therefore especially difficult to assess the impact of government investments
in technologies with very long lead development times.

One salient characteristic of technical change is its cumulativeness (Dosi, 1982; Dosi, 1988;
Scotchmer, 1991; Green and Scotchmer, 1995; Henderson and Cockburn, 1996; Sampat andWilliams,
2019). New knowledge builds on prior knowledge, often in a recombinatory way (Weitzman, 1998;
Wuchty et al., 2007), to generate new solutions to problems, which in turn open up opportunities for
further development. Knowledge accumulation in science and technology is a process that involves
different individuals, organizations and institutions. In its essence it is an evolutionary process
that over time should select in more useful and valuable knowledge, on which further knowledge
will be built, and select out less valuable or obsolete knowledge. Dosi (1988) conceptualized the
broad patterns of cumulative change as technological trajectories that emerge over time and can be
viewed in retrospect as the path-dependent outcome of dispersed research efforts converging into
particular ways of solving problems. In this paper, we develop the idea that the government can
play a fundamental role in directing technical change and influencing the patterns of knowledge
accumulation.

We focus on the long-term development of Artificial Intelligence (AI). AI research encompasses
knowledge and techniques that are designed to make machines ‘intelligent’, in the sense that they
can function in the environment where they are applied also through foresight (Nilsson, 2010).

1By ‘direction’ here we do not refer to biases in technical change that favor the use of one particular factor of
production over another (Acemoglu, 2002), but rather the long-term orientation of technology development in a
knowledge search space (Dosi, 1988).
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The idea that human intelligence can be ‘mechanized’ is not so recent, but it is over the last few
decades, with the development of modern AI, that computing technologies and machine learning
have allowed to achieve unprecedented results and have opened up multiple prospects of commercial
application. Even though AI includes many different research areas, it is possible to identify among
its core components machine learning, deep learning, NLP (natural language processing) platforms,
predictive APIs (application programming interface), image recognition and speech recognition.

Following a well-established tradition, we use patents as indicators of innovation activities (Hall
et al., 2001). However, we depart from the literature using patent citation counts as measures of
impact (Trajtenberg, 1990; Hall et al., 2005), and also from a standard ‘spillover’ framework of
analysis (Jaffe, 1986; Griliches, 1992; Jaffe et al., 1993; Bloom et al., 2013). Based on network
theory, in this paper we measure the long-term effect that discrete inventions have on the main
technological trajectory of AI development. We download from the US Patent and Trademark
Office (USPTO) 114,670 AI patents. We identify patents that recognize receipt of government
finance in their funding acknowledgements, as well as patents filed by government agencies and
state departments. We then put to empirical test the conjecture that government-funded patents
have an effect on the technological trajectory. We find that these patents had profound effects on the
cumulative development of AI. Patents filed by Federal and state departments and agencies had the
strongest impact. Moreover, the effects of government funding were especially significant in early
phases of technology development, and weakened over time as private incentives took over. While
our empirical settings and variables ensure a low risk of reverse causality and citation bias issues,
our sample might bias as public investments may target research areas with the most potential for
follow-on innovation (Azoulay et al., 2019). We control for this possibility using a quasi-experimental
design based on both propensity-score matching and instrumental variable, and our general results
hold.

The paper aims to make three contributions. Firstly, we provide novel and original evidence on
the influence of government funding on the direction of technical change. Secondly, we contribute
to the development and application of a novel way to measure the effect of innovation on follow-on
technological developments. Thirdly, we contribute to the emergent literature on the economics of
artificial intelligence by providing novel quantitative evidence of key financing patterns that have
supported the development of these technologies over the last thirty years.

The paper is organized as follows. In section 2 we briefly discuss the recent economic literature
on AI. Section 3 presents the data we use in this study. Section 4 details the methodology we
apply to identify the technological trajectory and measure the long-term cumulative patterns of
technological development in the field. Section 5 shows resulting network and indicators. Section
6 presents the empirical strategy we use to examine the effect of government funding on the AI
trajectory, then our results and finally a series of robustness checks. The final section summarizes
the findings, discusses the limitations of our work, and draws the contribution to a close.
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2 AI as general purpose technology

AI involves “[the automation of] activities that we associate with human thinking, activities such
as decision-making, problem-solving, learning. . . ”.2 It has the potential to generate broad spillovers
that can go way beyond the boundaries of information and communication technologies, and open
up further scientific, technological and economic opportunities in several domains. AI is a likely
candidate as the dominant general purpose technology of the coming era (Cockburn et al., 2018).
General purpose technologies (GPT) are groups of techniques and applications associated with deep
transformations in economic systems (Bresnahan and Trajtenberg, 1995; Helpman, 1998; Jovanovic
and Rousseau, 2005). Their distinctive characteristics are pervasiveness, high dynamism, and strong
complementarities. AI is beginning to display these characteristics, and as a GPT, AI could indeed
generate waves of radical innovations leading to widespread economic disruption (Trajtenberg, 2019).
AI, especially through the evolution of machine learning, could affect the production of most goods,
and the organization and provision of non-routine tasks and services. When subjected to the
same empirical tests Moser and Nicholas (2004) used for electricity, artificial intelligence is indeed
displaying the emergent characteristics of a general purpose technology (Martinelli et al., 2021).

Because of this transformative potential, scholars have recently developed a strong interest in AI
and the effects of its diffusion (Agrawal et al., 2019). The largest share of research has focused on
the effect of automation on productivity growth and employment. While AI will probably increase
productivity in the long run (Furman and Seamans, 2018), there is no consensus on its impact on
labor. Acemoglu and Restrepo (2018) propose a conceptual framework to evaluate AI’s implications
for employment. They suggest that, while in the short-run AI will replace a large number of tasks,
the creation of new tasks will balance out this effect in the long run. However, this process will be
slow, and the pace of change will be constrained by skill mismatches. In discussing the implications
for the division of income between labor and capital, Aghion et al. (2017) emphasize that, despite the
AI work displacement effect, the labor share might remain substantial if in the future AI-adopting
sectors will contribute gradually less to aggregate growth, which is hard to improve (Baumol, 1967).

Despite these caveats, there is widespread concern about the increase in poverty and inequality
that could be due to the rapid diffusion of human-replacing innovations (Furman and Seamans,
2018), at least in the short run. Developing countries could also suffer from the rise of capital share
of GDP due to AI adoption (Korinek and Stiglitz, 2021). To mitigate the negative consequences of
AI diffusion, Korinek and Stiglitz (2019) propose a rise in capital taxation and intellectual property
rights reforms. Trajtenberg (2019), instead, highlights the government’s role in designing innova-
tive strategies to reform education, support personal services, and direct technical change towards
human-enhancing innovations.

Beyond the direct effect on growth and labor, AI may affect the economy in several other ways.
Firstly, it might change the innovation process itself (Cockburn et al., 2018). On the one hand,
the introduction of AI in technology production can foster the growth of new ideas, enhancing

2From: Bellman, R. (1978). An introduction to artificial intelligence: can computers think?. Thomson Course
Technology.
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innovation (Aghion et al., 2017). On the other hand, machine learning is likely to be “an invention
of a method of inventing”, as Griliches (1957) observed in the case of hybrid corn (p. 502). It is
also worth mentioning that successful application of AI requires the use of a large amount of data,
especially for predictions and decision-making. This feature raises security and privacy concerns,
and might have a profound impact on industrial structure (Varian, 2018).

The effects of technological transformation can only be understood if we open up the “black
box” of technology, and examine how, where, and why technologies emerge and evolve (Rosenberg,
1982). There can be no doubt that AI is a highly relevant technology, and as a case study it is an
appropriate context of analysis to explore the role played by government funding. It can be argued
that the role of government may be important for this kind of GPTs because their development is
very risky – or even fundamentally uncertain in ‘Knightian’ terms – and therefore either very costly
or simply impossible to finance by means of private funds, given the uncertainty and time-horizons
of returns. In what follows, we present our data and the research strategy we use to investigate the
effect of government funding on the direction of technical change.

3 Data

In this section, firstly, we describe our data sources and the criteria we used to identify AI patents.
Secondly, we discuss how we detected patents related to US government funding, and we provide
some descriptive statistics.

3.1 Sample construction

Patent data are widely accepted and used as proxies for innovation activities (Griliches, 1990; Hall et
al., 2001). Over the years scholars have been very active in developing patent indicators to highlight
different characteristics of the disclosed invention, such as patent value (Trajtenberg, 1990; Lanjouw
et al., 1998), patent technological breadth (Lerner, 1994), legal scope (Kuhn and Thompson, 2019),
and patent generality and originality (Trajtenberg et al., 1997).

Our analysis uses patents granted by the USPTO from 1976 to 2019 and related to AI. We
retrieved these data from the EPO-PATSTAT database (Autumn 2019 version). We selected AI
inventions by combining the procedures suggested by the World Intellectual Property Organiza-
tion (WIPO) report on artificial intelligence (WIPO, 2019) and the United Kingdom Intellectual
Property Office (UKIPO) report on great technologies (UKIPO, 2014). These criteria combine the
selection of specific technological classes with a text-based search of technical keywords on patent
titles and abstracts. Due to the focus on an emerging and continuously evolving domain, the inte-
gration of keywords, based on an extensive review of the literature, is crucial to capture emerging
trends that do not fit in a consolidated classification system of technological domains. We rely on
the recent and highly detailed Cooperative Patent Classification (CPC) system to select AI-related
technology classes, and we include, among others, group Y10S 706 (i.e. Data processing: artifi-
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cial intelligence) and several subclasses of the class G06 (i.e. Computing; Calculating; Counting).3

Regarding keywords, our list includes the expected artificial intelligence and a variety of machine
learning methodologies and tools for big-data management.4

This patent selection process results in a total of 118,949 patents. Since we are interested in
capturing knowledge cumulativeness, we consider only the sub-sample of patents that are linked to
one other. In particular, we exploit the information on patents references (i.e. backward citations)
to create a citation network that preserves the time constraint in publication date.5 The resulting
directed (citation) graph is made of several unconnected sub-graphs, and we select the largest
community of connected inventions, i.e. the weakly connected component of the network.6 The
result is a large citation network that includes 96.42% of the patents previously identified as related
to AI. This further step in sample selection has two advantages. First, it removes marginal patents
and inventions accidentally included in the analysis. Second, it validates the selection procedure.

The final AI sample of inventions comprises 114,670 patents connected through directed and
undirected citations. Those patents span the entire period of analysis and mainly belong to computer
technologies and control systems engineering. In particular, most patents concern image analysis,
speech recognition, and data processing in general. The leading assignees are well-known information
and communication technology companies, such as International Business Machines Corporation
(IBM), Microsoft, and Google. Appendix B provides an overview of our data.

3.2 Government funded patents

A focus on the US is justified by the strong interests in AI developed within the US innovation
system, the active role played by the US government in this space, and the availability of information
on US government funding in the data.

Following the literature (Fleming et al., 2019), we exploit two kinds of information to detect
patents directly supported by US government funding.7 Combining the disambiguation efforts of the
EPO-PATSTAT database and the USPTO8 on assignee and applicant categories, we identify patents
assigned to federal agencies, national laboratories, and state departments. Among AI patents, we
find 929 patents assigned to one of those organizations. As shown in Table 1, the Department of
Defense – with its Navy, Army, and Air Force divisions – supported the large majority of these
inventions. The other important player is the National Aeronautics and Space Administration

3See Appendix A for the detailed list of CPC subclasses.
4See Appendix A for the detailed list of keywords used for the sample selection.
5We remove references whose earliest publication date follows the earliest publication date of a cited patent.
6In directed graphs, a weakly connected component is the maximal sub-graph in which each pair of nodes is

connected when one ignores the edge direction.
7Fleming et al. (2019) identified US patents relying on federal support in three ways: patents owned by the US

government, patents acknowledging support from the US government, and patents that directly cite a patent or
scientific paper that meets one of the first two criteria. To better identify the effect of government funding, we do
not include the latter category in our definition of patents relying on government funding. However, we tested the
robustness of our results to the inclusion of indirect government funding (see Section 6.4).

8To retrieve data on government funding, we combine EPO-PATSTAT database with the Patensview database
from the USPTO.
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(NASA).

Assignee Number of patents %

Secretary of the Navy 370 39.83
National Aeronautics and Space Administration 153 16.47
Secretary of the Army 109 11.73
Secretary of the Air Force 106 11.41
Department of Energy 33 3.55
National Security Agency 29 3.12
Department of Health and Human Services 29 3.12
United States Postal Service 22 2.37
Lawrence Livermore National Security 19 2.05
Department of Commerce 10 1.08

Table 1: Most frequent US federal agencies, national laboratories, and state departments as assignees
of AI patents.

The second source of information on government funding is the Government Interest Statement
in patent texts as reported by the USPTO. Since 1980, the Bayh-Dole Act has allowed contractors to
retain ownership of inventions developed with federal funding. In return, it obligates applicants to
disclose a government interest in their patents. In our sample, 3597 patents acknowledge government
funding through a Government Interest Statement. Interestingly, some of them were granted before
1980, although the statement was not yet mandatory at the time. Even in this case, as highlighted
in Table 2, the Department of Defense is, by far, the primary supporter of AI research. Besides,
a significant fraction of patents does not correctly specify the funding agency, but refer instead to
the United States Government in general. Other important sponsors are the Department of Health
and Human Services, the National Science Foundation, and the Department of Energy.

Federal agency Number of patents %

Department of Defense 1670 46.43
United States Government 703 19.54
Department of Health and Human Services 627 17.43
National Science Foundation 478 13.29
Department of Energy 462 12.84
National Aeronautics and Space Administration 166 4.61
Small Business Administration 42 1.17
Department of Transportation 36 1.00
Department of Commerce 36 1.00
Department of Homeland Security 35 0.97

Table 2: Most relevant federal agencies that provide funding for supporting the development of AI
patents by federal contractors (private companies and universities).
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4 Measuring trajectory effects

As already mentioned, we exploit the connections through citations between patents to track the
development of technological trajectories in AI, and to examine the role of specific inventions in
shaping these trajectories. Patent citation networks are a meaningful analytical tool to identify
technological trajectories. Each series of patents linked through citations identifies chains of local,
cumulative, and irreversible technological developments, consistently with the definition of techno-
logical trajectories provided by the literature (Dosi, 1982; Verspagen, 2007). Below, we describe
how we compute trajectory effects from a patent citations network.

The citation network built on AI inventions and their references is a large graph with 514,599
nodes and 2,661,528 edges.9 Since citations respect the time flow, there are no loops, and the
network is a Directed Acyclic Graph (DAG). In this kind of graph, we can sort nodes in topological
order, and it is possible to clearly define paths from sources to sinks without encountering each
node more than once. To ease the interpretation of this citation network, we define edge direction
following the knowledge flow. In this configuration, sources include early patents in AI or prior art
that do not belong to the domain, while sinks are the most recent patents in our sample.

More formally, we can interpret the citation network as a graph N = (P,R), where P is our set
of patents and R ⊆ P ×P represents the following citing relation: uRv ≡ v cites u. R is irreflexive
and acyclic, and the same applies to the inverse relation Rinv, defined as uRinvv ≡ u cites v.
In this second case, the direction of edges is from citing to cited patents. Let us, also, define a
function R(p) that maps each patent p with its set of successors in the graph based on the relation
R: R(p) = {u ∈ P : pRu}.

The properties of R (and Rinv) make N a DAG with the following special features.

• Nodes can be sorted by topological order, meaning that a map between nodes and cardinal
numbers (the node order) f : P −→ 1 . . . |P|, such that uRv =⇒ f(u) < f(v), exists.

• It is possible to define sets of minimal and maximal elements as, respectively, MinR ={
p ∈ P : Rinv(u) = ∅

}
and MaxR = {p ∈ P : R(u) = ∅}. They represent the list of sources

and sinks of the network.

• By definition, every node p ∈ P and every edge (u, v) ∈ R belong to at least one path between
MinR and MaxR.

An easier representation of the network is its standard form N ′ = (P ′,R′), where all patents in
MinR cites a single source s and all nodes inMaxR are cited by a single sink t. In this case, the set
of patents is P ′ := P∪{s, t}, and the citation relation isR′ := R∪{s}×MinR∪MaxR×{t}∪{t, s}.

In a graph that has these characteristics, we can measure the significance of each edge in the
network based on a connectivity indicator, such as the traversal count (Hummon and Dereian, 1989).

9As the AI patents might be connected through citations to patents not related to AI, to better track field
development, we also include these “non AI patents”. These “non AI patents” are 399,929, and they are only included
in the computation of technological trajectories but not in the econometric exercise.
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Among the several possible definitions of traversal counts, in our analysis we follow Batagelj (2003)
and use the Search Path Count (SPC). The SPC assigns to each edge (u, v) a weight wuv equal to
the number of paths from s to t through (u, v). In other words, it measures the number of paths
in the network through a given edge. The higher the weight, the more important the edge is for
network connectivity and the development of the entire technological domain.

Given an edge (u, v), the computation of wuv proceeds in three steps. Firstly, we compute the
number of paths w−u between the source s and the cited patent u. Secondly, we assign the number
of paths between the citing node v and the sink t to w+

v . The SPC weight wuv is then the product
between the two quantities:

wuv = w−u ∗ w+
v . (1)

In a DAG, where a topological order of nodes exists, we can compute the partial weights w−u and
w+
u with a recursive procedure:

w−u =

1 u = s∑
v:vRuw

−
v otherwise

, w+
u =

1 u = t∑
v:uRv w

+
v otherwise

. (2)

Early explorations of this methodology (see for instance Mina et al., 2007; Martinelli, 2012)
used traversal counts associated with each edge of the citation network to identify the most relevant
trajectories in small technological domains. These trajectories are the paths across the network
(from s to t) with the highest total weight WM , where M is the set of the edges in the path and
WM =

∑
(u,v)∈M wuv.10 The longest path is, therefore, the sequence M of edges with the maximum

total weight WM . To better describe the evolution of a domain, we can also consider paths with
slightly lower weighted path length. To provide an idea of the computation-intensive nature of this
exercise, it is worth noting that the AI patent citation network has 3.2 ∗ 1019 possible paths, and
the longest path is equal to 1.7 ∗ 1020. We will use this approach in Section 5 to identify the most
relevant technological trajectories in AI.

While SPC weights are commonly used to trace technical change dynamics, they can also measure
the relevance of single inventions from a trajectory perspective. Following Batagelj (2003), we extend
the standard definition of SPC weights – which usually apply to edges – to the nodes of our citation
network:

w̃p = w−p ∗ w+
p . (3)

This measure indicates the number of paths from s to t through the patent p. A patent with a high
weight is a patent that “cumulates” a large knowledge flow within the network. This indicator has
considerable advantages over simple citation count. The citation count, which in this framework
would correspond to nodes’ outdegree,11 would be local in nature. On the contrary, the trajectory

10Alternative definitions of main paths – from a local perspective – produce overall similar results.
11The centrality degree is defined as the number of links incident upon a node. As this network is directed, we can

distinguish between two types of degree centrality measures. Indegree is a count of the number of ties directed to
the node, and outdegree is the number of ties that the node directs to others. As the directionality of our network
follows the potential “knowledge flow”, if a patent receives three citations it will direct three ties to three nodes.
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effect indicator summarizes complex citation chains and captures the invention’s influence on the
evolution of an entire field, rather than on close patents only. Measuring the trajectory effects
provides valuable information on which inventions have the strongest influence of the direction of
technical change as a whole. Therefore, we will use this measure as a primary indicator of trajectory
effect in our econometric analysis (see Section 6).

Another relevant indicator connected to the network structure is the node position in the graph.
The patent position in the citation network is a more precise indicator of timing than the patent
application year because it marks time in terms of the patent citation network and therefore in
terms of the overall evolution of the field. In particular, the timingp measures the patent p distance
from network sources and is defined in a recursive way:

timingp =

0 p ∈MinR

1 + maxn:nRp(timingn) otherwise
. (4)

In other words, the timing takes value 0 for network sources and, for all the other patents, it is
equal to 1 plus the maximum timing of their cited patents. Intuitively, the timing’s low values refer
to the early stages of the technology (i.e. closer to sources), while high values indicate innovations
in a mature phase (i.e. closer to sinks).

5 Technological trajectories: the evolution of artificial intelligence

To provide an overview on AI inventions and invention chains, first of all we present the most
relevant technological trajectories in the field. We are interested in capturing the evolution of the
entire field, and for illustrative purposes we include also AI patents granted before 1976.12

We weigh each edge by its SPC weight, as defined in Equation 1. We then compute the total
SPC weight associated to each path. Figure 1 shows the main paths for AI inventions extracted
from the patent citation network described in the previous section. We include nodes belonging to
the longest path (i.e. with the maximum total SPC weight), which are the red nodes, and nodes
belonging to paths with a total SPC weight that is, respectively, up to 1.5% and 3% lower than
the longest path. The latter are the orange and yellow nodes, respectively. Detailed information on
patents are in Appendix C. There are several ways to validate this methodology, and, in this work,
we rely mainly on two. The first one is by looking at the technologies disclosed in the patents on the
trajectories to check how they cover technological milestones in the domain. The second one is by
looking at the correspondence between known major firms, institutions, and inventors and patent
assignees and inventors on the trajectories.13

12We obtain a citation network with 555,454 nodes – among which 122,052 AI patents – and 2,754,878 edges.
13While the definition proposed in this paper tackle the main path analysis from a global perspective, one can

define technological trajectory from a local point of view. In the literature on main path analysis, several procedures
exist: (1) starting from sources and moving forward by following the edges with the highest SPC weight, (2) starting
from sinks and moving backward by following the links with the highest SPC weight, and (3) starting from edges
with the highest SPC weight and moving backward and forward by following the same criterion. In our case, all
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The densest part of the AI citation network captures the evolution of speech recognition from
the mid-1970s to this day. Indeed, speech recognition is one of the main fields in the AI patent
sample (WIPO, 2019). It has a 70-year-long history, and its development mirrors the one of the
entire AI domain. Early techniques relied on knowledge-based systems, until, from the mid 1980s
onwards, probabilistic learning and the rediscovery of neural networks revolutionized the field. After
an exploratory phase characterized by the development of different statistical techniques, research
moved on the one hand toward multimodal and integrated systems, and on the other toward the
use of big data and hardware enhancement. As far as applications are concerned, in recent years
we observe an increase in virtual assistants, search engines, and social networks, whereas a more
theoretical focus has clearly been on deep learning applications.

These different phases of research emerge when we inspect the patents included in the main path.
Speech recognition research started in the early 1950s at Bell Laboratories and is an evolution of
studies on optical character recognition. In the next twenty years, templates and keyword spotting
methods were the dominant approaches, and the leading players were Bell Laboratories and Japanese
companies, especially the Nippon Electric Corporation (NEC). The main path effectively captures
all these developments. The earliest inventions concerned word recognition and dictionaries, and
involved the leading figures of the time in speech recognition research: Hiroaki Sakoe – inventor of
the continuous speech recognition at NEC –, Stephen Levinson – head of the linguistic research at
Bell Labs –, and Lawrence Richard Rabiner – also at Bell Labs, and holder of several IEEE awards
for outstanding achievements in signal processing and speech/audio recognition –.

The subsequent phase started with a change in the underlying technique and logic, with a shift
toward probabilistic learning and more rigorous statistical models. This shift is also detected in the
main path, which includes in the mid 1980s the two breakthrough patents on Hidden Markov Models
(HMM) by Bell Labs (patent US4587670A, number 49 in Figure 1) and IBM (patent US4718094A,
number 66 in Figure 1). In those years, IBM, led by Lalit Bahl and Fred Jelinek – awarded with
the IEEE James L. Flanagan Speech and Audio Processing Award –, becomes Bell Labs’ main
competitor on speech recognition research in the US. Other companies, such as Dragon Systems
(among which patents number 88, 94, and 95 in Figure 1)– founded by James and Janet M. Baker
–, helped the commercial diffusion of the first speech recognition software programs, which, at that
time, were mainly aimed to call centers. In the following years, the research focused on developing
incremental improvements of statistical methodologies and the use of large vocabulary. At the same
time, we see a growing interest in grammar, semantics, and translation that pushed the field in the
direction of natural language processing.

From the year 2000, we observe the convergence of the main trajectories, and the concentration
of leading technology companies such Microsoft, Amazon, Google, Apple, and Facebook, on a
single path. Nuance Communications, a major voice recognition developer that acquired IBM and
Xerox speech recognition divisions and patents, is the only outsider. This convergence started
with Microsoft’s patents on Microsoft Speech Server (patent numbers 300 – 307, among which

approaches lead to the same main technological trajectory, which lend robustness to our results.
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US8229753B2), a milestone towards web-based speech-recognition applications that integrate phones
in the standard IT architecture. The R&D efforts that followed focused on multimodal applications
and integration in search engines, and were mainly carried out by Nuance Communications, Amazon
(by Alexa’s ‘father’, Igor Roditis Jablokov), and Google. These inventions were the precursors of
a clear breakthrough in AI research: the development of intelligent automatic assistants. The first
patents covering this development on the main path are Apple’s patents related to Siri (numbers
339 and 343 in Figure 1, among which the patent US9117447B2 is the continuation, concerning
speech recognition, of the patent Intelligent automatic assistant – US9318108B2 –) and developed
by the former Stanford Research Institute (SRI) International team. The following patent also cover
the well-known speech recognition application that is Amazon Echo (patent US9548066B2, number
344 in Figure 1). In the final phase of the speech recognition trajectory, companies’ – primarily
Facebook’s – efforts focused on the application in multimedia language context and predictions of
future translations with the support of deep learning techniques.

6 Empirical strategy and results

We now study whether government funding influenced the development of artificial intelligence
by shaping the direction of technological research. First of all, we study the trajectory effect of
government funding. Secondly, we explore heterogeneity in the timing of government-backed patents
to test whether this might affect differently the technological trajectory depending on whether
inventions are made in the early phase vs. more mature phases of development.

Thus, with p referring to patents and i to indexing fields, we estimate:

Ln(trajectory effectpi) =β0 + β1 government fundingp
+β2 government fundingp × timingp
+β3 timingp + γp + δi + εpi,

(5)

where trajectory effectpi is the patent relevance indicator w̃p (SPC weight associated to graph nodes)
defined in Equation 3, government fundingp is a dummy variable indicating the presence of govern-
ment funding, timingp indicates the position of the node in the network (see Equation 4) and defines
the time evolution of the graph, the γp’s are a set of controls at the patent level, and the δi’s capture
subfield fixed effects.

Following the literature, the controls in γp account for different patent characteristics. First,
we include the number of claims as an ex-ante indicator of patent quality. Second, we include
the inventors’ team size as an indicator of the disclosed invention’s complexity. Third, since a
non-negligible share of government funding goes to universities, we also consider a dummy variable
that indicates patents with US universities as assignees to assess whether the effect is driven by
universities rather than government funding. Finally, the δi’s capture subfield fixed effects and
control for diverse citation behavior in different fields. We measure subfields through the CPC
classification at the 3-digit level, excluding the most common subfield (G06) and marginal codes
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Figure 1: Main trajectories in AI patents. Red nodes belong to paths on the longest path (with the
maximum total SPC weight). Orange and yellow nodes are part of paths with a total SPC weight
that is, respectively, up to 1.5% and 3% lower than the longest path. The same holds for black,
gray, and light-gray edges. The width of each edge (u, v) is proportional to its SPC weight wuv.
Detailed information on patents are in Appendix C.
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Table 3: Influence of government funding on the trajectory. Estimates follow the semi-logarithmic
model presented in Equation 5.

Dependent variable:

log(Trajectory effect)

(1) (2) (3)

Government funding 1.184∗∗∗ 1.096∗∗∗ 1.959∗∗∗

(0.132) (0.147) (0.263)
Government funding*Timing -0.064∗∗∗

(0.011)
US university 0.272 0.282∗

(0.166) (0.166)
Timing 0.503∗∗∗ 0.503∗∗∗ 0.505∗∗∗

(0.002) (0.002) (0.002)
Number of claims 0.043∗∗∗ 0.043∗∗∗ 0.043∗∗∗

(0.002) (0.002) (0.002)
Number of inventors -0.106∗∗∗ -0.106∗∗∗ -0.106∗∗∗

(0.011) (0.011) (0.011)
Intercept 8.594∗∗∗ 8.592∗∗∗ 8.562∗∗∗

(0.078) (0.078) (0.078)

3-digit CPC Yes Yes Yes

Observations 114,670 114,670 114,670
R2 0.435 0.435 0.435
Adjusted R2 0.435 0.435 0.435
Residual Std. Error 7.292 7.292 7.291
F Statistic 3078.115∗∗∗ 3008.006∗∗∗ 2951.426∗∗∗

Note: All the models are estimated using OLS.
Robust standard errors are reported in parenthesis.

Legend : ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

(those that occur in less than 0.2% of patents). All these control variables and patent information
have been retrieved from the EPO-PATSTAT Database (Version Autumn 2019), except for the
number of claims, which is drawn from the USPTO database (Patentsview).

All models are estimated using Ordinary Least Squared (OLS) with robust standard errors.

6.1 The role of government funding in the AI technological trajectory

Table 3 presents the estimates of Equation 5. Overall, we find that government exerts a positive
and significant effect on the trajectory, that is to say that government funding is associated with
inventions that have a long-term impact on future developments of the overall field. To correctly
interpret the estimates of dummy variable coefficients in semi-logarithmic equations, we follow
Kennedy (1981) and we compute the percentage impact of the dummy variable as:

g∗ = 100 ·
[
exp

(
ĉ− 1

2
V (ĉ)

)
− 1

]
, (6)

where ĉ is the estimated coefficient and V (ĉ) is its variance.
It follows that patents receiving government funding have, on average, a trajectory effect 223.9%
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higher than the other patents (specification (1) in Table 3). This effect remains positive and sig-
nificant even when we control for the presence of US universities as assignees (specification (2)).
Although the inclusion of US universities in the picture slightly reduces the effect of government
funding, the percentile impact of this funding on the trajectory is still substantial (196%).

In specification (3) of Table 3, we also explore the role of timing effects by including an interaction
term between timing and the government funding dummy. The negative sign of the interaction term
indicates that the variable timing is less relevant for government-funded patents. For each unitary
increase of the timing, the impact of government funding on the trajectory is 6.4% less than patents
without government funds. Thus, as shown in Figure D1 in Appendix D, government-funded patents
have a higher impact on the trajectory at the early stages of technology.14

6.2 Government grants vs. government inventions

We now test whether there is any difference between the two sources of government funding and,
if there is any, which type of funding plays a more prominent role. We distinguish inventions
made and patents filed by federal agencies and state departments from patents developed by federal
contractors (see Section 3.2 for the difference). As we have already done in the previous section, we
also explore the relevance of timing of government-backed patents on technology evolution.

We estimate the following specification:

Ln(trajectory effectpi) =β0

+β1 government interestp + β2 government interestp × timingp
+β3 government assigneep + β4 government assigneep × timingp
+β5 timingp + γp + δi + εip,

(7)

where trajectory effectpi is the patent relevance indicator, government interestp is a dummy variable
equal to 1 for patents that acknowledged a government interest, government assigneep is a dummy
variable that is equal to 1 for patents with a federal agency or a state department as assignee,
timingp indicates the node position in the network, the γp’s and δi’s are, respectively, the set of
controls at the patent level and subfield fixed effects.

Table 4 shows the results. We first notice that both types of government intervention have
a relevant impact on the trajectory (specifications (1) and (2)). More precisely, patents with a
government interest statement (i.e. assigned to federal contractors) have, on average, a trajectory
effect that is 164.9% stronger than other inventions. Federal agencies or state department patents
have an even stronger trajectory effect since the percentage impact is equal to 868.4%. These
effects persist even when we consider the two indicators together, and we include a dummy for US
university patents as controls (specification (3)). In this case, the percentage impact of patents by
federal contractors is reduced to 56.5%, while the impact of patents by federal agencies or state

14It is worth noting that the timing has a low value also for patents in short sequences of inventions that join
the strongest trajectories at different stages. This constitutes further evidence that government funding drives the
direction of technological change also at sub-trajectory levels of the evolution of the field.
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Table 4: Influence of patents with a government interest statement and patents assigned to gov-
ernment assignees on the trajectory. Estimates follow the semi-logarithmic model presented in
Equation 7.

Dependent variable:

log(Trajectory effect)

(1) (2) (3) (4) (5) (6)

Government interest 0.983∗∗∗ 0.460∗∗∗ 0.999∗∗∗ 0.481∗∗∗ 0.622∗∗

(0.134) (0.157) (0.281) (0.156) (0.288)
Government interest*Timing -0.037∗∗∗ -0.010

(0.012) (0.012)
Government assignee 2.322∗∗∗ 2.050∗∗∗ 1.959∗∗∗ 4.323∗∗∗ 4.233∗∗∗

(0.321) (0.338) (0.340) (0.537) (0.562)
Government assignee*Timing -0.230∗∗∗ -0.224∗∗∗

(0.030) (0.031)
US university 0.551∗∗∗ 0.541∗∗∗ 0.551∗∗∗ 0.548∗∗∗

(0.168) (0.168) (0.167) (0.168)
Timing 0.503∗∗∗ 0.503∗∗∗ 0.504∗∗∗ 0.505∗∗∗ 0.505∗∗∗ 0.505∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Number of claims 0.043∗∗∗ 0.043∗∗∗ 0.043∗∗∗ 0.043∗∗∗ 0.043∗∗∗ 0.043∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Number of inventors -0.106∗∗∗ -0.102∗∗∗ -0.104∗∗∗ -0.104∗∗∗ -0.105∗∗∗ -0.105∗∗∗

(0.011) (0.011) (0.011) (0.011) (0.011) (0.011)
Intercept 8.610∗∗∗ 8.597∗∗∗ 8.574∗∗∗ 8.560∗∗∗ 8.555∗∗∗ 8.551∗∗∗

(0.078) (0.078) (0.078) (0.078) (0.078) (0.078)

3-digit CPC Yes Yes Yes Yes Yes Yes

Observations 114,670 114,670 114,670 114,670 114,670 114,670
R2 0.435 0.435 0.435 0.435 0.435 0.435
Adjusted R2 0.435 0.435 0.435 0.435 0.435 0.435
Residual Std. Error 7.294 7.293 7.291 7.291 7.289 7.289
F Statistic 3074.472∗∗∗ 3078.966∗∗∗ 2944.038∗∗∗ 2886.062∗∗∗ 2891.010∗∗∗ 2831.363∗∗∗

Note: All the models are estimated using OLS.
Robust standard errors are reported in parenthesis.

Legend : ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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departments is still 633.7%. We can conclude that, although all types of government funding play
a role, patents directly assigned to federal agencies or state departments have a stronger influence
on the evolution of AI over time.

Concerning the timing of government-backed patents, we observe the higher importance of both
types of government intervention (via grants or via direct R&D performance by federal agencies
or state departments) for patents with a low timing (specifications (4) and (5)), as we already
found for the aggregate indicator in Section 6.1. Once again, the effect is more marked for patents
with government assignees. In this second case, the positive impact of timing on the trajectory is
23% lower than for other patents. In other words, although the timing has a positive influence on
the dependent variable, the presence of a federal agency or state department as assignee strongly
mitigates this effect. As shown also in Figure D2 in Appendix D, government-backed inventions are
especially influential at an early stage of technology development, primarily when the government
is the assignee.

Overall, these results confirm a very important role of government funding in the long-term
development of AI, and this role is especially important during early phases of the development of
the field. Moreover, the government as assignee exerts an even stronger influence than government as
the sponsor of a grant, highlighting the fundamental importance of research and development carried
out in federal agencies and state departments towards the inception phase of the AI technological
trajectory.

6.3 Robustness checks: potential sources of endogeneity

In this section, we propose two quasi-experimental designs to address the possible sources of endo-
genity. As Azoulay et al. (2019) observe, it is possible that public investments target research areas
that have the strongest potential for follow-on innovation because of increasing opportunities, and
it therefore important to control for this.

Matching The first quasi-experimental design is based on propensity-score matching (Rosenbaum
and Rubin, 1983). We identify treated and control groups by comparing differences in pre-existing
patents’ characteristics and estimating a probability of receiving different sources of government
funding (our treatments). The resulting sub-samples will be, therefore, balanced in the observed
covariates. Moreover, patents in treated and control groups will have comparable distributions of
the probability of being treated. Then, we replicate estimations in Table 3 and 4 on these balanced
sub-samples.

We estimate the probability of receiving the treatment (i.e., the propensity score) through a
logistic regression on pre-treatment confounding covariates. Following previous studies (Jaffe et al.,
1993; Trajtenberg et al., 1997), the confounding covariates used in this exercise are technology classes
(3-digit CPC classes) and time (the variable timing, in our case).15 The resulting propensity score

15In our framework, timing is a more appropriate and consistent measure of time than application year or grant
year. Timing, indeed, captures the specific time evolution of AI’s technological trajectory.
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Table 5: Influence of government funding on the trajectory – 1-1 matching without replacement
(propensity score)

Dependent variable:

log(Trajectory effect)

(1) (2) (3) (4) (5) (6)

Government funding 1.372∗∗∗ 4.849∗∗∗

(0.191) (0.317)
Government funding*Timing −0.259∗∗∗

(0.014)
Government interest 1.072∗∗∗ 4.433∗∗∗

(0.198) (0.332)
Government interest*Timing −0.242∗∗∗

(0.015)
Government assignee 2.977∗∗∗ 7.897∗∗∗

(0.384) (0.605)
Government assignee*Timing −0.493∗∗∗

(0.037)
US university −1.485∗∗∗ −1.424∗∗∗ −1.258∗∗∗ −1.260∗∗∗ 0.852 1.407

(0.255) (0.254) (0.258) (0.257) (1.115) (1.124)
Timing 0.573∗∗∗ 0.702∗∗∗ 0.578∗∗∗ 0.698∗∗∗ 0.535∗∗∗ 0.783∗∗∗

(0.008) (0.009) (0.008) (0.009) (0.022) (0.023)
Number of claims 0.039∗∗∗ 0.041∗∗∗ 0.045∗∗∗ 0.046∗∗∗ 0.001 0.009

(0.006) (0.006) (0.007) (0.006) (0.014) (0.013)
Number of inventors −0.162∗∗∗ −0.157∗∗∗ −0.129∗∗∗ −0.126∗∗∗ −0.231∗∗ −0.223∗∗

(0.043) (0.043) (0.044) (0.044) (0.106) (0.101)
Constant 8.083∗∗∗ 6.305∗∗∗ 7.846∗∗∗ 6.143∗∗∗ 8.567∗∗∗ 5.909∗∗∗

(0.245) (0.248) (0.251) (0.256) (0.525) (0.506)

3-digit CPC Yes Yes Yes Yes Yes Yes

Observations 7,864 7,864 7,194 7,194 1,858 1,858
R2 0.449 0.468 0.470 0.487 0.301 0.348
Adjusted R2 0.446 0.465 0.467 0.484 0.287 0.335
Residual Std. Error 7.244 7.118 7.089 6.975 8.216 7.936
F Statistic 155.571∗∗∗ 164.013∗∗∗ 154.672∗∗∗ 161.664∗∗∗ 21.185∗∗∗ 25.575∗∗∗

Note: All the models are estimated using OLS on data matched through propensity score matching (1-1)
without replacement) Robust standard errors are reported in parenthesis.

Legend : ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

is used as input for the 1-1 matching without replacement (based on nearest neighbor matching) of
treated and control patents (see Figure D3 for covariate balance before and after the matching).

Table 5 summarizes the estimates of the impact of government funding on the trajectory effect
in three different sub-samples of patents. Each sub-sample refers to and is used to test for the
impact of a different source of government funding: patents that received any government funding
(aggregated category) – specifications (1) and (2) –, patents that acknowledge government interests
– specifications (3) and (4) –, and patents with a government assignee – specifications (5) and (6)
–. These estimations corroborate the results presented in Sections 6.1 and 6.2: government funding
positively affects the trajectory effect of AI patents, especially at the early stage of the technology.
Federal agencies and government departments, even more than government contractors, have a
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crucial role in the development of this technology.16 Moreover, once we control for selection bias,
the estimated impact of government funding not only does not disappear, but is even stronger than
in the previous OLS estimations.

Instrumental variable We also consider a quasi-experimental design based on the introduction
of an instrumental variable. Following Moretti et al. (2020) and adapting their approach to our
setting, we use as instrumental variable the predicted number of patents related to defense R&D in
the different technological classes (4-digits CPC) that are associated to each patent. While military
R&D is one of the most relevant sources of government R&D funding in the US, it is likely driven
by geopolitical reasons rather than economic ones (Mowery, 2010). The exogeneity of defense R&D
to the long-term evolution of AI makes the number of patents related to defense R&D a very good
candidate to instrument the government funding indicators of our empirical analyses. We therefore
use the predicted number of patents associated to defense R&D, i.e. the number of defense R&D
patents in the year before the patent’s year of application, to rule out endogenous components and
address residual concerns of endogeneity. More details on the construction of this instrumental
variable are in Appendix D.3.

Concerning the relevance of the variable as instrument for government funding, a positive vari-
ation of defense R&D funding might have, in principle, a positive or negative effect on the total
variation of government funding in a given technological class since defense R&D may drive or sub-
stitute for other sources of government R&D funding. The first stage results, presented in Table
D1, show that variations in predicted defense R&D drive general government funding, as found also
in Moretti et al. (2020). Indeed, the impact of the predicted defense-related patents on government
funding, government interest, and government assignee is positive and significant. Moreover, the
F-tests performed on the first-stage regressions reject the null hypothesis that the instruments are
weak and the instruments have good statistical power.

In Table 6, we report 2SLS estimates. Our results are broadly confirmed: government funding
positively affects the long-run trajectory effect of patents. This result holds both for patents funded
through grants and for patents with the government as assignee. As far as the timing of funding
is concerned, in these estimates the interaction term between government assignee and timing is
not significant, possibly due to the low share of patents directly assigned to federal agencies and
government departments, but the effect of government funding at early stages of technology devel-
opment remains significant, and is consistent with the OLS regressions results (with and without
matching).

6.4 Additional robustness checks

Results are robust to a series of variations in the definition of trajectory effects, government funding,
sample composition, and controls. In what follows, we present the key insights, while Appendix D

16Estimations based on exact matching among patents or the use of propensity score as a control in the regression
lead to comparable results.
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Table 6: Influence of government funding on the trajectory - Instrumental variable

Dependent variable:

log(Trajectory effect)

(1) (2) (3) (4) (5) (6)

Government funding 45.915∗∗∗ 70.948∗∗∗

(3.446) (6.403)
Government funding*Timing −1.899∗∗∗

(0.211)
Government interest 53.566∗∗∗ 92.888∗∗∗

(4.318) (9.173)
Government interest*Timing −2.625∗∗∗

(0.298)
Government assignee 102.234∗∗∗ 109.005∗∗∗

(11.167) (13.467)
Government assignee*Timing −1.190

(0.866)
US university −18.951∗∗∗ −18.412∗∗∗ −22.288∗∗∗ −23.599∗∗∗ 1.072∗∗∗ 1.103∗∗∗

(1.550) (1.744) (1.932) (2.431) (0.213) (0.206)
Timing 0.521∗∗∗ 0.577∗∗∗ 0.517∗∗∗ 0.591∗∗∗ 0.539∗∗∗ 0.543∗∗∗

(0.003) (0.007) (0.003) (0.009) (0.004) (0.005)
Number of claims 0.046∗∗∗ 0.048∗∗∗ 0.044∗∗∗ 0.046∗∗∗ 0.060∗∗∗ 0.060∗∗∗

(0.003) (0.003) (0.003) (0.003) (0.004) (0.004)
Number of inventors −0.156∗∗∗ −0.145∗∗∗ −0.174∗∗∗ −0.166∗∗∗ −0.038∗∗ −0.042∗∗

(0.017) (0.017) (0.018) (0.020) (0.018) (0.018)
Intercept 7.062∗∗∗ 6.179∗∗∗ 7.207∗∗∗ 6.000∗∗∗ 6.484∗∗∗ 6.490∗∗∗

(0.144) (0.227) (0.144) (0.263) (0.238) (0.240)

3-digit CPC Yes Yes Yes Yes Yes Yes

Observations 114,670 114,670 114,670 114,670 114,670 114,670
F-test 181.6∗∗∗ 114.83∗∗∗ 154.4∗∗∗ 106.61∗∗∗ 88.16∗∗∗ 40.98∗∗∗

F-test (interaction) 91.43∗∗∗ 88.04∗∗∗ 24.65∗∗∗

Note: All the models are estimated using 2SLS.
Robust standard errors are reported in parenthesis.

Legend : ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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presents these sensitivity analyses in detail.

Trajectory effect Firstly, we introduce a different measure of inventions’ relevance in the tra-
jectory. Instead of considering an indicator of traversal count that detects nodes with the highest
knowledge throughput, we assign to each patent the length of the longest weighted path that goes
through it.17 Since patents with the highest longest path length are those on the main path, this
indicator approximates the probability that the patent is on the main trajectory. Differently from
the trajectory effect defined in Section 4, the longest path length summarizes the complex knowl-
edge chain along the entire path and is less reliant on the node. Even if a direct comparison of
coefficients is not possible due to the different magnitude of the indicators (see Table B4), results
presented in Tables D2 and D3 are fully consistent with the ones discussed in the previous sections.
The relative proportion between different effects is also preserved, and patents with a government
assignee are, by far, those with the strongest impact on the trajectory.

Government funding Previous work (see, for instance, Fleming et al., 2019) on the role of state
investments in fostering innovations use a broader definition of government funding by including
in the analysis also patents that cite government-funded inventions. Although we believe that
considering only direct investments leads to a more accurate assessment, we replicate our regression
analysis by including patents citing government-funded inventions. For the sake of consistency,
we also replace the control variable that detects patents with US universities as assignees with an
indicator for patents that cite US universities’ inventions. The share of patents that is indirectly
connected to government funding (27.8%) is significantly higher than the one of patents that directly
received this funding (3.1%). However, the estimations presented in Tables D4 and D5 corroborate
our main results, also in terms of coefficient magnitude. Specification (1) of the first table shows
that citing government funding increases the trajectory effect by 233.0%. Moreover, the impact
of citing government-backed patents is stronger for patents with a low timing value (specification
(3)). Unsurprisingly, the interaction term’s magnitude is slightly lower than the one in Table 3.
Patents that cite government-funded inventions have indeed high chances of following, in terms of
time and trajectory, the ones that directly received government funding. Similar considerations
also apply to Table D5, where we observe the distinct effects of citing patents that acknowledged
government interest or citing patents with government assignees. Once again, the latter indicator is
the one with the strongest trajectory effects (492.3% versus 208.6% of patents citing inventions with
a government interest statement). As expected, it is common to cite patents by federal contractors,
government assignees, and US universities simultaneously. This might lead to a reduction of the
(citing) government assignee coefficient compared to the one observed in Table 4 and to a loss of
significance of the interaction term between timing and citing government interest (the sign is always
negative).

17Given a node p, we consider all the paths through p, and we select the one with the highest WM , where M is the
set of edges of the path. Then, we assign the (weighted) longest path length WM to p.
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Patent relevance A widespread measure of the relevance of a patent is the number of citations it
receives. Contrary to our trajectory measure, this indicator does not take into account the patent’s
indirect effects on sequences of follow-on innovations and is silent on the direction of technical
change. In our setting, the risk of reverse causality is quite low: it is implausible that chains
of future technology development impact the funding of innovation. However, it is possible that
patent applicants and examiners, exerting control over the sources of knowledge they cite in a
patent, might favor ‘signals’ related to government funding over other signals of quality or relevance
of the prior art. Whereas the long-term nature of our indicators mitigates this risk because it is
difficult to believe that citing sources make decisions across long chains of citations (e.g. patents
citing older patents that in turn cite other patents, etc.), it still possible that there are citation
biases within each round of citation decisions. It is therefore important to run a specific robustness
test to rule out the existence of this particular bias. In Tables D6, D7, D8, D9, D10, and D11, we
present results of matched-sample and IV estimations of the effect of government funding on the
number of patent citations. By considering a set of different citation indicators (only on patents in
the network, all patents, all citations, citations up to or in 5 years), we observe that government
backing has, in general, a negative effect on the number of citations. Analogous results are obtained
when we consider separately the effect of patents with federal contractors and the government as
assignee. On the basis of these results we can also argue that when we measure the relevance of
patents through citation counts, we miss or considerably underestimate their importance in the long
run, and we fail to capture their full impact on the entire knowledge domain. In this respect, the
number of citations is not an appropriate indicator of the direction of technical change, and is not
an alternative measure of trajectory effects.

Time effects Tables 3 and 4 show that the effect of government-backed patents is especially
relevant at the early stages of the trajectory. To corroborate our findings, we associate to each patent
an indicator of the number of paths originating from the invention, namely the forward trajectory
indicator (w+

p defined in Equation 2). By excluding previous paths, this indicator ranks patents
according to their influence on the following inventions, and older patents will have, on average, a
higher value of the measure. Tables D12 and D13 confirm our core results, both in terms of sign and
magnitude. Overall, government funding increases the forward trajectory effect of 243.6%, while
the government interest and government assignee alone have an impact of, respectively, 177.1%
and 1107.5%. Even if we control for the timing (which negatively affects the forward trajectory
indicator, as expected), the interaction term between government funding and timing is negative and
significant. These results confirm that early government backing of AI technology was particularly
important for future developments.

Sample composition To test the robustness of results to sampling choices, we narrow our defini-
tion of inventions in artificial intelligence. In particular, we follow the domain definition suggested by
WIPO (2019), without adding any other patents. This mainly excludes big-data analytics patents.
Estimations on the 111,525 patents belonging to the weakly connected component of this sample
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are presented in Tables D14 and D15. Results are fully consistent with those we discussed in the
previous sections. An alternative change in the sample composition can be made by selecting only
patents granted after 1980 (113,835 patents). The reason for this choice is the introduction in that
year of the Bayh-Dole Act, which obligates federal contracts to disclose the government interest
in their patents. Even though we observe government-funded patents (also through grants) also
before 1981, there could be misreporting or under-reporting of government interest statements in
patents granted between 1976 and 1980. Tables D16 and D17 show that there are no substantial
changes in the impact of government funding on the trajectory. In this sample, government fund-
ing is associated with an increase of 228.1% in the trajectory effect. This impact is 168.6% and
879.1% respectively for patents with a government interest statement and patents with a government
assignee. The timing effect persists and is in line with results discussed in Tables 3 and 4.

Further controls Finally, we implement our models with different controls. In Tables D18 and
D19, we replace the US university control with a variable that takes value 1 when the patent has any
university (i.e. from anywhere in the world) as assignee and 0 otherwise. Although the university
control becomes negative and significant, our results are not affected by this change in regression
controls. We propose an additional robustness check where we add the number of backward citations.
In this way, we prove that the trajectory effect is not substantially affected by node indegrees (the
number of cited patents) but captures the more complex citation structure of the data. Moreover,
since we do not observe any change in our core results, we show that they are not driven by the
presence of patents that heavily cite previous inventions (Tables D20 and D21). We also control for
the weighted average of lagged growth rates of 3-digits CPC classes that are assigned to patents.
This variable captures the potential expansion of patents’ technological subdomains. Tables D22
and D23 show that, although this control variable has a prominent impact on trajectory effect, this
does not affect estimations of the effect of government funding.

7 Conclusions

Governments have several instruments at their disposal to address market failures and influence the
development of innovation (Steinmueller, 2010; Bloom et al., 2019). Extant literature has focused
overwhelmingly on the rate of technical change and the returns to publicly funded R&D. In this
paper, we have addressed the problem of the direction of technical change and investigated the
role that governments can play in influencing long-term technology development. We focused on
AI because this is likely to become a major source of technological spillovers. Even though its
potential is arguably far from full realization, AI is a prime candidate to becoming a new general
purpose technology, and this makes its choice as field of study highly relevant. By taking a ‘big
data’ approach to the construction of large longitudinal networks of citations, we have been able to
identify the main technological trajectory of AI innovations, and to measure the impact of patents
on long-term cumulative patterns of development in the field that cannot be captured by standard
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indicators such as the number of citations. We have then demonstrated that patents backed by
government grants and patents filed by federal agencies and state departments had profound effects
on AI innovation, and that their impact appears to be stronger in early phases, while it weakened
over time to leave room to privately funded research. This is especially relevant when we consider
market failures in high-risk research areas that are in their infancy, but could generate valuable
solutions for societal challenges. Naturally, further research can corroborate the external validity
of our results by exploring the long-term evolution of technologies in other contexts, or deepen the
analysis of specific patterns and effects of public vs. private funding of innovation.
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A Patents in artificial intelligence: selection procedure

To identify patents in artificial intelligence, we combine selection procedures suggested by the WIPO
report on technology trends in artificial intelligence (WIPO, 2019) and the UKIPO report on great
technologies (UKIPO, 2014).

A.1 WIPO selection procedure

WIPO (2019) defines three, non-mutually exclusive, blocks of patents, corresponding to different
kinds of criteria. The first group is selected through Cooperative Patent Classification (CPC)
codes that clearly identify AI-related inventions (Block 1). The second group is identified through
specific keywords (Block 2). We search for keywords in patents’ titles and abstracts. Finally, the
third group combines more generic CPC and International Patent Classification (IPC) codes and
keywords (Block 3). To be part of this final set, patents must belong to one of the CPC classes and,
at the same time, have one of the keywords in their title or abstract. Therefore, the final query
is: (Block 1) OR (Block 2) OR (Block 3), where blocks are defined through the following regular
expressions (search patterns in strings).

Block 1 We search for patents whose CPC codes match the following regular expression:

^Y10S706 | ^G06N3 | ^G06N5/003$ | ^G06N5/006$ | ^G06N5/02$ | ^G06N5/022$ | ^G06N5/025$
| ^G06N5/027$ | ^G06N7/005$ | ^G06N7/02$ | ^G06N7/023$ | ^G06N7/026$ | ^G06N7/04$
| ^G06N7/043$ | ^G06N7/046$ | ^G06N7/06$ | ^G06N99/005$ | ^G06T2207/20081$
| ^G06T2207/20084$ | ^G06T3/4046$ | ^G06T9/002$ | ^G06F17/16$ |^G05B13/027$
| ^G05B13/0275$ | ^G05B13/028$ | ^G05B13/0285$ | ^G05B13/029$ | ^G05B13/0295$
| ^G05B2219/33002$ | ^G05D1/0088$ | ^G06K9 | ^G10L15 | ^G10L17 |^G06F17/27$
| ^G06F17/2705$ | ^G06F17/271$ | ^G06F17/2715$ | ^G06F17/272$ | ^G06F17/2725$
| ^G06F17/273$ | ^G06F17/2735$ | ^G06F17/274$ | ^G06F17/2745$ |^G06F17/275$
| ^G06F17/2755$ | ^G06F17/276$ | ^G06F17/2765$ | ^G06F17/277$ | ^G06F17/2775$
| ^G06F17/278$ | ^G06F17/2785$ | ^G06F17/279$ | ^G06F17/2795$ | ^G06F17/28$
| ^G06F17/2809$ | ^G06F17/2818$ | ^G06F17/2827$ | ^G06F17/2836$ | ^G06F17/2845$
| ^G06F17/2854$ | ^G06F17/2863$ | ^G06F17/2872$ | ^G06F17/2881$ | ^G06F17/289$
| ^G06F17/30029$ | ^G06F17/30247$ | ^G06F17/3025$ | ^G06F17/30256$ | ^G06F17/30262$
| ^A61B5/7264$ | ^A61B5/7267$ | ^B29C66/965$ | ^B25J9/161$ | ^Y10S128/924$
| ^Y10S128/925$ | ^F02D41/1405$ | ^F03D7/046$ | ^F05B2270/707$ | ^F05B2270/709$
| ^F16H2061/0081$ | ^F16H2061/0084$ | ^B60W30/06$ | ^B60W30/10$ | ^B60W30/12$
| ^B60W30/14$ | ^B60W30/143$ | ^B60W30/146$ | ^B60W30/16$ | ^B60W30/162$ | ^B60W30/165$
| ^B60W30/17$ | ^G06T2207/30248$ | ^G06T2207/30252$ | ^G06T2207/30256$ | ^G06T2207/30261$
| ^G06T2207/30264$ | ^G06T2207/30268$ | ^B62D15/0285$ | ^G06T2207/30236$ | ^A61B5/7267$
| ^F05D2270/709$ | ^G06T2207/20084$ | ^G10K2210/3038$ | ^G10L25/30$ | ^H04N21/4666$
| ^A63F13/67$ | ^G06F17/2282$ | ^G05D1

Block 2 We search for patents whose titles and abstracts match the following regular expression:
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(\bartific\w*\W+(?:\w+\W+){0,1}?intelligen\w*\b) | (\bcomputation\w*\W+(?:\w+\W+){0,1}?
intelligen\w*\b) | (\bneural[\W_]+(?:\w+\W+){0,1}?network\w*\b) | (\bbayesian[\W_]+
(?:\w+\W+){0,1}?network\w*\b) | (\bchatbot\w*\b) | (\bdata\W+(?:\w+\W+){0,1}?mining\w*\b)
| (\bdecision\W+(?:\w+\W+){0,1}?model\w*\b) | (\bdeep[\W_]+(?:\w+\W+){0,1}?learn\w*\b)
| (\bgenetic\W+(?:\w+\W+){0,1}?algorithm\w*\b) | (\binductive\W+(?:\w+\W+){0,1}?logic
\W+(?:\d+\W+){0,1}?programm\w*\b) | (\bmachine[\W_]+(?:\w+\W+){0,1}?learn\w*\b)
| (\bnatural\W+(?:\d+\W+){0,1}?language\W+(?:\w+\W+){0,1}?generation\w*\b) | (\bnatural
\W+(?:\d+\W+){0,1}?language\W+(?:\w+\W+){0,1}?process\w*\b)|(\breinforcement\W+(?:\w+\W+)
{0,1}?learn\w*\b) | (\b\w*supervised[\W_]+(?:\w+\W+){0,1}?learn\w*\b) | (\b\w*supervised
[\W_]+(?:\w+\W+){0,1}?train\w*\b) | (\bswarm[\W_]+(?:\w+\W+){0,1}?intelligen\w*\b)
| (\bconnectionis\w*\b) | (\bexpert[\W_]+(?:\w+\W+){0,1}?system\w*\b) | (\bfuzzy\W+
(?:\w+\W+){0,1}?logic\w*\b) | (\btransfer[\W_]+(?:\w+\W+){0,1}?learn\w*\b) | (\blearning
\W+(?:\w+\W+){0,3}?algorithm\w*\b) | (\blearing\W+(?:\w+\W+){0,1}?model\w*\b)
| (\bsupport[\W_]+vector[\W_]machine\w*\b) | (\brandom[\W_]forest\w*\b) | (\bdecision
[\W_]tree\w*\b) | (\bgradient[\W_]model[\W_]boosting\b) | (\bxgboost\b) | (\badaboost\b)
| (\brankboost\b) | (\blogistic[\W_]regression\w*\b) | (\bstochastic[\W_]gradient[\W_]
descent\b) | (\bmultilayer[\W_]perceptron\b) | (\blatent[\W_]semantic[\W_]analysis\b)
| (\blatent[\W_]dirichelet[\W_]allocation\b) | (\bmulti[\W_]agent[\ W_]system\w*\b)
| (\bhidden[\W_]markov[\W_]model\w*\b)

Block 3 We search for patents whose titles and abstracts match the following keywords and, at
the same time, belong to the following CPC or ICP codes.

Keywords

(\bclustering | comput\w*[\W_]creativity\b) | (\bdescriptive\Wmodel\w*\b) | (\binductive
\Wreasoning\b) | (\boverfitting\b) | (\bpredictive\W+(?:\w+\W+){0,1}?analytics\b)
| (\bpredictive\W+(?:\w+\W+){0,1}?model\w*\b) | (\btarget\W+(?:\w+\W+){0,1}?function\w*
\b) | (\btest\W+(?:\d+\W+){0,1}?data\b) | (\btraining\W+(?:\d+\W+){0,1}?data\b)
| (\bvalidation\W+(?:\d+\W+){0,1}?data\b) | (\btest\W+(?:\d+\W+){0,1}?set\w*\b)
| (\btraining\W+(?:\d+\W+){0,1}?set\w*\b) | (\bvalidation\W+(?:\d+\W+){0,1}?set\w*\b)
| (\bbackpropagation\w*\b) | (\bself[\W_]learning\b) | (\bobjective\Wfunction\w*\b)
| (\bfeature\w*\Wselection\b) | (\bembedding\w*\b) | (\bactive\Wlearning\b)
| (\bregression\Wmodel\w*\b) | (\bstochastic\W+(?:\d+\W+){0,2}?approach\w*\b)
| (\bprobabilist\w*\W+(?:\d+\W+){0,2}?approach\w*\b) | (\bstochastic\W+(?:\d+\W+){0,2}?
technique\w*\b) | (\bprobabilist\w*\W+(?:\d+\W+){0,2}?technique\w*\b) | (\bstochastic
\W+(?:\d+\W+){0,2}?method\w*\b) | (\bprobabilist\w*\W+(?:\d+\W+){0,2}?method\w*\b)
| (\bstochastic\W+(?:\d+\W+){0,2}?algorithm\w*\b) | (\bprobabilist\w*\W+(?:\d+\W+){0,2}?
algorithm\w*\b) | (\brecommend\w*\Wsystem\w*\b) | (\btext\W+(?:\d+\W+){0,1}analysis\b)
| (\btext\W+(?:\d+\W+){0,1}analytic\w*\b) | (\btext\W+(?:\d+\W+){0,1}recognition\b)
| (\bspeech\W+(?:\d+\W+){0,1}analysis\b) | (\bspeech\W+(?:\d+\W+){0,1}analytic\w*\b)
| (\bspeech\W+(?:\d+\W+){0,1}recognition\b) | (\bhand_writing\W+(?:\d+\W+){0,1}analysis
\b) | (\bhand_writing\W+(?:\d+\W+){0,1}analytic\w*\b) | (\bhand_writing\W+(?:\d+\W+){0,1}
recognition\b) | (\bfacial\W+(?:\d+\W+){0,1}analysis\b) | (\bfacial\W+(?:\d+\W+){0,1}
analytic\w*\b) | (\bfacial\W+(?:\d+\W+){0,1}recognition\b) | (\bface\w*\W+(?:\d+\W+){0,1}
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analysis\b) | (\bface\w*\W+(?:\d+\W+){0,1}analytic\w*\b) | (\bface\w*\W+(?:\d+\W+){0,1}
recognition\b) | (\bcharacter\w*\W+(?:\d+\W+){0,1}analysis\b) | (\bcharacter\w*\W+(?:\d+
\W+){0,1}analytic\w*\b) | (\bcharacter\w*\W+(?:\d+\W+){0,1}recognition\b)

CPC

^G06F17/14$ | ^G06F17/141$ | ^G06F17/142$ | ^G06F17/144$ | ^G06F17/145$ | ^G06F17/147$
| ^G06F17/148$ | ^G10H2250/005$ | ^G10H2250/011$ | ^G10H2250/015$ | ^G10H2250/021$
| ^G06Q30/02$ | ^G06Q30/0201$ | ^G06Q30/0202$ | ^G06Q30/0203$ | ^G06Q30/0204$
| ^G06Q30/0205$ | ^G06Q30/0206$ | ^G06Q30/0207$ | ^G06Q30/0208$ | ^G06Q30/0209$
| ^G06Q30/0211$ | ^G06Q30/0212$ | ^G06Q30/0213$ | ^G06Q30/0214$ | ^G06Q30/0215$
| ^G06Q30/0216$ | ^G06Q30/0217$ | ^G06Q30/0218$ | ^G06Q30/0219$ | ^G06Q30/0221$
| ^G06Q30/0222$ | ^G06Q30/0223$ | ^G06Q30/0224$ | ^G06Q30/0225$ | ^G06Q30/0226$
| ^G06Q30/0227$ | ^G06Q30/0228$ | ^G06Q30/0229$ | ^G06Q30/0231$ | ^G06Q30/0232$
| ^G06Q30/0233$ | ^G06Q30/0234$ | ^G06Q30/0235$ | ^G06Q30/0236$ | ^G06Q30/0237$
| ^G06Q30/0238$ | ^G06Q30/0239$ | ^G06Q30/0241$ | ^G06Q30/0242$ | ^G06Q30/0243$
| ^G06Q30/0244$ | ^G06Q30/0245$ | ^G06Q30/0246$ | ^G06Q30/0247$ | ^G06Q30/0248$
| ^G06Q30/0249$ | ^G06Q30/0251$ | ^G06Q30/0252$ | ^G06Q30/0253$ | ^G06Q30/0254$
| ^G06Q30/0255$ | ^G06Q30/0256$ | ^G06Q30/0257$ | ^G06Q30/0258$ | ^G06Q30/0259$
| ^G06Q30/0261$ | ^G06Q30/0262$ | ^G06Q30/0263$ | ^G06Q30/0264$ | ^G06Q30/0265$
| ^G06Q30/0266$ | ^G06Q30/0267$ | ^G06Q30/0268$ | ^G06Q30/0269$ | ^G06Q30/0271$
| ^G06Q30/0272$ | ^G06Q30/0273$ | ^G06Q30/0274$ | ^G06Q30/0275$ | ^G06Q30/0276$
| ^G06Q30/0277$ | ^G06Q30/0278$ | ^G06Q30/0279$ | ^G06Q30/0281$ | ^G06Q30/0282$
| ^G06Q30/0283$ | ^G06Q30/0284$ | ^G06T1/20$ | ^G06F17/153$ | ^G06F17/50$ | ^G06T7
| ^G10L13 | ^G10L25 | ^G10L99 | ^G07C9 | ^G06F21

IPC

^B25J9/16$ | ^B25J9/18$ | ^B25J9/20$ | ^A63F13/67$ | ^B60W30/06$ | ^A61B5 | ^B23K31
| ^B29C65 | ^B60W30/10$ | ^B60W30/12$ | ^B60W30/14$ | ^B60W30/165$ | ^B60W30/17$
| ^B62D15/02$ | ^B64G1/24$ | ^B64G1/26$ | ^B64G1/28$ | ^B64G1/32$ | ^B64G1/34$
| ^B64G1/36$ | ^B64G1/38$ | ^E21B41$ | ^F02D41/14$ | ^F02D41/16$ | ^F03D7/04$
| ^F16H61 | ^G01N29/44$ | ^G01N29/46$ | ^G01N29/48$ | ^G01N29/50$ | ^G01N29/52$
| ^G01N33 | ^G01R31/28$ | ^G01R31/30$ | ^G01R31/302$ | ^G01R31/303$ | ^G01R31/304$
| ^G01R31/305$ | ^G01R31/306$ | ^G01R31/307$ | ^G01R31/308$ | ^G01R31/309$ | ^G01R31/311$
| ^G01R31/312$ | ^G01R31/315$ | ^G01R31/316$ | ^G01R31/3161$ | ^G01R31/3163$
| ^B60W30/16$ | ^G01R31/3167$ | ^G01R31/317$ | ^G01R31/3173$ | ^G01R31/3177$
| ^G01R31/3181$ | ^G01R31/3183$ | ^G01R31/3185$ | ^G01R31/3187$ | ^G01R31/319$
| ^G01R31/3193$ | ^G01R31/36$ | ^G01R31/364$ | ^G01R31/367$ | ^G01S7/41$ | ^G05B13/02$
| ^G05B13/04$ | ^G05D1 | ^G06F9/44$ | ^G06F9/4401$ | ^G06F9/445$ | ^G06F9/448$
| ^G06F11/14$ | ^G06F11/22$ | ^G06F11/24$ | ^G06F11/25$ | ^G06F11/26$ | ^G06F11/263$
| ^G06F11/267$ | ^G06F11/27$ | ^G06F11/273$ | ^G06F11/277$ | ^G06F15/18$ | ^G06F17/14$
| ^G06F17/15$ | ^G06F17/16$ | ^G06F17/20$ | ^G06F17/27$ | ^G06F17/28$ | ^G06F19/24$
| ^G06K7/14$ | ^G06K9 | ^G06N3 | ^G06N5 | ^G06N7 | ^G06N99 | ^G06T1/20$ | ^G06T1/40$
| ^G06T3/40$ | ^G06T7 | ^G06T9 | ^G08B29/18$ | ^G08B29/20$ | ^G08B29/22$ | ^G08B29/24$
| ^G08B29/26$ | ^G08B29/28$ | ^G10L13 | ^G10L15 | ^G10L17 | ^G10L25 | ^G10L99
| ^G11B20/10$ | ^G11B20/12$ | ^G11B20/14$ | ^G11B20/16$ | ^G11B20/18$ | ^G16H50/20$
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| ^H01M8/04992$ | ^H02H1 | ^H02P21 | ^H02P23 | ^H03H17/02$ | ^H03H17/04$ | ^H03H17/06$
| ^H04L12/24$ | ^H04L12/70$ | ^H04L12/701$ | ^H04L12/703$ | ^H04L12/705$ | ^H04L12/707$
| ^H04L12/709$ | ^H04L12/751$ | ^H04L25/02$ | ^H04L25/03$ | ^H04L25/04$ | ^H04L25/05$
| ^H04L25/06$ | ^H04L25/08$ | ^H04L25/10$ | ^H04L25/12$ | ^H04L25/14$ | ^H04L25/17$
| ^H04L25/18$ | ^H04L25/20$ | ^H04L25/22$ | ^H04L25/24$ | ^H04L25/26$ | ^H04L25/03$
| ^H04N21/466$ | ^H04R25 | ^G07C9 | ^G06F21

A.2 UKIPO selection procedure

The UKIPO (2014) procedure is based on keyword searches in patents belonging to specific CPC/IPC
classes connected to data management and computation. Keywords include generic references to big
data – such as big data, open data, and business intelligence – and names of software connected to
big data management. Since the report has been published in 2014, we updated the list of software
names. We also removed keywords already included in the WIPO search procedure.

We slightly modify this selection procedure by selecting CPC codes (Block 4) and keywords
(Block 5) specific to big-data management. For this two groups we do not require the joint presence
in patents. Specific CPC codes have been identified by searching these keywords in CPC code
titles. A third group of criteria, instead, requires the joint presence of keywords and IPC/CPC
codes (Block 6).

Block 4 We search for patents whose CPC codes match the following regular expression:

^G06F16/2465$ | ^G06F16/283$ | ^G06F2216/03$

Block 5 We search for patents whose titles and abstracts match the following regular expression:

((\b|^)big[\W_]+dat\w*(\b|$)) | ((\b|^)open[\W_]+data(\b|$))
| ((\b|^)data[\W_]+mining(\b|$)) | ((\b|^)data[\W_]+fusion(\b|$))

Block 6 We search for patents whose titles and abstracts match the following keywords and, at
the same time, belong to the following CPC or ICP codes.

Keywords

((\b|^)data[\W_]+warehouse\w*(\b|$)) | ((\b|^)hadoop(\b|$)) | ((\b|^)datameer(\b|$)) |
((\b|^)fico[\W_]+blaze(\b|$)) | ((\b|^)vertica(\b|$)) | ((\b|^)platfora(\b|$)) | ((\b|^)
splunk(\b|$)) | ((\b|^)mapreduce(\b|$)) | ((\b|^)crowdsourcing(\b|$)) | ((\b|^)cluster
[\W_]+computation(\b|$)) | ((\b|^)distributed[\W_]+file[\W_]+system\w*(\b|$)) | ((\b|^)
spark(\b|$)) | ((\b|^)biometrics(\b|$)) | ((\b|^)cassandra(\b|$)) | ((\b|^)nosql(\b|$))
| ((\b|^)behaviow{0,1}ral[\W_]+analytics(\b|$)) | ((\b|^)business[\W_]+intelligence
(\b|$)) | ((\b|^)hanab) | ((\b|^)hive(\b|$)) | ((\b|^)flume (\b|$)) | ((\b|^)kafka(\b|$))
| ((\b|^)elasticsearch(\b|$))

CPC
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^G06F17/3 | ^G06F19/7 | ^G06F19/3 | ^G06F19/1 | ^G06Q10/063 | ^G06Q30/02 | ^G06F17/5
| ^G06N | ^G06F16/ | ^G16Z99/ | ^G16B40/ | ^G16B50/ | ^G16H50/ | ^G16C20/70$ | ^G06F30/
| ^G06F2216/03$

IPC

^G06F17/3 | ^G06F19/1 | ^G06Q30/02 | ^G06F17/5 | ^G06N

B Patents in artificial intelligence: descriptive statistics

Figure B1 shows the evolution of the number of patents in AI over time. We plot the number of
patents based both on the application year and grant year. While the application year is closer to
the time of the invention and is usually employed in regression analysis, the grant year represents
one of the criteria used for the sample selection (since the USPTO database reports only patents
granted after 1976). For some early patents the difference between the two years is more than ten
years.

Table B1 reports the ten most common technologies in the AI patent sample. Technology fields
group International Patent Classification (IPC) codes associated with each patent into 35 broad
categories. For the sake of simplicity, each patent has been assigned to the prevalent technology.
For patents with more than one prevalent technology, we consider a fractional count. Table B2,
instead, shows the ten most common CPC codes at the 7-digit level. Compared to technology
fields, CPC codes provide a more detailed classification of technological domains. CPC codes are
not mutually exclusive, and each patent may occur in more than one class.

Finally, Table B3 reports the ten most common assignees in the AI patent sample, as disam-
biguated by the USPTO.

Table B4 summarizes the descriptive statistics of variables used in the econometric analysis,
including those used in the robustness checks. The top panel reports statistical information of
continuous variables, while the bottom panel shows the number and share of patents with certain
characteristics (dummy variables).
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Figure B1: Number of patents in AI per year. The blue dashed line represents the number of
patents per application year, while the orange solid line indicates the number of patents per grant
year. The grant-year series stops in July 2019 due to data availability.

Technology name Number of patents %

Electrical engineering - Computer technology 74192 64.72
Instruments - Control 8513 7.43
Mechanical engineering - Transport 5378 4.69
Instruments - Measurement 4346 3.79
Electrical engineering - Audio-visual technology 4306 3.76
Instruments - Medical technology 3587 3.13
Electrical engineering - Digital communication 2804 2.45
Electrical engineering - Telecommunications 2110 1.84
Electrical engineering - IT methods for management 1808 1.58
Mechanical engineering - Mechanical elements 1094 0.95

Table B1: Main technologies in AI patents. Each patent has been assigned to the prevalent tech-
nology. Patents with more than one main technology have been considered as fractional.
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CPC class
symbol

CPC title Number
of

patents

%

G06K 9/00 Methods or arrangements for reading or recognising printed
or written characters or for recognising patterns, e.g. finger-
prints

54355 47.39

G06T 7/00 Image analysis 15248 13.30
G06F 16/00 Information retrieval; Database structures therefor; File sys-

tem structures therefor
15000 13.08

G06F 17/00 Digital computing or data processing equipment or methods,
specially adapted for specific functions

14252 12.43

G06T2207/00 Indexing scheme for image analysis or image enhancement 13299 11.60
G10L 15/00 Speech recognition 12304 10.73
G05D 1/00 Control of position, course or altitude of land, water, air, or

space vehicles, e.g. automatic pilot
11104 9.68

G06F 3/00 Input arrangements for transferring data to be processed into
a form capable of being handled by the computer; Output
arrangements for transferring data from processing unit to
output unit, e.g. interface arrangements

10051 8.76

H04N 5/00 Details of television systems 6268 5.47
G06K2209/00 Indexing scheme relating to methods or arrangements for

reading or recognising printed or written characters or for
recognising patterns, e.g. fingerprints

6198 5.40

Table B2: Most common CPC classes at 7-digits level in AI patents. CPC codes are not mutually
exclusive, and each patent may occur in more than one class.

Assignee Number of patents %

International Business Machines Corporation 6710 5.85
Microsoft Corporation 3927 3.42
Google Inc. 3094 2.70
Canon Kabushiki Kaisha 1834 1.60
Samsung Electronics Co., Ltd. 1655 1.44
Sony Corporation 1602 1.40
AT&T Corporation 1191 1.04
Amazon Technologies, Inc. 1169 1.02
Xerox Corporation 1087 0.95
Fujitsu Limited 1068 0.93

Table B3: Top assignees in AI patents
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Variable name Min Mean Max Std

Trajectory effect 1 8.25 · 1015 1.87 · 1019 2.20 · 1017
Longest path length 1 2.27 · 1019 1.73 · 1020 3.74 · 1019
Timing 0 16.17 55 11.27
Number of claims 1 18.92 522 12.35
Number of inventors 1 2.74 27 18.80
Application year 1952 2007.75 2019 8.49
Grant year 1976 2010.80 2019 8.41
Number of references 0 31.07 3951 90.61
Number of citations (network) 0 10.92 805 24.08
Number of citations (all) 0 25.07 2288 53.32
Number of citations up to 5 years (network) 0 4.55 240 8.63
Number of citations up to 5 years (all) 0 10.21 1156 18.28
Number of citations in 5 years (network) 0 5.94 240 9.50
Number of citations in 5 years (all) 0 14.16 1156 20.74

Variable name Number of patents %

Government funding 3932 3.43
Government interest 3597 3.14
Government assignee 929 0.81
US university 2947 2.57
university 4588 4.00
Citing government funding 34692 30.25
Citing government interest 31837 27.76
Citing Government assignee 14075 12.27
Citing US university 31491 27.46

Table B4: Descriptive statistics of continuous (top) and dummy (bottom) variables.
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C Main path patents

Table C1: Patents in the AI main path. Node numbers link this table to Figure 1. Patent numbers
are hyperlinks that lead to patent documents.

Node
number

Patent
number

Patent title

0 US2432123A Translation of visual symbols
1 US2615992A Apparatus for indicia recognition
2 US2897481A Apparatus for reading
3 US2932006A Symbol recognition system
4 US2889535A Recognition of recorded intelligence
5 US2928074A Method and apparatus for reading handwritten symbols, particularly numerals
6 US2964734A Method and apparatus for sensing handwriten or printed characters
7 US3105956A Character recognition system
8 US3069079A Automatic character recognition method
9 US2959769A Data consolidation systems
10 US3025495A Automatic character recognition
11 US3112468A Character recognition system
12 US3108254A Machine reading of handwritten characters
13 US3179923A Scanning system for large areas
14 US3173126A Reading machine with core matrix
15 US3234513A Character recognition apparatus
16 US3165717A Character recognition system
17 US3200373A Handwritten character reader
18 US3104369A High-speed optical identification of printed matter
19 US3289164A Character normalizing reading machine
20 US3496542A Multifont character reading machine
21 US3601802A Pattern matching character recognition system
22 US3816722A Computer for calculating the similarity between patterns and pattern recognition system

comprising the similarity computer
23 US4049913A System for recognizing speech continuously spoken with number of word or words prese-

lected
24 US4092493A Speech recognition system
25 US4060694A Speech recognition method and apparatus adapted to a plurality of different speakers
26 US4156868A Syntactic word recognizer
27 US4059725A Automatic continuous speech recognition system employing dynamic programming
28 US4256924A Device for recognizing an input pattern with approximate patterns used for reference

patterns on mapping
29 US4181821A Multiple template speech recognition system
30 US4336421A Apparatus and method for recognizing spoken words
31 US4277644A Syntactic continuous speech recognizer
32 US4349700A Continuous speech recognition system
33 US4319221A Similarity calculator comprising a buffer for a single input pattern feature vector to be

pattern matched with reference patterns
34 US4504970A Training controller for pattern processing system

Continued on next page
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35 US4355302A Spelled word recognizer
36 US4384273A Time warp signal recognition processor for matching signal patterns
37 US4400788A Continuous speech pattern recognizer
38 US4286115A System for recognizing words continuously spoken according to a format
39 US4400828A Word recognizer
40 US4593367A Probabilistic learning element
41 US4618983A Speech recognition with preliminary matching
42 US4580241A Graphic word spelling correction using automated dictionary comparisons with phonetic

skeletons
43 US4481593A Continuous speech recognition
44 US4852173A Design and construction of a binary-tree system for language modelling
45 US4754489A Means for resolving ambiguities in text based upon character context
46 US4670848A Artificial intelligence system
47 US4674066A Textual database system using skeletonization and phonetic replacement to retrieve words

matching or similar to query words
48 US4730269A Method and apparatus for generating word skeletons utilizing alpha set replacement and

omission
49 US4587670A Hidden Markov model speech recognition arrangement
50 US4559604A Pattern recognition method
51 US4805225A Pattern recognition method and apparatus
52 US4796199A Neural-model, information-handling architecture and method
53 US4881178A Method of controlling a classifier system
54 US4821333A Machine learning procedures for generating image domain feature detector structuring

elements
55 US4837689A Inputting and editing system in a knowledge based inquiry and answer system
56 US4931926A Inputting system and an editing system in an inquiry-and-answer system
57 US4866635A Domain independent shell for building a diagnostic expert system
58 US4815005A Semantic network machine for artificial intelligence computer
59 US4835690A Integrated expert system for medical imaging scan, set-up, and scheduling
60 US4771401A Apparatus and method for linguistic expression processing
61 US4783758A Automated word substitution using numerical rankings of structural disparity between

misspelled words & candidate substitution words
62 US4713778A Speech recognition method
63 US4713777A Speech recognition method having noise immunity
64 US4718092A Speech recognition activation and deactivation method
65 US4718093A Speech recognition method including biased principal components
66 US4718094A Speech recognition system
67 US4712242A Speaker-independent word recognizer
68 US4712243A Speech recognition apparatus
69 US4715004A Pattern recognition system
70 US4975961A Multi-layer neural network to which dynamic programming techniques are applicable
71 US4876731A Neural network model in pattern recognition using probabilistic contextual information
72 US4965725B1 Neural network based automated cytological specimen classification system and method
73 US5053974A Closeness code and method
74 US5067095A SPANN: Sequence processing artificial neural network
75 US5056037A Analog hardware for learning neural networks

Continued on next page
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76 US4897811A N-dimensional coulomb neural network which provides for cumulative learning of internal
representations

77 US4918617A Neural-model computational system with multi-directionally overlapping broadcast regions
78 US4935877A Non-linear genetic algorithms for solving problems
79 US4994967A Information retrieval system with means for analyzing undefined words in a natural lan-

guage inquiry
80 US5103498A Intelligent help system
81 US5041976A Diagnostic system using pattern recognition for electronic automotive control systems
82 US5274801A Artificial intelligence delivery system
83 US4864501A Word annotation system
84 US4887212A Parser for natural language text
85 US4849898A Method and apparatus to identify the relation of meaning between words in text expres-

sions
86 US4759068A Constructing Markov models of words from multiple utterances
87 US5046099A Adaptation of acoustic prototype vectors in a speech recognition system
88 US4803729A Speech recognition method
89 US5058166A Method of recognizing coherently spoken words
90 US4987596A Knowledge-guided automatic speech recognition apparatus and method
91 US4833712A Automatic generation of simple Markov model stunted baseforms for words in a vocabulary
92 US4827521A Training of Markov models used in a speech recognition system
93 US4852180A Speech recognition by acoustic/phonetic system and technique
94 US4783803A Speech recognition apparatus and method
95 US4837831A Method for creating and using multiple-word sound models in speech recognition
96 US5040215A Speech recognition apparatus using neural network and fuzzy logic
97 US5175793A Recognition apparatus using articulation positions for recognizing a voice
98 US5046019A Fuzzy data comparator with neural network postprocessor
99 US5058180A Neural network apparatus and method for pattern recognition
100 US5052043A Neural network with back propagation controlled through an output confidence measure
101 US5060278A Pattern recognition apparatus using a neural network system
102 US5048100A Self organizing neural network method and system for general classification of patterns
103 US5086479A Information processing system using neural network learning function
104 US5058184A Hierarchical information processing system
105 US5333239A Learning process system for use with a neural network structure data processing apparatus
106 US5067164A Hierarchical constrained automatic learning neural network for character recognition
107 US5170463A Neuro-computer
108 US5140530A Genetic algorithm synthesis of neural networks
109 US5390281A Method and apparatus for deducing user intent and providing computer implemented

services
110 US5497319A Machine translation and telecommunications system
111 US5068789A Method and means for grammatically processing a natural language sentence
112 US5060155A Method and system for the representation of multiple analyses in dependency grammar

and parser for generating such representation
113 US5099425A Method and apparatus for analyzing the semantics and syntax of a sentence or a phrase
114 US4817156A Rapidly training a speech recognizer to a subsequent speaker given training data of a

reference speaker
115 US4829577A Speech recognition method
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116 US5222147A Speech recognition LSI system including recording/reproduction device
117 US5054074A Optimized speech recognition system and method
118 US4926488A Normalization of speech by adaptive labelling
119 US4941178A Speech recognition using preclassification and spectral normalization
120 US5072452A Automatic determination of labels and Markov word models in a speech recognition system
121 US5208897A Method and apparatus for speech recognition based on subsyllable spellings
122 US5202952A Large-vocabulary continuous speech prefiltering and processing system
123 US5033087A Method and apparatus for the automatic determination of phonological rules as for a

continuous speech recognition system
124 US5018201A Speech recognition dividing words into two portions for preliminary selection
125 US5146503A Speech recognition
126 US4866778A Interactive speech recognition apparatus
127 US5278911A Speech recognition using a neural net
128 US5251286A Method for estimating formation permeability from wireline logs using neural networks
129 US5162997A Control system for automotive vehicle for controlling vehicle driving behavior with feature

of harmonization of vehicular driving condition dependent control and driver’s driving
tendency adapted control

130 US5247584A Signal processing unit for classifying objects on the basis of signals from sensors
131 US5155801A Clustered neural networks
132 US5239594A Self-organizing pattern classification neural network system
133 US5105468A Time delay neural network for printed and cursive handwritten character recognition
134 US5265224A Recognition unit and recognizing and judging apparatus employing same
135 US5179596A Analog pattern categorization system having dual weighted connectivity between nodes
136 US5220640A Neural net architecture for rate-varying inputs
137 US5271090A Operational speed improvement for neural network
138 US5317675A Neural network pattern recognition learning method
139 US5500920A Semantic co-occurrence filtering for speech recognition and signal transcription applica-

tions
140 US5243520A Sense discrimination system and method
141 US5128865A Method for determining the semantic relatedness of lexical items in a text
142 US5148489A Method for spectral estimation to improve noise robustness for speech recognition
143 US5150449A Speech recognition apparatus of speaker adaptation type
144 US5027406A Method for interactive speech recognition and training
145 US5278942A Speech coding apparatus having speaker dependent prototypes generated from nonuser

reference data
146 US5031217A Speech recognition system using Markov models having independent label output sets
147 US5050215A Speech recognition method
148 US5220639A Mandarin speech input method for Chinese computers and a mandarin speech recognition

machine
149 US5315689A Speech recognition system having word-based and phoneme-based recognition means
150 US5195167A Apparatus and method of grouping utterances of a phoneme into context-dependent cat-

egories based on sound-similarity for automatic speech recognition
151 US5129001A Method and apparatus for modeling words with multi-arc Markov models
152 US5170432A Method of speaker adaptive speech recognition
153 US5168524A Ch-recognition circuitry employing nonlinear processing, speech element modeling and

phoneme estimation
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154 US5133012A Speech recognition system utilizing both a long-term strategic and a short-term strategic
scoring operation in a transition network thereof

155 US5193142A Training module for estimating mixture Gaussian densities for speech-unit models in speech
recognition systems

156 US5293584A Speech recognition system for natural language translation
157 US5526463A System for processing a succession of utterances spoken in continuous or discrete form
158 US5202926A Phoneme discrimination method
159 US5526465A Methods and apparatus for verifying the originator of a sequence of operations
160 US5680509A Method and apparatus for estimating phone class probabilities a-posteriori using a decision

tree
161 US4977598A Efficient pruning algorithm for hidden Markov model speech recognition
162 US4984178A Chart parser for stochastic unification grammar
163 US5199077A Wordspotting for voice editing and indexing
164 US5075896A Character and phoneme recognition based on probability clustering
165 US5007081A Speech activated telephone
166 US5136654A Vocabulary partitioned speech recognition apparatus
167 US5065431A Pattern recognition using stored N-tuple occurrence frequencies
168 US5475798A Speech-to-text translator
169 US5517667A Neural network that does not require repetitive training
170 US5285523A Apparatus for recognizing driving environment of vehicle
171 US5408588A Artificial neural network method and architecture
172 US5517597A Convolutional expert neural system (ConExNS)
173 US5461696A Decision directed adaptive neural network
174 US5276771A Rapidly converging projective neural network
175 US5541836A Word disambiguation apparatus and methods
176 US5321607A Automatic translating machine
177 US5212821A Machine-based learning system
178 US5307444A Voice analyzing system using hidden Markov model and having plural neural network

predictors
179 US5329609A Recognition apparatus with function of displaying plural recognition candidates
180 US5649056A Speech recognition system and method which permits a speaker’s utterance to be recog-

nized using a hidden Markov model with subsequent calculation reduction
181 US5425129A Method for word spotting in continuous speech
182 US5502791A Speech recognition by concatenating fenonic allophone hidden Markov models in parallel

among subwords
183 US5345536A Method of speech recognition
184 US5309547A Method of speech recognition
185 US5222146A Speech recognition apparatus having speech coder outputting acoustic prototype ranks
186 US5613036A Dynamic categories for a speech recognition system
187 US5390278A Phoneme based speech recognition
188 US5444617A Method and apparatus for adaptively generating field of application dependent language

models for use in intelligent systems
189 US5679001A Children’s speech training aid
190 US5233681A Context-dependent speech recognizer using estimated next word context
191 US5390280A Speech recognition apparatus
192 US5276766A Fast algorithm for deriving acoustic prototypes for automatic speech recognition
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193 US5452397A Method and system for preventing entry of confusingly similar phases in a voice recognition
system vocabulary list

194 US5608841A Method and apparatus for pattern recognition employing the hidden Markov model
195 US5455889A Labelling speech using context-dependent acoustic prototypes
196 US5329608A Automatic speech recognizer
197 US5333275A System and method for time aligning speech
198 US5825978A Method and apparatus for speech recognition using optimized partial mixture tying of

HMM state functions
199 US5459815A Speech recognition method using time-frequency masking mechanism
200 US5268990A Method for recognizing speech using linguistically-motivated hidden Markov models
201 US5640490A User independent, real-time speech recognition system and method
202 US5477451A Method and system for natural language translation
203 US5418717A Multiple score language processing system
204 US5864810A Method and apparatus for speech recognition adapted to an individual speaker
205 US5440662A Keyword/non-keyword classification in isolated word speech recognition
206 US5526259A Method and apparatus for inputting text
207 US5428707A Apparatus and methods for training speech recognition systems and their users and oth-

erwise improving speech recognition performance
208 US5222121A Voice recognition dialing unit
209 US5386492A Speech recognition system utilizing vocabulary model preselection
210 US5510981A Language translation apparatus and method using context-based translation models
211 US5481644A Neural network speech recognition apparatus recognizing the frequency of successively

input identical speech data sequences
212 US5796921A Mapping determination methods and data discrimination methods using the same
213 US5301257A Neural network
214 US5704013A Map determination method and apparatus
215 US5528491A Apparatus and method for automated natural language translation
216 US5477450A Machine translation method and apparatus
217 US5608623A Special cooccurrence processing method and apparatus
218 US5805771A Automatic language identification method and system
219 US5502774A Automatic recognition of a consistent message using multiple complimentary sources of

information
220 US5737485A Method and apparatus including microphone arrays and neural networks for speech/s-

peaker recognition systems
221 US5475792A Telephony channel simulator for speech recognition application
222 US5513298A Instantaneous context switching for speech recognition systems
223 US5488652A Method and apparatus for training speech recognition algorithms for directory assistance

applications
224 US5487133A Distance calculating neural network classifier chip and system
225 US5668929A Speech activated security systems and methods
226 US5615296A Continuous speech recognition and voice response system and method to enable conversa-

tional dialogues with microprocessors
227 US5638425A Automated directory assistance system using word recognition and phoneme processing

method
228 US5566272A Automatic speech recognition (ASR) processing using confidence measures
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229 US5758319A Method and system for limiting the number of words searched by a voice recognition
system

230 US5794198A Pattern recognition method
231 US5825977A Word hypothesizer based on reliably detected phoneme similarity regions
232 US5684925A Speech representation by feature-based word prototypes comprising phoneme targets hav-

ing reliable high similarity
233 US5822728A Multistage word recognizer based on reliably detected phoneme similarity regions
234 US5515475A Speech recognition method using a two-pass search
235 US5623609A Computer system and computer-implemented process for phonology-based automatic

speech recognition
236 US5594834A Method and system for recognizing a boundary between sounds in continuous speech
237 US5634086A Method and apparatus for voice-interactive language instruction
238 US5623578A Speech recognition system allows new vocabulary words to be added without requiring

spoken samples of the words
239 US5799279A Continuous speech recognition of text and commands
240 US5524169A Method and system for location-specific speech recognition
241 US5497447A Speech coding apparatus having acoustic prototype vectors generated by tying to elemen-

tary models and clustering around reference vectors
242 US5590242A Signal bias removal for robust telephone speech recognition
243 US5768603A Method and system for natural language translation
244 US5581655A Method for recognizing speech using linguistically-motivated hidden Markov models
245 US5274739A Product code memory Itakura-Saito (MIS) measure for sound recognition
246 US5748841A Supervised contextual language acquisition system
247 US5649057A Speech recognition employing key word modeling and non-key word modeling
248 US5509104A Speech recognition employing key word modeling and non-key word modeling
249 US5621859A Single tree method for grammar directed, very large vocabulary speech recognizer
250 US5991721A Apparatus and method for processing natural language and apparatus and method for

speech recognition
251 US5864788A Translation machine having a function of deriving two or more syntaxes from one original

sentence and giving precedence to a selected one of the syntaxes
252 US5850627A Apparatuses and methods for training and operating speech recognition systems
253 US5450525A Vehicle accessory control with manual and voice response
254 US5983179A Speech recognition system which turns its voice response on for confirmation when it has

been turned off without confirmation
255 US5764853A Voice recognition device and method using a (GGM) Guaranteed Global minimum Map-

ping
256 US5867811A Method, an apparatus, a system, a storage device, and a computer readable medium using

a bilingual database including aligned corpora
257 US5907821A Method of computer-based automatic extraction of translation pairs of words from a bilin-

gual text
258 US5752232A Voice activated device and method for providing access to remotely retrieved data
259 US5765132A Building speech models for new words in a multi-word utterance
260 US5819220A Web triggered word set boosting for speech interfaces to the world wide web
261 US5987414A Method and apparatus for selecting a vocabulary sub-set from a speech recognition dic-

tionary for use in real time automated directory assistance
262 US5749072A Communications device responsive to spoken commands and methods of using same
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263 US5983186A Voice-activated interactive speech recognition device and method
264 US6061654A System and method of recognizing letters and numbers by either speech or touch tone

recognition utilizing constrained confusion matrices
265 US5787394A State-dependent speaker clustering for speaker adaptation
266 US6055498A Method and apparatus for automatic text-independent grading of pronunciation for lan-

guage instruction
267 US5774628A Speaker-independent dynamic vocabulary and grammar in speech recognition
268 US5721808A Method for the composition of noise-resistant hidden Markov models for speech recognition

and speech recognizer using the same
269 US5583965A Methods and apparatus for training and operating voice recognition systems
270 US5963892A Translation apparatus and method for facilitating speech input operation and obtaining

correct translation thereof
271 US5561722A Pattern matching method and pattern recognition apparatus
272 US6085162A Translation system and method in which words are translated by a specialized dictionary

and then a general dictionary
273 US6161083A Example-based translation method and system which calculates word similarity degrees,

a priori probability, and transformation probability to determine the best example for
translation

274 US5950157A Method for establishing handset-dependent normalizing models for speaker recognition
275 US5960399A Client/server speech processor/recognizer
276 US6078886A System and method for providing remote automatic speech recognition services via a packet

network
277 US6195641B1 Network universal spoken language vocabulary
278 US6125341A Speech recognition system and method
279 US6070140A Speech recognizer
280 US5715367A Apparatuses and methods for developing and using models for speech recognition
281 US7020609B2 Voice activated apparatus for accessing information on the World Wide Web
282 US5860062A Speech recognition apparatus and speech recognition method
283 US5617509A Method, apparatus, and radio optimizing Hidden Markov Model speech recognition
284 US5664058A Method of training a speaker-dependent speech recognizer with automated supervision of

training sufficiency
285 US6266642B1 Method and portable apparatus for performing spoken language translation
286 US6366886B1 System and method for providing remote automatic speech recognition services via a packet

network
287 US6453290B1 Method and system for network-based speech recognition
288 US5799065A Call routing device employing continuous speech
289 US7099824B2 Speech recognition system, speech recognition server, speech recognition client, their con-

trol method, and computer readable memory
290 US6463413B1 Speech recognition training for small hardware devices
291 US5970446A Selective noise/channel/coding models and recognizers for automatic speech recognition
292 US6134527A Method of testing a vocabulary word being enrolled in a speech recognition system
293 US6101472A Data processing system and method for navigating a network using a voice command
294 US6061646A Kiosk for multiple spoken languages
295 US6377922B2 Distributed recognition system having multiple prompt-specific and response-specific

speech recognizers
296 US6260012B1 Mobile phone having speaker dependent voice recognition method and apparatus
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297 US6192338B1 Natural language knowledge servers as network resources
298 US7203651B2 Voice control system with multiple voice recognition engines
299 US6456974B1 System and method for adding speech recognition capabilities to java
300 US7409349B2 Servers for web enabled speech recognition
301 US7610547B2 Markup language extensions for web enabled recognition
302 US7506022B2 Web enabled recognition architecture
303 US8229753B2 Web server controls for web enabled recognition and/or audible prompting
304 US7003464B2 Dialog recognition and control in a voice browser
305 US7260535B2 Web server controls for web enabled recognition and/or audible prompting for call controls
306 US8311835B2 Assisted multi-modal dialogue
307 US7552055B2 Dialog component re-use in recognition systems
308 US9083798B2 Enabling voice selection of user preferences
309 US7917365B2 Synchronizing visual and speech events in a multimodal application
310 US8090584B2 Modifying a grammar of a hierarchical multimodal menu in dependence upon speech com-

mand frequency
311 US9208785B2 Synchronizing distributed speech recognition
312 US7848314B2 VOIP barge-in support for half-duplex DSR client on a full-duplex network
313 US7676371B2 Oral modification of an ASR lexicon of an ASR engine
314 US8145493B2 Establishing a preferred mode of interaction between a user and a multimodal application
315 US8374874B2 Establishing a multimodal personality for a multimodal application in dependence upon

attributes of user interaction
316 US8086463B2 Dynamically generating a vocal help prompt in a multimodal application
317 US7827033B2 Enabling grammars in web page frames
318 US8612230B2 Automatic speech recognition with a selection list
319 US8055504B2 Synchronizing visual and speech events in a multimodal application
320 US8069047B2 Dynamically defining a VoiceXML grammar in an X+V page of a multimodal application
321 US7840409B2 Ordering recognition results produced by an automatic speech recognition engine for a

multimodal application
322 US8938392B2 Configuring a speech engine for a multimodal application based on location
323 US8713542B2 Pausing a VoiceXML dialog of a multimodal application
324 US9208783B2 Altering behavior of a multimodal application based on location
325 US7809575B2 Enabling global grammars for a particular multimodal application
326 US7822608B2 Disambiguating a speech recognition grammar in a multimodal application
327 US8909532B2 Supporting multi-lingual user interaction with a multimodal application
328 US9973450B2 Methods and systems for dynamically updating web service profile information by parsing

transcribed message strings
329 US9349367B2 Records disambiguation in a multimodal application operating on a multimodal device
330 US8326636B2 Using a physical phenomenon detector to control operation of a speech recognition engine
331 US8352261B2 Use of intermediate speech transcription results in editing final speech transcription results
332 US8355914B2 Mobile terminal and method for correcting text thereof
333 US8352264B2 Corrective feedback loop for automated speech recognition
334 US8494852B2 Word-level correction of speech input
335 US8676577B2 Use of metadata to post process speech recognition output
336 US8478590B2 Word-level correction of speech input
337 US8626511B2 Multi-dimensional disambiguation of voice commands
338 US8560301B2 Apparatus and method for language expression using context and intent awareness
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https://patents.google.com/patent/US8090584B2
https://patents.google.com/patent/US9208785B2
https://patents.google.com/patent/US7848314B2
https://patents.google.com/patent/US7676371B2
https://patents.google.com/patent/US8145493B2
https://patents.google.com/patent/US8374874B2
https://patents.google.com/patent/US8086463B2
https://patents.google.com/patent/US7827033B2
https://patents.google.com/patent/US8612230B2
https://patents.google.com/patent/US8055504B2
https://patents.google.com/patent/US8069047B2
https://patents.google.com/patent/US7840409B2
https://patents.google.com/patent/US8938392B2
https://patents.google.com/patent/US8713542B2
https://patents.google.com/patent/US9208783B2
https://patents.google.com/patent/US7809575B2
https://patents.google.com/patent/US7822608B2
https://patents.google.com/patent/US8909532B2
https://patents.google.com/patent/US9973450B2
https://patents.google.com/patent/US9349367B2
https://patents.google.com/patent/US8326636B2
https://patents.google.com/patent/US8352261B2
https://patents.google.com/patent/US8355914B2
https://patents.google.com/patent/US8352264B2
https://patents.google.com/patent/US8494852B2
https://patents.google.com/patent/US8676577B2
https://patents.google.com/patent/US8478590B2
https://patents.google.com/patent/US8626511B2
https://patents.google.com/patent/US8560301B2


339 US9858925B2 Using context information to facilitate processing of commands in a virtual assistant
340 US9117447B2 Using event alert text as input to an automated assistant
341 US8799000B2 Disambiguation based on active input elicitation by intelligent automated assistant
342 US10134385B2 Systems and methods for name pronunciation
343 US10176167B2 System and method for inferring user intent from speech inputs
344 US9548066B2 Voice application architecture
345 US9767091B2 Methods for understanding incomplete natural language query
346 US9899020B2 Machine learning dialect identification
347 US10133738B2 Translation confidence scores
348 US9734143B2 Multi-media context language processing
349 US10002125B2 Language model personalization
350 US9805029B2 Predicting future translations
351 US9747283B2 Predicting future translations
352 US10002131B2 Classifying languages for objects and entities
353 US10275459B1 Source language content scoring for localizability
354 US10223356B1 Abstraction of syntax in localization through pre-rendering
355 US10229113B1 Leveraging content dimensions during the translation of human-readable languages
356 US10261995B1 Semantic and natural language processing for content categorization and routing
357 US10289681B2 Predicting future translations
358 US10013417B2 Classifying languages for objects and entities
359 US10089299B2 Multi-media context language processing
360 US10346537B2 Universal translation
361 US10180935B2 Identifying multiple languages in a content item
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D Supplementary results

D.1 Effect of timing of government funding

Figures D1 and D2 show the effect of timing of government funding (and its division into government
interest and government assignee) on the trajectory effect.

Figure D1: Timing of government funding. Marginal effects – with 95% confidential intervals – of
government funding on the trajectory effect (log) at different levels of the variable timing. Patents
supported by government funding are in orange, while all the other patents in blue. Predictions are
retrieved by specification (3) in Table 3.

(a) Government interest (b) Government assignee

Figure D2: Timing of government-backed patents. Marginal effects – with 95% confidential intervals
– of government funding on the trajectory effect (log) at different levels of the variable timing.
Patents supported by federal contractors (government interest) are in green, those with a federal
agency or state department as assignee are in red (government assignee), while all the other patents
in blue. Predictions are retrieved by specifications (4) and (5) in Table 4.
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D.2 Propensity score matching

(a) Government funding

(b) Government interest (c) Government assignee

Figure D3: Covariate balance before (red triangles) and after (green rhombuses) the 1-1 propensity
score matching without replacement.
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D.3 Instrumental variable

To address possible selection bias in our estimations, we design a quasi experiment based on the
use of an instrumental variable. More specifically, we instrument government funding by using the
predicted number of patents connected to defense R&D.

We identify patents related to defense R&D by selecting USPTO patents that received govern-
ment funding from the US Department of Defense or have this department (or one of its divisions,
such as Army, Navy, or Air Force) as assignee. Each patent related to defense R&D is then associ-
ated to 4-digit CPC classes. Since each patent may be associated with more than one CPC class, we
introduce weights proportional to the importance of these classes in the patent. Then, we compute
the weighted number of patents related to the US Department of Defense for each 4-digit CPC class.
To obtain results that are comparable over time, we normalized the number of patents associated
to defense R&D in each CPC class by the total number of patents in that class. The resulting
indicator can be interpreted as a measure of the importance of defense R&D in each 4-digit CPC
class. Moreover, since we are interested to capturing the predicted number of patents, we introduce
a one-year lag. Therefore, for each 4-digit CPC class i at the time t, we compute:

Predicted defense patents in CPCi,t =
Number of defense-related patentsi,t−1

Number of patentsi,t−1
. (8)

Then, we define the instrumental variable Predicted defense patentsp,t for each patent p with
application year t as the weighted average of Predicted defense patents in CPC i,t over the collection
CPCp of 4-digit CPC classes related to the patent:

Predicted defense patentsp,t =
∑

i∈CPCp

sharei · Predicted defense patents in CPCi,t, (9)

where sharei is the weight of each 4-digit CPC i connected to the patent.
Table D1 reports the results of the first-stage estimations.
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Table D1: First stage - Instrumental variable

Dependent variable:

Government funding Government interest Government assignee

(1) (2) (3)

Predicted defense patents 1.359∗∗∗ 1.165∗∗∗ 0.610∗∗∗

(0.101) (0.094) (0.065)
US university 0.427∗∗∗ 0.428∗∗∗ −0.004∗∗∗

(0.009) (0.009) (0.001)
Timing −0.0003∗∗∗ −0.0002∗∗∗ −0.0003∗∗∗

(0.00004) (0.00004) (0.00002)
Number of claims −0.0001 −0.00002 −0.0002∗∗∗

(0.00004) (0.00004) (0.00002)
Number of inventors 0.001∗∗∗ 0.001∗∗∗ −0.001∗∗∗

(0.0003) (0.0002) (0.0001)
Intercept 0.015∗∗∗ 0.011∗∗∗ 0.013∗∗∗

(0.002) (0.002) (0.001)

3-digit CPC Yes Yes Yes

Observations 114,670 114,670 114,670
R2 0.160 0.170 0.016
Adjusted R2 0.159 0.169 0.016
Residual Std. Error 0.167 0.159 0.089
F Statistic 495.199∗∗∗ 532.877∗∗∗ 43.222∗∗∗

Note: All the models are estimated using OLS.
Robust standard errors are reported in parenthesis.

Legend : ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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D.4 Additional robustness checks

Tables D2 and D3 present the results of econometric estimations with an alternative dependent
variable: the longest path length associate to the patent. In more detail, for each node p, we
construct the sub-graph that includes the node p and all its ancestors and descendants. In such a
graph, all possible paths from sources to sinks must be through p by construction. We then compute
the longest path in the sub-graph considering edge weight wuv, as defined in Section 4. Finally, we
associate the length of this path to the node p.

Table D2: Longest path length. Impact of government funding on the longest path length through
patents.

Dependent variable:

log(Longest path length)

(1) (2) (3)

Government funding 2.275∗∗∗ 2.057∗∗∗ 3.350∗∗∗

(0.191) (0.206) (0.460)
Government funding*Timing -0.096∗∗∗

(0.022)
US university 0.676∗∗∗ 0.690∗∗∗

(0.237) (0.238)
Timing 0.800∗∗∗ 0.800∗∗∗ 0.803∗∗∗

(0.004) (0.004) (0.004)
Number of claims 0.049∗∗∗ 0.049∗∗∗ 0.049∗∗∗

(0.003) (0.003) (0.003)
Number of inventors -0.261∗∗∗ -0.262∗∗∗ -0.262∗∗∗

(0.018) (0.018) (0.018)
Intercept 25.358∗∗∗ 25.353∗∗∗ 25.308∗∗∗

(0.118) (0.118) (0.119)

3-digit CPC Yes Yes Yes

Observations 114,670 114,670 114,670
R2 0.428 0.428 0.428
Adjusted R2 0.428 0.428 0.428
Residual Std. Error 11.299 11.299 11.297
F Statistic 1301.714∗∗∗ 1272.379∗∗∗ 1245.434∗∗∗

Note: All the models are estimated using OLS.
Robust standard errors are reported in parenthesis.

Legend : ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table D3: Longest path length. Impact of different government funding sources (through gov-
ernment assignee or grants - government interest statement) on the longest path length through
patents.

Dependent variable:

log(Longest path length)

(1) (2) (3) (4) (5) (6)

Government interest 1.976∗∗∗ 0.839∗∗∗ 1.833∗∗∗ 0.848∗∗∗ 1.734∗∗∗

(0.198) (0.226) (0.503) (0.226) (0.521)
Government interest*Timing -0.069∗∗∗ -0.062∗∗

(0.023) (0.024)
Government assignee 4.933∗∗∗ 4.439∗∗∗ 4.271∗∗∗ 5.436∗∗∗ 4.872∗∗∗

(0.405) (0.429) (0.434) (0.851) (0.902)
Government assignee*Timing -0.101∗∗ -0.059

(0.050) (0.052)
US university 1.211∗∗∗ 1.194∗∗∗ 1.212∗∗∗ 1.196∗∗∗

(0.239) (0.239) (0.239) (0.239)
Timing 0.799∗∗∗ 0.800∗∗∗ 0.801∗∗∗ 0.803∗∗∗ 0.801∗∗∗ 0.803∗∗∗

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004)
Number of claims 0.049∗∗∗ 0.050∗∗∗ 0.049∗∗∗ 0.049∗∗∗ 0.049∗∗∗ 0.049∗∗∗

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
Number of inventors -0.261∗∗∗ -0.253∗∗∗ -0.258∗∗∗ -0.258∗∗∗ -0.258∗∗∗ -0.258∗∗∗

(0.018) (0.018) (0.018) (0.018) (0.018) (0.018)
Intercept 25.386∗∗∗ 25.353∗∗∗ 25.308∗∗∗ 25.281∗∗∗ 25.299∗∗∗ 25.279∗∗∗

(0.118) (0.118) (0.118) (0.119) (0.119) (0.119)

3-digit CPC Yes Yes Yes Yes Yes Yes

Observations 114,670 114,670 114,670 114,670 114,670 114,670
R2 0.428 0.428 0.428 0.428 0.428 0.428
Adjusted R2 0.427 0.428 0.428 0.428 0.428 0.428
Residual Std. Error 11.301 11.298 11.295 11.294 11.295 11.294
F Statistic 1300.764∗∗∗ 1301.629∗∗∗ 1245.419∗∗∗ 1219.045∗∗∗ 1218.476∗∗∗ 1193.123∗∗∗

Note: All the models are estimated using OLS.
Robust standard errors are reported in parenthesis.

Legend : ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Tables D4 and D5 summarize the results when we replace direct indicators of government funding
with indirect ones used in the previous literature. In particular, we include independent dummy
variables that detect patents that cite government-funded inventions. In the same vein, we replace
the control US university with the dummy variable citing US university.

Table D4: Citing government funding. Influence on the trajectory effect of citing government funded
patents.

Dependent variable:

log(Trajectory effect)

(1) (2) (3)

Citing government funding 1.204∗∗∗ 0.995∗∗∗ 1.303∗∗∗

(0.046) (0.056) (0.110)
Timing:citing government funding -0.018∗∗∗

(0.004)
Citing US university 0.412∗∗∗ 0.428∗∗∗

(0.056) (0.056)
Timing 0.494∗∗∗ 0.493∗∗∗ 0.498∗∗∗

(0.002) (0.002) (0.002)
Number of claims 0.039∗∗∗ 0.038∗∗∗ 0.038∗∗∗

(0.002) (0.002) (0.002)
Number of inventors -0.113∗∗∗ -0.114∗∗∗ -0.114∗∗∗

(0.011) (0.011) (0.011)
Intercept 8.536∗∗∗ 8.529∗∗∗ 8.454∗∗∗

(0.077) (0.077) (0.081)

3-digit CPC Yes Yes Yes

Observations 114,670 114,670 114,670
R2 0.437 0.438 0.438
Adjusted R2 0.437 0.437 0.438
Residual Std. Error 7.276 7.275 7.274
F Statistic 3095.255∗∗∗ 3028.102∗∗∗ 2980.272∗∗∗

Note: All the models are estimated using OLS.
Robust standard errors are reported in parenthesis.

Legend : ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table D5: Citing government funding. Influence on the trajectory effect of patents citing inventions
with a government interest statement or government assignees.

Dependent variable:

log(Trajectory effect)

(1) (2) (3) (4) (5) (6)

Citing gov interest 1.128∗∗∗ 0.498∗∗∗ 0.607∗∗∗ 0.481∗∗∗ 0.260∗∗

(0.047) (0.059) (0.114) (0.059) (0.124)
Timing:citing gov interest -0.006 0.012∗∗∗

(0.004) (0.005)
Citing gov assignee 1.781∗∗∗ 1.358∗∗∗ 1.354∗∗∗ 2.209∗∗∗ 2.347∗∗∗

(0.066) (0.072) (0.072) (0.153) (0.168)
Timing:citing gov assignee -0.048∗∗∗ -0.056∗∗∗

(0.006) (0.007)
Citing US university 0.417∗∗∗ 0.422∗∗∗ 0.448∗∗∗ 0.443∗∗∗

(0.057) (0.057) (0.057) (0.057)
Timing 0.495∗∗∗ 0.499∗∗∗ 0.493∗∗∗ 0.495∗∗∗ 0.499∗∗∗ 0.496∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Number of claims 0.039∗∗∗ 0.039∗∗∗ 0.037∗∗∗ 0.037∗∗∗ 0.037∗∗∗ 0.037∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Number of inventors -0.112∗∗∗ -0.109∗∗∗ -0.115∗∗∗ -0.114∗∗∗ -0.114∗∗∗ -0.114∗∗∗

(0.011) (0.011) (0.011) (0.011) (0.011) (0.011)
Intercept 8.567∗∗∗ 8.617∗∗∗ 8.562∗∗∗ 8.539∗∗∗ 8.470∗∗∗ 8.503∗∗∗

(0.078) (0.077) (0.077) (0.081) (0.079) (0.081)

3-digit CPC Yes Yes Yes Yes Yes Yes

Observations 114,670 114,670 114,670 114,670 114,670 114,670
R2 0.437 0.438 0.439 0.439 0.439 0.439
Adjusted R2 0.437 0.438 0.439 0.439 0.439 0.439
Residual Std. Error 7.279 7.273 7.266 7.266 7.264 7.264
F Statistic 3092.791∗∗∗ 3102.593∗∗∗ 2980.869∗∗∗ 2949.544∗∗∗ 2919.599∗∗∗ 2889.547∗∗∗

Note: All the models are estimated using OLS.
Robust standard errors are reported in parenthesis.

Legend : ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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We also estimate the effect of government-funded patents in AI on the number of citations, a
widespread measure of patent relevance. Since the estimates of the effect of government funding on
the number of citations can be affected by endogeneity issues, such as reverse causality and selection
bias, we present the results based on quasi-experimental designs: results of the 1-1 matching pro-
cedure are in Tables D6, D7, and D8, while those resulting from an instrumental variable approach
are in Tables D9, D10, and D11. We count the number of citations in six different ways: considering
only citations from patents in our network, considering citations from all patents in our original
sample (USPTO patents granted after 1976), considering citations received up to five years after
the earliest date of publication (both in the network and in the entire sample), and considering only
citations in five years by excluding patents after 2012 since we do not have a complete record of
citations for them (both in the network and in the entire sample). We remove from controls the
timing because it is not necessary for this kind of analysis, which can be agnostic of the network.
We replace this indicator of time evolution with the application year (closer to the time of invention
than the grant year).

Table D6: Number of citations. Influence of government funding on the number of citations -
Matching 1-1 without replacement (PS)

Dependent variable:

log(Number of citations)

network all network up all up network all
to 5 years to 5 years 5 years 5 years

(1) (2) (3) (4) (5) (6)

Government funding −0.288∗∗∗ −0.537∗∗∗ −0.215∗∗∗ −0.483∗∗∗ 0.049 −0.110∗∗∗

(0.030) (0.029) (0.026) (0.028) (0.031) (0.031)
US university 0.203∗∗∗ 0.246∗∗∗ 0.148∗∗∗ 0.208∗∗∗ 0.143∗∗∗ 0.163∗∗∗

(0.039) (0.039) (0.035) (0.038) (0.043) (0.043)
Number of claims 0.014∗∗∗ 0.019∗∗∗ 0.011∗∗∗ 0.017∗∗∗ 0.010∗∗∗ 0.015∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Number of inventors 0.050∗∗∗ 0.066∗∗∗ 0.044∗∗∗ 0.062∗∗∗ 0.062∗∗∗ 0.083∗∗∗

(0.008) (0.007) (0.007) (0.007) (0.008) (0.008)
Application year −0.056∗∗∗ −0.089∗∗∗ −0.004∗∗∗ −0.020∗∗∗ 0.019∗∗∗ 0.020∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Constant 114.251∗∗∗ 181.023∗∗∗ 9.002∗∗∗ 42.182∗∗∗ −37.181∗∗∗ −38.520∗∗∗

(3.871) (4.308) (3.025) (3.637) (3.754) (3.859)

3-digit CPC Yes Yes Yes Yes Yes Yes

Observations 7,864 7,864 7,864 7,864 6,140 6,140
R2 0.184 0.305 0.093 0.127 0.115 0.141
Adjusted R2 0.180 0.301 0.088 0.123 0.109 0.136
Residual Std. Error 1.192 1.155 1.053 1.101 1.041 1.025
F Statistic 43.066∗∗∗ 83.676∗∗∗ 19.565∗∗∗ 27.871∗∗∗ 19.727∗∗∗ 25.123∗∗∗

Note: All the models are estimated using OLS on matched patents (1-1 propensity score matching).
Robust standard errors are reported in parenthesis.

Legend : ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table D7: Number of citations. Influence of government interest on the number of citations -
Matching 1-1 without replacement (PS)

Dependent variable:

log(Number of citations)

network all network up all up network all
to 5 years to 5 years 5 years 5 years

(1) (2) (3) (4) (5) (6)

Government interest −0.270∗∗∗ −0.500∗∗∗ −0.204∗∗∗ −0.457∗∗∗ 0.060∗ −0.086∗∗∗

(0.032) (0.031) (0.028) (0.029) (0.033) (0.033)
US university 0.186∗∗∗ 0.232∗∗∗ 0.135∗∗∗ 0.201∗∗∗ 0.123∗∗∗ 0.146∗∗∗

(0.040) (0.040) (0.036) (0.039) (0.044) (0.044)
Number of claims 0.014∗∗∗ 0.018∗∗∗ 0.011∗∗∗ 0.016∗∗∗ 0.010∗∗∗ 0.015∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Number of inventors 0.057∗∗∗ 0.073∗∗∗ 0.049∗∗∗ 0.067∗∗∗ 0.064∗∗∗ 0.088∗∗∗

(0.008) (0.008) (0.008) (0.008) (0.009) (0.008)
Application year −0.060∗∗∗ −0.095∗∗∗ −0.006∗∗∗ −0.025∗∗∗ 0.020∗∗∗ 0.019∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Constant 121.321∗∗∗ 193.715∗∗∗ 12.995∗∗∗ 50.948∗∗∗ −39.505∗∗∗ −36.635∗∗∗

(4.248) (4.706) (3.284) (3.956) (4.142) (4.272)

3-digit CPC Yes Yes Yes Yes Yes Yes

Observations 7,194 7,194 7,194 7,194 5,530 5,530
R2 0.192 0.316 0.093 0.126 0.111 0.130
Adjusted R2 0.188 0.313 0.088 0.121 0.104 0.123
Residual Std. Error 1.193 1.155 1.061 1.107 1.051 1.033
F Statistic 41.492∗∗∗ 80.773∗∗∗ 17.843∗∗∗ 25.215∗∗∗ 16.713∗∗∗ 19.988∗∗∗

Note: All the models are estimated using OLS on matched patents (1-1 propensity score matching).
Robust standard errors are reported in parenthesis.

Legend : ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table D8: Number of citations. Influence of government assignee on the number of citations -
Matching 1-1 without replacement (PS)

Dependent variable:

log(Number of citations)

network all network up all up network all
to 5 years to 5 years 5 years 5 years

(1) (2) (3) (4) (5) (6)

Government assignee −0.378∗∗∗ −0.646∗∗∗ −0.264∗∗∗ −0.550∗∗∗ −0.118∗∗ −0.311∗∗∗

(0.054) (0.054) (0.046) (0.051) (0.053) (0.057)
US university 0.481∗∗∗ 0.448∗∗∗ 0.320∗∗ 0.389∗∗ 0.305∗ 0.175

(0.139) (0.153) (0.141) (0.162) (0.166) (0.184)
Number of claims 0.007∗∗∗ 0.013∗∗∗ 0.004∗ 0.011∗∗∗ 0.003 0.009∗∗∗

(0.002) (0.003) (0.002) (0.002) (0.002) (0.003)
Number of inventors 0.051∗∗∗ 0.059∗∗∗ 0.047∗∗∗ 0.057∗∗∗ 0.061∗∗∗ 0.068∗∗∗

(0.017) (0.015) (0.015) (0.015) (0.016) (0.016)
Application year −0.049∗∗∗ −0.070∗∗∗ −0.002 −0.006∗ 0.009∗∗∗ 0.016∗∗∗

(0.003) (0.004) (0.003) (0.003) (0.003) (0.004)
Constant 99.718∗∗∗ 142.174∗∗∗ 4.911 12.860∗∗ −17.129∗∗∗ −31.203∗∗∗

(6.771) (7.496) (5.225) (6.334) (6.300) (7.082)

3-digit CPC Yes Yes Yes Yes Yes Yes

Observations 1,858 1,858 1,858 1,858 1,636 1,636
R2 0.176 0.277 0.099 0.153 0.113 0.158
Adjusted R2 0.160 0.262 0.081 0.136 0.092 0.139
Residual Std. Error 1.131 1.107 0.960 1.021 0.959 0.986
F Statistic 10.533∗∗∗ 18.856∗∗∗ 5.422∗∗∗ 8.877∗∗∗ 5.494∗∗∗ 8.129∗∗∗

Note: All the models are estimated using OLS on matched patents (1-1 propensity score matching).
Robust standard errors are reported in parenthesis.

Legend : ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table D9: Number of citations. Influence of government funding on the number of citations -
Instrumental variable

Dependent variable:

log(Number of citations)

network all network up all up network all
to 5 years to 5 years 5 years 5 years

(1) (2) (3) (4) (5) (6)

Government funding −3.544∗∗∗ −6.389∗∗∗ −1.754∗∗∗ −4.668∗∗∗ −2.165∗∗∗ −5.773∗∗∗

(0.366) (0.525) (0.241) (0.397) (0.345) (0.647)
US university 1.712∗∗∗ 2.950∗∗∗ 0.916∗∗∗ 2.190∗∗∗ 1.024∗∗∗ 2.461∗∗∗

(0.163) (0.235) (0.107) (0.178) (0.144) (0.270)
Number of claims 0.015∗∗∗ 0.020∗∗∗ 0.012∗∗∗ 0.019∗∗∗ 0.010∗∗∗ 0.015∗∗∗

(0.001) (0.001) (0.0004) (0.001) (0.0005) (0.001)
Number of inventors 0.042∗∗∗ 0.056∗∗∗ 0.037∗∗∗ 0.051∗∗∗ 0.052∗∗∗ 0.071∗∗∗

(0.002) (0.003) (0.002) (0.002) (0.003) (0.003)
Application year −0.082∗∗∗ −0.118∗∗∗ −0.027∗∗∗ −0.049∗∗∗ 0.007∗∗∗ 0.009∗∗∗

(0.001) (0.001) (0.0004) (0.001) (0.001) (0.001)
Intercept 165.407∗∗∗ 237.920∗∗∗ 54.039∗∗∗ 99.267∗∗∗ −13.276∗∗∗ −15.873∗∗∗

(1.271) (1.662) (0.904) (1.337) (1.245) (1.890)

3-digit CPC Yes Yes Yes Yes Yes Yes

Observations 114,670 114,670 114,670 114,670 63,100 63,100
F-test 170.1∗∗∗ 170.1∗∗∗ 170.06∗∗∗ 170.1∗∗∗ 67.64∗∗∗ 67.64∗∗∗

Note: All the models are estimated using 2SLS.
Robust standard errors are reported in parenthesis.

Legend : ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table D10: Number of citations. Influence of government interest on the number of citations -
Instrumental variable

Dependent variable:

log(Number of citations)

network all network up all up network all
to 5 years to 5 years 5 years 5 years

(1) (2) (3) (4) (5) (6)

Government interest −4.064∗∗∗ −7.327∗∗∗ −2.012∗∗∗ −5.353∗∗∗ −2.752∗∗∗ −7.339∗∗∗

(0.444) (0.638) (0.288) (0.485) (0.464) (0.895)
US university 1.939∗∗∗ 3.361∗∗∗ 1.029∗∗∗ 2.490∗∗∗ 1.265∗∗∗ 3.105∗∗∗

(0.197) (0.285) (0.127) (0.216) (0.192) (0.373)
Number of claims 0.015∗∗∗ 0.021∗∗∗ 0.012∗∗∗ 0.019∗∗∗ 0.010∗∗∗ 0.015∗∗∗

(0.001) (0.001) (0.0004) (0.001) (0.0005) (0.001)
Number of inventors 0.043∗∗∗ 0.058∗∗∗ 0.038∗∗∗ 0.053∗∗∗ 0.053∗∗∗ 0.075∗∗∗

(0.002) (0.003) (0.002) (0.002) (0.003) (0.004)
Application year −0.081∗∗∗ −0.116∗∗∗ −0.026∗∗∗ −0.047∗∗∗ 0.008∗∗∗ 0.011∗∗∗

(0.001) (0.001) (0.0004) (0.001) (0.001) (0.001)
Intercept 163.351∗∗∗ 234.213∗∗∗ 53.021∗∗∗ 96.559∗∗∗ −14.764∗∗∗ −19.840∗∗∗

(1.214) (1.603) (0.861) (1.290) (1.213) (1.947)

3-digit CPC Yes Yes Yes Yes Yes Yes

Observations 114,670 114,670 114,670 114,670 63,100 63,100
F-test 148.8∗∗∗ 148.8∗∗∗ 148.77∗∗∗ 148.8∗∗∗ 54.36∗∗∗ 54.36∗∗∗

Note: All the models are estimated using 2SLS.
Robust standard errors are reported in parenthesis.

Legend : ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table D11: Number of citations. Influence of government assignee on the number of citations -
Instrumental variable

Dependent variable:

log(Number of citations)

network all network up all up network all
to 5 years to 5 years 5 years 5 years

(1) (2) (3) (4) (5) (6)

Government assignee −8.343∗∗∗ −15.043∗∗∗ −4.130∗∗∗ −10.991∗∗∗ −3.440∗∗∗ −9.175∗∗∗

(1.095) (1.795) (0.642) (1.327) (0.603) (1.295)
US university 0.164∗∗∗ 0.161∗∗∗ 0.150∗∗∗ 0.152∗∗∗ 0.125∗∗∗ 0.064∗∗

(0.025) (0.032) (0.021) (0.027) (0.026) (0.030)
Number of claims 0.014∗∗∗ 0.018∗∗∗ 0.012∗∗∗ 0.017∗∗∗ 0.009∗∗∗ 0.014∗∗∗

(0.001) (0.001) (0.0004) (0.001) (0.0005) (0.001)
Number of inventors 0.033∗∗∗ 0.041∗∗∗ 0.033∗∗∗ 0.040∗∗∗ 0.046∗∗∗ 0.057∗∗∗

(0.002) (0.003) (0.002) (0.002) (0.003) (0.003)
Application year −0.085∗∗∗ −0.124∗∗∗ −0.028∗∗∗ −0.054∗∗∗ 0.006∗∗∗ 0.004∗∗∗

(0.001) (0.002) (0.001) (0.001) (0.001) (0.001)
Intercept 172.605∗∗∗ 250.898∗∗∗ 57.602∗∗∗ 108.749∗∗∗ −9.995∗∗∗ −7.122∗∗∗

(2.010) (3.049) (1.284) (2.316) (1.562) (2.713)

3-digit CPC Yes Yes Yes Yes Yes Yes

Observations 114,670 114,670 114,670 114,670 63,100 63,100
F-test 75.1∗∗∗ 75.1∗∗∗ 75.1∗∗∗ 75.1∗∗∗ 47.89∗∗∗ 47.89∗∗∗

Note: All the models are estimated using 2SLS.
Robust standard errors are reported in parenthesis.

Legend : ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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To further test the relevance of funding timing, we introduce the forward trajectory effect w+
p ,

where p is a patent, defined in Equation 2. Results are reported in Tables D12 and D13.

Table D12: Forward trajectory effect. Influence of government funding on the forward trajectory
effect.

Dependent variable:

log(Forward trajectory effect)

(1) (2) (3)

Government funding 1.243∗∗∗ 1.128∗∗∗ 2.001∗∗∗

(0.131) (0.146) (0.266)
Government funding*Timing -0.065∗∗∗

(0.011)
US university 0.356∗∗ 0.366∗∗

(0.164) (0.164)
Timing -0.204∗∗∗ -0.204∗∗∗ -0.202∗∗∗

(0.002) (0.002) (0.002)
Number of claims 0.037∗∗∗ 0.037∗∗∗ 0.037∗∗∗

(0.002) (0.002) (0.002)
Number of inventors -0.131∗∗∗ -0.132∗∗∗ -0.132∗∗∗

(0.011) (0.011) (0.011)
Intercept 8.456∗∗∗ 8.454∗∗∗ 8.423∗∗∗

(0.078) (0.078) (0.078)

3-digit CPC Yes Yes Yes

Observations 114,670 114,670 114,670
R2 0.150 0.150 0.150
Adjusted R2 0.150 0.150 0.150
Residual Std. Error 7.236 7.236 7.235
F Statistic 401.026∗∗∗ 392.002∗∗∗ 384.002∗∗∗

Note: All the models are estimated using OLS.
Robust standard errors are reported in parenthesis.

Legend : ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table D13: Forward trajectory effect. Influence on the forward trajectory effect of patents with a
government interest statement or government assignees.

Dependent variable:

log(Forward trajectory effect)

(1) (2) (3) (4) (5) (6)

Government interest 1.028∗∗∗ 0.428∗∗∗ 0.958∗∗∗ 0.446∗∗∗ 0.618∗∗

(0.132) (0.155) (0.283) (0.155) (0.291)
Government interest*Timing -0.037∗∗∗ -0.012

(0.011) (0.012)
Government assignee 2.542∗∗∗ 2.291∗∗∗ 2.201∗∗∗ 4.365∗∗∗ 4.255∗∗∗

(0.319) (0.336) (0.337) (0.540) (0.565)
Government assignee*Timing -0.210∗∗∗ -0.202∗∗∗

(0.029) (0.030)
US university 0.663∗∗∗ 0.654∗∗∗ 0.663∗∗∗ 0.660∗∗∗

(0.166) (0.166) (0.166) (0.166)
Timing -0.204∗∗∗ -0.204∗∗∗ -0.203∗∗∗ -0.202∗∗∗ -0.202∗∗∗ -0.202∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Number of claims 0.037∗∗∗ 0.037∗∗∗ 0.037∗∗∗ 0.037∗∗∗ 0.037∗∗∗ 0.037∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Number of inventors -0.131∗∗∗ -0.127∗∗∗ -0.130∗∗∗ -0.130∗∗∗ -0.130∗∗∗ -0.130∗∗∗

(0.011) (0.011) (0.011) (0.011) (0.011) (0.011)
Intercept 8.473∗∗∗ 8.457∗∗∗ 8.433∗∗∗ 8.418∗∗∗ 8.415∗∗∗ 8.411∗∗∗

(0.078) (0.078) (0.078) (0.078) (0.078) (0.078)

3-digit CPC Yes Yes Yes Yes Yes Yes

Observations 114,670 114,670 114,670 114,670 114,670 114,670
R2 0.150 0.150 0.150 0.150 0.151 0.151
Adjusted R2 0.149 0.150 0.150 0.150 0.150 0.150
Residual Std. Error 7.237 7.236 7.234 7.234 7.233 7.233
F Statistic 400.513∗∗∗ 400.164∗∗∗ 383.594∗∗∗ 375.723∗∗∗ 375.500∗∗∗ 367.933∗∗∗

Note: All the models are estimated using OLS.
Robust standard errors are reported in parenthesis.

Legend : ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Tables D14 and D15 present results for a sub-sample of patents. We select patents using only
the criteria suggested by the WIPO (2019) report on artificial intelligence inventions. The sample
includes 111,525 patents. In Tables D16 and D17, instead, we select only patents granted after 1980
(not included).

Table D14: Sample selection. Influence of government funding on the trajectory effect. Patents
belong to a sub-sample of AI inventions.

Dependent variable:

log(Trajectory effect)

(1) (2) (3)

Government funding 1.114∗∗∗ 1.040∗∗∗ 1.860∗∗∗

(0.134) (0.148) (0.265)
Government funding*Timing -0.061∗∗∗

(0.011)
US university 0.230 0.235

(0.167) (0.167)
Timing 0.500∗∗∗ 0.500∗∗∗ 0.502∗∗∗

(0.002) (0.002) (0.002)
Number of claims 0.042∗∗∗ 0.042∗∗∗ 0.042∗∗∗

(0.002) (0.002) (0.002)
Number of inventors -0.103∗∗∗ -0.103∗∗∗ -0.103∗∗∗

(0.012) (0.012) (0.012)
Intercept 8.772∗∗∗ 8.770∗∗∗ 8.741∗∗∗

(0.080) (0.079) (0.080)

3-digit CPC Yes Yes Yes

Observations 111,525 111,525 111,525
R2 0.432 0.432 0.432
Adjusted R2 0.432 0.432 0.432
Residual Std. Error 7.331 7.331 7.330
F Statistic 2984.451∗∗∗ 2916.457∗∗∗ 2861.327∗∗∗

Note: All the models are estimated using OLS.
Robust standard errors are reported in parenthesis.

Legend : ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table D15: Sample selection. Influence on the trajectory effect of patents with a government interest
statement or government assignees. Patents belong to a sub-sample of AI inventions.

Dependent variable:

log(Trajectory effect)

(1) (2) (3) (4) (5) (6)

Government interest 0.915∗∗∗ 0.415∗∗∗ 0.905∗∗∗ 0.436∗∗∗ 0.523∗

(0.135) (0.158) (0.282) (0.157) (0.290)
Government interest*Timing -0.034∗∗∗ -0.006

(0.012) (0.012)
Government assignee 2.257∗∗∗ 2.012∗∗∗ 1.929∗∗∗ 4.274∗∗∗ 4.218∗∗∗

(0.323) (0.341) (0.342) (0.541) (0.565)
Government assignee*Timing -0.230∗∗∗ -0.225∗∗∗

(0.030) (0.031)
US university 0.502∗∗∗ 0.491∗∗∗ 0.502∗∗∗ 0.500∗∗∗

(0.168) (0.169) (0.168) (0.169)
Timing 0.499∗∗∗ 0.500∗∗∗ 0.500∗∗∗ 0.501∗∗∗ 0.501∗∗∗ 0.501∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Number of claims 0.042∗∗∗ 0.043∗∗∗ 0.043∗∗∗ 0.043∗∗∗ 0.043∗∗∗ 0.043∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Number of inventors -0.103∗∗∗ -0.099∗∗∗ -0.101∗∗∗ -0.101∗∗∗ -0.102∗∗∗ -0.102∗∗∗

(0.012) (0.012) (0.012) (0.012) (0.012) (0.012)
Intercept 8.788∗∗∗ 8.773∗∗∗ 8.752∗∗∗ 8.739∗∗∗ 8.732∗∗∗ 8.730∗∗∗

(0.080) (0.080) (0.080) (0.080) (0.080) (0.080)

3-digit CPC Yes Yes Yes Yes Yes Yes

Observations 111,525 111,525 111,525 111,525 111,525 111,525
R2 0.432 0.432 0.432 0.432 0.432 0.432
Adjusted R2 0.431 0.432 0.432 0.432 0.432 0.432
Residual Std. Error 7.332 7.331 7.330 7.330 7.328 7.328
F Statistic 2981.144∗∗∗ 2985.782∗∗∗ 2854.623∗∗∗ 2798.106∗∗∗ 2803.314∗∗∗ 2745.277∗∗∗

Note: All the models are estimated using OLS.
Robust standard errors are reported in parenthesis.

Legend : ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table D16: Patents granted after 1980. Influence of government funding on the trajectory effect.
We select only patents granted after 1980.

Dependent variable:

log(Trajectory effect)

(1) (2) (3)

Government funding 1.104∗∗∗ 1.008∗∗∗ 1.707∗∗∗

(0.130) (0.144) (0.257)
Government funding*Timing -0.051∗∗∗

(0.011)
US university 0.295∗ 0.298∗

(0.162) (0.162)
Timing 0.516∗∗∗ 0.516∗∗∗ 0.517∗∗∗

(0.002) (0.002) (0.002)
Number of claims 0.046∗∗∗ 0.046∗∗∗ 0.046∗∗∗

(0.002) (0.002) (0.002)
Number of inventors -0.092∗∗∗ -0.093∗∗∗ -0.093∗∗∗

(0.011) (0.011) (0.011)
Intercept 8.168∗∗∗ 8.165∗∗∗ 8.141∗∗∗

(0.077) (0.077) (0.077)

3-digit CPC Yes Yes Yes

Observations 113,835 113,835 113,835
R2 0.453 0.453 0.453
Adjusted R2 0.452 0.452 0.452
Residual Std. Error 7.144 7.144 7.143
F Statistic 3353.781∗∗∗ 3277.453∗∗∗ 3214.805∗∗∗

Note: All the models are estimated using OLS.
Robust standard errors are reported in parenthesis.

Legend : ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table D17: Patents granted after 1980. Influence on the trajectory effect of patents with a govern-
ment interest statement or government assignees. We select only patents granted after 1980.

Dependent variable:

log(Trajectory effect)

Government interest 0.954∗∗∗ 0.478∗∗∗ 0.942∗∗∗ 0.489∗∗∗ 0.612∗∗

(0.132) (0.153) (0.273) (0.153) (0.280)
Government interest*Timing -0.032∗∗∗ -0.008

(0.011) (0.012)
Government assignee 2.108∗∗∗ 1.821∗∗∗ 1.743∗∗∗ 3.837∗∗∗ 3.756∗∗∗

(0.319) (0.336) (0.337) (0.541) (0.564)
Government assignee*Timing -0.197∗∗∗ -0.191∗∗∗

(0.029) (0.030)
US university 0.528∗∗∗ 0.518∗∗∗ 0.531∗∗∗ 0.528∗∗∗

(0.164) (0.164) (0.164) (0.164)
Timing 0.515∗∗∗ 0.516∗∗∗ 0.516∗∗∗ 0.517∗∗∗ 0.517∗∗∗ 0.517∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Number of claims 0.046∗∗∗ 0.047∗∗∗ 0.046∗∗∗ 0.046∗∗∗ 0.046∗∗∗ 0.046∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Number of inventors -0.092∗∗∗ -0.089∗∗∗ -0.091∗∗∗ -0.091∗∗∗ -0.091∗∗∗ -0.091∗∗∗

(0.011) (0.011) (0.011) (0.011) (0.011) (0.011)
Intercept 8.181∗∗∗ 8.172∗∗∗ 8.149∗∗∗ 8.137∗∗∗ 8.133∗∗∗ 8.130∗∗∗

(0.077) (0.077) (0.077) (0.077) (0.077) (0.077)

3-digit CPC Yes Yes Yes Yes Yes Yes

Observations 113,835 113,835 113,835 113,835 113,835 113,835
R2 0.452 0.452 0.453 0.453 0.453 0.453
Adjusted R2 0.452 0.452 0.452 0.452 0.453 0.453
Residual Std. Error 7.145 7.144 7.143 7.143 7.142 7.142
F Statistic 3350.587∗∗∗ 3354.324∗∗∗ 3207.717∗∗∗ 3144.336∗∗∗ 3148.587∗∗∗ 3083.619∗∗∗

Note: All the models are estimated using OLS.
Robust standard errors are reported in parenthesis.

Legend : ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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We also change regression controls to test the robustness of results. Tables D18 and D19 show
estimates in which we control for worldwide-university assignees instead of US-university assignees.
Finally, Tables D20 and D21 present the effect of government funding on the trajectory effect when
we control also for the number of patents’ backward citations.

Table D18: Univeristy. Influence of government funding on the trajectory effect when we control
for inventions assigned to worldwide universities.

Dependent variable:

log(Trajectory effect)

(1) (2) (3)

Government funding 1.184∗∗∗ 1.486∗∗∗ 2.335∗∗∗

(0.132) (0.139) (0.257)
Government funding*Timing -0.063∗∗∗

(0.011)
University -0.988∗∗∗ -0.982∗∗∗

(0.114) (0.114)
Timing 0.503∗∗∗ 0.503∗∗∗ 0.505∗∗∗

(0.002) (0.002) (0.002)
Number of claims 0.043∗∗∗ 0.043∗∗∗ 0.043∗∗∗

(0.002) (0.002) (0.002)
Number of inventors -0.106∗∗∗ -0.101∗∗∗ -0.101∗∗∗

(0.011) (0.011) (0.011)
Intercept 8.594∗∗∗ 8.620∗∗∗ 8.590∗∗∗

(0.078) (0.078) (0.078)

3-digit CPC Yes Yes Yes

Observations 114,670 114,670 114,670
R2 0.435 0.435 0.435
Adjusted R2 0.435 0.435 0.435
Residual Std. Error 7.292 7.290 7.289
F Statistic 3078.115∗∗∗ 3017.297∗∗∗ 2958.976∗∗∗

Note: All the models are estimated using OLS.
Robust standard errors are reported in parenthesis.

Legend : ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table D19: University. Influence on the trajectory effect of patents with a government interest
statement or government assignees when we control for inventions assigned to worldwide universities.

Dependent variable:

log(Trajectory effect)

(1) (2) (3) (4) (5) (6)

Government interest 0.983∗∗∗ 0.996∗∗∗ 1.565∗∗∗ 1.016∗∗∗ 1.192∗∗∗

(0.134) (0.146) (0.272) (0.146) (0.279)
Government interest*Timing -0.040∗∗∗ -0.012

(0.011) (0.012)
Government assignee 2.322∗∗∗ 1.699∗∗∗ 1.604∗∗∗ 3.971∗∗∗ 3.859∗∗∗

(0.321) (0.338) (0.339) (0.537) (0.561)
Government assignee*Timing -0.230∗∗∗ -0.222∗∗∗

(0.030) (0.031)
University -0.851∗∗∗ -0.857∗∗∗ -0.850∗∗∗ -0.852∗∗∗

(0.115) (0.115) (0.115) (0.115)
Timing 0.503∗∗∗ 0.503∗∗∗ 0.503∗∗∗ 0.504∗∗∗ 0.504∗∗∗ 0.505∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Number of claims 0.043∗∗∗ 0.043∗∗∗ 0.043∗∗∗ 0.043∗∗∗ 0.043∗∗∗ 0.043∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Number of inventors -0.106∗∗∗ -0.102∗∗∗ -0.100∗∗∗ -0.100∗∗∗ -0.100∗∗∗ -0.100∗∗∗

(0.011) (0.011) (0.011) (0.011) (0.011) (0.011)
Intercept 8.610∗∗∗ 8.597∗∗∗ 8.608∗∗∗ 8.592∗∗∗ 8.588∗∗∗ 8.584∗∗∗

(0.078) (0.078) (0.078) (0.078) (0.078) (0.079)

3-digit CPC Yes Yes Yes Yes Yes Yes

Observations 114,670 114,670 114,670 114,670 114,670 114,670
R2 0.435 0.435 0.435 0.435 0.436 0.436
Adjusted R2 0.435 0.435 0.435 0.435 0.435 0.435
Residual Std. Error 7.294 7.293 7.290 7.290 7.288 7.288
F Statistic 3074.472∗∗∗ 3078.966∗∗∗ 2950.681∗∗∗ 2891.702∗∗∗ 2897.804∗∗∗ 2837.505∗∗∗

Note: All the models are estimated using OLS.
Robust standard errors are reported in parenthesis.

Legend : ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table D20: Number of backward citations. Influence of government funding on the trajectory effect
when we control for the number of backward citations.

Dependent variable:

log(Trajectory effect)

(1) (2) (3)

Government funding 1.197∗∗∗ 1.104∗∗∗ 1.948∗∗∗

(0.132) (0.147) (0.263)
Government funding*Timing -0.063∗∗∗

(0.011)
US university 0.291∗ 0.300∗

(0.166) (0.166)
Timing 0.499∗∗∗ 0.499∗∗∗ 0.501∗∗∗

(0.002) (0.002) (0.002)
Number of claims 0.041∗∗∗ 0.041∗∗∗ 0.041∗∗∗

(0.002) (0.002) (0.002)
Number of inventors -0.110∗∗∗ -0.110∗∗∗ -0.110∗∗∗

(0.011) (0.011) (0.011)
Number of backward citations 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗

(0.000) (0.000) (0.000)
Intercept 8.642∗∗∗ 8.640∗∗∗ 8.610∗∗∗

(0.078) (0.078) (0.078)

3-digit CPC Yes Yes Yes

Observations 114,670 114,670 114,670
R2 0.436 0.436 0.436
Adjusted R2 0.435 0.435 0.435
Residual Std. Error 7.288 7.288 7.287
F Statistic 3012.269∗∗∗ 2945.150∗∗∗ 2891.006∗∗∗

Note: All the models are estimated using OLS.
Robust standard errors are reported in parenthesis.

Legend : ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table D21: Number of backward citations. Influence on the trajectory effect of patents with a
government interest statement or government assignees when we control for the number of backward
citations.

Dependent variable:

log(Trajectory effect)

(1) (2) (3) (4) (5) (6)

Government interest 0.997∗∗∗ 0.467∗∗∗ 0.984∗∗∗ 0.487∗∗∗ 0.611∗∗

(0.134) (0.157) (0.281) (0.156) (0.288)
Government interest*Timing -0.036∗∗∗ -0.009

(0.012) (0.012)
Government assignee 2.333∗∗∗ 2.057∗∗∗ 1.969∗∗∗ 4.303∗∗∗ 4.224∗∗∗

(0.321) (0.338) (0.340) (0.537) (0.562)
Government assignee*Timing -0.228∗∗∗ -0.222∗∗∗

(0.030) (0.031)
US university 0.570∗∗∗ 0.561∗∗∗ 0.570∗∗∗ 0.568∗∗∗

(0.167) (0.168) (0.167) (0.168)
Timing 0.499∗∗∗ 0.499∗∗∗ 0.500∗∗∗ 0.501∗∗∗ 0.501∗∗∗ 0.501∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Number of claims 0.041∗∗∗ 0.042∗∗∗ 0.041∗∗∗ 0.041∗∗∗ 0.041∗∗∗ 0.041∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Number of inventors -0.109∗∗∗ -0.106∗∗∗ -0.108∗∗∗ -0.108∗∗∗ -0.108∗∗∗ -0.108∗∗∗

(0.011) (0.011) (0.011) (0.011) (0.011) (0.011)
Number of backward citations 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Intercept 8.658∗∗∗ 8.645∗∗∗ 8.622∗∗∗ 8.608∗∗∗ 8.603∗∗∗ 8.600∗∗∗

(0.078) (0.078) (0.078) (0.078) (0.078) (0.078)

3-digit CPC Yes Yes Yes Yes Yes Yes

Observations 114,670 114,670 114,670 114,670 114,670 114,670
R2 0.435 0.436 0.436 0.436 0.436 0.436
Adjusted R2 0.435 0.435 0.435 0.436 0.436 0.436
Residual Std. Error 7.290 7.289 7.287 7.287 7.285 7.285
F Statistic 3008.681∗∗∗ 3012.962∗∗∗ 2883.873∗∗∗ 2828.293∗∗∗ 2833.315∗∗∗ 2776.047∗∗∗

Note: All the models are estimated using OLS.
Robust standard errors are reported in parenthesis.

Legend : ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table D22: Weighted average of lagged 3-digit CPC growth. Influence of government funding on
the trajectory effect when we control for weighted average of one-year lagged 3-digit CPC growth
over the previous three years.

Dependent variable:

log(Trajectory effect)

(1) (2) (3)

Government funding 1.061∗∗∗ 1.000∗∗∗ 1.923∗∗∗

(0.130) (0.144) (0.258)
Government funding*Timing -0.068∗∗∗

(0.011)
US university 0.188 0.198

(0.161) (0.161)
Timing 0.540∗∗∗ 0.540∗∗∗ 0.542∗∗∗

(0.002) (0.002) (0.002)
Nb claims 0.038∗∗∗ 0.038∗∗∗ 0.038∗∗∗

(0.002) (0.002) (0.002)
Inventors number -0.078∗∗∗ -0.078∗∗∗ -0.078∗∗∗

(0.011) (0.011) (0.011)
Avg CPC growth ratet−1 6.676∗∗∗ 6.675∗∗∗ 6.678∗∗∗

(0.079) (0.079) (0.079)
Intercept 7.208∗∗∗ 7.207∗∗∗ 7.174∗∗∗

(0.075) (0.075) (0.076)

CPC 3d Yes Yes Yes

Observations 114,670 114,670 114,670
R2 0.461 0.461 0.461
Adjusted R2 0.460 0.460 0.461
Residual Std. Error 7.125 7.125 7.123
F Statistic 3312.803∗∗∗ 3239.197∗∗∗ 3178.929∗∗∗

Note: All the models are estimated using OLS.
Robust standard errors are reported in parenthesis.

Legend : ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table D23: Weighted average of lagged 3-digit CPC growth. Influence on the trajectory effect of
patents with a government interest statement or government assignees when we control for weighted
average of one-year lagged 3-digit CPC growth over the previous three years.

Dependent variable:

log(Trajectory effect)

(1) (2) (3) (4) (5) (6)

Government interest 0.887∗∗∗ 0.454∗∗∗ 1.096∗∗∗ 0.475∗∗∗ 0.707∗∗

(0.131) (0.154) (0.274) (0.153) (0.282)
Government interest*Timing -0.045∗∗∗ -0.016

(0.012) (0.012)
Government assignee 2.034∗∗∗ 1.766∗∗∗ 1.657∗∗∗ 4.155∗∗∗ 4.007∗∗∗

(0.319) (0.336) (0.337) (0.537) (0.562)
Government assignee*Timing -0.242∗∗∗ -0.231∗∗∗

(0.031) (0.032)
US university 0.428∗∗∗ 0.416∗∗ 0.428∗∗∗ 0.424∗∗∗

(0.163) (0.164) (0.163) (0.163)
Timing 0.540∗∗∗ 0.540∗∗∗ 0.540∗∗∗ 0.541∗∗∗ 0.541∗∗∗ 0.542∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Nb claims 0.038∗∗∗ 0.039∗∗∗ 0.038∗∗∗ 0.038∗∗∗ 0.039∗∗∗ 0.039∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Inventors number -0.078∗∗∗ -0.074∗∗∗ -0.077∗∗∗ -0.077∗∗∗ -0.077∗∗∗ -0.077∗∗∗

(0.011) (0.011) (0.011) (0.011) (0.011) (0.011)
Avg CPC growth ratet−1 6.681∗∗∗ 6.675∗∗∗ 6.670∗∗∗ 6.672∗∗∗ 6.674∗∗∗ 6.675∗∗∗

(0.079) (0.079) (0.079) (0.079) (0.079) (0.079)
Intercept 7.221∗∗∗ 7.211∗∗∗ 7.193∗∗∗ 7.175∗∗∗ 7.171∗∗∗ 7.166∗∗∗

(0.075) (0.075) (0.075) (0.076) (0.075) (0.076)

CPC 3d Yes Yes Yes Yes Yes Yes

Observations 114,670 114,670 114,670 114,670 114,670 114,670
R2 0.460 0.461 0.461 0.461 0.461 0.461
Adjusted R2 0.460 0.460 0.461 0.461 0.461 0.461
Residual Std. Error 7.126 7.125 7.124 7.124 7.122 7.121
F Statistic 3309.556∗∗∗ 3313.671∗∗∗ 3171.309∗∗∗ 3109.185∗∗∗ 3117.085∗∗∗ 3053.601∗∗∗

Note: All the models are estimated using OLS.
Robust standard errors are reported in parenthesis.

Legend : ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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