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Abstract

This paper investigates the dynamics of price transmission among ethanol a

biodiesel related prices on the Brazilian, US and EU markets. The prices of com-

modities related to the biofuels are examined under the Johansen co-integration test

followed by the Vector Error Correction Model over the period 2003-2020. The pe-

riod was further divided into 4 periods, defined on the base of the dynamics of world

food prices. Together we had 858 weekly observations mostly captured on Friday.

In most cases, our result indicates a co-movement, the strength of which changes

over periods. The price transmission revealed by our estimations was stronger for

Brazilian sugarcane-based ethanol and European biodiesel than for US corn-based

ethanol and related commodities.
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1 Introduction

In the world of ecologically sustainable development, we cannot underestimate the role

of biofuels. The topic of biofuels and their usage, as a possible replacement of fossil fuels

in transportation, became more relevant after oil export embargo, which led to the oil

crisis in the 1970s. During the following decades, the popularity of biofuels had a growing

tendency due to rising interest of the general public in environmental and climate issues.

Biofuels were not only considered as ”greener” solutions but also could possibly help in

the reduction of the country dependence on crude oil imports.

Relatively fast growth in the biofuels industry was fueled, primary by wide government-

backed support, especially by subsidies, tax exemptions, blending mandates and targets.

Statista (2019) estimated the size of the biofuels market worldwide in 2024 to more than

150 billion U.S. dollars, compared to 2019 when the market size was around 136 billion

dollars. According to USDA ERS US Bioenergy Statistic, since 2012 the production of

biofuels in the U.S. has grown steadily, rising from 53.3 billion litres in 2012 to almost 65

billion litres in 2016. With more than 60 billion litres of produced ethanol in 2017, accord-

ing to U.S. EIA the United States of America, may be considered as the world leader in

producing ethanol. The US ethanol is mostly obtained from corn and soybeans. Almost

40% of the whole corn production in the U.S. is used for ethanol production according to

USDA ERS. The Brazilian ethanol industry is the second biggest one, producing more

than 26 billion litres according to RFA. The main difference between U.S. and Brazil’s

ethanol is that Brazil ethanol is predominantly made from sugarcane. Altogether U.S.

and Brazil produce more than 84% of the total worldwide ethanol production.

From a market perspective, we can denote EU as the biggest producer of bio-diesel

followed by the U.S. and by South American countries such as Brazil and Argentina. One

can also observe the development of the worldwide overall production of biofuels. The

European Commission has committed itself, as part of its environmental responsibility,

to ensuring that 10% of transport fuel from each EU country is acquired from renewable

sources, for example through biofuels. Last but not least, suppliers are required to reduce
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the GHG of the EU’s fuel mix by 6% by 2020 compared to 20101. In U.S the ethanol is

mostly used in blends such as low-level E10 (10% ethanol 90% gasoline) or as flex-fuel

E85 containing (51% to 83%). The truth is that ethanol’s blend performance is not as

good as gasoline, for instance, Blend with 83% ethanol share has about 27% less energy

per gallon than gasoline, but it is important to say that engines in gasoline vehicles are

primarily optimized for gasoline. If the engines would be optimized to run on the ethanol

blends, we may expect that the engine efficiency would be increased2.

The question of the price transmission between biofuels and related commodities be-

came economically interesting immediately after the boom in biofuels in 2005. The topic

became even more interesting and important for policymakers during, or shortly.. after,

the food crisis. To illustrate the importance of a relatively stable food price, De Hoyos

and Medvedev (2011) (the World Bank report) argued that the food crisis pushed approx-

imately 155 million people into the moderate or extreme poverty, mostly in less developed

countries in the East and South Asia and also in Sub-Saharan Africa. Additional prob-

lems occurred in the food-importing countries, such as political instability and internal

conflicts. Nevertheless, the topic of food versus fuel is not a question of just the last

decade, even before the enlargement of producing biofuels, multiple papers related to the

co-movement prices of food and fuels commodities were published. Especially Pindyck

and Rotemberg (1990) estimated the degree of co-movement among prices of cocoa, cop-

per, cotton, crude oil, gold, lumber and wheat. Besides, the topic was introduced to the

economic literature by Barnard (1983).

2 Literature Review

There has been a broad spectrum of research questions as well as used methodologies to

investigate the interconnection of the system of biofuels related prices. The most recent,

moreover well organised, summary of the researches, which cover the topic is provided by

Janda and KriĹˇtoufek (2019). We have also drawn from the summary article provided

1https://ec.europa.eu/energy/topics/renewable-energy/biofuels/overviewen
2https://afdc.energy.gov/fuels/ethanolbenefits.html
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by Serra and Zilberman (2013).

In general, and a little simplified, there are two main trends of interests. Before the

biofuel boom, it was more common to investigate the price transmission between fuel

and food commodities in a more general way, what means that in those research papers

had not been paid attention to biofuels. We are particularly interested in the latter and

the one in which biofuels participate in the system.

First of all, we will provide a review of that researches in which biofuel data were not

used. Very first who have introduced food vs fuel problematic to the economic literature

was Barnard (1983). The author questioned the economical viability of the gasohol pro-

gram and outlined the program as potentially very disruptive for the domestic (U.S.) and

global food sector.

Yu et al. (2006) were investigating the long-run interdependence between crude oil prices

and four traded edible oils prices sunflower, soybean, rapeseed and palm oils. Their data

consists of 378 weekly observations from the first week of January 1999 to the fourth week

of March 2006. They have used data on the edge of the biofuels boom and at the same

time, the research was done before the world food crisis in 2007/2008. Authors used the

method of co-integration and concluded, that the influence of crude oil prices on the edi-

ble oil prices is not significant over the studied period. Zhang and Reed (2008) obtained

a similar result on the Chinese market, where authors were investigating the effects of

the world crude oil price on feed grain prices and pork prices using vector ARMA model.

The authors have not detected any significant influence of crude oil price to grain prices

or pork prices in China.

One of the instructive researches engaging the topic came from Esmaeili and Shokoohi

(2011) in which authors were interested in the co-movement of food prices and the macroe-

conomic indexes, especially the oil price. Authors examined the monthly food prices of

eggs, meat, milk, oil-seeds, sugar, rice and wheat. Regarding the macroeconomic vari-

ables, authors were studying crude oil prices, consumer price indexes, food production

indexes and GDP around the world. Authors took the data from the period between
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1961-2005. Using principal component analysis (PCA) and VAR model authors obtained

the conclusion that ”food production index has the greatest direct influence on the macroe-

conomic index and that the oil price index has a unidirectional influence on the food pro-

duction index.” (Esmaeili & Shokoohi (2011) p.1024) Consequently, the crude oil price

has an indirect effect on food prices and world GDP as well.

On the other hand, several papers have examined the effect of crude oil energy prices

on the prices of agricultural commodities. Baffes (2007) examined the effect of crude oil

prices on the prices of 35 internationally traded primary commodities, noting not only

agricultural commodities were included for the 1960-2005 period. The author used the

OLS method on annual data and found out that agricultural price index increases by 1.8

% in response to the 10 % increase in crude oil prices.

Targeting mainly to agricultural commodities, Nicola et al. (2016) provided comprehen-

sive analysis, using MV-GARCH model of the extent of co-movement among the prices

of 11 major energy, agricultural, and food commodities by using monthly data between

1970 and 2013. They concluded: Firstly, the authors found out that the price returns of

energy and agricultural commodities are highly correlated. Secondly, the overall level of

co-movement has been increasing during the last studied period, noting that authors had

been using data covering the period up to 2013. The increase in the level of co-movement

was mainly driven by energy and those agricultural commodities, which are taking an

important part of the biofuel-related network.

A notable paper came from Lucotte (2016), who divides the 1990-2015 period into sub-

periods. The first one is between January 1990 and December 2006 and the second one

is a ”post-boom” period, January 2007 - May 2015. Using the correlations of VAR fore-

cast errors at different horizons the author reveals strong positive co-movements between

crude oil and food prices during the commodity boom after 2007. In the first sub-period,

they did not observe any statistically significant co-movements between crude oil prices

and food prices.

Pal and Mitra have already dedicated few studies to the topic. We will mention just

three of them. In those set of papers, authors used two dataset and different modelling
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approaches across the studies, chronologically in 2016 authors had been using quantile au-

toregressive distributed lag model, in 2017 they had been using TY Toda and Yamamoto

causality in combination with wavelet analysis and in 2018 authors used detrended cross-

correlation analysis. Regarding empirical analysis Pal and Mitra (2016) used monthly

time series from January 2004 to June 2014, evidence from the USA. Considering the

modelling approach authors built on Jr et al. (2013) and also used quantile autoregres-

sive distributed lag model to examine the relationship between diesel price and soybean

price. Authors showed that in the upper quantiles soybean price fluctuations react ro-

bustly to diesel price fluctuations and in the long run soybean and diesel prices do not

move uniformly.

Pal and Mitra (2017) used monthly data between January 1990 and February 2016. Us-

ing Johansen cointegration test authors confirmed the statistically significant correlation

between crude oil prices and food prices. Using wavelet method authors also observed

that in the short-run food prices co-move with crude oil prices, furthermore revealed that

food prices, in the short-run, are led by crude oil prices. The result of Toda Yamamoto

causality affirmed co-movement of crude oil price and the world food price index in the

long run.

In their following research Pal and Mitra (2018) decided to divide data into four

sub-periods: January 1990 to October 1999, November 1999 to February 2005, March

2005 to September 2010, and October 2010 to July 2016. If we focus more precisely

on these periods, we will find out that the distribution of periods enabled authors to

compare fuel food co-movement across pre-crisis, during the food crisis, and post-crisis

periods. Authors employed detrended cross-correlation analysis and according to the

analysis concluded that world food price index and crude oil co-move.

In the next few paragraphs, we will look at the price transmission regarding biofuels

more closely. In price transmission among biofuels, literature is very likely to meet U.S.

agricultural commodities, consequently U.S. ethanol. Despite this, we will try to provide

an overview of the researches where not only U.S. ethanol is included, but also along with

some others biofuels or non-U.S. commodities or financial assets.
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Vacha et al. (2013) showed the differences between EU and U.S. biofuels markets, employ-

ing wavelet analysis over non-crisis period authors found out that the ethanol is correlated

with corn and biodiesel is correlated with German diesel. Authors also pointed out that

during the crisis ethanol were led by the corn price and biodiesel led by German diesel.

Price dependence among biofuels, crude oil and agricultural commodities has been con-

firmed by several studies, among the most recent studies with similar methodological

approach belong to Kristoufek et al. (2016) and Filip et al. (2016). Authors partially

agree with Vacha et al. (2013) and pointed out that ethanol’s productions factors prices

leading only the price of ethanol i.e. ethanol price have no significant effect on feed-

stock prices. On the other hand, they found just moderate connection between European

biodiesel and biodiesel’s production factors. Kristoufek et al. (2014) involved leading

biofuel markets to their research. Using VAR authors figured out, that ethanol price is

linked to the corn price, sugarcane is also linked to the U.S. gasoline and biodiesel is not

only linked to the soybeans but also the German diesel. Furthermore, they revealed, that

during the food crisis of 2007/2008 all of the significant pairs experienced an increase in

the mutual price responsiveness.

One of the most recent studies was introduced by Al-Maadid et al. (2017). Authors built

the paper on the daily data, obtained from the Bloomberg, for crude oil and ethanol

and six food commodity prices (cacao, coffee, corn, soybeans, sugar and wheat) covering

January 2003 - June 2015, altogether they obtained 2253 observations, furthermore, they

used the S&P 500 stock market index to proxy the U.S. business cycle. The used frame-

work is able to analyse shifts resulting from four crucial events: the 2006 food crisis, the

Brent oil bubble, the introduction of the Renewable Fuel Standard policy and the 2008

global financial crisis. Results suggest the presence of significant linkages between food

and both oil and ethanol prices. Additionally, the food crisis in 2006 and the financial

crisis in 2008 had the most significant impact on the dynamic interactions between en-

ergy (crude oil, ethanol) and food prices. On the other side, Myers et al. (2014) argued

that there were not any indications of co-integration between crude oil, ethanol, corn and

soybean prices in the long-run. In the following subsection, more attention will be paid
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to the papers in which VAR, VECM, (ARDL) or co-integration have been used as we

will use these methods in this paper.

Allen et al. (2018) examined ten years of daily spot and futures prices for wheat, corn,

sugar ethanol, and oil prices in the period from July 2006 to July 2015. Markov-switching

VECM and Impulse Response Analysis (IRA) used on pairs of cointegrated series, ob-

tained by Engle-Granger test reveals, that there are significant interconnections in these

markets, but the linkages differ depending on, whether they are in low or high volatility

regimes. Al-mulali and Solarin (2016) published an interesting analysis of the influence of

biofuel energy consumption on Brazil’s economic growth. The dataset covers the period

from 1980 to 2012 and the results of VECM and ARDL revealed structural breaks in

the early 1980s (Latin American debt crisis) and at the beginning of the millennium.

Al-mulali and Solarin (2016) also revealed that economic growth, biofuel energy con-

sumption, capital, urbanization, and globalization are co-integrated. Research showed,

as expected, short-term and also long-term positive relationships between biofuel energy

consumption, capital, urbanization, globalization and economic growth. Zou (2018) pro-

vided further insight and by using VECM, examined the relationship between U.S. oil

prices, carbon emissions and U.S. GDP between 1983 and 2013. The results confirm

the precondition, that carbon emissions change as oil prices fluctuate in the short and

also in the long run. On the other hand, according to the paper, there is no connection

between GDP fluctuation and the growth of carbon emissions. Results also suggest only

the gentle impact of oil price on GDP and carbon emissions in the long-run. Focusing on

the Spanish market, Hassouneh et al. (2012) reveal price transmission between food and

energy prices. Weekly biodiesel, sunflower and crude oil prices between November 2006

and October 2010 confirm the existence of a long-run equilibrium relationship among the

included commodities. The comparison of adjustment coefficients for bio-diesel revealed

the difference in speed of adjustment relative to the price of bio-diesel. When the price

was relatively low the speed of adjustment was faster than in the case of the higher price.

The results also suggest that energy prices in the short-run also affect sunflower oil prices.

More internationally focused research was recently published by Capitani et al. (2018).
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Authors aimed to study not only the Brazilian market but also the U.S. one. They

estimated the structural vector autoregressive model with error correction along with

employing methodological frameworks of co-integration and causality testing. They in-

cluded international oil prices along with ethanol sugar and corn prices in Brazil and also

in the U.S. One of their outcomes suggests that ethanol price on the domestic market is

influenced by international oil prices, what supports the idea of the significant impact of

fuel markets to the ethanol price over markets, especially taking into account the sub-

stitution effects of ethanol by fossil fuel. Authors also pointed out, that on Brazilian

market sugar prices also have significant causality effect on ethanol prices. Considering

U.S. market, authors stated that ethanol prices influence corn price, but they did not

prove corn prices causality effect on ethanol prices. Last but not least, authors found a

causality effect of Brazilian ethanol on U.S. ethanol prices, demonstrating the relevant

influence of the traditional Brazilian production to the biggest producer in the world,

USA. Using the same methodology Fernandez-Perez et al. (2016) using daily prices of the

crude oil, ethanol, corn, soybean, and wheat from the United States covering June 2006

- 22 January 2016, authors claimed that crude oil has a unidirectional contemporaneous

impact on the agricultural commodities, also pointed out U.S. ethanol production factors

corn and soybean have a unidirectional contemporaneous impact on ethanol prices.

Dutta (2018) was primarily focused on the Brazilian ethanol industry. The author

studied interrelation between ethanol, crude oil and sugar prices. He applied the autore-

gressive distributed lag model on 668 weekly observations in the period from May 2003

to December 2016. Obtained result of ARDL bound test suggests that crude oil and

sugar prices lead ethanol prices in the long-run on the Brazilian market. The author also

noticed the positive impact of sugar prices on ethanol prices and not vice versa i.e. raising

sugar prices would cause raising ethanol prices as well. Bentivoglio et al. (2016) explored

the impact of Brazilian ethanol prices on sugar and gasoline prices. Employing vector

error correction model (VECM) and Granger causality tests, obtained result favours the

idea that ethanol prices growth with an increase in both gasoline and sugar prices in

long-run. They also revealed that sugar and gasoline prices affect ethanol prices in the
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short-run.

3 Data

We have employed wide range of commodities and assets to the dataset and we have

also divided them into various categories such as Biofuels, ethanol feedstock, biodiesel

feedstock, fossil fuels. We will look at them more precisely in the following subsections.

We analyze (price) time series which were collected on weekly basis in period between

11/2003 and 4/2020 altogether we have 858 observations. Most of the data were collected

on Friday, in the case of absence Friday’s data, we used the data from the first previous

available business day.

3.1 Examined subperiods

As the data have covered the period since 11/2003, the market has undergone through

numerous significant structural changes and some significant fluctuations, notably during

the great food crisis in 2007 - 2008 and in 2010 - 2012. Further the great recession in

2009, last but least data also cover the start of Covid-19 period. To ensure the integrity

of the results we divided the dataset into sub-periods in manner as Filip et al. (2016)

along with related papers, introduced. In the relevant-chosen subsections, we will try to

describe conditions and circumstances on the market relating to a specified period.

The Food Price Index3 published by Food and Agricultural Organization of the United

Nations is measure of the monthly change in international prices of a basket of food

commodities. According to FPI we divide our sample period into the following sub-

periods:

1. Sub-period 1: 21.11.2003 - 28.12.2007, 215 observations

2. Sub-period 2: 4.1.2008 - 30.12.2011, 209 observations

3. Sub-period 3: 6.1.2012 - 25.12.2015, 208 observations

3http://www.fao.org/worldfoodsituation/foodpricesindex/en/
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4. Sub-period 4: 1.1.2016 - 24.4.2020, 226 observations

3.2 Sub-period 1:

From the point of our interest, nothing significant had happened on the markets, till the

2007, when the World food price crisis started.

3.3 Sub-period 2: The World food price crisis

As the title suggests, this sub-period will reflect the world food price crisis. The crisis had

been caused mainly by drought in developing countries, where the grain was produced,

but also by rising oil prices4. According to the World resource institute and A.T.Kearney

(2008)5 prices increased dramatically between 2006 and 2008. The prices for rice rose by

217%, wheat by 136%, maize by 125%, and soybeans by 107%. The crisis resulted in the

deepening of food insecurity and consequently to the political and economic instability.

The crisis also fueled the discussion about biofuels and theirs influence on the food prices.

Last but not least this sub-period also covers the second escalation of the world food prices

after the short lull during 2009.Perez6 stated, that high food prices along with climate

change were one of the triggers of Arab Springs. The period after 2009 was also marked

by great recession on the financial markets around the globe.

3.4 Sub-period 3

After an unprecedented period of price growth, a steady decline can be observed un-

til 2015. After that, prices were relatively stable. During these periods, we witnessed

significant economic growth, despite geopolitical conditions.

4https://www.nytimes.com/2008/04/10/opinion/10thu1.html
5https://pdf.wri.org/rattlingsupplychains.pdf
6https://www.scientificamerican.com/article/climate-change-and-rising-food-prices-heightened-arab-

spring/
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3.5 Sub-period 4, COVID-19 appeared

Despite the start of the period was in 2016, the important events happened by the end.

Until the end, the index was relatively stable, with slight fluctuations. Larger fluctuations

came at the end of the period

The world has been dealing with the virus COVIDâ€‘19 since December 2019, when

the first outbreak was observed in Wuhan, China. Since then, there have been more than

16 million confirmed cases and more than 644,000 deaths, making it a global pandemic.

We have chosen the start of this period according to the declaration, dated to 30-01-2020,

of World Health Organization (WHO) in which marked the outbreak, as a Public Health

Emergency of International Concern.

The onset of the virus has been accompanied by a sharp decline in financial markets,

as one of the consequences of measures to prevent the spread of the virus. Nowadays

we witness an unprecedented help to the economies of the EU member states, from the

side of EU via grants and loans. These ”rescue packages” should help Member States to

rebuild regional economies and implement structural reforms. One of the areas targeted

by the aid is environmental sustainability, which may lead to a departure from the original

biofuels program at EU level. Electromobility or hydrogen energy has been identified as

a promising.

3.6 Biofuels

• US and Brazil Ethanol

As we have already mentioned above the geo-location of 2 of the biggest biofuels markets

are in the United States of America and in Brazil and these markets are quite different. We

are trying to provide the complex view to the biofuels problematic, so we have combined

several biofuels data streams. United States of America, the biggest producer of ethanol,

is presenented by New York Harbor Price Ethanol index from the database Bloomberg

Datastream. New York Harbor Price Ethanol index provides us the information about
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spot price of anhydrous ethanol for the US market in USD per gallon(3.79L).

Information about price of the anhydrous ethanol made by the second biggest producer

is provided by Centro de Estudos Avancados em Economica Aplicada (CEPEA) quoted

in USD/L.

• Biodiesel

Biodiesel is playing the main role in European’s Union ”green” program and stands for

approximately 80% of the used biofuels in transportation. EU biodiesel is mostly made

from rapeseed and we have obtained data from Thomspon Reuters Eikon database. We

have two time series for biodiesel first one gives us information about US market quoted

in USD/tonne, the second, European, one is quoted in EUR/Tonne.

3.7 Biofuels feedstock

• Ethanol Feedstock

Production process of ethanol requires crops, which are a rich source of sugar, because

first step of the process is that the feedstock is converted into the glucose, where sugar

goes through fermentation and the ethyl alcohol is obtained, which is in the next step

distilled and dehydrated.

Brazil have an unquestionable advantage in the production of ethanol from sugarcane,

because the process of obtaining the glucose is easier for sugar cane or sugar beet than

for starch crops such as grain, wheat or corn. This may be the reason why Brazil is

the leading country in the share of ethanol usage on the domestic market, despite of the

Brazilian economy.

On the other hand the United States of America is the biggest producer in the world,

despite that US ethanol is predominantly made from the corn, it is caused by climate

conditions in the U.S. and at the same time by the fact, that sugar cane has demanding

growing conditions, i.e. the natural habitats of sugar based plants are not so extended

in U.S. Differently corn has natural habitat in the extensive part of U.S. mainly in the

13



states such as Iowa, Illinois, Nebraska or Minnesota7.

Dataset contains three sugar related price indexes, the first one is related to the sugar cane

and it was obtained from Intercontinental Exchange (ICE). Sugarcane price on Brazilian

market is represented by CEPEA Crystal sugar price index. the last one for Sugar beet

is represented by LIFFE Sugar beets price index and comes from Bloomberg Datastream

database. Corn price is represented by Chicago Board of Trade (CBOT). Wheat took

the second place on the rank of most used feedstock in bio-ethanol production in the U.S.

and we obtained information about it’s price again from Chicago Board of Trade.

• Biodiesel Feedstock

Biodiesel is more common choice of biofuel on the European markets than on any other

market in the world with market share over 75%. As we have already mentioned, EU

is simultaneously the biggest producer of this commodity. The most common biodiesel

feedstock is rapeseed oil with 43% share among others in 2018 according to EU Biofuels

Annual report8. Palm oil is also used as biodiesel feedstock as well as the used cooking

oil with almost 20% Rapeseed oil as biodiesel feedstock deserved its popularity by its

natural habitat and simultaneously by fact, that from one hectare producers are able to

gain more oil than from many other feedstock except palm oil. Rapeseed oil is popular

in the EU mainly due to its freezing point what can be quite useful in colder period of

the year and in colder regions. These reasons are causing that most of the EU biodiesel

is made just from rapeseed oil.

Palm Oil mostly comes from Malaysia and Indonesia. The natural habitat of palm is not

that friendly with European climate, but the consumption of palm oil based biodiesel

have rising tendency in recent years according to EU Biofuels Annual report9. As we

have noticed above from one Hectare of Palm we are able to gain the most oil than from

any feedstock, which come as input to the production process of biodiesel. Despite of

these facts palm oil has been recently criticized and some companies have already started

7Source: USDA, NASS, Crop Production 2018 Summary, Feb.8, 2019 www.worldofcorn.com/
8apps.fas.usda.gov
9apps.fas.usda.gov
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to avoiding the palm oil in their products due to negative environmental impacts of palm

oil’s derivation.

3.8 Fossil fuels

Fossil fuels are an inseparable part of the fuel system. Biofuels represent an alternative

for them. There is no doubt that crude oil and its derivatives are strongly connected to

the biofuels. Firstly we employed sweet light crude oil. Sweet light crude oil contains

small amounts of hydrogen sulfide and carbon dioxide. High-quality, low-sulfur crude oil

is frequently used for processing into gasoline. We know two main benchmark prices for

purchases of oil worldwide. First one is Brent Crude and it is used for crude oil, which is

extracted from the North Sea. It is used to price two thirds of the world’s traded crude oil.

Second benchmark is marked as West Texas intermediate (WTI), also known as Texas

light sweet. WTI is extracted from the Midwest of US and from Gulf Coast. Alongside

crude oil we have obtained prices of gasoline or diesel for every significant market in order

to discern for local differences. To obtain these data we employed several data streams

first of all EU prices were replaced by German prices and these were obtained through

Thompson Reuters Datastream. To capture U.S. market we have used data from US

Energy Information Administration (EIA). Last but not least, we covered the Brazilian

market using data from The Brazilian National Agency of Petroleum, Natural Gas and

Biofuels10. As there are different sources and currencies and metric system data were

recalculated to the format USD/Gallon. In addition our dataset contains substitutes of

gasoline and diesel. Natural gas is traded at NYMEX- New York Mercantile Exchange

as Henry Hub Natural in US dollars per MMBTU. Heating oil was also employed and it

is traded at NYMEX as well as natural gas.

10Agencia Nacional do Petroleo, Gas Natural e Biocombustiveis data are available on www.anp.gov.br
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3.9 Food

In previous subsections we have already introduced some agricultural commodities which

directly binds to biofuels as their feedstock. As we are also interested in how biofuels

influence the food market we will introduce in this subsection some others agricultural

commodities, which are not used as biofuels feedstock. In the pattern of previous papers,

which are related to our topic especially Filip et al. (2016), dataset contains rice, coffee,

cocoa and oranges. In addition the feeder cattle and US cotton were added to the dataset.

Serra and Zilberman (2013) came with analysis where authors were interested in price

links between biofuels and commodities with involvement of financial time series out of

biofuels-related network. Their work suggests to employ some external factors which may

possibly influence the network.

4 Model

To evaluate long-run price linkages, a wide portfolio of methodologies (models) is offered.

Until the early 1970’s numerous papers were investigating the co-movement of price series

or time series in general, using Ordinary Least Squares (OLS) regression. Results of

those estimations seemed as very significant explanation relationships among variables.

Granger and Newbold were among the first who questioned those results and also usage of

OLS without any adjustments, in general. After the concept of the non-stationarity had

been considered in econometrics theory, taking first differences of each of non-stationary

variables were commonly used. Regarding univariate modelling, this is a correct approach.

If long-run multivariate relationships are the point of our interest differencing of I(1)

variables will not bring desired results, because differencing removes long-run relations.

Consequently, we will not have any evidence of whether variables have an equilibrium

relationship Brooks (2008). To resolve the non-stationarity issue without losing long-

term relations and without assuming that our system is stable as a whole, we will use

method co-integration and we will estimate VECM as well. This brief introduction will
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be followed by a proper explanation of the statistical concepts which will be tested as

well as the description of used tests and the model.

4.1 Unit root

Mathematically explained, presence of the unit root in a linear stochastic process means

that the root of the process’s characteristic equation equals 1. Denoted as I(1)

If the unit root is presented in the process, then the shocks will have a permanent effect

on the process. In other words, if time series have a unit root, then the shock in the

past will affect the present and the future value as well. Once possibly persisting trend

is estimated and removed from the data, then there is still the possibility of the trending

mean or variance, what plays in favour of the idea of non-stationarity, therefore other

forms of the adjustment should be considered. When stationarity assumption does not

hold, then we are not able to rely on the standard assumptions, and thus testing is not

valid.

As a consequence of the presence of the unit root i.e. the consequence of non-stationarity

Granger and Newbold (1974) introduced the concept known as ”spurious regression”.

Signs of spurious regression consist of the high value of R2 or adjusted R2, a low value of

the Durbin-Watson statistic and extremely strong positive autocorrelation in residuals.

A high value of R2 also suggests the statistical evidence of a linear relationship between

variables, but in the fact the evidence is misleading, i.e. there is no economic or any other

connection between variables.

4.2 Augmented Dickey Fuller test

Augmented Dickey Fuller (ADF) test is commonly used for testing the presence of the

unit root in a stochastic process. The test is based on the same idea as Dickey and

Fuller (1979) test but is augmented by p-lags of the dependent variable, i.e. allows an

autoregressive model of order p. The test is applied to the following model:
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∆yt = α + βt+ γyt−1 + δ1∆yt−1 + · · · + δp−1∆yt−p+1 + εt (1)

H0 : γ = 0 (2)

where:

• α represents intercept, or constant term.

• β stands for time trend if present.

• ∆y = yt − yt−1 or ∆yp = yt − yt−p in general.

• δ1 · · · δp−1 represent coefficient on lag differences of y.

• εt represents error term.

The null hypothesis of ADF test suggests the presence of the unit root in the process,

thus the process is non-stationary. Alternative hypothesis may be formulated as ”process

is stationary” or ”process is trend-stationary”, what depends on the chosen model, which

we have used for the purpose of the test. The importance of taking ∆yt rests in the

opportunity of regressing ∆yt against t and yt−1 et cetera. The idea of testing if γ = 0

is quite straightforward. If the process contains the unit root, lagged value of yt−1 would

not provide any information in predicting of ∆yt, besides the one obtained in the ∆yt−1.

In other words, there would not be any ”force” which would guarantee a stable mean

over time.

4.3 Akaike Information Criterion

Before we run the ADF test it is crucial to choose the best fitting Auto-Regressive (AR)

model for each time series. Once we know the model, which fits our data the best, then

we are able to include as many lags to the model (4.1), as necessary to ensure no serial

correlation in εt from equation 4.1.
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In order to find the best fitting AR model we decided to use the Akaike Information

Criterion (AIC), which was introduced by Akaike (1974). AIC uses a model maximum

log-likelihood estimation as a measure of fit. AIC consider not only under-fitting but

also over-fitting. The idea of consideration over-fitting is following: AIC penalizes for

including another variable to the model, but it is logical when we do so, the goodness of

fit probably increases so it is all based on this trade-off.

4.4 Co-integration

According to Committee (2003) the concept of co-integration was introduced to the econo-

metric theory by Granger (1981). Modelling of non-stationary, co-integrated (economic)

time series was afterwards examined in ”Granger representation theorem” by Granger

and Weiss (1983). Committee (2003) also notes that co-integration has become a fre-

quently used econometric tool for empirical analysis, where long-run relationships are

present and affect present values, e.g. current long-term interest rates are determined by

expected short-term rates.

Definition of Co-integration: An (n × 1) vector time series xt consisting of I(1) series is

said to be co-integrated if there exist a non-zero vector β such that a linear combination

β’xt is stationary i.e. I(0). Then the β is referred to the co-integrating vector. In other

words, if a linear combination of a set of I(1) variables is I(0), then the variables are

cointegrated.

In the case of two-time series, the idea of co-integration is straightforward. Suppose we

have two time series xt and yt, which are integrated of order one I(1), both are non-

stationary. If they are co-integrated, then we are able to find β such that yt − βxt = µt

where µt is stationary. Thus we find a linear combination of non-stationary time series

which is stationary. It is easily conceivable suppose we plot βxt and yt on the graph, the

distance between βxt and yt remains approximately unchanged over time if they are co-

integrated. Testing for co-integration is a crucial part of our estimate because the Vector

Error Correction Model (VECM) provides well-grounded results only if I(1) variables are

co-integrated.
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4.5 Johansen co-integration test

Later development of the concept of the co-integration brings Johansen test, introduced

by Johansen (1991). Compared with the Engle-Granger test, Johansen test is more appli-

cable, because (it) is suitable for more than one relationship of co-integration. Johansen

proposed the trace test and the maximal eigenvalue test. Both of them are based on

Granger’s error correction model (ECM) representation. VECM will be explained in

more detail in the following section.

The test is applied to the model:

∆Xt = α + δt+ ΠXt−1 + Γ1∆Xt−1 + · · · + Γp−1∆Xt−p+1 + εt, t = 1, . . . , T (3)

Where:

• µ represents intercept or constant term.

• δ stands for time trend if present.

• Xt is (n × 1) vector of studied variables.

• Π is the co-integration matrix.

• Γ is the matrix of coefficients on lagged differences of X. Number of lags used is the

same as it was in ADF test. The number must be optimal because lag length in

VECM can affect the results of the Johansen test.

• εt represents the white-nose error term. 11

Π (co-integration matrix) is product of α (n × r) and β’ (r × n) i.e.

Π = α× β′ (4)

11A time series is a white noise if mean equals to zero and with variance σ2. From the nature of time
series variables do not have to be i.i.d. Also, each value has a zero correlation with all other values
between periods.
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Interpretation of α and β’ will be provided in the following sections.

As we have mentioned, the test allows more than one co-integration vectors. The Jo-

hansen test is performed gradually for a rejection or not rejection of H0 of the specific

number of co-integrating vectors. The null hypothesis is then formulated as ”there is no

co-integrating vector”. In case of rejection of the null hypothesis, the new H0 ”there is one

co-integrating vector” would be tested. The process of testing will continue by induction

until we do not reject H0 or the H0 will not be ”there are n-1 co-integrating vectors.”,

where n is the number of variables. The number of co-integrating vectors, denoted as r,

is then equal to the rank of Π. Therefore there are three possible outcomes of the test

(Brooks (2008)):

• Rank(Π) = 0, there is no co-integration between variables nor long-run relation-

ships. So differencing of I(1) series can proceed. The Vector Auto-Regressive (VAR)

model or simple OLS is probably suitable for estimating such a system.

• Rank(Π) = r, where 0 < r < n, r co-integrating relationships are presented in the

system. Equation (4) holds and VECM can be estimated.

• Rank(Π) = n, where n equals to the number of variables in Xt from (3), if Π has full

rank, it means that Xt is already I(0) thus stationary and different model is more

suitable than VECM. Potentially, this case would not occur, because we would test

the presence of the root unit in Xt in the first place.

4.6 Vector Autoregression (VAR) Model

Sims (1980) critique of restrictions in macro-econometric models started a revolution

in the economic usage of VAR models. Nowadays the role of VAR in macroeconomics

modelling has been partially taken by DSGE models. Karlsson (2013) attributed the

popularity of VAR to its relative simplicity, resilience, and ability to fit the data well. VAR

models are still widely used for the qualitative analysis as well as are providing the robust

forecasting tool. In general, VAR is multivariate extension of univariate autoregressive
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(AR) model. The model is capturing mutual relationships among individual time series

across time periods represented by their lags and is given by following equation:

Xt = α + β1Xt−1 + · · · + βpXt−p + εt, t = 1, . . . , T (5)

where:

• α represents intercept.

• Xt is (n × 1) vector of studied variables at the time of t.

• β1 · · · βp are the matrices of coefficients.

• µt represents white nose error term.

From (5) we are able to obtain (3) by not so straightforward derivation, that will not be

provided. For further understanding please refer to Brooks (2008) or any other econo-

metric book.

4.7 Vector Error Correction Model (VECM)

As we have already mentioned, co-integration and VECM allow us to study long-run re-

lations among I(1) variables. Consider two time series yt and xt both I(1). If we want to

estimate relationship between them, transforming variables into ∆yt and ∆xt may seem

appropriate. The truth is that such a transformation would make them I(0), thus sta-

tionary. But considering the case when ∆yt = 0 and ∆xt = 0, i.e. variables have already

converged to long-run values and are no longer evolving in time. That is why such a

model does not have a long-run solution. This idea is explained in more details in Brooks

(2008).

An error correction model, or an equilibrium correction (ECM) model, seems more appro-

priate in the case. The logic of the model will be shown on the bi-variate case with one lag,

the extension to multivariate (VECM) with an optional number of lags is straightforward

22



and will bring us to (3). Suppose model:

∆yt = β0 + β1∆xt + β2(yt−1 − γxt−1) + µt (6)

again we are assuming, that yt and xt are I(1) and furthermore are co-integrated. From

(6) it follows that the model solve the problem by including first differences and lags of

co-integrated variables. Noting that γ is coefficient of co-integration therefore wt−1 =

yt−1 − γxt−1 will be I(0) thus OLS regression may be considered, because all of included

regressors are now I(0) and long-run relations are preserved. Clearly β1 correspond to

short-run relation between ∆yt and ∆xt. Coefficient for error correction term β2, de-

scribes the speed of returning to equilibrium. Brooks (2008) states the definition of β2

as it measures the proportion of last period equilibrium error that is corrected for. By

including variables in the same way to (6) we will obtain the VECM (3). Now we have

n variables what makes the interpretation of coefficients a little bit more complicated.

Γ1 · · ·Γp−1 from (3) refers to β1 in bi-variate case (6). Interpretation of Π (3) is for our

paper crucial. The decomposition

Π
n×1

= α
n×r

× β
r×n

′ (4)

where n is the number of variables and r is the number of co-integration vectors, will make

it make it easier. α(n × r) is the matrix of error correction coefficients and corresponds

to β2 in (6), while β′ is the matrix of co-integration vectors contains just r co-integration

vectors and corresponds to γ in (6). Noting that coefficients in α are also known as

the â€adjustment parametersâ€™. To sum up, since we know how Π looks like, the

connection between cointegration and VECM is unequivocal. Cointegration tells us if

variables of our interest are co-integrated and after normalization with respect to target

variable e.g. price of crude oil, provides long-run equilibrium equation of the system.

Based on the equilibrium VECM then studies the deviations. One of the undoubted

advantages of using VECM is that it allows us to study both long-term and short-term

relationships
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As we are interested in biofuel environment as the whole system, VECM provides us

a robust tool, because all of the variables are threaded as exogenous i.e. all of them have

the same importance in the model.

To sum up, the process of choosing the appropriate model consists of the following.

First of all, one should find out the order of integration of each time series. Now, we

are on the threshold of branching, if all of the series are I(1), then one can proceed to

Johansen co-integration test or any other chosen test for the co-integration. In the case

of stationarity of each employed series, VAR can be estimated. The case when the series

does not have the same order of integration left. After all, it is not a big trouble. Let’s

go back to the co-integration test, if the test shows the co-integration among the series,

VECM is offered as a suitable choice to estimate such a system. If not, the differentiation

of each series until, all of them would not be I(0) and afterwards, estimating VAR is a

possible solution. The same procedure can be applied to the case when the series does

not have the same order of the integration. Noting that differentiation causes the lost of

long-run solutions for the model.

5 Results

5.1 Unit root

As been already said, to test the presence of the unit root we primary used Augmented

Dickey Fuller test. Of course, before the test was employed, we had been choosing the

optimal number of lags AIC suggests to employ 2 lags in our series due to cross-checking

we employed also Schwarz info criterion (SIC), obtaining same result, we conclude that

we are employing 2 lags.

The results of ADF tests In the most of the assets and commodities we observed

the presence of the unit root, but in some of the employed series namely in oranges

price in P3 and U.S. Ethanol also in P3. Thus testing for co-integration can proceed

for the suitable groups. We also performed the first differentiation of each time series
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in all period, the result of ADF on first differentiation series suggests according to our

expectation and shows stationarity of such series. Noting we employed test for each of

the listed sub-periods listed in ??.

5.2 Johansen co-integration test / VECM

As mentioned in the theory section, in order to obtain precise results we should include

as many lags as AIC suggests, in our case we use 2 lags. We also assume that there is no

time trend. Note that the numbers below the coefficients will represent related t-values.

5.3 Ethanol and its feedstock

5.3.1 Brazil

We began our analysis in the Brazilian market. We examined the level of co-integration

at ethanol, sugar, sugar cane and gasoline prices. We decided to include sugar as possible

replacement of the sugarcane usage. In other words, one may say that sugar is the

substitute of sugarcane-ethanol on the Brazilian market.

5.3.2 Base period: 2003-2020

We obtained the equilibrium equation normalized with respect to Brazilian ethanol as

following:

EthanolBr −0.016GasolineBr
0.079

+3.865Sugar
7.83

− 4.948Sugarcane
−9.072

(7)

At first glance, the insignificance of the Brazilian gasoline coefficient can be surprisingly

concluded. After the re-estimating of model with omitting of the gasoline we obtained

the equilibrium equation:

EthanolBr + 3.592Sugar
7.77

− 4.656Sugarcane
−9.15

(8)
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In order to interpret 8, we must conclude the significance of all coefficients, the price

transmission among the Brazilian ethanol and sugarcane is according to expectation,

4.656 % of increase in sugarcane price will influence the price of ethanol by 1 %. On the

other hand, we may observe the positive coefficient in sugar, what may be interpreted as

when the price of the sugar is decreasing, than the price of ethanol will increase. One

possible explanation occurs, the surplus on the sugar market push the price downwards

and the demand for ethanol is still increasing, thus price of the ethanol is increasing.

Commodity Adjustment coefficients Standard error

Br ethanol -0.012 0.003
Sugar -0.021 0.0025
Sugarcane 0.000292 0.004

Table 1: Adjustment coefficients related to the 8

The error correction terms or Adjustment coefficients provided in Table 1 refer to

speed of the adjustment to the equilibrium, when the shock occurs. Since, we use weekly

data, the adjustment speed refers to this fact and it is relatively slow. The interpretation

of the coefficients are following: EthanolBr adjusts 1.2% from the disequilibrium over in

the period, after the shock. Since we use weekly data, it corresponds to adjustment speed

in a week, after the shock occurs.

The sugarcane adjustment coefficient is nearly to zero and positive, what is caused by

the fact, that prices of the sugarcane are not influenced by other employed commodities.

Along with the fact, that equilibrium exists it may suggest that prices of the employed

commodities follow the trend of the sugarcane prices. Together with all the facts men-

tioned so far, the adjustment coefficient of sugar is bigger than coefficient of Ethanol,

mainly caused by the fact that ethanol is not only made from sugarcane, what sugar is,

so sugar will be more prone to shock in sugarcane price than ethanol.
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5.3.3 Brazil, pre-crisis period 2003-2007

For Sub-period 1 we obtained the equilibrium equation normalized with respect to Brazil-

ian ethanol as follows:

EthanolBr −8.072GasolineBr
−6.306

+4.406Sugar
7.083

− 4.137Sugarcane
−9.072

(9)

Unlike the base period, the Brazilian gasoline prices are now significant and have huge

impact on the ethanol prices. The remaining coefficients correspond to the base period,

despite the coefficient of sugar still brings some question and is a bit mysterious, but

possibly it may be still interpreted as was in the base period.

Commodity Adjustment coefficients Standard error

Br ethanol -0.018 0.007
Sugar -0.039 0.005
Sugarcane -0.006 0.008
Br Gasoline 0.003 0.001

Table 2: Adjustment coefficients related to the 9 in the sub-period 1

By significance of the Brazilian gasoline, we may observe the replacement of the

dominant role in the system. We may confirm now, that prices are lead by gasoline

according to Table 2. In other words, we may meaningfully conclude that gasoline is not

influenced by employed commodities and the others are.

5.3.4 Brazil, crisis period 2008-2011

In the sub-period, marked by World food price crisis along with recession on the markets

we have to again conclude the insignificance of the Brazilian Gasoline. For the second

sub-period the equilibrium equation normalized with respect to Brazilian ethanol looks

like:

EthanolBr −0.156GasolineB
−0.04351

+3.556Sugar
4.62079

− 4.585Sugarcane
−5.145

(10)
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The insignificance of gasoline is mainly caused by its high standard error. The price

of gasoline has risen sharply in the mid of 2011 so hypothetically we can say that the

shock in the gasoline price caused the high standard error and consequently caused the

insignificance.

After the gasoline omitting from the system we obtained:

EthanolBr + 2.904Sugar
4.582

− 3.882Sugarcane
−5.41852

(11)

Commodity Adjustment coefficients Standard error

Br ethanol -0.024 0.008
Sugar -0.032 0.006
Sugarcane -0.012 0.012

Table 3: Adjustment coefficients related to the 11 in the sub-period
2

5.3.5 Brazil, post-crisis period 2012-2015

Since the sugar seems as spurious for this period, we have omitted it from the equation,

the gasoline coefficient was insignificant so it was also omitted, therefore our equation

comprise as follows:

EthanolBr − 0.821Sugarcane
−5.703

(12)

Commodity Adjustment coefficients Standard error

Br ethanol -0.066 0.019
Sugarcane -0.022 0.031

Table 4: Adjustment coefficients related to the 12 in the sub-period
3

The obtained Co-integration vector is quite good reflection of the importance of the

sugar cane to the Brazilian ethanol. We can observe relatively strong co-movement be-

tween ethanol and sugarcane. The result suggest strong interconnection between the

commodities.

28



5.3.6 Brazil, period 4 2016-2020

Johansen Co-integration Test did not confirm any co-integration vector at 5% level of

the significance thus, in this period there is no long-run relationship among employed

commodities.

The reason for such result may lay in the stability of the system in the period. Covid-

19 violated this condition, but the period in our dataset concerned by the virus is not

long enough, so once the data will be available the selection of the suitable period may

bring different results.

5.3.7 USA market

By trying and failing method, we discarded: Cattle, Rice, Oranges, Cocoa, WTI. The

mentioned series had small to none influence on US ethanol. After several rounds of

elimination The US ethanol/gasoline, Corn and wheat left. Firstly we have to point

out that ADF test suggests stationarity in the base period as well as in the post-crisis

period 3, so in those periods we are not able to perform VECM, thus exploring the

system from long-run relations perspective. We are able capture the short-run effect by

VAR or ARDL, but we are trying to capture the long-run relations. More sophisticated

modelling approaches, such as Wavelet analysis, are suitable to capture the significant

long-run relationships in these periods. Furthermore in the pre-crisis period the result of

the test is on the edge of the stationarity, so the acquired co-integration vector may not

reflect the reality and the interpretation should consider this fact.

5.3.8 USA, Pre-crisis period 2003-2007

As we indicated, there is no observable co-integration vector at 5% level of significance

in this period. The result does not have to meet with reality due to limitation of the

chosen empirical approach. Before drawing a general conclusion from the result, a more

advanced empirical approach needs to be considered instead of VECM.
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5.3.9 USA, crisis period 2008-2011

Johansen Co-integration Test does not suggest any Co-integration vector at 5% level

of the significance thus, in this period there is no long-run relationship among employed

commodities. We tried several combinations of The US ethanol/gasoline, corn and wheat.

The Johansen test does not suggest any significant co-integration vector. We could choose

the wrong commodities to justify the result, but intuition told us that corn, as the main

feedstock for US ethanol, belongs to the system, just as US gasoline can be considered

as a feedstock because ethanol is mixed at a certain level to gasoline. The wrong choice

of period boundaries together with a limitation of empirical approach could also lead to

the result obtained.

5.3.10 USA, period 4 2016-2020

Since in the previous periods we have not discovered any significant proof of price trans-

missions, now we found the evidence of price co-movement between us gasoline prices

and corn.

GasolineUS − 4.4Corn
−3.649

(13)

The result could be interpreted as by the increase of 1% in gasoline price the price

of the corn will rise by 4,4%. After the increase in gasoline price the transportation cost

would arise as well, what is converted to the price of the corn.

Commodity Adjustment coefficients Standard error

US Gasoline -0.0001 0.033
Corn 0.029 0.008

Table 5: Adjustment coefficients related to the 13
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5.4 Biodiesel and its feedstock across the markets

5.4.1 EU Market

Firstly we employed prices of the US Biodiesel, US Diesel, Sunflower-seed, Rapeseed,

Palm oil, Natural gas, Heating oil, Soybeans and Cotton after several rounds of estimating

and reviewing this system, we decided to omit the Natural gas, Heating oil and Cotton.

The omitted variables were chosen due to little to no effect on the dependent variable,

and we also found that in most cases these price transfers were negligible. Since cotton

is utilized primarily in the textile industry, natural gas and heating oil are not widely

utilized in transportation in the Europe.

BiodieEU −0.021DieGE
−3.529

−0.977Rapes.
−7.13

−0.327PalmO
−4.215

+0.214Sunflow.
4.232

+0.467Soy
6.6768

(14)

Compared to the result of US market in the same period we may see the difference in

the significance of the soybean coefficient, what is actually pretty spurious in the context

of the EU and US Biodiesel’s feedstocks. We would expect insignificance of soybean in the

EU rather than in the US market. The spuriousness of the soybean coefficient is power

by its negativity, since it is major feedstock in US and it is on the second place, as regards

cultivation for biofuels, in the Europe, we excepted that the relationship will be positive

and significant, at least in the US. We also confirmed the strong price transmissions

among the Biodiesel and rapeseed. The co-movement is relatively low among the Eu

biodiesel and German diesel but still significant. The influence of the palm oil is basically

the same as on the US Market.

Last but not least we may observe a bit mysterious negative relation between the EU

biodiesel and sunflower seed.
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Commodity Adjustment coefficients Standard error

EU Biodiesel -0.054 0.012
PalmOil 0.019 0.016
Sunflowerseed -0.049 0.016
GE Diesel -0.007 0.018
Rapeseed -0.025 0.017

Table 6: Adjustment coefficients related to the 14

5.4.2 Europe, pre-crisis period (2003-2007)

In this period, the usage of palm oil was relatively unknown and consequently was not used

as much as nowadays, besides the environmental impact. The lower usage rate caused

the insignificance of palm oil in estimating similar equation to the 14. The sunflower

seed was also insignificant in this period. After the omitting insignificant series, we have

system consist of EU Biodiesel, German diesel, rapeseed and soybean:

BiodieEU − 0.024DieGE
−3.115

− 0.903Rapes.
−6.135

+ 0.023Soy
2.172

(15)

The price transmission among the EU biodiesel and soybean is smaller than in the base

period and it is on the edge of significance. It may be caused mainly due to early period

in European biofuels history, when the share of rapeseed based biodiesel was probably

higher than nowadays. Already at the start of the European biofuel era, we had been

observing the negative price transmission among the commodities. The coefficient of

German diesel as well as rapeseed, are comparable to the coefficients in the base period.

Commodity Adjustment coefficients Standard error

EU Biodiesel -0.104 0.003
Rapeseed -0.024 0.026
Soybean -0.138 0.046
GE Diesel 0.077 0.003

Table 7: Adjustment coefficients related to the 15

Pre-crisis period is accompanied with expected transmission among Eu biodiesel and

rapeseed or German diesel, the expected insignificance of palm oil was confirmed. We

may see that EU biodiesel, as well as soybeen was relatively unstable, comparing to the
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base period. This instability can be attributed to the relative beginnings of the European

biofuel program.

5.4.3 Europe, crisis period (2008-2011)

During the crisis period, except the German Diesel, we are able to observe the wilt of the

co-integration relationships in comparison to the base period. German diesel strength

the co-movement, the equilibrium equation is then given as:

BiodieEU − 0.16DieGE
−3.959

− 0.449Rapes.
−6.041

− 0.091PalmO
−2.090

− 0.129Sunflow.
−2.873

− 0.113Soy
2.11

(16)

In addition to weaker relationships, we may also observe the turn of soybean and

sunflower seed coefficient, to the positive relationship. Now the price-transmission is as

we originally assumed. As we have already indicated, an increase in the price of soybeans

or sunflowers will result in an increase in biodiesel in the EU.

As the period also covers the financial recession, the reasons for this change may

vary. In our opinion, one of the possible explanation of the change would consist of a

sharp increasing of agricultural commodities, the enhancement of the prices result in the

unavailability to ensure the cheap feedstock. As was noticed, this period was accompa-

nied by several droughts in regions, where the important agricultural commodities are

cultivated. These shortages on the food market might be possibly replaced by biofu-

els feedstock, what consequently might cause the shortages on the biofuels feedstock’s

market.

Commodity Adjustment coefficients Standard error

GE Biodiesel -0.260 0.068
Rapeseed -0.035 0.085
Soybean 0.078 0.140
GE Diesel -0.120 0.011
Sunflower seed 0.087 0.094
Palm oil -0.131 0.115

Table 8: Adjustment coefficients related to the 16
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We unsurprisingly conclude that the adjustment coefficients for the German diesel as

well as for the diesel were increased and therefore the mentioned commodities, were more

prone to shocks. It was a generally turbulent period, so no wonder that German diesel

was unstable, since the biodiesel is blended with the diesel, which also unstable due to

movement of financial markets.

5.4.4 Europe, post-crisis period (2012-2015)

Johansen Co-integration Test did not exhibit any Co-integration vector at 5% level of

the significance thus, in this period there is no long-run relationship among employed

commodities. Instead we edited all series to be I(0), thus stationary and after that we

performed the VAR to reveal at least short-term transmission. Due to relative complexity

of such a estimation, we will not describe the obtained VAR.

5.4.5 Europe, period (2016-2020)

Following the pattern from post-crisis period the Johansen Co-integration Test did not

exhibit any Co-integration vector at 5% level of the significance.

5.4.6 USA Market

We started at same line as we had started on the EU market, but logically we used US

Biodiesel and US diesel instead of EU oil products. We may conclude basically the same

regarding to the omitting of cotton, heating oil and natural gas but in respect to the US.

The final composition of employed variables was made accordingly to the significance of

the used variables in individual periods.

In the base period (2003-2020) we obtain following equilibrium equation:

BiodieUS −0.018DieUS
−1.795

−1.153Rapes.
−5.23

− 0.418PalmO
−3.215

+ 0.679Sunflow.
8.010

+ 0.679Soy
0.294

(17)

Despite of the intuition, we may observe the insignificance of the soybean coefficient

as well as the insignificance of US-Diesel. Since the soybean oil is the most used feedstock
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of US-Biodiesel according to the U.S. EIA12, it was expected that soybean will have the

significant influence on the Biodiesel price, but the opposite is true. So between years

2003 and 2020 we must conclude that, we do not observe significant influence of soybean

prices to US Biodiesel prices.

After the re-estimation, noting soybean was not included, we acquired following equi-

librium equation normalized with respect to US Biodiesel:

BiodieUS −0.215DieUS
−2.449

−1.073Rapes.
−5.630

− 0.362PalmO
−3.215

+ 0.637Sunflow.
8.179

(18)

Commodity Adjustment coefficients Standard error

US Biodiesel -0.015 0.009
PalmOil 0.042 0.012
Sunflowerseed -0.032 0.012
US Diesel -0.013 0.004
Rapeseed 0.004 0.009

Table 9: Adjustment coefficients related to the 18

Equilibrium equation 18 along with Table 9 suggest that in the period between 2003

and 2020, there exists significant co-movements among the US Biodiesel and its feed-

stocks, on the other hand we refuted the possible transmission between soybean and the

BioDiesel in the period. The reason of such behaviour may consist in the interconnection

of biofuel market. As it is known, the BioDiesel’s production is predominantly located

in the EU, where the soybean is not as much cultivated as rapeseed, which came out

from the analysis as significant with positive effect on the biodiesel price. Along with the

Table 9 it may suggests interconnection among EU and US Biodiesel market. But this

conclusion is just hypothetical and should be further investigated.

Except the sunflower seed, the coefficients behave accordingly to our expectations the

very strong relationship is presented among rapeseed and biodiesel, since the rapeseed

is main feedstock for EU market the economic insight is pretty straightforward here.

Rapeseed is followed by palm oil as regards the strength of the co-movement. The weakest,

12https://www.eia.gov/biofuels/biodiesel/production/
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but still significant relationship is from the US Biodiesel side.

Last but not least, we should not forget on the coefficient of sunflower seed, because

it is the only one that is negative, which in fact means that with the rising price of

sunflower seed it is possible to observe a falling price of the US biodiesel. Since we may

observe same phenomenon in the EU market in comparable period, we decided to perform

the Pairwise Granger Causality Tests. The test result indicates the absence of a causal

relationship between sunflower seed and biodiesel in with the corresponding p value of

0.8616. But confirm the causality effect of the US Biodiesel prices on the sunflower seed’s

prices. But it does not answer the movements on the market, by pairwise causality test

we only excluded the strictly correlation relationship. It should be further researched.

5.4.7 USA, pre-crisis period (2003-2007)

In this period we obtained Co-integration vector:

BiodieUS−0.336DieUS
−2.705

−1.3797Rapes.
−4.250

−0.642PalmO
−2.34

+0.596Sunflow.
2.676

+0.676Soy
2.848

(19)

During the pre-crisis period we may conclude the stronger interconnection between US

biodiesel and rapeseed than in others examined periods. Possibly it may suggest the

strong price transmission among biodiesel across markets, since the rapeseed is dominant

feedstock in EU Biodiesel. To investigate the interconnection, we employed the Johansen

Co-integration test on US biodiesel, German diesel and rapeseed, we must conclude that

the Johansen test, refused the presence of the Co-integration vector, but the test statistics

is on the edge of acceptance/rejection of the null hypothesis. We can also state that,

the connection between the US diesel and US biodiesel is stronger than the connection

between comparable tuple on the European market.
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Commodity Adjustment coefficients Standard error

US Biodiesel -0.051 0.025
Rapeseed -0.029 0.040
Soybean -0.160 0.040
US Diesel 0.046 0.020
Sunflower seed 0.095 0.035
Palm oil -0.336 0.22

Table 10: Adjustment coefficients related to the 19

5.4.8 USA, crisis period (2008-2011)

During the crisis period, we can conclude that prices of Biodiesel were mainly co-integrated

with rapeseed and palm oil, respectively. As these commodities are not used in the food or

feed markets, this may indicate that the remaining quantities of conventional biodiesel’s

feedstocks have been utilized in the food and feed market and alternatives have been used

more frequently during the crisis. Please note that this explanation is only a suggestion

and should be carefully examined.

BiodieUS − 0.4914Rapeseed
−2.574

− 0.654PalmO
−3.635

(20)

Commodity Adjustment coefficients Standard error

US Biodiesel -0.049 0.019
Palm oil 0.039 0.029
Rapeseed -0.019 0.022

Table 11: Adjustment coefficients related to the 20

5.4.9 USA, post-crisis period (2012-2015)

In the post-crisis we do not discover any significant equilibrium equation, after all we did

not discover any on the European market. We observed a co-integration vector among

rapeseed and soybean but the co-integration coefficient was found as insignificant.
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5.4.10 USA, period (2016-2020)

Johansen Co-integration Test did not exhibit any Co-integration vector at 5% level of

the significance thus, in this period there is no long-run relationship among employed

commodities.

6 Conclusions

In this paper we divided the period between 2003 and 2020 to the four sub-periods. In

these periods we were able to observe a wide range of conclusions from the significant

price transmissions to the non-existence of co-movement among variables. Besides the

econometric estimation, we briefly review the price transmission literature, along with

ecological issues of biofuels. Based on the acquired knowledge about the ecological issue

of biofuels, we ask ourselves the questions about the real benefit of biofuels. We do not

propose any extreme solution, because the environment and climate change is a very

extensive topic. We rather encourage research on the topic of ecological and economical

sustainability of biofuels.

We also provided an overview of the used empirical methods, which provides a strong

foundation of the price transmission empirical approaches, we were trying to bring to the

reader a straightforward procedure that could easily be reproduced

We began our analysis with detection of the price transmission among Brazilian

ethanol and its feedstock along with the sugar. Except for the pre-crisis period (2003-

2007), the insignificance of the Brazilian gasoline was concluded in all periods. We also

found the strong connection between sugarcane and Br ethanol. The interconnection

between ethanol and sugarcane slowly decreased over the periods. In the last period, no

price transmission was observed.

Regarding the US market, we did not capture any significant price transmission among

the US ethanol and maize, US gasoline and wheat.

Secondly, we were looking at the price transmission among the biodiesel and its feed-

stock on the EU and US market. To sum up the conclusions regarding the European

38



market, we proved the existence of interconnection among Eu Biodiesel and its feedstock

between 2003-2020. The interconnection exists also between 2003 - 2007 and in world

food price crisis period (2008-2011). In the post-crisis period and followed sub-period,

we failed to prove the existence of co-integration among employed variables. The non-

existence of relationships might be caused by the stability of the market. We also may

suggest that stability of biofuel-food market since 2012, might be caused by the boom of

European biodiesel main feedstock-rapeseed, which is not so frequently used as feedstock

or feed as maize does.

Regarding the US market, we proved the existence of interconnection among US

biodiesel feedstock in period 2003-2020, what turned out as mysterious is the negative

relationship of soybean and sunflower, respectively. We observed stronger interconnection

between biodiesel and diesel in the EU market. The mentioned co-movement was even

stronger during the pre-crisis period. On the other hand, we must conclude the relatively

strong price transmission among the US biodiesel and Rapeseed namely in the pre-crisis

period, but also in the base period and the crisis period. In the last two periods, we did

not reveal any significant evidence of co-integration among variables.

We must add, regarding the used empirical approach, that there exist more sophis-

ticated approaches, which, along with good workmanship would bring more significant

results from which it is possible to bounce to the more answering conclusions. Such

methods are for example wavelet analysis or clustering methods.
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