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Topological Conditions for Uniqueness of Equilibrium in Networks

Igal Milchtaich
Department of Economics, Bar-Ilan University, 52900 Ramat-Gan, Israel

milchti@mail.biu.ac.il, http://faculty.biu.ac.il/~milchti

Equilibrium �ow in a physical network with a large number of users (e.g., transportation, communication and
computer networks) need not be unique if the costs of the network elements are not the same for all users.
Such di¤erences among users may arise if they are not equally a¤ected by congestion or have di¤erent intrinsic
preferences. Whether or not, for all assignments of strictly increasing cost functions, each user�s equilibrium
cost is the same in all Nash equilibria can be determined from the network topology. Speci�cally, this paper
shows that in a two-terminal network, the equilibrium costs are always unique if and only if the network is one of
several simple networks or consists of several such networks connected in series. The complementary class of all
two-terminal networks with multiple equilibrium costs for some assignment of (user-speci�c) strictly increasing
cost functions is similarly characterized by an embedded network of a particular simple type.

Key words: Congestion externalities, non-atomic games, transportation networks, network topology, uniqueness
of equilibrium

MSC2000 Subject Classi�cation: Primary: 90B10 Secondary: 91A13

OR/MS subject classi�cation: Primary: Networks/graphs Secondary: Games/group decisions, noncooperative

1. Introduction. Di¤erent kinds of networks, such as transportation, communication and computer
networks exhibit congestion e¤ects, whereby increased demand for certain network elements (e.g., roads,
telecommunication lines, servers) tends to downgrade their performance or increase the cost of using
them. In such networks, the users� decisions (e.g., choice of routes) are interdependent in that their
optimal choices (e.g., the fastest routes) depend on what the others do. If they all choose optimally, given
the others�choices, then the users�choices constitute a Nash equilibrium. Even if the users are identical
in all respects, due to the congestion externalities, their choices at equilibrium may di¤er. However, if
the number of users is very large and each of them has a negligibly small e¤ect on the others, then they
have equal equilibrium payo¤s or costs. Moreover, the payo¤s or costs in di¤erent equilibria are the
same (Aashtiani and Magnanti [1]). With a heterogeneous population of users (i.e., a multiclass network;
Dafermos [5]), this need not be so. As the following example shows, if the users are not identical, and
are di¤erently a¤ected by congestion, equilibrium costs may vary not only across users but also from one
Nash equilibrium to another.

Example 1.1 A continuum of three classes of users travels on the two-terminal network shown in Figure
2(a). Each user has to choose one of the four routes connecting the users�common point of origin o and
the common destination d. The cost of each route is the sum of the costs of its edges. For each user class,
the cost of each edge e is given by an increasing a¢ ne function of the fraction x of the total population
with a route that includes e. The fraction of the population in each class and the corresponding cost
functions are given in Figure 1, where blank cells indicate prohibitively high costs. Clearly, users in each

Cost functions User

class 

Fraction of 

population e1 e2 e3 e4 e5

I 4/13 3.1 x 8x x

II 5/13 x 0.5 x x

III 4/13   8x 2.1 x x

Figure 1: Table for Example 1.1
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class e¤ectively have a choice of only two routes from o to d: e1 and e2 e5 for class I users, e2 e5 and e3 for
class II, and e3 and e4 e5 for class III. (The costs of the other two routes are prohibitively high.) If all the
users choose the �rst-mentioned route for their class, their choices constitute a strict Nash equilibrium
in that each user�s cost is strictly less than it would be on the alternative route. The same is true if
everyone chooses the second-mentioned route. However, the costs in the �rst equilibrium (�= 3.41, 0.77,
and 2.46 for class I, II, and III users, respectively) are di¤erent from those in the second equilibrium (�=
3.08, 0.88, and 3.02, respectively), and similarly for the mean cost (�= 2.10 in the �rst equilibrium and
2.22 in the second).
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Figure 2: The forbidden networks : Two-terminal networks allowing for multiple equilibrium costs.

In Example 1.1, neither of the two Nash equilibria Pareto dominates the other: For class I users, the
�rst equilibrium cost is higher, and for class II and III, the second. In fact, for the network in Figure
2(a), this would be so for any assignment of cost functions. This is because the routes in this network,
as well as in the essentially identical one 2(b), are linearly independent in the sense that each of them
has an edge that is not in any other route. As shown by the author in [13, Theorem 3], this topological
property implies that, for any assignment of cost functions, all the Nash equilibria are Pareto e¢ cient.
In the other two networks in Figure 2, the routes are not linearly independent. In these networks, some
Nash equilibria may be strictly Pareto dominated by others.

Example 1.2 A continuum of three classes of users travels from o to d on the network in Figure 2(c).
The fraction of the population in each user class and the corresponding cost functions are given in Figure
3, where blank cells indicate prohibitively high costs. Each user can e¤ectively choose only between e5
and a single alternative route, which is e2 e3 for class I users, e2 e4 for class II, and e1 e3 for class III.
There is one Nash equilibrium in which class I users take e5, and class II and III take the respective
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Cost functions User

class 

Fraction of 

population e1 e2 e3 e4 e5

I 3/7 6/7  3x 3x  6x

II 2/7  8x  x 6x

III 2/7 x 8x  6x

Figure 3: Table for Example 1.2

alternative routes. In this equilibrium (which can be shown to be Pareto e¢ cient), each user�s cost is
the same, 18=7. There is another Nash equilibrium in which class I users take their alternative route
e2 e3, and class II and III take e5. Again, the equilibrium cost is the same for all users, but this time it
is higher, and equals 24=7. Both equilibria are not strict: any user taking e5 would incur the same cost
on his alternative route, and vice versa. Since the cost functions are a¢ ne, this implies that any convex
combination of the two equilibria (in terms of the percentage of users in each class taking each route) is
also a Nash equilibrium, with costs given by the corresponding convex combination of the above costs.
Thus, there is a continuum of Nash equilibria, which can be Pareto ranked since, in each equilibrium, the
costs for all users are the same.

The main result of this paper is that, if the costs to users are allowed to di¤er, whether or not there
exist some cost functions with multiple equilibrium costs for some users depends on the network topology.
In [12], it is shown that in a network with parallel routes (like the one in Figure 4(a)), the equilibrium
costs are unique for any assignment of cost functions. In this paper, it is shown that, in fact, the same is
true for all �ve networks in Figure 4, as well as for all the networks obtained by connecting two or more of
them in series. Moreover, these are essentially the only two-terminal networks in which uniqueness of each
user�s equilibrium cost is guaranteed. For any other two-terminal network, it is possible to �nd an example
with multiple equilibrium costs, very similar to Examples 1.1 or 1.2 above. Indeed, any such network has
one of those in Figure 2 embedded in it, in a sense made precise below. These four networks, which will
be referred to as the forbidden networks, are the minimal networks for which multiple equilibrium costs
are possible. Thus, this paper gives two equivalent topological characterizations of two-terminal networks
that may or may not have a multiplicity of equilibrium costs. The �rst directly identi�es all networks
with unique equilibrium costs for any assignment of strictly increasing cost functions, and the second all
the networks in which, for some assignment of such cost functions, the equilibrium costs are not unique.
Moreover, the results below show that, in the �rst kind of networks, not only are the equilibrium costs
unique, but also the percentage of each class of users traversing each edge at equilibrium is generically
unique. This entails that, unless certain special relations exist among the cost functions, this percentage
is the same in all Nash equilibria.

In this paper, networks are always assumed to be undirected, in contrast to the more common practice
in the literature of assuming that edges are directed, and can be traversed in one direction only. Here,
such traveling restrictions, if they exist, are considered part of the cost functions, which may (but do
not have to) specify a very high cost for one of the two directions. The merits of this approach are
demonstrated by the results in this paper (and [13]). These results show that the uniqueness of the
equilibria is, indeed, linked to the topology of the underlying undirected network (and the same is true
for their Pareto e¢ ciency).

2. Graph-theoretic preliminaries. An undirected multigraph consists of a �nite set of vertices
together with a �nite set of edges. Each edge e joins two distinct vertices, u and v, which are referred to
as the end vertices of e. Thus, loops are not allowed, but more than one edge can join two vertices. An
edge e and a vertex v are said to be incident with each other if v is an end vertex of e. The degree of a
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Figure 4: Two-terminal networks in which the equilibrium costs are always unique. The network in (a), in which
one or more edges are connected in parallel (gray curves indicate optional edges), is embedded in each of the other
four. Any network homeomorphic to one of these �ve networks is said to be nearly parallel.

vertex is the number of edges incident with it. A path of length n is an alternating sequence p of vertices
and edges v0 e1 v1 � � � vn�1 en vn, beginning and ending with vertices, in which each edge is incident with
the two vertices immediately preceding and following it and all the vertices (and necessarily all the edges)
are distinct. Because of the latter assumption, each vertex and each edge in p either precedes or follows
each of the other vertices and edges. The �rst and last vertices, v0 and vn, are called the initial and
terminal vertices in p, respectively. If they are clear from the context, the path may be written more
simply as e1 e2 � � � en. An arc is a path of length one, consisting of a single edge and its two end vertices.
It may be viewed as an assignment of a particular direction to the edge. Obviously, each edge can be
directed in two ways, which di¤er from each other in the identity of the end vertex chosen as the initial
vertex and that chosen as the terminal vertex. One, and only one, of these two arcs is contained in (i.e., is
a section of) any path that includes the edge. In this sense, any such path speci�es a particular direction
for the edge. The set of all arcs in a network is denoted by A.

A two-terminal network (network, for short) is an undirected multigraph together with a distinguished
ordered pair of distinct vertices, o and d (for �origin�and �destination�), such that each vertex and each
edge belong to at least one path with the initial vertex o and terminal vertex d. Any path r with these
initial and terminal vertices will be called a route. The set of all routes in a network is denoted by R.

Two networks G0 and G00 will be identi�ed if they are isomorphic in the sense that there is a one-to-one
correspondence between the vertices of G0 and G00 and between their edges, such that (i) the incidence
relation is preserved, and (ii) the origin and destination in G0 are paired with the origin and destination
in G00, respectively. A network G0 is a sub-network of a network G00 if the former can be obtained from
the latter by deleting a subset of its edges and non-terminal vertices (i.e., vertices other than o and d).
A network G0 will be said to be embedded in the wide sense in a network G00 if the latter can be obtained
from the former by applying the following operations any number of times in any order (see Figure 5):

1. The subdivision of an edge: its replacement by two edges with a single common end vertex.

2. The addition of a new edge joining two existing vertices.
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3. The subdivision of a terminal vertex, o or d: addition of a new edge e joining the terminal vertex
with a new vertex v, followed by replacement of the former by the latter as the end vertex in two
or more edges originally incident with the terminal vertex.

d
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d d

o

(a)
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d
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e
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o

Figure 5: Embedding. The left network is embedded in the wide sense in each of the other three, which are
obtained from it by (a) subdividing an existing edge, (b) adding a new edge, and, �nally, (c) subdividing the
destination.

Two networks that can be obtained from the same network by successive subdivision of edges are said
to be homeomorphic. Such networks can be obtained from each other by the insertion and removal of
non-terminal degree-two vertices. For present purposes, they are nearly identical. By combining addition
and subdivision of edges, complete new paths, which only have their initial and terminal vertices in a
given network G, can be added to it. This is done by �rst joining the two vertices by a new edge e,
and then subdividing e one or more times. Since any vertex and any edge in a network are in some
route, this shows that if G is a sub-network of another network, it is also embedded in it in the wide
sense. A special case of terminal subdivision is terminal extension. In this operation, the new vertex
v replaces the terminal vertex (o or d) as the end vertex of all the edges originally incident with the
latter. The quali�er �in the wide sense�used in this paper is meant to distinguish the present notion of
embedding from the more restrictive one in [13], which does not allow general terminal subdivisions but
only terminal extensions. Terminal subdivisions may be viewed as selective terminal extensions: the new
edge is appended to two or more, but not necessarily all, of the routes.

Two networks G0 and G00 with the same origin�destination pair, but no other common vertices or
edges, may be connected in parallel. The set of vertices in the resulting network G is the union of the
sets of vertices in G0 and G00, and similarly for the set of edges. The origin and destination in G are
the same as in G0 and G00. Two networks G0 and G00 with a single common vertex (and, hence, without
common edges), which is the destination in G0 and the origin in G00, may be connected in series. The set
of vertices in the resulting network G is the union of the sets of vertices in G0 and G00, and similarly for
the set of edges. The origin in G coincides with the origin in G0 and the destination is the destination in
G00. The connection of an arbitrary number of networks in series or in parallel is de�ned recursively. Each
of the connected networks is embedded in the wide sense in the network resulting from their connection.

A parallel network is one consisting of one or more edges connected in parallel, as in Figure 4(a). A
network G will be said to be nearly parallel if it is homeomorphic to one of the �ve networks in Figure
4. It is not di¢ cult to see that this is the case if and only if G has a single route, two parallel routes, or
can be constructed from a network with two parallel routes by adding to it one or more parallel paths,
with common initial and terminal vertices. The following graph-theoretic result plays an important role
in this paper. The proof of this and the other results in the paper are given in Section 7.

Proposition 2.1 For every two-terminal network G, one, and only one, of the following conditions
holds:

(i) G is nearly parallel, or it consists of two or more nearly parallel networks connected in series.

(ii) One (or more) of the forbidden networks is embedded in the wide sense in G.
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3. The model. The population of users is modelled as an in�nite set I (e.g., the unit interval [0; 1]),
endowed with a non-atomic probability measure � (e.g., Lebesgue measure), the population measure. This
measure assigns values between zero and one to a �-algebra of subsets of I, the measurable sets, which
are interpreted as the set sizes relative to the total population. For a given network, a strategy pro�le is a
mapping � : I ! R (from users to routes) such that, for each route r in the network, the set of all users i
with �(i) = r is measurable. For each arc a, the measure of the set of all users i such that a is contained
in �(i) is called the �ow on a in �, and is denoted by fa. Note that each edge e is associated with a
pair of arc �ows: one giving the �ow though e in one direction and the other in the opposite direction.
However, if all the routes in the network pass though e in the same direction, then one of these �ows is
always zero, and in this case, there is no ambiguity in associating e with a single arc �ow, which may be
denoted by fe.

The cost of each arc a for each user i is given by a nonnegative and strictly increasing cost function
cia : [0; 1] ! [0; 1). When the �ow on arc a is fa, the cost for user i of traversing a is cia(fa). Note
that, for each user, each edge e is associated with a pair of cost functions, one for each direction. In each
direction, the cost only depends on the �ow on e in that direction, and not on the �ow in the opposite
direction. Although this assumption may involve some loss of generality, there are two important cases
in which it does not. In the �rst case, all the routes in the network pass through e in the same direction,
and, therefore, the �ow in the opposite direction is always zero. Hence, only one cost function has to be
associated with e for each user i, which, without ambiguity, may be denoted by cie. In the other case,
there is one direction of e which is prohibitively costly for all users. This would be true for all edges
if passing through each edge were only allowed in one direction� an assumption made in much of the
literature (e.g., Newell [15], She¢ [18], Bell and Iida [4], and Nagurney [14]; but not Beckmann et al. [3]).
For the sake of generality and simplicity of notation, in this paper the cost functions are not required to
have the property that traversing an edge in a particular direction is very costly for all users. However,
this requirement would not a¤ect any of the results below, as long as there are no restrictions on which
of the two directions has this property. The case of predetermined directionality is discussed in Section
6. Another assumption implicit in the de�nition of cost function is that the cost of each arc a for each
user only depends on the total �ow on a, and not on the identities of the other users. This does not
imply that the congestion impacts of any two users are assumed to be equal, but rather that they are
in �xed proportion to one another. Thus, for example, if one user (a bus, say) has twice the impact of
another user (a sedan) in one arc, then the impact is also twofold in any other arc. The �size�of each
group of users, given by the population measure, expresses its potential contribution to congestion, and,
in heterogeneous populations, does not necessarily re�ect the number of members.

The cost of each route r for each user i is de�ned as the sum of the costs for user i of the arcs contained
in r. The cost thus depends on the �ow on each of r�s edges in the direction speci�ed by the route. A
strategy pro�le � is a (pure-strategy) Nash equilibrium (in the non-atomic game de�ned by the network G
and the cost functions) if each route is only used by those for whom it is a minimal-cost route. Formally,
the equilibrium condition is: For each user i,X

a2A
�(i) contains a

cia(fa) = min
r2R

X
a2A

r contains a

cia(fa); (1)

where, for each arc a, fa is the �ow on a in �. For an equilibrium �, the minimum in (1) is user i�s
equilibrium cost. In the special case of a transportation network with identical users, the above de�nition
essentially reduces to the principle, formulated by Wardrop [19] and others (see Nagurney [14, p. 151]),
that, at equilibrium, the travel time on all used routes is equal, and less than or equal to that of a single
vehicle on any unused route.

4. Existence and uniqueness of equilibrium. Under weak assumptions on the cost functions,
at least one Nash equilibrium exists. Speci�cally, a su¢ cient condition for the existence of equilibrium
is that, for all arcs a, cia(x) is a continuous function of x for each user i and a measurable function of i
for each 0 � x � 1. The proof of this assertion, which is similar to that of [12, Theorem 3.1], is omitted.
The assertion can also be deduced from more general results, e.g., Schmeidler [17, Theorem 1] or Rath
[16, Theorems 1 and 2]. The main concern of this paper is uniqueness. If all the users are identical, then
the equilibrium itself is typically not unique. This is because, at equilibrium, any two groups of users of
equal size taking di¤erent routes may interchange their choice of routes without a¤ecting the equilibrium.
However, the equilibrium �ow on each arc in the network is the same in all Nash equilibria, which implies
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that the equilibrium cost is also unique (Aashtiani and Magnanti [1]). In fact, as the following proposition
shows, this result extends to the case in which the users�cost functions are only identical up to additive
constants in the sense that, for each pair of users i and i0 and each arc a, the di¤erence cia(x)� ci

0

a (x) is
a constant that does not depend on x. For further extension of the uniqueness result, see Altman and
Kameda [2].

Proposition 4.1 If the users�cost functions are identical up to additive constants, then, for every two
Nash equilibria, the �ow on each arc in the network in the �rst equilibrium is equal to that in the second,
and the same is also true for each user�s equilibrium cost.

For identical users (and, more generally, cost functions that are identical up to additive constants),
uniqueness of the equilibrium costs would be guaranteed even if the cost functions were only assumed
to be nondecreasing, rather than strictly increasing. However, for a heterogeneous population of users,
the assumption of strict monotonicity (which in this paper is part of the de�nition of cost function) is
critical. For example, suppose that one user class is totally una¤ected by congestion, while another class
is a¤ected by it. If there are several minimal-cost routes for the �rst class of users, they may choose
among them arbitrarily. Their choices do not a¤ect their own equilibrium costs, but may a¤ect those of
the second user class. Therefore, regardless of the network topology, the equilibrium costs need not be
unique.

The main question this paper addresses is whether, for a given network, the equilibrium arc �ows and
the equilibrium costs are unique for arbitrary (i.e., not necessarily identical up to additive constants) cost
functions. A network will be said to have the (topological) uniqueness property if, for any assignment
of (strictly increasing) cost functions, the �ow on each arc is the same in all Nash equilibria. As the
following proposition shows, this property can also be de�ned in terms of the equilibrium costs.

Proposition 4.2 For every two-terminal network G, the following three conditions are equivalent:

(i) G has the uniqueness property.

(ii) For any assignment of cost functions, each user�s equilibrium cost is the same in all Nash equi-
libria.

(iii) For any assignment of cost functions, and for any pair of strict Nash equilibria, some user�s
equilibrium cost is the same in both equilibria.

As mentioned in the introduction, whether the uniqueness property holds for a given network depends
on its topology. Clearly, connecting two or more networks with the uniqueness property in series results
in a network that also has this property, since the users�choice of routes in each constituent network does
not restrict the choices or a¤ect the costs in the other networks. The author in [12] and Konishi [8] showed
that the uniqueness property holds for all parallel networks. In fact, as the following theorem shows, this
property holds for all �ve networks in Figure 4. Moreover, these networks and those constructed by
connecting several of them in series are essentially the only two-terminal networks with the uniqueness
property.

Theorem 4.1 A two-terminal network has the uniqueness property if and only if it is nearly parallel or
it consists of two or more nearly parallel networks connected in series.

An immediate corollary of Theorem 4.1 and Proposition 2.1 is that the networks without the uniqueness
property are precisely those in which one of the forbidden networks is embedded in the wide sense. In this
sense, these four networks are the minimal networks without this property. This result closely resembles
Kuratowski�s characterization of non-planar graphs in terms of embedded forbidden graphs (Harary [7],
Diestel [6]). In both cases, the set of minimal graphs or networks without a particular property (planarity,
the uniqueness property) is �nite (with two and four elements, respectively). In the case of planer graphs,
this may be viewed as a corollary of Robertson and Seymour�s minor graph theorem (see Diestel [6]).
Whether a version of this theorem also holds for the present case of two-terminal networks and embedding
in the wide sense is unknown.
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Corollary 4.1 For every two-terminal network G, there exists some assignment of cost functions with
multiple equilibrium costs if and only if one of the forbidden networks is embedded in the wide sense in
G.

For the network in Figure 2(a), Example 1.1 speci�es cost functions with two strict Nash equilibria
such that each user�s equilibrium cost is not the same in both equilibria. These cost functions give rise
to the same equilibrium costs in the second network in Figure 2, which di¤ers from the �rst only in that
the origin and destination are interchanged. For the network in Figure 2(c), Example 1.2 speci�es cost
functions with two Nash equilibria, the �rst strictly Pareto dominating the second. In this example, both
equilibria are not strict. However, it is easy to modify Example 1.2 such that the two equilibria become
strict. For example, if the two cost functions of the form 8x are changed to 8:7x, those of the form 6x
to 6:5x, and the constant 6=7 to 1:1, each user�s equilibrium cost is still lower in the �rst equilibrium
than in the second, but in both equilibria, the cost of the user�s equilibrium route is strictly less than
that of the other routes. It follows that the modi�ed cost functions can also be used for the network in
Figure 2(d): Two strict Nash equilibria with arbitrarily close costs to those in the previous network can
be obtained simply by assigning a su¢ ciently low cost (e.g., a cost function of x=50) to edge e6.

Another assignment of cost functions with a multiplicity (indeed, continuum) of equilibrium costs for
the network in Figure 2(d) is given in the next example. Note the very simple form of the cost functions
in this example: linear, without constant terms. In Examples 1.1 and 1.2, di¤erences among the users
involve both the slopes of the cost curves, which re�ect the degree to which di¤erent users are a¤ected
by congestion in each edge, and the intercepts, which represent their intrinsic preferences. (For example,
some drivers may prefer shorter routes, even when the tra¢ c �ow on them is relatively slow, while for
others, distance may be relatively less important than time.) Proposition 4.1 shows that di¤erences of
the latter kind are not su¢ cient for multiplicity of the equilibrium costs. As the following example shows,
they are also not necessary.

Example 4.1 A continuum of three classes of users travels from o to d on the network in Figure 2(d).
The fraction of the population in each user class and the corresponding cost functions are given in Figure
6. There is one Nash equilibrium in which 5=18 of class I users (1=8 of the total population) take the route

Cost functions User

class

Fraction of

population e1 e2 e3 e4 e5 e6

I 9/20 x 8x 8x 3x x x 

II 9/20 8x 3x x 8x x x 

III 1/10 8x x 8x x x 2x

Figure 6: Table for Example 4.1

e1 e6 e4, 5=18 of class II users take the route e2 e6 e3, and all the other users take e5. In this equilibrium,
each user�s equilibrium cost is the same, 0.75. There is another Nash equilibrium in which 5=36 of class
I users (1=16 of the total population) take the route e1 e6 e4, 5=36 of class II users take the route e2 e6 e3,
the rest of class I and II users take e5, and all class III users take the route e2 e6 e4. In this equilibrium,
the cost for all users is 0.775.

By using these examples, it is possible to construct an assignment of cost functions with multiple
equilibrium costs for any given network that does not have the uniqueness property. Of course, other
such assignments also exist. Konishi [8] gives an example of such an assignment for a network in which
the one in Figure 2(b) is embedded in the wide sense. Incidentally, with a �nite number of non-identical
users (of equal mass, or congestion impact), the equilibrium costs need not be unique even in a parallel
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network (cf. [11]). The �nite case also di¤ers from that of a continuum of users in that an equilibrium need
not exist. Although a Nash equilibrium in pure strategies always exists in a parallel network ([10, 11]),
this is not so for the network obtained by adding a single edge joining o and d to the forbidden network in
Figure 2(c) (with three players), or to the nearly parallel one in Figure 4(e) (with two players). Konishi
[8] gives another example. The question of what topological conditions are both necessary and su¢ cient
for the existence of equilibrium in the �nite case is open.

5. Equivalence of equilibria. The uniqueness result for a heterogeneous population of users (The-
orem 4.1) can be taken one step further. In a network with the uniqueness property, not only is the �ow
on each arc the same in all Nash equilibria, but generically, it is also made up of the same mixture of
user types. While it is very easy, even for networks with the uniqueness property, to construct examples
in which di¤erent types of users traverse a given arc in di¤erent equilibria, the generic uniqueness result
entails that such examples depend on the existence of certain special relations among cost functions. If
there is no a priori reason to assume that such relations exist, a unique composition of user types would
be expected for each arc.

The theorem below is an extension of a similar result for parallel networks ([12, Theorem 4.3]). It is
based on a very similar model to that used in that special case. A partition of the population is a �nite
disjoint family of measurable sets I1; I2; : : : ; In, the user classes, such that

S
m Im = I and �(Im) > 0 for

all m. (Extension to the case of an in�nite� even uncountably in�nite� family of user classes is possible.
The formulation would closely follow that in [12].) A user class is interpreted as a group of users who
are known to be of the same type. For given partition of the population and network G, let G denote
the set of all assignments of continuous and strictly increasing cost functions cia : [0; 1] ! [0;1) with
the property that, for every pair of users i and i0 in the same class Im, cia = c

i0

a for all arcs a. Since this
property clearly implies that, for any �xed 0 � x � 1, the mapping i 7! cia(x) is measurable, it follows
from the remarks at the beginning of Section 4 that every element of G has a nonempty set of Nash
equilibria. Two Nash equilibria � and � will be said to be equivalent if the contribution of each user class
Im to the �ow on each arc a is the same in � and � , i.e., the measure of the set of all users i 2 Im such
that �(i) contains a is equal to the measure of the set of all users i 2 Im such that �(i) contains a. This
condition clearly implies that the �ow on each arc is the same in both equilibria. The distance between
two elements of G, one with cost functions cia and the other with ĉia, is de�ned as max jcia(x) � ĉia(x)j,
where the maximum is taken over all users i, arcs a, and 0 � x � 1. This de�nes a metric for G (which,
as shown in [12], is equivalent to some complete metric for G, in the sense that the two metric topologies
are the same. In other words, the metric space G is topologically complete). In a metric space, a property
is considered to be generic if it holds in an open dense set (Mas-Colell [9, Section 8.2]). The following
theorem asserts that the property that all Nash equilibria are equivalent is generic if and only if the
network satis�es condition (i) in Proposition 2.1.

Theorem 5.1 For every two-terminal network G, the following two conditions are equivalent:

(i) G is nearly parallel, or it consists of two or more nearly parallel networks connected in series.

(ii) For every partition of the population, there is an open dense set in the space G such that, for any
assignment of cost functions that belongs to this set, every two Nash equilibria are equivalent.

Put in another way, condition (ii) states that, for every partition of the population, the set of all
assignments of cost functions in G with two (or more) non-equivalent Nash equilibria is nowhere dense in
G. Together, Theorems 4.1 and 5.1 imply the following addition to Proposition 4.2.

Corollary 5.1 Condition (ii) in Theorem 5.1 is equivalent to the uniqueness property.

6. Remarks. The results in this paper, which link network topology with uniqueness of arc �ows
and equilibrium costs, are similar in spirit to those of [13], which link network topology with Pareto
e¢ ciency of equilibria. However, uniqueness and Pareto e¢ ciency are each equivalent to a di¤erent
topological property. Speci�cally, a two-terminal network has the property that, for any assignment of
cost functions of the form considered here, all the equilibria are Pareto e¢ cient if and only if it is a
network with linearly independent routes in the sense that every route has at least one edge that is not
in any other route ([13, Theorem 3]). On the other hand, linear independence of the routes is not a



10

necessary or su¢ cient condition for the network to have the uniqueness property, since it holds for the
�rst two networks in Figure 2 but not for the last two, and for the �rst four networks in Figure 4 but not
for the last one.

A weaker topological property than linearly independent routes, which holds for all the networks in
Figure 2, is a series-parallel network, i.e., one which can be constructed from single edges by sequentially
connecting networks in series or in parallel. However, since the network in Figure 4(e) is not series-
parallel, even this is not a necessary (or su¢ cient) condition for the network to have the uniqueness
property. Theorem 1 in [13] shows that for a population of identical users, a series-parallel network is a
necessary and su¢ cient condition for Braess�s paradox never to occur. Braess�s paradox is said to occur
when lowering the cost of one or more arcs increases the users�equilibrium cost. With non-identical users,
a natural generalization of Braess�s paradox can occur even in a series-parallel network (but not in one
with linearly independent routes; see [13]). For example, replacing the constant 6=7 in Example 1.2 with
a higher value would only leave the �rst equilibrium mentioned, in which each user�s equilibrium cost is
18=7. Replacing it with any positive constant less than 6=7 would leave only the second equilibrium, in
which all the users have equilibrium costs higher than 18=7.

This paper and [13] both consider undirected networks, and view directionality, if it exists, as part
of the cost functions. In a series-parallel network, edges have intrinsic directions, since all routes pass
through each edge in the same direction (see [13]). Of the networks in Figures 2 and 4, only that in
Figure 4(e) is not series-parallel, and in this network, uniqueness of the equilibrium cost does not depend
on how the edges joining u and v are directed. Nevertheless, the results in this paper would not hold if
edges were viewed as having predetermined directions. This is demonstrated by the two directed networks
in Figure 7. The undirected version of the network in Figure 7(a) is homeomorphic to that in Figure
4(e). Therefore, for any assignment of cost functions, the equilibrium �ow on each arc is unique and, in
addition, for any partition of the population, there is an open dense set in the space G such that, for every
assignment of cost functions in this set, all Nash equilibria are equivalent. The same clearly holds for the
second directed network in Figure 7, in which the directed routes are essentially the same as in the �rst.
However, this directed network cannot be constructed by connecting in series directed versions of nearly
parallel networks. This shows that Theorems 4.1 and 5.1 do not hold for directed networks. The directed
network in Figure 7(b) also cannot be obtained by subdivision of edges, addition of edges, or subdivision
of terminal vertices from any of the forbidden networks, if these are directed in the natural manner as
series-parallel networks. This shows that Proposition 2.1 also does not hold for directed networks, which
demonstrates the usefulness of the present approach of linking uniqueness of equilibrium costs with the
topology of the undirected network.

d

u

o

v

d

u

o

v

 (a)      (b)

Figure 7: Two directed two-terminal networks in which the equilibrium costs are always unique.

This paper only considers networks with two terminal vertices. In one sense, this limitation is not too
severe. A network with multiple origin�destination pairs may be modelled by connecting all origins to a
single, �ctitious vertex o, and similarly for the destinations. The restriction of each user i to a speci�c
origin can be implemented by assigning a very high cost to the edges joining o with the other origins, and
similarly for i�s destination. Thus, user-speci�c cost functions partially compensate for the topological
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limitation of a single origin�destination pair. If the augmented network, constructed as above, has the
uniqueness property, then the equilibrium costs are unique also for any assignment of cost functions and
origin�destination pairs in the original network. However, it is easy to see that the uniqueness property
is not a necessary condition for this. Thus, user-speci�c cost functions cannot completely circumvent the
topological limitation.

7. Proofs. This section presents the proofs of the various results in the paper. The proof of Propo-
sition 2.1 requires the following lemma.

Lemma 7.1 For every two-terminal network G, at least one of the two conditions in Proposition 2.1
holds.

Proof. The proof proceeds by induction on the number of edges in G. If there is only one edge,
condition (i) in Proposition 2.1 clearly holds. Suppose that G has more than one edge. The induction
hypothesis will be that the assertion of the lemma holds for every network with a smaller number of
edges than G. If G can be constructed by connecting two other networks in series, then, by the induction
hypothesis, (i) each of these networks is nearly parallel or consists of several nearly parallel networks
connected in series, or (ii) a forbidden network is embedded in the wide sense in at least one of them. In
the �rst case, condition (i) in Proposition 2.1 holds for G, and in the second, condition (ii) holds. Suppose,
next, that G has more than one edge, but it cannot be constructed by connecting two other networks in
series. By [13, Lemma 1] (which is essentially part of [7, Theorem 3.3]), this implies that there are two
routes in G that do not have any common edges or vertices other than o and d (i.e., parallel routes).
The edges and vertices in these two routes constitute a sub-network of G, which is homeomorphic to a
two-edge parallel network. Consider the collection of all nearly parallel sub-networks of G with two or
more routes. In this collection, choose a maximal sub-network G0, i.e., one that is not itself a sub-network
of any other member of the collection. If G0 = G, then G is nearly parallel, and the proof is complete.
Suppose, then, that some route r in G includes an edge e that is not in G0. Let u be the last vertex before
e in r that is in G0, and v the �rst vertex after e in r that is in G0. None of the edges and vertices in r
that follow u and precede v are in G0. Adding these edges and vertices to G0 results in a sub-network of G
that is homeomorphic to a network G00 obtained by adding a single edge to G0. The assumed maximality
of G0 implies that G00 is not nearly parallel. Therefore, to complete the proof of the lemma, it su¢ ces to
establish the following.

Claim. Let G00 be a network that results from adding a single edge e to a nearly parallel network G0

with two or more routes. Then, one of the forbidden networks is embedded in the wide sense in G00 or
G00 is nearly parallel.

The proof of the claim involves checking �ve cases, (a) through (e). In each case, G0 is assumed to be
homeomorphic to the corresponding network in Figure 4.

Case (a). If the end vertices of e (the edge added to G0) are o and d, then G00 is nearly parallel (specif-
ically, homeomorphic to a parallel network). If at least one end vertex is not o or d, then, depending on
whether the network G0 has (i) only two or (ii) three or more routes, the network G00 is (i) homeomorphic
to one of the networks in Figures 4(b)�4(e), or (ii) homeomorphic to a network obtained by adding one
or more edges joining o and d to one of these four networks. In the �rst case, G00 is nearly parallel, and
in the second, one of the networks in Figures 2(a) and 2(b) is embedded in it in the wide sense.

Case (b). In this case, there is a unique non-terminal vertex u in G0 of degree three or higher, and
a unique route r that does not include u. If both end vertices of e are in r (possibly coinciding with its
initial or terminal vertices o or d), then the network in Figure 2(b) is embedded in the wide sense in G00.
(For example, if one end vertex is o and the other, v, is not d, then obtaining G00 from the network in
Figure 2(b) involves subdivision of d, possibly followed by a number of edge additions and subdivisions.
The subdivision of d adds a new vertex v and an edge joining it with d, and replaces d by v as the end
vertex of e1 and e3, but not of e2 and e4, which remain incident with d.) If only one of the two end
vertices of e is in r, and this vertex is not d, then the other end vertex is in some route which also includes
u. Depending on whether that vertex follows, coincides with, or precedes u, the network in Figure 2(b),
2(c), or 2(d), respectively, is embedded in the wide sense in G00. The same three possibilities exist if both
end vertices of e are in routes that also include u, and at least one of them precedes it. If one end vertex
coincides with u and the other one follows it, then, depending on where the latter vertex lies, G00 is nearly
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parallel or has the network in Figure 2(a) embedded in it in the wide sense. Finally, if both end vertices
of e follow u, then the network in Figure 2(b) is embedded in the wide sense in G00.

Case (c). This case is very similar to the previous one, since the network in Figure 4(c) is obtained
from that in 4(b) by interchanging o and d.

Case (d). In this case, there are two non-terminal vertices in G0 of degree three or higher, u and v,
and a unique route r that does not include either of them. The analysis of the present case is identical
verbatim to that of Case (b) except for the �nal sentence, which has to be modi�ed as follows. If both end
vertices of e follow u, then, depending on whether at least one of them precedes v, one of them coincides
with v and the other one follows it, or both of them follow v, the network in Figure 2(b), 2(c), or 2(d),
respectively, is embedded in the wide sense in G00. (For example, if one end vertex of e is d and the other
one follows u but precedes v, then obtaining G00 from the network in Figure 2(b) involves: (i) subdivision
of d, which adds the vertex v and a new edge joining it with d, and replaces d by v as the end vertex of
e2 and e3, but not of e1 and e4; followed by (ii) subdivision of o, which adds the vertex u and a new edge
joining it with o, and replaces o by u as the end vertex of e3 and e5, but not of e1; possibly followed by
(iii) a number of edge additions and subdivisions.)

Case (e). The network in Figure 4(e) can be obtained from that in 4(b) by subdivision of d and from
that in 4(c) by subdivision of o. Therefore, it is not di¢ cult to see that a network homeomorphic to G00

can be obtained from a network homeomorphic to either 4(b) or 4(c) by (i) addition of an edge, followed
by (ii) subdivision of a terminal vertex. Clearly, if the network obtained in the interim stage (after the
�rst operation is carried out) is also homeomorphic to one of the networks in Figures 4(b) and 4(c),
then G00 is homeomorphic to that in Figure 4(e). If the network obtained in the interim stage is not
homeomorphic to one of these two networks, then it follows from the analysis of Cases (b) and (c) that
one of the forbidden networks is embedded in it in the wide sense, and in this case, the same is true for
G00. �
Proof of Proposition 2.1. In view of Lemma 7.1, it su¢ ces to show that if a network satis�es

condition (i), then no forbidden network is embedded in it in the wide sense. Clearly, a forbidden network
does not satisfy condition (i), because none of the networks in Figure 2 is homeomorphic to any of those
in Figure 4, or can be obtained by connecting any two other networks in series. Therefore, it is su¢ cient
to prove the following.

Claim. Suppose that a network G0 is embedded in the wide sense in a network G00 that satis�es
condition (i). Then, G0 also satis�es condition (i).

To prove this claim, it clearly su¢ ces to consider the case in which G00 is obtained from G0 by one
of the three operations de�ning embedding in the wide sense. If the operation is the subdivision of an
edge, then the two networks are homeomorphic, and so one of them satis�es condition (i) if and only
if the other network does so. Next, suppose that G00 is obtained from G0 by the addition of a single
edge e joining two existing vertices. Assume, without loss of generality, that G00 is nearly parallel. Both
end vertices of e are terminal vertices or have degree three or higher. Hence, each of them can only be
one of those marked o, d, u or v in the various networks in Figure 4. It follows that G0, which can be
recovered by removing e from G00, is necessarily a nearly parallel network or can be obtained from one by
connecting it in series with one or two networks with single edges. For example, if G00 is homeomorphic
to the network in Figure 4(e), then G0 must be homeomorphic to one of those in Figures 4(a) and 4(e)
(this is the case if e joins u and v), or to a network obtained by connecting in series a network with a
single edge and one of those in Figures 4(a)�4(c). This proves that, in the case of the addition of an edge,
G0 satis�es condition (i).

It remains to consider the case in which G00 is obtained from G0 by the subdivision of a terminal
vertex, say d. The vertex v and edge e thereby created belong to a nearly parallel network G, which
(by condition (i)) either coincides with G00 or gives it after connection in series with another network
satisfying (i). The latter possibility necessarily holds if e is the only edge incident with d, in which case
the network connected in series with G is the original network G0, which hence satis�es condition (i).
Suppose, then, that e is not the only edge incident with d. Every other edge incident with d is included in
some route that does not include v. This implies that v is a non-terminal vertex in G, and by de�nition
of terminal subdivision, its degree is three or higher. These properties of e and v essentially identify them
uniquely. In particular, they imply that G cannot be homeomorphic to one of the networks in Figures
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4(a) and 4(b), in which a vertex and an edge with these properties do not exist. If G is homeomorphic
to one of the networks in Figures 4(c) and 4(d), then v must be the vertex marked as such, and e the
edge joining it with d. This shows that, before the subdivision of d, the network that is now G was
homeomorphic to one of the networks in Figures 4(a) and 4(b), which proves that condition (i) holds for
the original network G0. The same conclusion holds if G is homeomorphic to the network in Figure 4(e),
in which case similar reasoning shows that the network that is now G was formerly homeomorphic to
that in Figure 4(b). �
An independent argument showing that a network cannot satisfy both conditions in Proposition 2.1

is given in the proof of Proposition 4.2 below. Together with Lemma 7.1, it constitutes an alternative,
partially �game-theoretic,�proof for Proposition 2.1.

Proof of Proposition 4.1. Suppose that the users� cost functions are identical up to additive
constants, and let i0 be one of the users. Then,

cia(x)� cia(y) = ci0a (x)� ci0a (y) (2)

for all users i, arcs a, 0 � x � 1 and 0 � y � 1. Let � and �̂ be two Nash equilibria, and, for each arc a,
let fa and f̂a be the �ow on a in � and �̂, respectively. For every user i and route r, de�ne �r(i) as 1 or
0 according to whether �(i) is equal to or di¤erent from r, respectively. De�ne �̂r(i) in a similar manner.
Since � is a Nash equilibrium, it follows from (1) that, for all users i,

X
r2R

24 X
a2A

r contains a

cia(fa)

35 (�r(i)� �̂r(i)) � 0 :
Since �̂ is a Nash equilibrium, similar inequalities hold with � and �̂ interchanged and fa replaced by f̂a.
It follows that, for all users i,

X
r2R

24 X
a2A

r contains a

(cia(fa)� cia(f̂a))

35 (�r(i)� �̂r(i)) � 0 :
Changing the order of summation and using (2) gives that, for all users i,

X
a2A

24 X
r2R

r contains a

(�r(i)� �̂r(i))

35 (ci0a (fa)� ci0a (f̂a)) � 0 :
Integration over i now gives X

a2A
(fa � f̂a)(ci0a (fa)� ci0a (f̂a)) � 0 :

By strict monotonicity of the cost functions, each term in the last sum is nonnegative, and is moreover
positive if fa 6= f̂a. Therefore, all terms must be zero, and moreover, fa = f̂a must hold for all arcs
a. This implies that the cost of each route for each user is the same in � and �̂ and, therefore, the
equilibrium costs are also equal. �
The following four lemmas are required for the proof of Proposition 4.2.

Lemma 7.2 The uniqueness property holds for a network G if and only if it holds for every network
homeomorphic to it, and in this case, it also holds for every network obtained from G by removal of a
single edge. If G can be constructed by connecting two other networks G0 and G00 in series, then the
uniqueness property holds for G if and only if it holds for both G0 and G00.

Proof. To prove the �rst assertion, it clearly su¢ ces to consider a network G0 obtained from G by
either the subdivision or removal of a single edge e. In the latter case, the uniqueness property clearly
holds for G0 if it holds for G, since removing an edge is equivalent to forcing its cost to be prohibitively
high for all users. In the former case, only the sum of the costs of the two parts of e (in each of the two
directions) matters, since any route in G0 that includes one of them also includes the other. Therefore,
for any given cost function for e in a particular direction, subdividing this edge and assigning half the
original cost to each of its two parts has no e¤ect on the costs of the routes. It is, therefore, clear that
the uniqueness property holds for G0 if and only if it holds for G.
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If G results from connecting two networks G0 and G00 in series, then there is a natural one-to-one
correspondence between the set of all routes in G and the Cartesian product of the set of all routes
in G0 and the set of all routes in G00. This induces a one-to-one correspondence between the set of all
strategy pro�les in G and the Cartesian product of the set of all strategy pro�les in G0 and that of all
strategy pro�les in G00. There is also a one-to-one correspondence, de�ned by restrictions, between the
set of all assignments of cost functions for G and the Cartesian product of the set of all assignments of
cost functions for G0 and those for G00. It is not di¢ cult to see that a strategy pro�le � in G is a Nash
equilibrium with respect to a given assignment if and only if the corresponding strategy pro�les �0 and
�00 in G0 and G00 are Nash equilibria with respect to the respective restrictions. If G does not have the
uniqueness property, then there is an assignment of cost functions for G with two Nash equilibria � and
� such that the �ow through some arc a in � is di¤erent from that in � . If a is in G0, say, then these arc
�ows are the same as in �0 and � 0, respectively, and therefore G0 does not have the uniqueness property.
Conversely, if G0 does not have the uniqueness property, then any assignment of cost functions for G0 with
two Nash equilibria with di¤erent arc �ows, and any assignment of cost functions for G00 with at least
one Nash equilibrium, together de�ne an assignment of cost functions for G for which the equilibrium
arc �ows are not unique. �

Lemma 7.3 The uniqueness property holds for all the networks in Figure 4.

Proof. To prove that the network in Figure 4(a) has the uniqueness property, it su¢ ces to show that
those in 4(b) and 4(c) have it. This is because, if the �rst network has more than one edge, connecting it
in series with a network with a single edge gives a network that can also be obtained from that in Figure
4(b) or the one in 4(c) by removing the edge joining o and d. Therefore, it follows from Lemma 7.2 that
if the networks in Figure 4(b) and 4(c) have the uniqueness property, so does that in 4(a). To prove that
these two networks indeed have the uniqueness property, it su¢ ces to show that the one in Figure 4(e)
has it. This is because a network with a single edge connected in series with the network in Figure 4(b)
or 4(c) can be obtained by the removal of one of the edges incident with the origin or the destination,
respectively, in 4(e). Finally, the network in Figure 4(d) has the uniqueness property if and only if the
one in 4(c) has it. This is because, in the former network, the edge preceding u and that following v
together a¤ect route costs in the same way as the single edge following v does in the latter network. In
conclusion, it su¢ ces to prove that the uniqueness property holds for the network in Figure 4(e).

Let � and �̂ be two Nash equilibria with respect to the same assignment of cost functions for the
network in Figure 4(e). For each arc a, let fa be the �ow on a in �, f̂a the �ow in �̂, and �fa = fa � f̂a.
Clearly, �fe1 +�fe2 = �fe3 +�fe4 = 0. It has to be shown that �fa = 0 for all arcs a.

Claim 1. If �fe1 � 0 � �fe3 , then �fa = 0 for all arcs a.

Suppose that the assumption of the claim holds, or, equivalently, �fe2 � 0 � �fe4 . Let A1 be the
set of all arcs with the initial vertex u and terminal vertex v, and A2 the set of all arcs with the initial
vertex v and terminal vertex u. Each arc in A1 is contained in a unique route in G. Let R+

1 be the
set of all routes that contain some arc a 2 A1 with �fa > 0. Similarly, let R�

2 be the set of all routes
that contain some arc a 2 A2 with �fa < 0. For each user i, the cost of the equilibrium route �(i) is
not greater than that of any alternative route. Therefore, if �(i) contains some arc a 2 A1, necessarily
cie1(fe1) + c

i
a(fa) � cie2(fe2), c

i
a(fa) + c

i
e4(fe4) � cie3(fe3), and c

i
a(fa) � cia0(fa0) for all a

0 2 A1. If, in
addition, �(i) 2 R+

1 (i.e., �fa > 0), then it follows from the assumption �fe1 ;�fe4 � 0 � �fe2 ;�fe3
that cie1(f̂e1) + c

i
a(f̂a) < c

i
e2(f̂e2), c

i
a(f̂a) + c

i
e4(f̂e4) < c

i
e3(f̂e3), and c

i
a(f̂a) < c

i
a0(f̂a0) for all a

0 2 A1 with
�fa0 � 0. In this case, the route �̂(i) cannot include the edges e2 or e3 or contain any arc a0 2 A1 with
�fa0 � 0 (since less costly alternatives exist, and �̂ is an equilibrium). This proves that, for all users
i with �(i) 2 R+

1 , also �̂(i) 2 R+
1 . Therefore, if R+

1 is not empty, then there must be some a 2 A1
with �fa > 0 such that the measure of the set of all users i for whom �(i) contains a is less than or
equal to the measure of the set of users i for whom �̂(i) contains a. However, this implies that fa � f̂a,
which contradicts the assumption �fa > 0. This contradiction proves that R+

1 is empty. A very similar
argument shows that R�

2 is empty. It follows that the di¤erence between the total �ow on all the arcs
belonging to A1 and that on all the arcs belonging to A2 (i.e., the net �ow from u to v, which may be
positive of negative) is either (i) the same in � and �̂, or (ii) smaller in the former. In addition, (i) holds
if and only if �fa = 0 for all arcs a belonging to either A1 or A2. It is not di¢ cult to see that if (i)
holds, then �fe1 = �fe3 , and if (ii) holds, then �fe1 < �fe3 . Because the last inequality contradicts
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the assumption �fe1 � �fe3 , this proves that �fa = 0 for all arcs a in the network.

Claim 2. If �fe1 > 0, then �fe3 � 0.

This will be proved by assuming that �fe1 ;�fe3 > 0 (and, hence, �fe2 ;�fe4 < 0), and showing that
this assumption leads to a contradiction. Let I� be the set of all users i such that e4 is in �(i) but not
in �̂(i), and I�̂ the set of all users i such that e4 is in �̂(i) but not in �(i). The di¤erence between the
measures of these two sets, �(I�)��(I�̂), equals �fe4 . A1, A2, R+

1 , and R�
2 are as in the proof of Claim

1.

Consider any user i 2 I�̂ such that �̂(i) contains some arc a 2 A1. Since �̂ is an equilibrium,
cia(f̂a) + c

i
e4(f̂e4) � c

i
e3(f̂e3). Since � is an equilibrium and e4 is not in �(i), cie3(fe3) � c

i
a(fa) + c

i
e4(fe4).

It follows, by strict monotonicity and nonnegativity of the cost functions and the assumption �fe3 >
0 > �fe4 , that c

i
a(f̂a) < cia(fa) and c

i
e4(fe4) < cie3(fe3). Since e4 is not in �(i), the latter inequality

implies that �(i) = e1 e3. The former inequality implies that �fa > 0, and, hence, �̂(i) 2 R+
1 . Next,

consider any user i 2 I�̂ such that �̂(i) does not contain any arc in A1, and, hence, �̂(i) = e2 e4. Since
�̂ is an equilibrium, (i) cie2(f̂e2) + c

i
e4(f̂e4) � c

i
e1(f̂e1) + c

i
e3(f̂e3), and (ii) c

i
e4(f̂e4) � c

i
a(f̂a) + c

i
e3(f̂e3) for

all a 2 A2. Since �fe2 ;�fe4 < 0 < �fe1 ;�fe3 , (i) implies that cie2(fe2) + c
i
e4(fe4) < c

i
e1(fe1) + c

i
e3(fe3),

from which it follows that �(i) 6= e1 e3 . Since, by assumption, �(i) does not include e4, it must contain
some a 2 A2 for which cia(fa) + cie3(fe3) � c

i
e4(fe4). Since �fe3 > 0 > �fe4 , c

i
a(fa) + c

i
e3(f̂e3) < c

i
e4(f̂e4).

It follows, by comparison with (ii) above, that �fa < 0, and, hence, �(i) 2 R�
2 . Together, this and

the previous conclusion prove that I�̂ decomposes into two disjoint sets: the set I�̂1 of all users i with
�̂(i) 2 R+

1 and �(i) = e1 e3, and the set I�̂2 of all users i with �̂(i) = e2 e4 and �(i) 2 R�
2 . Hence,

�(I�̂) = �(I�̂1) + �(I�̂2). Let I�1 and I�2 be the subsets of I� de�ned in a similar manner to I�̂1 and I�̂2
but with � and �̂ interchanged. Since these sets are clearly disjoint, �(I�1) + �(I�2) � �(I�). Therefore,
(�(I�1)� �(I�̂1)) + (�(I�2)� �(I�̂2)) � �(I�)� �(I�̂) = �fe4 < 0, which implies that �(I�̂1) > �(I�1) or
�(I�̂2) > �(I�2). However, as shown below, each of these two inequalities leads to a contradiction.

Suppose that �(I�̂1) > �(I�1). This means that there are more users i with �̂(i) 2 R+
1 and �(i) = e1 e3

than users i with �(i) 2 R+
1 and �̂(i) = e1 e3. By de�nition of R+

1 (each element of which is the unique
route containing a particular arc a 2 A1 with �fa > 0), for every r 2 R+

1 , there are more users i with
�(i) = r than users i with �̂(i) = r. Therefore, there are more users i with �(i) 2 R+

1 and �̂(i) 62 R+
1 than

users i with �̂(i) 2 R+
1 and �(i) 62 R+

1 . Since the latter kind of users includes all those for whom �̂(i) 2 R+
1

and �(i) = e1 e3, it follows from the assumption at the beginning of this paragraph that there are some
users i with �(i) 2 R+

1 and �̂(i) 62 R+
1 for whom �̂(i) 6= e1 e3. For each of these users i, �(i) contains some

arc a 2 A1 with �fa > 0. Since � is an equilibrium, cia(f̂a) < cia(fa) � cia0(fa0) � cia0(f̂a0) for every arc
a0 2 A1 with �fa0 � 0, which implies that such an arc cannot be contained in �̂(i). Therefore, none of the
arcs in A1 is contained in �̂(i). Since also �̂(i) 6= e1 e3, the route �̂(i) must begin with e2. Since � and �̂
are equilibria, the inequalities cie1(fe1)+c

i
a(fa) � cie2(fe2) and c

i
e2(f̂e2) � c

i
e1(f̂e1)+c

i
a(f̂a) hold. However,

as the cost functions are strictly increasing and �fe1 ;�fa > 0 > �fe2 , these two inequalities contradict
each other. A similar contradiction is reached if it is assumed that �(I�̂2) > �(I�2). In this case, there
are more users i with �(i) 2 R�

2 and �̂(i) = e2 e4 than users i with �̂(i) 2 R�
2 and �(i) = e2 e4. Since,

for every r 2 R�
2 , there are more users i with �̂(i) 2 r than users i with �(i) = r, this implies that there

are some users i with �̂(i) 2 R�
2 and �(i) 62 R�

2 for whom �(i) 6= e2 e4. For each of these users i, �̂(i)
contains some arc a 2 A2 with �fa < 0. Since �̂ is an equilibrium, cia(fa) < cia(f̂a) � cia0(f̂a0) � cia0(fa0)
for every arc a0 2 A2 with �fa0 � 0, which implies that such an arc cannot be contained in �(i).
Together with the assumption concerning i, this implies that �(i) must begin with e1. Since � and �̂ are
equilibria, the inequalities cie1(fe1) � cie2(fe2) + c

i
a(fa) and c

i
e2(f̂e2) + c

i
a(f̂a) � cie1(f̂e1) hold. However,

since �fe1 > 0 > �fe2 ;�fa, these two inequalities contradict each other. This completes the proof of
Claim 2.

Claim 3. �fa = 0 for all arcs a.

This is established in Claim 1 under the assumption that �fe1 � 0 � �fe3 . By symmetry, this also
holds if �fe1 � 0 � �fe3 . By Claim 2, �fe1 and �fe3 cannot both be (strictly) positive. By symmetry,
they cannot both be negative, either. Therefore, the assertion of the claim always holds. �

Lemma 7.4 For each of the forbidden networks, there is an assignment of cost functions with two strict
Nash equilibria � and � such that each user�s equilibrium cost in � is di¤erent from that in � .
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Proof. The cost functions given in Example 1.1 specify such an assignment for the networks in
Figures 2(a) and 2(b). The modi�ed version of Example 1.2 given in the paragraph that follows Corollary
4.1 speci�es such assignments for the networks in Figures 2(c) and 2(d). �

Lemma 7.5 Let G0 be a network for which there exists an assignment of cost functions with two strict
Nash equilibria � and � as in Lemma 7.4. Then, the same is true also for every network G00 in which G0

is embedded in the wide sense. That is, there is an assignment of cost functions for G00 with two strict
Nash equilibria, such that each user�s equilibrium cost in one equilibrium is di¤erent from that in the
other equilibrium.

Proof. Clearly, it su¢ ces to consider the case in which G00 is obtained from G0 by one of the three
operations de�ning embedding in the wide sense. If the operation is the subdivision or addition of an
edge, the conclusion is immediate. In the former case, the assignment of cost functions for G00 is the same
as for G0 except that, for each user, the cost in each direction of the edge that was subdivided is equally
divided between its two parts. In the latter case, the cost for each user of the edge that was added is
set higher than the user�s equilibrium costs in � and � . It remains to consider the case in which G00 is
obtained from G0 by the subdivision of a terminal vertex.

Without loss of generality, the cost of each edge in G0 incident with the origin or the destination is
greater than unity for all users. Terminal subdivision adds a new edge e, which is incident with the origin
or the destination, and is appended to some users�equilibrium routes in � or in � . Provided that the cost
assigned to e is su¢ ciently low, the routes with the appended edge remain equilibrium routes for these
users, and the two equilibrium costs remain distinct. Speci�cally, this is the case if the cost of e for each
user is less than: (i) unity, (ii) the di¤erence between the cost of the equilibrium route and that of any
alternative route in G0, both in � and in � (these di¤erences are all greater than zero, since the equilibria
are strict), and (iii) the absolute value of the di¤erence between the user�s equilibrium costs in � and �
(which, by assumption, are not equal). �
Proof of Proposition 4.2. Clearly, for every network G, the �rst condition implies the second,

and the second implies the third. By Lemma 7.1 (or Proposition 2.1), one of the two conditions in
Proposition 2.1 holds for G. If (i) in Proposition 2.1 holds, then, by Lemmas 7.2 and 7.3, G has the
uniqueness property. If (ii) holds, then, by Lemmas 7.4 and 7.5, there is an assignment of cost functions
for G with two strict Nash equilibria such that each user�s equilibrium cost in one equilibrium is di¤erent
from that in the other. Therefore, either G satis�es all three conditions in Proposition 4.2, or it does not
satisfy any of them. �
Proof of Theorem 4.1. The proof of the theorem is contained within that of Proposition 4.2. �
Proof of Theorem 5.1. Suppose that condition (i) does not hold. By the same argument used in

the proof of Proposition 4.2, there is an assignment of cost functions for G with two strict Nash equilibria
such that the �ow on some arc is not the same in both equilibria. Moreover, inspection of the proofs of
Lemmas 7.4 and 7.5 shows that there is a partition of the population into three user classes such that
this assignment is in the corresponding space G. Since the two equilibria are strict, there is some � > 0
such that each of them is also an equilibrium in every assignment of cost functions in G that is less than
a distance � from the original one. This shows that the set of all assignments of cost functions for which
all Nash equilibria are equivalent is not dense in G, and thus proves that condition (ii) in the theorem
implies (i). It remains to prove the converse implication.

Suppose that the network G satis�es condition (i). Fix some partition of the population, with user
classes I1; I2; : : : ; In, and consider the corresponding space of assignments of cost functions G. For each
element of G and each user class Im, the number of minimal-cost routes for this user class, which will be
denoted by 'm, is the same in all Nash equilibria. This is because the cost for each user of each route is
determined by the arc �ows, which, by Theorem 4.1, are the same in all Nash equilibria. Therefore, the
mean number of minimal-cost routes, ' =

Pn
m=1 �(Im)'m, is also the same in all equilibria, and thus

de�nes a real-valued function on G.

Claim 1. The function ' : G ! IR is upper semi-continuous and has a �nite range.

The proof of the assertion that ' is upper semi-continuous is very similar to that of [12, Lemma 3.4],
and is omitted. The second assertion follows from the fact that the cardinality of the range of ' does not
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exceed jRjn, the number of routes in G to the power of the number of user classes.

Claim 2. For every assignment of cost functions in G that is a point of continuity of ', all Nash
equilibria are equivalent.

To prove this claim, consider an assignment of cost functions in G with two non-equivalent Nash
equilibria � and �̂. It has to be shown that ' has a discontinuity at this assignment. For each user
class Im and path p, let fmp denote the measure of the set of all users i 2 Im such that p is contained

in (or coincides with) �(i), and f̂mp the corresponding quantity for �̂. Since the two equilibria are not

equivalent, there is a user class Im0 such that f
m0
a0 6= f̂m0

a0 for some arc a0. By assumption, G is nearly
parallel or consists of several nearly parallel networks connected in series. The arc a0 is in one of these
networks, G0. Without loss of generality, it may be assumed that, for each user i, the routes �(i) and
�̂(i) coincide outside G0. (If this is not so, �̂ can be replaced by another Nash equilibrium, in which the
users�routes agree with their routes in �̂ inside G0 and with those in � outside G0.) Let R0 denote the set
of all routes in G0. The arc a0 is contained in some r0 2 R0 with fm0

r0 6= f̂m0
r0 . Therefore, there is a real

number � such that the a¢ ne combination ~fmr
def
= � fmr + (1 � �)f̂mr is nonnegative for all user classes

Im and r 2 R0, and zero for some Im1
and r1 2 R0 with fm1

r1 6= f̂m1
r1 . Since the population measure �

is non-atomic and
P

r2R0
~fmr = �(Im) for all user classes Im, there is a strategy pro�le ~� that coincides

with �(i) and �̂(i) outside G0 and has the property that, for every user class Im and r 2 R0, the measure
of the set of all users i 2 Im such that r is contained in (or coincides with) ~�(i) is equal to ~fmr . Since, by
Theorem 4.1,

Pn
m=1 f

m
a =

Pn
m=1 f̂

m
a for all arcs a, the �ow on each arc in ~� is the same as in � and �̂.

For every user class Im and r 2 R0, ~fmr > 0 only if fmr > 0 or f̂mr > 0, and, hence, only if r is contained
in some minimal-cost route for user class Im. Therefore, ~� is a Nash equilibrium. Before the proof of
Claim 2 can be completed, the following has to be established.

Claim 3. There is some arc a1 in G0 that is contained in r1 and for which fm1
a1 > 0 or f̂m1

a1 > 0, but
~fm1
a1 = 0.

This is easily shown if G0 is homeomorphic to one of the networks in Figures 4(a)�4(d). In each of these
networks, each route contains some arc that is not contained in any other route. Since by construction
fm1
r1 6= f̂m1

r1 and ~fm1
r1 = 0, this implies that similar inequality and equality hold with the route r1 in G0

replaced by one of its arcs a1. If G0 is homeomorphic to the network in Figure 4(e), there are two cases to
consider. If the two non-terminal vertices with degree three or higher, u and v, are both included in r1,
then r1 contains an arc a1 that is not contained in any other route in G0. Therefore, this case is similar
to the one considered above. It remains to consider the case in which only u, say, is included in r1. In
this case, there is a unique route r2 in G0 that does not share any arc with r1, as well as at least one
route r3 that shares with r1 only the arcs that follow u, and at least one route r4 that shares with r1
only the arcs that precede u. Any such pair of routes r3 and r4 together contain all the arcs contained
in r1 and r2, and at least two additional arcs. Therefore, if ~fm1

r3 > 0 and ~fm1
r4 > 0, the sum of the costs

of r3 and r4 for user class Im1
exceeds that of r1 and r2, which implies that at least one of them is not

contained in any minimal-cost route. However, it is shown above that ~fmr > 0 (for r 2 R0) implies that
r is contained in some minimal-cost route for user class Im. Therefore, ~fm1

r3 = 0 or ~fm1
r4 = 0. It follows,

as also ~fm1
r1 = 0, that r1 contains at least one arc a1 with ~fm1

a1 = 0. Because by assumption fm1
r1 is not

equal to f̂m1
r1 , at least one of them is not zero. If fm1

r1 > 0, then fm1
a1 > 0, and if f̂m1

r1 > 0, then f̂m1
a1 > 0.

This completes the proof of Claim 3.

The proof of Claim 2 can now be completed. Any arc a1 as in Claim 3 is included in at least one
(since fm1

a1 > 0 or f̂m1
a1 > 0), but not all (since ~fm1

a1 = 0), minimal-cost routes for user class Im1
. For any

� > 0, ~� is a Nash equilibrium also with respect to the assignment of cost functions obtained from that
considered above by adding � to each cost function cia(x) with i 2 Im1

and a = a1, and leaving all the
other cost functions unchanged. The set of minimal-cost routes for user class Im1 in the new assignment
is a proper subset of that in the original assignment: It consists of all the minimal-cost routes for the
original assignment that do not contain a1. For any other user class, the two sets are equal. Therefore,
the value of ' for the new assignment is smaller than the original value by at least �(Im1

). Because the
distance between the two assignments is �, and hence can be chosen to be arbitrarily small, this proves
that ' has a discontinuity at the original assignment. This completes the proof of Claim 2.

Together with Claims 1 and 2, the following claim completes the proof of the theorem.
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Claim 4. In every metric space X , the set of all points of continuity of an upper semi-continuous
function g : X ! IR with a �nite range is open and dense.

Every point of continuity of such a function g has an open neighborhood in which this function is
constant, and hence continuous. This proves that the set of all points of continuity is open. To prove
that this set is dense in X , consider any open set U . Let x0 2 U be such that g(x0) = minx2U g(x). By
upper semi-continuity of g, there is a neighborhood V of x0 such that g(x) � g(x0) for all x 2 V . Clearly,
in U \ V , g(x) = g(x0) for all x, and g is therefore continuous at x0. �
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