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Abstract 

When a group of people with identical preferences but different abilities in identifying 

the best alternative (e.g., a jury) takes a vote to decide between two alternatives, the 

question of strategic voting arises. That is, depending on the voting rule used to 

determine the collective decision, it may or may not be rational for group members to 

always vote for the alternative their private information indicates is better (i.e., vote 

informatively). In fact, we show in this paper that, if a qualified majority rule is used, 

informative voting is rational only if the rule is optimal in the class of all qualified 

majority rules, in the sense that, when everybody votes informatively, none of the 

other rules in this class would yield a higher expected utility. However, this necessary 

condition is not sufficient for informative voting to be rational. Specifically, even if 

the qualified majority rule used is optimal in the above sense, some of those who are 

least competent in correctly identifying the better alternative may increase the 

expected utility by sometimes voting for the alternative they believe to be inferior. A 

sufficient (but not necessary) condition for informative, non-strategic, voting to be 

rational is that the voting rule is optimal among the class of all qualified weighted 

majority rules, i.e., rules assigning (potentially) unequal weights to individuals. 
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Introduction 

In the context of decisions by committees, unanimity of preferences among committee 

members does not guarantee informative voting. That is, it may sometimes be rational 

for certain members to vote for the alternative they believe to be inferior.1 This is 

because, when a rational committee member decides on his vote, he should presume 

that his vote is pivotal, or decisive, for only in this case does the vote matter. If the 

committee’s optimal decision given the member’s private information is different 

from the optimal decision conditional on the member’s vote being pivotal, it would be 

irrational for him to vote in an informative manner. The problem, of course, is that 

non-informative, strategic, voting may be better than informative voting only if 

practiced by a single member only. If everybody in the committee votes strategically, 

the decision the committee reaches may be suboptimal given the members’ private 

information. Specifically, this is potentially the case if the aggregation rule used for 

mapping the members’ votes to a collective decision is premised on informative 

voting. Thus, it is not sufficient for a “good” aggregation rule to be optimal assuming 

that the committee members’ votes truly reflect their beliefs as to the best alternative;2 

it must also be rational for each member to vote in an informative manner when all 

the others do so.  

   In this paper, we limit ourselves to a setting in which a group of people must choose 

between two alternatives. The desirability of each alternative depends on which of 

two possible states of the world has obtained. All group members share the same 

views about the costs and benefits of choosing each alternative in each state. 

However, because of different private information, members may differ in their 

assessments as to how likely each state is to have obtained. One example of this is a 
                                                 

1 The growing literature on strategic voting includes the papers of Austen-Smith and Banks (1996), 

Feddersen and Pesendorfer (1996, 1997, 1998), Ladha at al. (1996), McLennan (1998), Myerson 

(1998), Wit (1998), Dekel and Piccione (2000), Persico (2000), Duggan and Martinelli (2001), and Li 

et al. (2001). 

2 Optimal decision-making under the assumption of informative voting has been studied 

extensively. Earlier studies of two-alternative models include Nitzan and Paroush (1982, 1985), 

Grofman et al. (1983), and Shapley and Grofman (1984). Other related papers include Ben-Yashar and 

Nitzan (1997, 1998), Karotkin and Paroush (1995), Sah and Stiglitz (1988), Sah (1990, 1991), and 

Klevorick et al. (1984). Extensions to the two-alternative model have been suggested by Ben-Yashar 

and Paroush (2001), Ben-Yashar et al. (2001), and Ben-Yashar and Kraus (2002). 
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jury deciding on whether to acquit or convict a defendant. The desirability of each 

alternative depends on whether the defendant is innocent or guilty. Owing to 

differences in life experience or competence, jurors may reach different conclusions 

regarding the defendant’s innocence or guilt. Another example is a panel of medical 

experts deciding whether a patient should undergo a particular risky operation. All the 

panel members agree on the benefits of a successful operation (e.g., the patient will 

recover completely), the harmful consequences of a failure (e.g., the patient may die), 

and the consequences of not performing the operation (e.g., the patient will become 

seriously handicapped). The experts also share similar moral values and attitudes 

toward risk, and they all know the patient’s medical history and get a chance to 

examine him. Still, their (possibly subconscious) assessments of the probability of 

success (i.e., that the state of the world is “the operation will, or would, be 

successful”) may well differ. Therefore, some of them may recommend operating the 

patient while others may not. For both the jury and the panel of medical experts, 

differences in private information do not necessarily stem from knowledge of 

different facts pertaining to the case at hand. Rather, they may reflect differences in 

competence, or level of expertise, in correctly interpreting publicly available data. The 

levels of expertise may be state-dependent. For example, a doctor relying on a test 

that tends to over-diagnose a particular medical condition may have a relatively high 

rate of success in diagnosing the condition in patients who actually suffer from it, but 

his success in correctly diagnosing healthy patients will be relatively low. Such an 

interpretation of private information makes it redundant to consider public 

information explicitly, since such information may be incorporated into the common 

prior probabilities of the two states. However, other interpretations of the private 

information or the common prior probabilities are possible. For example, a state’s 

prior probability may be interpreted as the probability that would be assigned to it by 

someone who is not familiar with the facts of the particular case at hand, e.g., who 

only knows the average rate of success in the operation under consideration.  

   As shown by Austen-Smith and Banks (1996), when all committee members are 

equally competent in identifying the state of the world, the problem of non-

informative voting is tightly linked with non-optimality of the aggregation rule. 

Specifically, an aggregation rule is optimal, assuming informative voting by all 

committee members, if and only if, when the rule is used, it is rational for each 
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member to vote informatively if all the others do. However, in this paper we show that 

this result cannot be extended to the case of heterogeneous committees, in which 

members differ in their ability to correctly identify the state.  

   Austen-Smith and Banks (1996) only consider qualified majority rules, which are 

anonymous and monotonic aggregation rules. Anonymity means that whether one 

alternative or the other is chosen only depends on the number of votes for each 

alternative (abstentions are not allowed). Monotonicity means that a person who did 

not vote for the alternative chosen could not have changed the collective decision by 

voting for that alternative. If all committee members are identical, then a qualified 

majority rule is the natural choice. Indeed, the optimal aggregation rule, under the 

assumption of informative voting, is a qualified majority rule (Ben-Yashar and 

Nitzan, 1997). Moreover, a qualified majority rule may still be a plausible choice even 

if committee members do differ in their innate abilities. This is because differences 

among the members would only be correctly reflected by an aggregation rule 

specifically tailored to their case. If, for example, the aggregation rule is determined 

before the identity of the committee members is determined, then it is likely to be 

anonymous. Anonymity may also be a necessity stemming from other constraints, for 

instance, a need to keep the votes confidential. Therefore, this paper considers both 

qualified majority rules that are optimal among the class of all such rules, and general 

aggregation rules that are optimal among the class of all aggregation rules. A qualified 

majority rule that is optimal in the former sense need not be optimal in the latter 

sense. Indeed, for heterogeneous committees, the optimal aggregation rule need not be 

anonymous. However, as shown by Ben-Yashar and Nitzan (1997; see also 

Appendix A below), the optimal aggregation rule is always equivalent to some 

qualified weighted majority rule. That is, when all the committee members are not 

equally good at identifying the state of the world, there are weights that can be 

assigned to them, reflecting the different levels of expertise, and an optimal 

aggregation rule that specifies the minimum weighted number of votes required for 

the choice of each alternative. In the special case of homogeneous committees, the 

weights are equal, and the optimal aggregation rule is, therefore, a qualified majority 

rule. 

   The main result of this paper is that, for heterogeneous committees, one, and only 

one, direction in the result of Austen-Smith and Banks (1996) holds for each class of 
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aggregation rules. In the class of qualified majority rules, optimality of the 

aggregation rule is a necessary condition for informative voting to be rational. In the 

class of all aggregation rules, optimality is a sufficient condition for informative 

voting to be rational. As the examples in the next section show, in both cases, the 

other proposition (“necessary” instead of “sufficient,” or vice versa) does not hold. 

These results immediately imply that of Austen-Smith and Banks (1996). This is 

because, as mentioned above, for homogeneous committees there is always a qualified 

majority rule that is optimal among the class of all aggregation rules. 

   For strategic, non-informative, voting to be a potential problem, some asymmetry 

between the two states of the world has to exist. The two states may differ in the way 

they are treated by the aggregation rule (e.g., an asymmetric tie-breaking rule), their 

prior probabilities, the probability of each committee member being able to correctly 

identify the state, or the cost of making the wrong collective decision. In this paper, 

we show that if no such asymmetries exist, informative voting is rational. Thus, under 

complete symmetry between the two states, informative voting is always rational, and 

does not depend on the aggregation rule being optimal. The intuition underlying this 

result is that, under symmetry, the probability of each person being pivotal is the same 

in both states. Therefore, it is perfectly rational for each committee member to behave 

as if the collective decision is determined entirely by his vote. 

Examples 

Example 1. There are two possible states of the world, one of which is slightly more 

likely than the other. A two-member committee is assigned to identify the state. The 

cost of misidentification is the same for both states. One member is an expert, who 

always correctly identifies the state. The other member is slightly less competent: his 

chance of being right, in both states, is just below unity. Clearly, the optimal qualified 

majority rule is the one in which the state both members vote for is chosen when the 

votes are identical, and the more probable state of the world is chosen in the case of a 

tie. This rule does not elicit informative voting. Specifically, the non-expert can 

increase the probability of choosing the true state to unity by always voting for the 

less probable state. This shows that optimality of a qualified majority rule among the 

class of all such rules does not guarantee that informative voting is rational. (As 

indicated above, the converse is true: If informative voting is rational, the qualified 

majority rule used is optimal among the class of all such rules.) 
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Example 2. In this example, both states have the same prior probability. 

Misidentifying the state carries the same cost in both states. There are three committee 

members. One of them is an expert, who always correctly identifies the state. The 

other two are non-experts, whose probability of being right is greater than one-half 

but less than unity; this probability is the same for both members and both states. In 

the class of all anonymous aggregation rules, the optimal rule is the simple majority 

rule. When this rule is used, informative voting is rational. In particular, if either of 

the non-experts deviates by voting in a non-informative manner, the probability of 

choosing the true state decreases. However, if both non-experts deviate, with one of 

them always voting for one state and the other for the other state, the probability of 

success increases to unity. This is the same rate of success as with the optimal 

aggregation rule, which adopts the expert’s opinion. This shows that rationality of 

informative voting does not guarantee that a qualified majority rule that is optimal 

among the class of all such rules is also optimal in the class of all aggregation rules. 

(As indicated above, the converse is true: If the aggregation rule used is optimal in the 

latter sense, informative voting is rational.) 

The model 

There are n committee members who must choose between two alternatives, denoted 

+1 and −1 (e.g., whether to acquit or convict a defendant). The outcome of the 

committee’s decision depends both on the alternative chosen and on the “state of the 

world,” which is also either +1 or −1 (e.g., the defendant is innocent or guilty). Thus, 

the outcome depends on which of the four state-alternative pairs obtains. Any 

probability distribution over these four pairs is called a lottery. The n committee 

members share a common preference relation over lotteries, which satisfies the 

conditions for the existence of von Neumann-Morgenstern utility. Thus, all members 

strictly prefer one lottery to the other if and only if the expected utility of the first 

lottery is higher than the second. In state +1, the members’ (common) utility is greater 

if alternative +1 is chosen than if the other alternative is chosen. The difference in 

utility, c+, represents the cost of making the “wrong” decision in state +1. Similarly, in 

state −1, the utility of choosing −1 is greater from the utility of choosing +1 by a 

positive amount c−.  
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   The state of the world is determined by a random variable z, which is +1 with 

probability 0 < π+ < 1 and −1 with probability π− = 1 − π+. Individual committee 

members do not generally know the state of the world. However, in each state, each 

member i receives a random private signal si, which may be +1 or −1. The vector (s1, 

s2, …, sn) of signals is denoted by s. Conditional on the state, the n signals are 

independent. The signals represent the members’ beliefs as to which of the two 

alternatives is better. These beliefs may be based on some private information the 

members have or their individual interpretations of the publicly available data. The 

probability that member i’s signal coincides with the state is pi
+ in state +1 and pi

− in 

state −1, with pi
+, pi

− > 0 and pi
+ + pi

− ≥ 1. The latter inequality expresses the 

assumption that each member’s probability of receiving the signal +1 is at least as 

high in state +1 as in state −1, and similarly with +1 and −1 interchanged. (For 

example, the probability that a juror would believe an innocent defendant to be 

innocent is at least equal to the probability that he would believe a guilty defendant to 

be innocent.)3  

   After the signals are received, the committee takes a vote.4 Each committee member 

can only vote +1 or −1; abstentions are not allowed. A (pure) voting strategy for 

member i is a rule that determines his vote xi as a function ϕi of the private signal he 

received (i.e., xi = ϕi(si)). If the signal and the vote are always the same (i.e., xi = si), 

then member i is said to vote informatively. The committee’s collective decision is 

determined by a particular aggregation (or voting) rule that assigns one of the 

alternatives +1 or −1 to each voting vector x = (x1, x2, …, xn). An aggregation rule is 

anonymous if the collective decision depends only on the number x+ of members 

                                                 
3 The significance and the justification of the assumption pi

+ + pi
− ≥ 1 are further clarified by the 

results and discussion in Appendices A and B. Note that, mathematically, this assumption involves 

minimal loss of generality. Indeed, since pi
+ + pi

− < 1 would imply (1 − pi
+), (1 − pi

−) > 0 and (1 − pi
+) + 

(1 − pi
−) > 1, it is always possible to make the above assumption hold by reversing the interpretation of 

i’s signals, if necessary.  

4 In reality, information aggregation may also involve pre-voting communication among the 

committee members, in which private information is shared. Since our concern is only with the 

strategic aspects of voting, we ignore this possibility here. This does not necessarily make our model 

unrealistic. “Private information” may be equated with intuition, which is based on a person’s life 

experience but may not be easily communicated to others. 
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whose vote is +1  (or, equivalently, on the number x− of −1 votes), but not on their 

identity. A special case of this is a trivial aggregation rule, in which the collective 

decision is always +1 or always −1. An aggregation rule is monotonic if, for every 

pair of voting vectors x and x' with xi ≤ x'i for all i, if the collective decision +1 is 

assigned to x, then it is also assigned to x'. A qualified majority rule is a non-trivial 

anonymous and monotonic aggregation rule. Such an aggregation rule is completely 

specified by the quota, which is the integer 1 ≤ q ≤ n such that the collective decision 

is +1 if and only if x+ ≥ q. A weighted majority rule is the simplest kind of non-

anonymous monotonic aggregation rule. In such a rule, the collective decision is 

determined by a particular weighted average of the votes. That is, each member i is 

assigned a fixed weight wi ≥ 0 and the collective decision is +1 if and only if ∑i wi xi 

≥ 0. A qualified weighted majority rule is similar except that the collective decision is 

+1 if and only if ∑i wi xi ≥ q, where q is some fixed real number.  

Rationality of informative voting and optimality of the 

aggregation rule 

For a given profile of voting strategies, it is possible to compute, for each aggregation 

rule, the expected utility if this rule is used. An optimal aggregation rule is one that 

maximizes the expected utility under the assumption that all committee members vote 

informatively. More generally, an aggregation rule of a particular kind is said to be 

optimal among the class of all aggregation rules of that kind if, under the assumption 

of informative voting, none of the other rule in the class would give a higher expected 

utility. For a given aggregation rule, informative voting is rational if the expected 

utility when all committee members vote informatively is greater than or equal to the 

expected utility when all members except one vote informatively, and that member 

uses some other voting strategy. Equivalently, informative voting is rational if 

everybody voting informatively is a Nash equilibrium in the game in which the payoff 

of each committee member is the expected utility.  

   The following connection between optimality of an aggregation rule under the 

assumption of informative voting and rationality of informative voting when this rule 

is used is almost self-evident. 



 

9 

Proposition 1. When an optimal aggregation rule is used, informative voting is 

rational. 

Proof. Suppose that the aggregation rule used is optimal. If for some committee 

member, say the first one, there were a voting strategy ϕ1 yielding a higher expected 

utility than informative voting when all the other members vote informatively, then 

incorporating that voting strategy into the aggregation rule would give a new 

aggregation rule that yields a higher expected utility than the original one when all the 

committee members vote informatively. Specifically, the new aggregation rule is 

defined by the property that to each voting vector (x1, x2, …, xn) it assigns the same 

collective decision as the original rule assigns to (ϕ1(x1), x2, …, xn).  n 

   As already mentioned, Ben-Yashar and Nitzan (1997) showed that every optimal 

aggregation rule is equivalent to some qualified weighted majority rule in that, to each 

voting vector, both rules assign the same collective decision. We give our version of 

the proof of this result in Appendix A. Together with Proposition 1, Ben-Yashar and 

Nitzan’s result immediately implies the following proposition. 

Proposition 2. Suppose that a qualified weighted majority rule is used. If the rule is 

optimal among the class of all qualified weighted majority rules, then informative 

voting is rational. 

   As Example 2 above shows, in both Propositions 1 and 2 the converse assertion 

does not hold. As Example 1 shows, Proposition 2 would not be true if “qualified 

weighted majority rule(s)” were replaced by “qualified majority rule(s),” i.e., if only 

rules assigning equal weights to all committee members were considered. On the 

other hand, for this kind of aggregation rules the converse to the assertion of 

Proposition 2 does hold. This is shown by the following proposition. 

Proposition 3. Suppose that a qualified majority rule is used. If informative voting is 

rational, then the rule is optimal among the class of all anonymous aggregation rules.  

Proof. Suppose that informative voting is rational. In particular, each committee 

member i who receives the signal +1 should vote +1, assuming that everyone else also 

votes in accordance with his private signals. Equivalently, if i changed his voting 

strategy by voting −1 whenever his signal is +1, the expected utility would not 
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increase. This assertion is equivalent to the following inequality:  

 c+ PP(z = +1, si = +1, s+ = q) ≥ c− PP(z = −1, si = +1, s+ = q), (1) 

where the additional condition that the number s+ of committee members whose signal 

is +1 equals the quota q comes from the fact that only in this case, i.e., when member i 

is pivotal, does changing his vote matter. The probability on the left-hand side of (1) 

is equal to π+ PP(si = +1, s+ = q | z = +1), i.e., the prior probability that the state of the 

world is +1 times the conditional probability that i’s signal is +1 and s+ is equal to q, 

given that the state is +1. This conditional probability is equal to the sum of the 

conditional probabilities of all the vectors of signals with these two properties. The 

right-hand side of (1) can be changed in a similar way. Therefore, (1) is equivalent to  

 c+ π+ ∑
x

xi = +1
x+ = q

 PP(s = x | z = +1)  ≥  c− π− ∑
x

xi = +1
x+ = q

 PP(s = x | z = −1). (2)  

Summing over i = 1, 2, …, n gives 

 c+ π+ ∑
x

x+ = q

 q PP(s = x | z = +1)  ≥  c− π− ∑
x

x+ = q

 q PP(s = x | z = −1), (3)  

where the factor q comes from the fact that each voting vector x that appears in the 

summation does so exactly q times (since this is the number of committee members i 

with xi = +1). As the q’s in (3) cancel out, this inequality is equivalent to 

 c+ PP(z = +1, s+ = q)  ≥  c− PP(z = −1, s+ = q). (4)  

This proves that changing the aggregation rule by choosing −1 when there are exactly 

q members whose vote is +1 would not have increased the conditional expected 

utility. A similar proof shows that the assumption that it is rational for committee 

members receiving the signal −1 to vote −1 implies that an inequality opposite to that 

in (4) holds when q is replaced by q − 1. Thus, when q − 1 members receive the signal 

−1, the collective decision −1 is optimal. To complete the proof of this proposition, 

we need the following general lemma, the proof of which is given in Appendix B. 
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Lemma. For every α and β such that PP(s+ = α) > 0 and PP(s+ = β) > 0, if β > α, then  

PP(z = +1 | s+ = β) ≥ PP(z = +1 | s+ = α). 

   According to the lemma, the conditional probability that the state is +1 is a 

nondecreasing function of the number of committee members receiving the signal +1. 

Equivalently, the conditional probability that the state is −1 is a nonincreasing 

function of that number. Now, suppose that PP(s+ = q) > 0. The inequality (4) is then 

equivalent to c+ PP(z = +1 | s+ = q)  ≥  c− PP(z = −1 | s+ = q). By the lemma, a similar 

inequality holds when q is replaced by any bigger number β with PP(s+ = β) > 0. 

Therefore, when β members receive the signal +1, the collective decision +1 is 

optimal. Similarly, if PP(s+ = q − 1) > 0, then an inequality opposite to that in (4) holds 

when q is replaced by any smaller number α with PP(s+ = α) > 0. This proves that, if 

PP(s+ = q) > 0 and PP(s+ = q − 1) > 0, then the qualified majority rule used is optimal 

among the class of all anonymous aggregation rules. A similar conclusion is also true 

if one or both of these inequalities do not hold. Suppose, for example, that PP(s+ = q) 

= 0. Then, in both states of the world, s+ is always different from q. Since, by 

assumption, pi
+, pi

− > 0 for all members i, it follows that s+ is always greater than q in 

state +1 and less than q in state −1. (If, for example, there were some α < q such that 

PP(s+ = α | z = +1) > 0, then a similar inequality would be true also for α + 1, α + 2, …, 

n, and in particular for q, which contradicts the assumption.) Hence, s+ ≥ q if and only 

if the state of the world is +1. It follows that the qualified majority rule used is, in fact, 

optimal among the class of all aggregation rules. Indeed, if all committee members 

vote informatively, the collective decision always coincides with the true state of the 

world. n 

Who should vote non-informatively? 

The difference between qualified majority rules and qualified weighted majority rules 

can also be looked at from another point of view. As Example 2 shows, when a non-

optimal qualified weighted majority rule is used, informative voting may be rational. 

Thus, it may not be possible for a single committee member to offset the non-

optimality of the aggregation rule by voting in a non-informative manner; it may take 

more than one member to make a positive change. By contrast, Proposition 3 shows 
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that, if a qualified majority rule that is not optimal among the class of all such rules is 

used, then informative voting is irrational. Thus, there is always some committee 

member who, by voting non-informatively, can at least partially offset the non-

optimality of the aggregation rule. This raises the following question: If a qualified 

majority rule that is not optimal among the class of all such rules is used, who should 

vote non-informatively? As the next proposition shows, the answer is “one of the 

members with minimal competence in identifying the state of the world.” This result 

simplifies the test for rationality of informative voting under a qualified majority rule, 

since it implies that it suffices to check the voting strategies of members with minimal 

competence. A committee member i will be said to be more competent than another 

member j if pi
+ ≥ pj

+ and pi
− ≥ pj

−, and at least one of the inequalities is strict. A 

committee member with minimal competence is one who is not more competent that 

any other member. 

Proposition 4. Suppose that a qualified majority rule is used. A necessary and 

sufficient condition for informative voting to be rational is that none of the committee 

members with minimal competence can increase the expected utility by adopting a 

non-informative voting strategy when all the other members vote informatively.  

Proof. We will show that, if it is rational for committee member i to vote +1 whenever 

his signal is +1, then the same is true for any member j more competent than i. (The 

proof for −1 signals is similar.) Since the inequalities (1) and (2) are equivalent, it 

suffices to show that, for every 1 ≤ q ≤ n, if (2) holds, then a similar inequality holds 

with i replaced by j. Consider how this replacement changes the sum on the left-hand 

side of (2). An equivalent way of implementing this change is replacing the voting 

vector x in the summand with the vector x(ij), in which the ith and jth coordinates are 

exchanged. The new sum is 

∑
x

xi = +1
x+ = q

 PP(s = x(ij) | z = +1). 

For each voting vector x with xi = +1, either x(ij) is equal to x, or it differs from x only 

in its ith coordinate, which is −1 rather than +1, and in its jth coordinate, which is +1 

rather than −1. In the latter case, pi
+ (1 − pj

+) PP(s = x(ij) | z = +1) = (1 − pi
+) pj

+ PP(s = x | 

z = +1) by the conditional independence of the members’ signals. Since pj
+ ≥ pi

+ > 0, 
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this equality implies PP(s = x(ij) | z = +1) ≥ PP(s = x | z = +1). (Intuitively, this says that it 

is more likely that i gets the state wrong and j gets it right than vice versa.) By similar 

considerations, PP(s = x | z = −1) ≥ PP(s = x(ij) | z = −1). It follows that replacing i with j 

in (2) does not decrease the left-hand side and does not increase the right-hand side. 

Therefore, if this inequality holds for i, it also holds for j. n 

   A corollary of Propositions 3 and 4 is that, if a qualified majority rule that is not 

optimal among the class of all such rules is used, then informative voting is irrational 

for at least one committee member with minimal competence. This need not be the 

case for all such members, and not even for all members i for whom the sum pi
+ + pi

− 

is minimal. The following example demonstrates this. 

Example 3. The prior probabilities of the two states of the world are given by π+ = 2/3 

and π− = 1/3. The cost of making the wrong decision is the same in both states (i.e., c+ 

= c−). There are two committee members, one with p1
+ = 1 and p1

− = 2/3 and the other 

with p2
+ = 3/4 and p2

− = 1. When both members receive the same signal, it clearly 

corresponds to the true state. When the signals are conflicting, i.e., 1 receives the 

signal +1 and 2 the signal −1, the state +1 is more probable than −1 (because 

2/3 p1
+ (1 − p2

+) > 1/3 (1 − p1
−) p2

−). Therefore, the optimal aggregation rule is the 

qualified majority rule with quota q = 1. Consider the non-optimal rule obtained by 

setting q = 2. Since neither committee member is more competent than the other, 

Proposition 4 does not give us any information as to which of them should vote non-

informatively. However, since p1
+ + p1

− < p2
+ + p2

−, it would seem logical to look at 

member 1 first. Whenever that member receives the signal −1, so does member 2. 

Hence, in this case, changing 1’s vote would have no effect on the collective decision. 

When 1 receives the signal +1, his vote may affect the decision only if 2 also receives 

the signal +1. However, in this case, the state is +1, and therefore 1 should vote +1. 

Thus, for committee member 1, informative voting is rational. It follows, by 

Proposition 3, that informative voting is irrational for member 2. Indeed, it is not 

difficult to see that the expected utility is increased if that member votes +1 regardless 

of his signal, while member 1 continues to vote informatively. 
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Symmetry 

As already mentioned, rationally of informative voting does not imply that the 

aggregation rule used is optimal. The counterexample given above (Example 2) 

involves a simple majority rules. This counterexample is, in fact, just one of an array 

of possible examples. Indeed, as the following proposition shows, informative, non-

strategic, voting is rational in any setting in which both “nature” and the aggregation 

rule treat the two states of the world symmetrically. 

Proposition 5. Suppose that the two states of the world are similar in terms of their 

prior probabilities, the cost of making the wrong collective decision, and the 

probability that the private signal each committee member receives coincides with the 

state. Then, informative voting is rational under any aggregation rule (anonymous or 

not, monotonic or not) that is neutral in the sense that, if all committee members 

reverse their votes, the committee’s collective decision is reversed as well.  

Proof. By assumption, π+ = π−, c+ = c −, and pi
+ = pi

− (≥ 1/2) for all members i. 

Suppose that a neutral aggregation rule is used. The key to proving that, under these 

assumptions, informative voting is rational is showing that, for each committee 

member i, the probability that i is pivotal is the same in both states of the world. 

Hence, when considering how to vote, each member may simply ignore the others.  

   For a given voting vector x, committee member i is pivotal if and only if the 

collective decision reached when the votes are given by x is different from the 

decision reached when the votes are given by the voting vector x(i) defined by xi
(i) = 

−xi and xj
(i) = xj for all j ≠ i. By the assumed neutrality of the aggregation rule, the 

former collective decision is different from the decision when the votes are given by 

−x (the components of which are the negative of the respective components of x) and 

the latter is different from the decision when the votes are given by −x(i). If follows, 

since −x(i) = (−x)(i), that i is pivotal in x if and only if he is pivotal in −x. This proves 

the left equality in  

 ∑
x

i is pivoal in x

 PP(s = x | z = +1)    = ∑
x

i is pivoal in x

 PP(s = −x | z = +1)    = ∑
x

i is pivoal in x

 PP(s = x | z = −1),  (5) 

and the right equality follows from the assumption that pj
+ = pj

− for all j. The leftmost 

sum in  (5) is equal to PP(i is pivotal | z = +1), i.e., the probability that member i is 



 

15 

pivotal in the state +1. The rightmost sum equals PP(i is pivotal | z = −1). The equality 

between these two probabilities, together with the above assumptions, implies that  

 c+ π+ pi
+ PP(i is pivotal | z = +1) ≥ c− π− (1 − pi

−) PP(i is pivotal | z = −1). 

Whether i is pivotal only depends on the votes of the other committee members. 

Therefore, conditional on the state, it is independent of the signal i himself receives. 

The above inequality is therefore equivalent to  

c+ π+ PP(si = +1, i is pivotal | z = +1) ≥ c− π− PP(si = +1, i is pivotal | z = −1), 

and hence to  

c+ PP(z = +1, si = +1, i is pivotal) ≥ c− PP(z = −1, si = +1, i is pivotal), 

which is the condition for +1 to be an optimal vote for i when his signal is +1 and all 

the other members vote informatively (cf. (1)). A very similar argument shows that it 

is optimal for i to vote −1 when his signal is −1. Thus, it is rational for i to vote 

informatively.   n 

   How can Proposition 5 be reconciled with Proposition 3? The latter proposition 

asserts that, when a qualified majority rule is used, informative voting is rational only 

if the rule is optimal in the class of all anonymous decision rules. Hence, it follows 

from the two propositions that, under complete symmetry between the two states of 

the world, any neutral qualified majority rule is optimal among the above class. In 

fact, the only neutral qualified majority rule (which exists only if the number of 

committee members is odd) is the simple majority rule. Therefore, as a corollary of 

Propositions 3 and 5, we get the result that, in case of symmetry between the two 

states, the optimal anonymous decision rule is the simple majority rule. (This result is 

also true if the number of committee members is even. In case of a tie in votes, both 

collective decisions yield the same expected payoff.)  

Appendix A 

In this appendix, we prove the result that an optimal aggregation rule can always be 

expressed as a qualified weighted majority rule. We start by assuming that 0 < 

pi
+, pi

− < 1 for all i. 
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   Suppose that all committee members vote informatively. For every voting vector x 

that occurs with positive probability, the conditional expected utility of choosing +1, 

given that the committee members’ signals are given by x, is less than the utility of 

choosing −1 if and only if   

 c+ PP(z = +1 | s = x) < c− PP(z = −1 | s = x).  

By Bayes’ rule, this inequality is equivalent to  

 c+ π+ PP(s = x | z = +1) < c− π− PP(s = x | z = −1). (6) 

The conditional probability on the left-hand side of (6) equals the product 

 ∏
i

xi = +1

 pi
+ ∏

i
xi = −1

 (1 − pi
+). (7) 

The logarithm of this product can be written as   

∑
i

 log pi
+ (1 − pi

+) + ∑
i

 xi log pi
+/(1 − pi

+). 

The logarithm of the conditional probability on the right-hand side of (6) is given by a 

similar expression, in which pi
+ is replaced by pi

− and xi is replaced by −xi. Therefore, 

taking the logarithm of both sides of (6) and multiplying by 2 gives the equivalent 

inequality 

∑
i

 wi xi < q, 

where 

wi = log 
pi

+ pi
−

(1 − pi
+)(1 − pi

−)  and  q = 2 log 
π− c−

π+ c+  +  ∑
i

 log 
pi

− (1 − pi
−)

pi
+ (1 − pi

+) . 

This explicitly gives a qualified weighted majority rule that, for each voting vector x, 

chooses +1 if and only if choosing +1 maximizes the conditional expected utility, 

given that the vector of signals is x. Our assumption that pi
+ + pi

− ≥ 1 implies that the 

weight wi assigned to committee member i is nonnegative. The weight is zero if and 

only if pi
+ + pi

− = 1.  

   It remains to remove the restriction that pi
+, pi

− < 1 for all committee members i. In 

order to do this, we approximate each pair (pi
+, pi

−) by a pair (p̂i
+, p̂i

−) that satisfies 
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0 < p̂i
+, p̂i

− < 1 and p̂i
+ + p̂i

− ≥ 1. (Since pi
+ + pi

− ≥ 1, this can always be done.) The 

continuity of (7) in each of the pi
+’s, and the continuity of the analog expression with 

the pi
−’s, guarantee that these approximations can be chosen in such a way that the 

corresponding random vector of signals ŝ satisfies the following condition: For each 

voting vector x that satisfies (6),  

 c+ π+ PP(ŝ = x | z = +1) < c− π− PP(ŝ = x | z = −1), (8) 

and similarly with the inequalities in (6) and (8) both reversed. As shown above, for 

the approximate probabilities there is some qualified weighted majority rule that is 

optimal. The same rule is also optimal for the original probabilities. This is because, if 

x is such that −1 is a (strictly) better collective decision than +1 when the vector of 

signals is x, then, by virtue of (8), the aggregation rule assigns the collective decision 

−1 to x. Similarly, this rule chooses +1 whenever +1 is a better collective decision 

than −1.  

Appendix B 

In this appendix, we discuss our assumption that, for all committee members, the 

probability of receiving the signal +1 in state +1 is at least equal to that in state −1, 

and similarly with +1 and −1 interchanged. We also derive one important implication 

of this assumption.  

   Mathematically, this assumption is equivalent to pi
+ + pi

− ≥ 1, for all members i. We 

claim that this represents a minimal rationality assumption. Indeed, if pi
+ + pi

− were 

less than unity, then the following would be true: Conditional on member i believing 

that +1 is a better alternative than −1, the expected utility if +1 is chosen is, in fact, 

less than the expected utility if −1 is chosen; or a similar statement is true with +1 and 

−1 interchanged. (If c+ π+ ≤ c− π−, the first statement would be true; if c+ π+ ≥ c− π−, 

the second would be true.) The assumption pi
+ + pi

− ≥ 1 guarantees that at least one of 

these statements is false. (If c+ π+ = c− π−, then it guarantees that both statements are 

false, since in this case the two statements are equivalent.) Note that either statement 

implies that, from a person’s own private information, it is sometimes possible to 

conclude that his belief is wrong as to which of the two alternatives is better. 

Therefore, it would be quite reasonable to require that, not only one but both 
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statements are false (also in the case in which c+ π+ ≠ c− π−). However, this stronger 

rationality requirement is not required for our results.  

   In the proof of Proposition 3, we used a lemma saying that, the greater the number 

of committee members receiving the signal +1, the greater the probability that the 

state is +1. We now prove this result, and show how it follows from our assumption 

that, for all committee members i, pi
+ + pi

− ≥ 1. (Without this assumption, the lemma 

would not be true.) 

Lemma. For every α and β such that PP(s+ = α) > 0 and PP(s+ = β) > 0, if β > α, then 

 PP(z = +1 | s+ = β) ≥ PP(z = +1 | s+ = α). (9) 

Proof. By Bayes’ theorem, for every α such that PP(s+ = α) > 0, 

 PP(z = +1 | s+ = α) = 
π+ PP(s+ = α | z = +1)

 π+ PP(s+ = α | z = +1) + π− PP(s+ = α | z = −1). (10) 

The right-hand side of this equation depends continuously on the various pi
+’s and 

pi
−’s. Therefore, it suffices to prove the lemma under the additional assumption that 

0 < pi
+, pi

− < 1 for all i. Under this additional assumption, PP(s+ = α) > 0 for all 0 ≤ α 

≤ n, and it therefore suffices to prove (9) in the special case β = α + 1. 

   Since π+, π− > 0, it follows from (10) that the difference PP(z = +1 | s+ = α + 1) − PP(z 

= +1 | s+ = α) has the same sign (positive, negative, or zero) as  

   PP(s+ = α + 1 | z = +1) PP(s+ = α | z = −1) − PP(s+ = α | z = +1) PP(s+ = α + 1 | z = −1).  (11) 

The first of the two terms in  (11) can be written as a double sum: 

 PP(s+ = α + 1 | z = +1) PP(s+ = α | z = −1)  = ∑
x, y

 x+ = α + 1
y+ = α

 PP(s = x | z = +1) PP(s = y | z = −1).  (12)  

For every voting vector x and every committee member i, let x(i) be the voting vector 

defined by xi
(i) = −xi and xj

(i) = xj for all j ≠ i. For every pair of voting vectors x and y, 

let nxy be the number of committee members i with xi = +1 and yi = −1. For each of 

these members i,  

 PP(s = x | z = +1) PP(s = y | z = −1) ≥ PP(s = x(i) | z = +1) PP(s = y(i) | z = −1). (13) 

The reason for this is that, since the only difference between x and x(i) is that in the 
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former i’s signal is +1 and in the latter −1, the only difference between PP(s = x | z = 

+1) and PP(s = x(i) | z = +1) is that the term pi
+, which appears in the former when it is 

explicitly expressed as the product of probabilities (i.e., in the form (7)), is replaced in 

the latter by 1 − pi
+. Similarly, to get PP(s = y(i) | z = −1) from PP(s = y | z = −1), the term 

pi
− has to be replaced by 1 − pi

−. Thus, if both sides of (13) are explicitly expressed as 

the products of probabilities, the only difference between them is that the product 

pi
+ pi

−, which appears on the left, is replaced on the right by (1 − pi
+)(1 − pi

−). Since 

pi
+ pi

− ≥ pi
+ pi

− − (pi
+ + pi

− − 1) = (1 − pi
+)(1 − pi

−), the inequality (13) holds. Summing 

over all the committee members i with xi = +1 and yi = −1 and dividing by their 

number nxy (assuming this number is not zero) gives 

 PP(s = x | z = +1) PP(s = y | z = −1)  ≥  
1

 nxy
∑

i
 xi = +1
 yi = −1

 PP(s = x(i) | z = +1) PP(s = y(i) | z = −1).   

Now, if x+ = α + 1 and y+ = α, then, clearly, nxy ≥ 1. In addition, for every i with xi = 

+1 and yi = −1, nxy = nyx + 1 = ny(i)x(i), where the first equality follows from the fact that 

x+ = y+ + 1. Therefore, by  (12), 

PP(s+=α +1| z =+1) PP(s+=α| z =−1)  ≥ ∑
x, y

 x+ = α +1  
y+ = α

  ∑
i

 xi = +1
 yi = −1

 
1

ny(i)x(i)
 PP(s = x(i)| z =+1) PP(s = y(i)| z =−1) 

 =   ∑
i

 ∑
x, y

x+ = α + 1¸ xi = +1
y+ = α¸ yi = −1

    
1

ny(i)x(i)
 PP(s = x(i) | z = +1) PP(s = y(i) | z = −1) (14) 

 = ∑
x, y

 x+ = α
y+ = α + 1

 PP(s = x | z = +1) PP(s = y | z = −1), 

where the last equality follows from the observation that, in each term in the 

preceding triple sum, the pair (x(i), y(i)) satisfies (x(i))+ = α and (y(i))+ = α + 1, and each 

such pair appears in this sum exactly ny(i)x(i) times. By an equation similar to  (12), the 

last sum in (14) is equal to PP(s+ = α | z = +1) PP(s+ = α + 1 | z = −1). Hence, (14) shows 

that the expression in  (11) is nonnegative, which proves that PP(z = +1 | s+ = α + 1) − 

PP(z = +1 | s+ = α) ≥ 0, as had to be shown. n
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