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Abstract 

   No matter how many times a prisoner’s-dilemma-like game is repeated, the only 

equilibrium outcome is the one in which all players defect in all periods. However, if 

cooperation among the players changes their perception of the game by making 

defection increasingly less attractive, then players may be willing to cooperate in the 

late stages of the repeated interaction, when unilateral defection has become 

unprofitable. In this case, cooperation may be attainable also in the early stages, since 

any defection in these stages may be effectively punished by all the other players also 

ceasing to cooperate. In this paper, we explore this possibility, and consider 

conditions guaranteeing the players’ willingness to cooperate also in the middle 

periods, in which defection is more profitable than in the late periods and, at the same 

time, punishments are less effective than at the beginning. These conditions are 

sufficient for cooperation in all periods to be an equilibrium outcome. 

                                                                        
* We would like to thank Eliakim Katz, with whom the ideas presented in this paper were 
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1  Introduction 

There are numerous situations in which people engage in recurring identical 

symmetric interactions over a limited period of time. Parents of school-aged children 

are requested to partake in activities that only partially benefit their own offspring. 

People in residential areas know they are affected by, and in turn affect, their 

neighbors. College students who have never met are put into the same dormitory 

room, and must find a way to make it “work.” Many of these interactions are carried 

out in a prisoner’s-dilemma-type setting, in which the cooperative outcome is not 

individually optimal in any single period. In such a setting, if the number of 

interactions is finite and commonly known, it is well known that cooperation is 

unsustainable in equilibrium.  

   Nevertheless, in many such settings cooperation is attained. Thus, parents take turns 

driving children to school in car pools. They also participate in parents’ meetings, and 

donate time and money to school activities. People cooperate by refraining from 

activities that annoy their neighbors, even when planning to leave the neighborhood. 

Roommates find ways to allocate chores and space and to coordinate times even if 

they will be roommates only for a year.  

   The explanation we explore in this paper for cooperation in such circumstances is 

that the players’ preferences over the possible outcomes in each period are not 

constant over time but may be modified by past experience. Specifically, successful 

cooperation in early stages of a repeated interaction may change each player’s 

perception of the payoff structure of the game in such a manner that defecting from 

cooperation becomes increasingly less attractive as time progresses (despite the fact 

that the physical form of the interaction does not change). If this is so, and if 

cooperation is maintained for a sufficiently large number of periods, then, after a 

certain point, it becomes an equilibrium behavior in the stage game. And if these 

changes are foreseen by all players, and are taken into account when deciding which 

actions to take in each period, then cooperation may also be maintainable in the early 

stages of the game, since the anticipated benefit from future cooperation is sufficient 

to prevent players from defecting in the early stages.  

   Such a benefit, of course, is dependent on the ability to maintain cooperation in all 

periods, and, in particular, the middle ones. However, because of the nearer horizon, 



3 

the promise of benefiting from future cooperation is weaker in the middle periods than 

in the early ones. At the same time, the payoff structure may not yet have changed 

enough to make cooperation an equilibrium behavior in the stage game. Thus, even if 

(1) cooperation is an equilibrium behavior in each of the late periods, assuming a 

perfect history of cooperation, and (2) the one-time benefit from defection in any of 

the early periods is less than that from cooperation in all the subsequent periods, 

cooperation may not be attainable because there are one or more periods in the middle 

in which it is better to defect, and, therefore, players cannot assume that the other 

players will cooperate in these periods. In such a case, players may have no incentive 

to cooperate with the others even in the early periods, and, therefore, the history of 

cooperation needed for making it an equilibrium behavior in the late periods will not 

materialize. Consequently, there will be no cooperation throughout much or all of the 

game.  

  After presenting the basic setup, we concern ourselves with conditions sufficient to 

guarantee the players’ willingness to cooperate in the middle stages of a repeated 

interaction, when (1) and (2) in the previous paragraph hold (i.e., when it is not 

profitable to defect from cooperation in either the early or the late stages of the game, 

assuming that cooperation will be maintained throughout). We observe that one such 

condition is that, when only one player deviates by ceasing to cooperate at a certain 

period t, that player’s expected payoff is either monotonic or U-shaped (i.e., first 

decreasing, then increasing) function of t. It is not difficult to see that, if this condition 

holds, then the assumption that players are better off cooperating with the others than 

defecting in the early and in the late stages of the interaction automatically implies 

that it is an equilibrium behavior for all players to cooperate in all periods. 

   We consider two settings in which the condition just mentioned is satisfied. In the 

first, cooperation makes people increasingly more altruistic towards one another. 

Specifically, as the history of cooperation between them increases, players put 

increasing weight on the utility of the other players at the expense of their own. Thus, 

if cooperation is maintained in a certain period, each player’s payoff function in the 

next period is a weighted average of his and the others’ current payoff functions. As a 

result, the players progressively internalize the social costs or benefits of their actions. 

Assuming that cooperation is socially beneficial, and the interaction is sufficiently 

long, cooperation will be attainable in the last period because the payoff from 
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defection will fall below that from cooperation. It will also be attainable in the first 

period (assuming cooperation in all the intermediate periods), because of the 

anticipated future gains. As we show, this automatically implies the existence of a 

subgame perfect equilibrium in which players cooperate in all periods. We illustrate 

this result with an example concerning the voluntary provision of public goods. 

   In the second setting we consider, the players’ payoff function is fixed, but their 

information about it is incomplete. Specifically, players are not certain about the 

consequences—in terms of the effects on their own payoffs—of not cooperating with 

the other players. However, as time progresses, they receive certain information that 

makes them believe with increasing confidence that, as long as the other players 

cooperate, it is best for them to do the same. In this setting, if the number of 

repetitions is large enough, then from some point on players will prefer cooperating 

with the others to defecting even in the one-shot game. In addition, the one-time 

benefit from defection in any of the early periods is outweighed by the benefit from 

cooperation in all subsequent periods. However, whether or not players will actually 

want to cooperate in all periods depends on the way their beliefs about the 

profitability of deviation from cooperation evolve over time.  

   A simple, concrete scenario in which the players’ beliefs may change in the way 

outlined above is when the duration of the game is stochastic and negatively 

correlated with the benefit from defection. Specifically, in each period, the probability 

that the game will continue for at least one more period is higher in the “good” state 

of the world, in which defection is not profitable, than in the “bad” state, in which it is 

profitable. As time progresses without the game terminating, the posterior probability 

that the good state has obtained increases, as does the players’ incentive to cooperate. 

We show that if the continuation probabilities in the two states of the world are (for 

instance) constant over some time interval, and if the players are willing to cooperate 

in the first period and from some late period on, then they are automatically also 

willing to cooperate in all the intermediate periods, and so cooperation in all periods is 

attainable. We also give a counterexample showing that if the continuation 

probabilities in the bad state are not constant but decrease over time, then cooperation 

may fail because there is a single period in the middle in which defection is profitable.  

   The general setup and the two more specific settings considered here are constructed 

so as to differentiate our results from previously suggested solutions to the 
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cooperation problem. First, in the setting in which information is incomplete, there is 

no private information. Players not only have similar payoff functions but they also 

hold identical beliefs about them. If players had private information about their 

preferences, their behavior could have been directed also by their desire not to let the 

other players know these preferences. For example, to elicit cooperation, egoists may 

want to behave (at least part of the time) as if they were altruists. The fact that 

informational asymmetries can generate cooperative behavior in finitely repeated 

games is well known (Kreps et al., 1982). Our assumptions are chosen to exclude such 

effects, and to keep our model within the framework of symmetric interactions 

involving symmetric information.  

Second, in games with multiple equilibria, it is not unusual to find that any feasible 

and individually rational payoff vector can be approximated by the average payoff 

vector in some subgame perfect equilibrium of the T-times repeated game, provided 

that T is large enough. Indeed, as Benoit and Krishna (1985) show, a sufficient 

condition for this is that, for each player i, there are two pure-strategy equilibria in the 

one-shot game with different payoffs for i. (An additional condition is that the interior 

of the set of all feasible payoff vectors is not empty. However, if there are only two 

players, this condition can be dispensed with.) This limit “folk theorem” is not, 

however, applicable to games in which the equilibrium payoffs are unique. In fact, if 

the equilibrium payoffs coincide with the players’ individual rationality (or minimax) 

levels, they are also the unique equilibrium payoffs in the repeated game, regardless 

of the number of repetitions (and whether or not subgame perfection is desired). The 

reason for this is that, if the players’ payoffs are equal to their individual rationality 

levels, then, by definition, there is no way the other players can “punish” a defector by 

lowering his payoff. Therefore, the only self-enforcing strategy profiles in the 

repeated game are those inducing the equilibrium payoffs in each of the repetitions. In 

this paper, we do not assume that the one-shot game has more than one equilibrium. 

In fact, the first period game may (but need not) be the prisoner’s dilemma. If this 

were also the stage game in all the subsequent periods, then repeated defection would 

be the only equilibrium behavior. Thus, our assumption that experience can modify 

incentives is crucial for cooperation ever to be attained.   
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2  The setup 

2.1  The one-shot game 

A finite number n of rational players (n ≥ 2) is engaged in a symmetric interaction, 

whose outcome depends on the action each of them takes. Without loss of generality, 

the action profile itself may be referred to as the outcome of the interaction. Each 

player’s preferences are expressed by a payoff function, mapping outcomes to 

utilities. The assumption that the interaction is symmetric entails that the payoff 

h(x, y, …, z) of a player taking a particular action x, while generally depending on the 

actions y, … , z of the other players, does not depend on who of the others is doing 

what. In other words, the payoff function h is invariant to permutations of its second 

to nth arguments. In addition, the same function h also gives the payoff of each of the 

other players, when that player’s action is put as the first argument. The payoff 

function h and the players’ common set of admissible actions (which may be finite or 

infinite) together define an n-player symmetric game G. A given outcome is a (pure-

strategy Nash) equilibrium in G if no player can increase his payoff by changing his 

action, when the other players do no change theirs.  

   Two actions play a special role in our analysis. The first, denoted d, is interpreted as 

not cooperating with the rest of the players, e.g., stepping out of the interaction. If all 

the players take that action, their payoffs are zero; i.e., h(d, d, …, d) = 0. In this case, a 

single player cannot gain by taking a different action; i.e., h(x, d, …, d) ≤ 0 for all 

actions x. We make no assumptions about the players’ payoffs if two or more of them 

choose actions different from d. The other action playing a special role in the analysis 

is denoted c. Everyone choosing this action is interpreted as cooperation among the 

players. The corresponding payoff is assumed to be greater than zero. Without loss of 

generality, we normalize the payoff function by setting h(c, c, …, c) = 1. Thus, 

cooperation is desirable. However, it is not necessarily an equilibrium behavior. That 

is, there may be some action x with h(x, c, …, c) > 1. In this case, cooperation cannot 

be attained as the play of rational players in G. By a well-known backward induction 

argument, it may also be unattainable when the game is repeated any finite, 

commonly known, number of times. More precisely, cooperation cannot be attained if 

everyone playing d is the only equilibrium in G. The reason is that, as the end of the 

repeated game approaches, the lure of an immediate profit from choosing an action x 

more profitable than c becomes stronger than the promise of future gains from 
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cooperation. The main problem this paper is concerned with is as follows: Under what 

conditions is cooperation sustainable in a finite dynamic game in which repeated 

cooperation among the players affects the stage game by making defection less 

attractive? One possible interpretation of such an effect of past cooperation on players’ 

payoff functions is that defection carries a moral cost, which is greater the longer the 

history of cooperation. Other interpretations are discussed in subsequent sections.   

2.2  The dynamic game 

The dynamic (more specifically, stochastic) game Γ that we consider has a finite 

number of periods. This number may be fixed, and known to all players; or it may be 

random, in which case only the probability distribution of the number of periods is 

known. The expected number of periods is denoted e0. In each period t (t = 1, 2, … ), 

the expected number of remaining periods, denoted et, is given by 

 et = δt + δtδt+1 + δtδt+1δt+2 + K, (1) 

where δt is the continuation probability in period t, i.e., the conditional probability that 

the number of periods is greater than t, given that it is no less than t.1 Equation (1) 

also holds for t = 0, with δ0 denoting the probability that there is at least one period. 

(There is clearly little loss of generality in assuming δ0 = 1.) The expected number of 

remaining periods at time t satisfies the recursive formula 

 et = δt (1 + et+1) (2) 

(t = 0, 1, …). If δt = 0, then, as a matter of convention, we set δt+1 = δt+2 = … = 0 and 

et+1 = et+2 = … = 0.  

   In each period t, the players are engaged in a symmetric stage game, with payoff 

function ht. The payoff function is not necessarily constant over time. Specifically, for 

t = 2, 3, …, the period t payoff function is determined by the players’ actions in all the 

preceding periods. These actions are observed by all players. Hence, everyone always 

knows the payoff function for the next period (but not necessarily the actual payoffs, 

which also depend on the players’ actions in that period). The payoff function after a 

                                                                        
   1 Alternatively, the δt’s can be interpreted as (common) discount factors. The discount factor is either 

the same for all periods t, or it is constant until a certain period T, at which point it drops to zero (i.e., 

the game ends).  
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perfect history of cooperation, i.e., when all players chose the action c in all the 

periods preceding t, is denoted by hc
t (with h

c
1 = h1). The following properties of the 

payoff function are assumed:  

(a) As long as everyone cooperates, the utility from cooperation does not change, 

i.e., hc
t(c, c, …, c) = 1 for all t.2  

(b) If period t is not preceded by a perfect history of cooperation, i.e., if in one or 

more of the periods preceding t some player’s action is different from c, then 

maxx ht(x, d, …, d) = ht(d, d, …, d) = 0.  

   A (pure) strategy in the dynamic game Γ specifies the action to be taken in each 

period as a function of the players’ actions in all the preceding periods. The players’ 

strategy profile unambiguously determines each player’s expected payoff in Γ. This 

payoff can be written as δ0 h1 + δ0δ1 h2 + δ0δ1δ2 h3 + …, where, for each period t, the 

arguments in ht are the players’ actions in that period (as specified by their strategies), 

with the player’s own action listed first. The coefficient δ0δ1 L δt−1 is the probability 

that the game will have at least t periods. The problem described in the previous 

subsection can now be given a more precise formulation, namely: Finding conditions 

on the probability distribution of the duration of the game (equivalently, the 

continuation probabilities) and on how the payoff function evolves guaranteeing the 

existence of some subgame perfect equilibrium such that, on the equilibrium path, all 

the players play c in all periods. If such an equilibrium exists, then we will say that 

cooperation is sustainable (in the dynamic game Γ).  

2.3  Conditions for cooperation 

Consider the following strategy in the dynamic game Γ described above:  

(C) Play c until someone has deviated, and shift to d from that point on.  

If all the players use the strategy C, each player’s expected payoff in Γ is equal to e0 

(= δ0 + δ0δ1 + …). For C to be a symmetric equilibrium strategy it is necessary and 

sufficient that the expected payoff of a player who deviates from C does not exceed e0. 

                                                                        
   2 It is, of course, conceivable that the utility from cooperation does change over time. However, to 

simplify our analysis, we assume that it does not.  
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For a player who deviates by cooperating until a certain period t but then taking a 

different action x in that period, the maximum expected payoff, denoted by M(x, t), is 

given by 

 M(x, t) = δ0 + δ0δ1 + K + δ0δ1 L δt−2 + δ0δ1 L δt−1 h
c
t(x, c, …, c). (3) 

(By assumption (b) above, the player’s maximum payoff in periods t + 1, t + 2, … is 

zero, since his deviation is punished by all the other players shifting to d.) Thus, a 

necessary and sufficient condition for C to be a symmetric equilibrium strategy is that, 

for all t ≥ 1, 

 max
x

 M(x, t) ≤ e0. (4) 

By (1) and (3), a condition equivalent to (4) is that δt−1 = 0 or   

 max
x

 hc
t(x, c, …, c) ≤ 1 + et. (5) 

If one of the above equivalent conditions holds for all t, then it follows from 

assumption (b) above that everyone employing strategy C is in fact a subgame perfect 

symmetric equilibrium in Γ. Thus, the players’ assertion of their commitment to play 

according to C is credible.  

3  Altruism: Learning to care 

One conceivable outcome of repeated cooperation among the players is that, as time 

goes by, they become progressively less selfish, for instance, because they get to 

know the other players personally and develop empathy for them. Thus, players put 

increasing weight on the other players’ well-being, at the expense of their own. In 

keeping with the above setup, this will be assumed to represent a systematic shift in 

preferences, rather than a strategic choice made by individuals. In addition, to stay 

within the framework of symmetric interactions, the players’ degree of selfishness, 

which is the weight s they put on their own utility, is assumed to be the same for all 

players. Each player’s payoff is the convex combination s h + (1 − s)h of his own 

utility, which is given by a payoff function h satisfying the conditions in Section 2.1, 

and the average utilityh(x, y, …, z) = (1/n) [h(x, y, …, z) + h(y, x, …, z) + … + 

h(z, y, …, x)]. (Note that the latter also incorporates the player’s own utility.) The 

extreme case s = 1 represents complete selfishness: the players’ payoffs are equal to 

their own utilities. The other extreme case, s = 0, represents complete unselfishness: 

all payoffs are given by the average utility.  



10 

   In the first period, t = 1, the players’ payoff function h1 is equal to h. If, in this 

period, the cooperative outcome obtains, the next period payoff function is given by 

h2 = hc
2 = s h + (1 − s)h, where 0 < s < 1 is the fixed, exogenously given degree of 

selfishness. If a different outcome obtains, the payoff function does not change, and 

remains the original one, h, in all periods. (Note that, in both cases, the average 

period 2 payoff functionh2 is equal toh.) If the cooperative outcome again obtains in 

the second period, consistency demands that the next period payoff function be given 

by h3 = hc
3 = s hc

2 + (1 − s)h2. A quick calculation shows this to be equal to s2 h + 

(1 − s2)h. Repeated application of this consistency principle yields the following rule: 

If cooperation was obtained in all the preceding periods, the period t + 1 payoff 

function is given by 

 ht+1 = hc
t+1 = s hc

t + (1 − s)h (6) 

 = st h + (1 − st)h. 

Otherwise, ht+1 = h. This rule clearly satisfies assumptions (a) and (b) above.  

   Suppose that cooperation maximizes social welfare, in the sense that the average 

utilityh is at its maximum when everyone cooperates. Since it follows from (6) that, 

as t tends to infinity, hc
t tends toh, it is at least plausible that, if cooperation persists 

for a sufficiently long time, then, from some period T and onwards, it becomes an 

equilibrium behavior in the stage game. Suppose, in addition, that the expected 

number of periods is sufficiently large so that the cooperation condition (4) holds in 

the first period. Under which circumstances is it possible to conclude that C, the 

strategy of cooperating as long as everyone else does so, is a symmetric equilibrium 

strategy in the dynamic game Γ described above? More generally, if there are two 

periods in which (4) holds, when does it automatically follow that it also holds in all 

the intermediate periods? The following assertion is obvious. 

OBSERVATION. For a given action x, suppose that there is some T1 ≥ 1 and some T2 ≥ 

T1 + 2 such that M(x, T1) ≤ e0 and M(x, T2) ≤ e0. A sufficient condition for the 

inequality M(x, t) ≤ e0 to hold for all T1 ≤ t ≤ T2 is that M(x, t) is either monotonic or 

“U-shaped” as a function of t in this time interval, i.e., for all T1 < t < T2,  

if M(x, t) − M(x, t − 1) ≥ 0, then M(x, t + 1) − M(x, t) ≥ 0. 
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   In particular, if we know that it is not profitable for individual players to deviate 

from C in the first period, as well as in any of the late periods, then a sufficient 

condition for such a deviation not be to profitable in any period is that, in the 

intermediate periods, the defecting individual’s maximum payoff is either monotonic 

or U-shaped as a function of the time of defection. As the proof of the following 

proposition shows, a sufficient condition for this is that, in the intermediate periods, 

the continuation probabilities are weakly increasing. 

PROPOSITION 1. Suppose that the payoff function h has the property that a single 

player cannot increase social welfare by not cooperating with the others; i.e.,  

 h(x, c, …, c) ≤ 1 for all actions x. (7) 

Suppose also that there is some period T such that the cooperation condition (4) holds 

for t = 1 and for all t ≥ T.3 Then, a sufficient condition for cooperation to be 

sustainable is that δ1 ≤ δ2 ≤ L ≤ δT−1. 

Proof. We will show that, if the cooperation condition (4) does not hold for some 1 < t 

< T, then there is at least one such t for which δt−1 > δt. Suppose there is an action x 

such that, for some 1 < t < T, M(x, t) > e0. Then, there are some T1 and T2, with 1 ≤ T1 

≤ T1 + 2 ≤ T2 ≤ T, such that M(x, T1) ≤ e0 and M(x, T2) ≤ e0 but M(x, t) > e0 for all T1 < 

t < T2. It follows, by the Observation, that there is some T1 < t < T2 such that M(x, t) ≥ 

M(x, t − 1) but M(x, t + 1) < M(x, t). Since (by (3) and (6))  

 M(x, t + 1) − M(x, t) = δ0δ1 L δt−1 (1 + δt h
c
t+1(x, c, …, c) − hc

t(x, c, …, c)) 

= δ0δ1 L δt−1 [1 − (1/s − δt) h
c
t+1(x, c, …, c) + (1/s − 1)h(x, c, …, c)], 

this implies that the expression in square brackets is negative, but a similar expression 

in which the index t is replaced by t − 1 is either positive or zero. Therefore, (1/s − δt) 

hc
t+1(x, c, …, c) ≥ (1/s − δt−1) h

c
t(x, c, …, c). The assumption M(x, t) > e0 and (7) imply 

that hc
t(x, c, …, c) > 1 ≥h(x, c, …, c). Therefore, by (6), hc

t(x, c, …, c) >  

max{h c
t+1(x, c, …, c), 0}. It follows that 1/s − δt > 1/s − δt−1, or equivalently δt−1 > δt, 

as we wanted to show. n 

                                                                        

   3 Equivalently, δ0 maxx h(x, c, …, c) ≤ e0 and, for all t ≥ T with δt−1 > 0 and for all x ≠ c, 

st−1 [h(x, c, …, c) −h(x, c, …, c)]  ≤ 1 −h(x, c, …, c) + et. 
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Example: Voluntary provision of public goods 

As an example for Proposition 1, consider the following scenario. There is a fixed 

number of periods, denoted T, with T ≥ 2. In each period, each player i contributes 

either zero or one unit of input to the production of some public good. Player i’s 

contribution is denoted by xi (∈ {0, 1}). The quantity of the public good produced in 

each period is determined by the players’ total contribution in that period, or 

equivalently by the average contributionx  = (x1 + x2 + … + xn)/n. Specifically, the 

quantity produced is given by f(x), where f(x) is a differentiable function satisfying 

f(0) = 0, f(1) = 2, and 1 < df/dx ≤ n.  

   In the first period, the payoff of each player i is given by  

 h = f(x) − xi.  

Since df/dx ≤ n, the marginal product does not exceed unity. Therefore, the outcome 

x1 = x2 = … = 0 (i.e., no one contributes) is a symmetric equilibrium in the one-shot 

game, with the equilibrium payoff 0. On the other hand, since df/dx > 1, the average 

utility, 

 h = f(x) −x, 

is maximal, and equals 1, if and only if x1 = x2 = … = 1 (i.e., everyone contributes). In 

particular, (7) holds, with c = 1. Since f(1 − 1/n) < f(1) = 2 ≤ e0, the first condition in 

footnote 3 holds. The second condition is equivalent to  

 sT−1 ≤  

f(1) − f(1 − 1/n)
1/n   −  1

n  −  1  . (8) 

Note that, since 1 < df/dx ≤ n, the right-hand side of (8) is greater than zero but less 

than or equal to 1. Since δ1 = δ2 = L = δT−1 = 1, Proposition 1 tells us that the 

inequality (8) is both a necessary and sufficient condition for the strategy C, whereby 

a player contributes to the production of the public good as long as everyone else also 

does so, to be a symmetric equilibrium strategy in the dynamic game defined by (6). 

Since, by assumption, 0 < s < 1, (8) can be interpreted as a requirement that T is 

sufficiently large and/or that s is sufficiently close to zero. 
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4  Incomplete information: Learning that you care 

In the previous section, we showed how cooperation among the players may be 

maintained throughout, with altruism gradually replacing the prospect of future gains 

as the motivating power behind the players’ willingness to cooperate. Thus, the 

players’ cooperative behavior induces a systematic shift in their preferences, which, in 

turn, reinforces this behavior. In this section, we explore the possibility that people 

may learn their payoff functions, rather than acquire new ones, over the course of 

time. Specifically, participants in the game, who are initially uncertain about the 

consequences of a unilateral deviation from cooperation, may receive certain signals 

suggesting that such a deviation is unprofitable (or, conversely, profitable) to them. 

Players may, for example, simply learn that they like (or dislike) each other. Positive 

signals, or even the absence of negative ones, may indicate that a unilateral deviation 

from cooperation is unprofitable, and so cooperation may be attainable in the late 

periods of the game. If players expect a high number of repetitions, and hence 

significant benefit from future cooperation, they may be willing to cooperate also in 

the early periods, when they are still unsure about the desirability of defection. The 

difficulty in maintaining cooperation throughout the game again lies in the middle 

periods. As the expected number of remaining periods is smaller in the middle than at 

the beginning of the game, cooperation requires that the players’ belief in the 

desirability of defection is weaker in the middle periods than at the beginning. This 

raises the question of which conditions concerning the evolution of players’ beliefs 

about their payoff function are sufficient to guarantee cooperation in all periods.  

   There is obviously more than one way the scenario outlined above can be modeled. 

In particular, there is more than one possible mechanism by which players may learn 

how deviation from cooperation would benefit or harm them. It is, however, 

noteworthy that players may be able to gain information about the consequences of 

deviation without ever receiving any outside signals or cues. Specifically, if there is a 

correlation between the payoff function and the duration of the game, then the very 

fact that the game is not yet over may tell players something about their payoff 

function. Such a correlation may arise if, for example, incompatibilities among the 

players tend to increase both (i) the profitability of a deviation from cooperation and 

(ii) the probability of a premature termination of the interaction.  
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   The model that we will now describe allows for such a correlation. It involves just 

two possible states of the world, a “good” state and a “bad” state. The (prior) 

probability that the good state obtains and there is at least one period is denoted γ0. 

The corresponding probability in the bad state is β0. The continuation probabilities in 

the good and bad states of the world are denoted γ1, γ2, … and β1, β2, …, respectively. 

The payoff function in the good state is denoted g, and in the bad state b. These payoff 

functions satisfy maxx g(x, d, …, d) = g(d, d, …, d) = 0, maxx b(x, d, …, d) = 

b(d, d, …, d) = 0, and g(c, c, …, c) = b(c, c, …, c) = 1. The last assumption, entailing 

that, if the players cooperate, their payoffs are the same in both states, is meant to 

exclude the possibility that players may learn the state of the world simply by 

observing their own payoffs. This case is trivial, since all uncertainly about the state 

of the world vanishes after the first period. Thus, this assumption implies that, if all 

the players employ strategy C (as defined in Section 2), the only information they 

have in period t that they did not have in the initial period is that the game has at least 

t periods. If, a priori, this is more likely to happen in one state of the world than in the 

other, the posterior probability that the first state has obtained is higher than the 

corresponding prior probability. This may affect the players’ assessment of the 

desirability of defection. A more detailed examination of this effect follows. 

   In each period t, the probability that the payoffs are given by g is equal to pt, the 

(posterior) probability, at time t, that the good state has obtained. This probability is 

given by  

 pt = 
γ0γ1 L γt−1

γ0γ2 L γt−1 + β0β1 L βt−1
 (9) 

(provided that the denominator is not zero; otherwise, pt may be defined arbitrarily.) 

The probability that the payoffs are given by b equals 1 − pt. Therefore, the expected 

payoffs ht are given by  

 ht = pt g + (1 − pt) b (10) 

 = b + pt (g − b). 

Note that the payoff functions do not depend on the players’ past behavior (in 

particular, hc
t = ht), and that they satisfy assumptions (a) and (b) above. If everyone 

plays according to the strategy C, the players’ expected payoffs in the dynamic game 

Γ are equal to δ0 + δ0δ1 + … (= e0), where δ0 = γ0 + β0 is the probability that the game 
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has at least one period and, for t ≥ 1, δt = pt γt + (1 − pt) βt is the period t continuation 

probability (unconditional on the state). If all but one player employs strategy C, and 

that player deviates by cooperating until a certain period t but using a different action 

x in that period, his maximum expected payoff, M(x, t), is given by (3). Therefore, a 

necessary and sufficient condition for C to be a symmetric equilibrium strategy is that 

(4) holds for all t ≥ 1. 

   Suppose that, in the good state of the world, the payoff function g is such that all 

players cooperating is an equilibrium in the one-shot game. (This is the sense in which 

the state is ‘good.’) Suppose also that, for t ≥ 1, the continuation probability in the 

good state of the world, γt, is greater than in the bad state, βt. Then, the (posterior) 

probability pt that the good state has obtained increases over time. Under these 

assumptions, it is at least plausible that, at some period T, this probability becomes 

large enough for cooperation to be an equilibrium behavior in the stage game. 

Maintaining cooperation from that period on is not a problem, since the inequality (4) 

clearly holds for all t ≥ T. The question we now address is similar to the one addressed 

in the previous section: If the cooperation condition (4) holds in the first period t = 1 

and in some later period T, under what circumstances does is automatically follow 

that it also holds in all the intermediate periods? By our Observation, this is the case if 

the maximum expected payoff of a deviating player is either monotonic or U-shaped 

as a function of the time t of deviation in the interval 1 ≤ t ≤ T. As the proof of the 

following proposition shows, a sufficient condition for this is that, in the time interval 

under consideration, the continuation probabilities weakly increase in both states of 

the world, but at a (weakly) faster rate in the bad state. 

PROPOSITION 2. Suppose that defection from cooperation is unprofitable in the good 

state of the world, i.e.,  

 g(x, c, …, c) ≤ 1 for all actions x. (11) 

Suppose also that there is some period T such that the cooperation condition (4) holds 

for t = 1 and for all t ≥ T.4 Then, a sufficient condition for cooperation to be 

sustainable is that γ1 ≤ γ2 ≤ L ≤ γT−1 and β1 − γ1 ≤ β2 − γ2 ≤ L ≤ βT−1 − γT−1 ≤ 0. 
                                                                        
   4 Equivalently, maxx [γ0 g(x, c,…, c) + β0 b(x, c,…, c)] ≤ e0 and, for all t ≥ T with βt−1>0 and for all x ≠ c, 

b(x, c, …, c) − 1 − βt − βt βt+1 − … ≤ 
γ0

β0
 
γ1

β1
 L 

γt−1

βt−1
 (1 − g(x, c, …, c) + γt + γt γt+1 + …). 
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Proof. We show that, if the condition in the proposition holds, then the cooperation 

condition (4) holds for all 1 < t < T. Suppose, per contradiction, that the condition in 

the proposition holds but there is some action x such that, for some 1 < t < T, M(x, t) > 

e0. Then, there exist some T1 and T2, with 1 ≤ T1 ≤ T1 + 2 ≤ T2 ≤ T, such that M(x, T1) 

≤ e0 and M(x, T2) ≤ e0 but M(x, t) > e0 for all T1 < t < T2. It follows, by the 

Observation, that there is some T1 < t < T2 such that M(x, t) ≥ M(x, t − 1) but 

M(x, t + 1) < M(x, t). Since (by (3), (10), and the identity δt pt+1 = γt pt, which follows 

from δt = pt γt + (1 − pt) βt by means of (9)) 

M(x, t + 1) − M(x, t) = δ0δ2 L δt−1 (1 + δt ht+1(x, c, …, c) − ht(x, c, …, c)) 

= δ0δ2 L δt−1 (1 + δt b(x, c, …, c) + γt pt (g(x, c, …, c) − b(x, c, …, c)) − ht(x, c, …, c)) 

= δ1δ2 L δt−1 [1 + (δt − γt) b(x, c, …, c) − (1 − γt) ht(x, c, …, c)], 

this implies that the expression in square brackets is negative, but a similar expression 

in which the index t is replaced by t − 1 is either positive or zero. Therefore, (δt − 

γt) b(x, c, …, c) < (δt−1 − γt−1) b(x, c, …, c) or (1 − γt) ht(x, c, …, c) > (1 − γt−1) 

ht−1(x, c, …, c). The assumption M(x, t) > e0 and (11) imply that ht(x, c, …, c) > 1 ≥ 

g(x, c, …, c). The assumption βt−1 − γt−1 ≤ 0 implies pt−1 ≤ pt. Therefore, by (10), 

b(x, c, …, c) > 1 and ht−1(x, c, …, c) ≥ max{ht(x, c, …, c), 0}. It follows that δt − γt < 

δt−1 − γt−1 or 1 − γt > 1 − γt−1. However, the latter inequality contradicts the assumption 

γt−1 ≤ γt, and the former inequality, which is equivalent to (1 − pt) (βt − γt) < (1 − 

pt−1) (βt−1 − γt−1), contradicts the assumptions βt−1 − γt−1 ≤ βt − γt and βt−1 − γt−1 ≤ 0 (the 

latter of which implies pt−1 ≤ pt). These contradictions prove that the condition in the 

proposition indeed implies that (4) holds for all 1 < t < T. n 

Example: Constant continuation probabilities 

A simple scenario satisfying the condition in Proposition 2 is that of constant 

continuation probabilities. More specifically, suppose that, over some time interval 

1 ≤ t ≤ T, the continuation probabilities are constant, and are equal to γ in the good 

state of the world and β in the bad state, with β ≤ γ ≤ 1. Then, the condition in 

Proposition 2 holds trivially. To fix ideas, suppose that in period T itself the 

continuation probabilities are zero; i.e., the game never continues past T. It then 

follows from Proposition 2 that a sufficient condition for cooperation to be sustainable 
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is that condition (4) holds in the first period and in last period T, and, in the good state 

of the world, the deviation from cooperation by a single player is not advantageous to 

the deviating individual (i.e., (11) holds).  

Counterexample: Decreasing continuation probabilities 

It is instructive to give an example in which continued cooperation yields a higher 

expected payoff than the one-time payoff from defection in the first period, and 

cooperation is also an equilibrium behavior in the last period, but nevertheless 

cooperation is not sustainable because, in one of the middle periods, it is better to 

defect. This example is similar to the previous one except that in the bad state of the 

world the continuation probabilities are not constant but decrease over time. 

Specifically, the good and bad states of the world have equal prior probabilities. In the 

good state, there are exactly 40 periods. In the bad state, the number of periods is 

determined by a random variable Tb that has a lognormal distribution with µ = 3 and 

σ = 0.3. If Tb ≥ 40, the number of periods is 40. Otherwise, the number of periods is 

the smallest integer greater than Tb. (This implies that, in the bad state, the probability 

is greater than 0.9 that the number of periods is between 12 and 31, with the expected 

number about 21.5.) In each period, the two players are engaged in a symmetric 2 × 2 

incomplete-information game with payoff matrix 

      c d  

 
c

d
   







1¸ 1 −1¸ a

a¸ −1  0¸ 0
, 

where, in the good state of the world, a = 0, and in the bad state, a = 38. Thus, in the 

bad state, the game is the prisoner’s dilemma, with the unique equilibrium (d, d). In 

the good state, (c, c) is also a equilibrium, and thus (11) holds.  

   In this example, cooperation is not sustainable. This can be seen by comparing the 

expected payoff from unilateral defection in period t, ht(d, c), with the expected payoff 

from continued cooperation in the continuation game starting at time t, which equals 

1 + et (see Figure 1). In the first and last periods, the latter is greater than the former. 

The same is also true in most of the other periods. In fact, there is only one period, 

namely, t = 15, in which defection is (marginally) better than continued cooperation.   
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0.0

15.0

30.0

1 14 27 40

Period

Payoffs Cooperation 

Defection

 

Figure 1. A game with incomplete information in which cooperation is not 

sustainable. (For details, see text.) In (only) one period, t = 15, a player’s expected 

payoff from defection is greater than if cooperation were to continue until the last 

period. 

Summary 

In the finitely repeated prisoner’s dilemma and similar symmetric games, cooperation 

is impossible to attain, for any number of repetitions. This paper’s starting point is the 

observation that cooperation may be possible to attain if repeated cooperation among 

the players changes the game’s payoff structure by making defection progressively 

less attractive, and if the number of repetitions is large enough. The large number of 

repetitions affects the players’ incentives in two ways. First, in the late stages of the 

game preferences have already changed enough for cooperation to be an equilibrium 

behavior in the stage game. Second, in the early stages players who defect from 

cooperation can be effectively punished by the other players, who respond by 

defecting in all the subsequent periods: The resulting loss for the defector outweighs 

the one-time benefit from the defection. The problem, however, is that such a 

punishment becomes increasingly less effective as time progresses. Hence, even if the 

threat of a punishment deters defection in the early periods, and preferences in the late 

periods are such that cooperation is an equilibrium behavior in the stage game, 

cooperation may be unattainable because neither factor effectively discourages 

defection in one or more of the intermediate periods. The example in Figure 1 

demonstrates this possibility. 
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   The main results of this paper concern conditions under which players will be 

willing to cooperate with the others in all periods. More specifically, these conditions 

are sufficient for cooperation in all periods to be an equilibrium outcome, in that no 

player can benefit from deviating by being the first to take a different action in any 

period. We start with the simple observation that if deviation from cooperation is not 

beneficial in two given periods, then a sufficient condition for it not to be beneficial in 

any of the intermediate periods is that, in the time interval under consideration, the 

expected payoff for a deviating player is either a monotonic or U-shaped function of 

the time of deviation. We then proceed to examine this condition more closely under 

two rather general settings.  

   In the first setting, systematic preference changes are brought about by the players’ 

actions in the preceding periods. Specifically, if everyone cooperates, then all players 

show increasing empathy towards the others. Consequently, the players’ perceived 

costs and benefits become increasingly close to the social costs and benefits. In 

particular, if cooperation is socially beneficial, then, from some period T and onwards, 

it becomes an equilibrium behavior in the stage game. Our first main result 

(Proposition 1) is that, for cooperation in all periods to be an equilibrium outcome, it 

suffices that the continuation probabilities in the first T − 1 periods are weakly 

increasing. In particular, it suffices that the game has at least T periods with 

probability 1.  

   In the second setting we examine, the payoff structure of the game does not change 

over time. However, the players’ beliefs about their payoffs do change. Specifically, 

as time progresses, players become increasingly confident that if everyone else 

cooperates, it is best for them to do the same. More precisely, players assign 

increasing probability to the “good” state of the world, in which cooperation is an 

equilibrium behavior in the one-shot game, and decreasing probability to the “bad” 

state, in which it is not. The reason for these changes in beliefs is that we assume that 

the number of periods in the bad state tends to be less than in the good state. 

Consequently, as time goes by without the game terminating, the players’ (posterior) 

belief that the good state has obtained increases. From some period T and onwards, it 

becomes strong enough for cooperation to be an equilibrium behavior in the stage 

game. Our second main result (Proposition 2) is that, for cooperation in all periods to 

be an equilibrium outcome, it suffices that, in the first T − 1 periods, (1) the 
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continuation probabilities in the good state are weakly increasing; (2) the continuation 

probabilities in the bad state also increase, at the same or faster rate; but (3) they are 

less than in the good state. (Part (3) of the condition is the one implying the changes 

in beliefs mentioned above.) In particular, it suffices that, in the good state, the game 

has precisely T periods, while in the bad state there is a constant positive probability 

of termination in each of these periods. 

   We view these two settings as examples of how our basic observations can be used 

to obtain concrete conditions for cooperation in repeated interactions in which the 

players’ perception of the payoff structure may change over time. We believe these 

observations are also applicable in many other settings and examples.  
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