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Abstract 

When forward contracts are involved in dynamic portfolio strategies, incurred profits 

or losses that accrue at each instant are locked-in in the forward position up to the 

contract maturities. The discounted value of these gains or losses at each date t is part 

of investors’ wealth. This discounting thus gives rise to an interest rate risk. 

Therefore, investors are bound to have a constrained bond position and, being unable 

to diversify away the corresponding systematic risk, they must be compensated for it. 

We derive the general equilibrium of a dynamic financial market in which the 

investors' opportunity set includes non-redundant forward contracts. We show that 

Breeden’s (1979) intertemporal consumption-based CAPM equation for forward 

contracts contains an extra term relative to that for cash assets. We name this term a 

strategy risk premium. It compensates investors for the (systematic) risk that stems 

from their very portfolio strategies when the latter involve non-redundant forward 

contracts. We also show that Merton’s (1973) multi-beta intertemporal CAPM must 

be amended for forward contracts to exhibit adjusted risk premia for the market 

portfolio and all relevant state variables, as opposed to the usual (non-adjusted) risk 

premia for cash assets. While the traditional intertemporal CAPMs shows that only 

the systematic risks related to asset return fluctuations are priced, we finally show that 

systematic trading strategy risk is also priced. Finally, none of our results depends on 

the usual cash-and-carry relationship, which in general will not hold. 

JEL Classification: D52, E52, G11, G12. 
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I. INTRODUCTION 

The economic significance of forward and forward-related instruments is not 

disputable. Forward contracts, interest rate and currency swaps and exotic (structured) 

financial vehicles using forwards have known so huge a development they have 

dwarfed primitive cash markets both in terms of liquidity and volume of transactions. 

In particular, most market makers on interest and exchange rate products traded over-

the-counter and most major corporations worldwide use all kinds of forwards for 

hedging purposes. Many such instruments are written on tradable financial assets or 

storable commodities, which implies that they are fundamentally redundant 

instruments whose prices are trivial to compute, using the cash-and-carry relationship. 

However, the proportion of forward contracts that cannot be considered as redundant, 

even as a first approximation, is increasing. Some of these are or will shortly be 

written on non-tradable economic variables [see Shiller (1993), Sumner (1995) and 

Athanasoulis, Shiller and van Wincoop (1999)]. A representative example is the 

forward contracts on a Consumer Price Index that could be launched in the near future 

by various Central Banks [see Cowen (1997), Dowd (1994) and Sumner (1997)]. 

Comparable forward contracts could be expanded to other macro-economic 

aggregates, such as the Gross National Product and monetary aggregates [Sumner 

(1995)]. Other famous examples are weather or, more generally, nature-linked 

derivatives. Another category includes forward contracts written on non-storable 

commodities (such as electricity), which have recently attracted much attention. On-

going projects include non-redundant forwards written on computer memory storage 

capacity, on emission credits and on bank credits. These propositions largely (but not 

exclusively) focus on forward contracts. They tend to neglect futures and options, 

probably because the underlying non-traded assets or economic aggregates are not 

sufficiently volatile to warrant the development of such markets, and because 

arbitrage activity seems to be an important motivation for participants in futures 

markets and strict arbitrage is impossible for non-redundant futures.1 

                                                 
1 See Horrigan (1987), Dowd (1995), Sumner (1995) and Athanasoulis et al. (1999). In the 

US, for instance, a market for futures contracts written on the CPI was organized but failed, 

probably because the CPI was not volatile enough.  
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   The pricing of non-redundant forwards, in spite of the economic significance of the 

latter, has been neglected in the literature and still leaves something to be desired. 

Cox, Ingersoll and Ross (1981), hereafter CIR, derived several important results 

regarding the relationship between the prices of a forward contract and of its 

corresponding futures contract when such contracts are redundant, for instance 

because the financial market is already complete before their introduction. They also 

showed that Merton’s (1973) intertemporal capital asset pricing model (hereafter 

ICAPM) and Breeden’s (1979) consumption-based CAPM (hereafter CCAPM) do not 

hold for forwards although they hold for futures. Yet, they did not provide the 

solutions for the forward price equations. One could be tempted to object that 

knowing the cash-and-carry relationship and the CAPM equation(s) for the underlying 

cash asset and the relevant discount bond, it is a trivial matter to derive the 

corresponding CAPM-like equation(s) for the forward. Yet, this objection would miss 

the point. First, the cash-and-carry relationship in general does not hold for forward 

contracts, whether they are redundant or not. Second, this procedure assumes away 

the issue of how the introduction of forwards in an incomplete economy affects the 

equilibrium prices of existing cash assets. Third, and most importantly, one cannot 

provide a convincing economic interpretation of the result since the precise 

mechanism that makes the traditional CAPM(s) invalid for forwards is not exhibited. 

   Richard and Sundaresan (1981) went a step further and derived a general 

equilibrium pricing of non-redundant forward (and futures) contracts. They showed in 

particular that the simple cash-and-carry pricing equation that characterizes redundant 

forward contracts still holds for non-redundant ones in special cases. However, their 

pioneering work has three limitations. The first is that they did not provide either a 

CAPM-like equation for the latter contracts, even in the special case where they are 

redundant. Consequently, they could not propose a convincing answer to the question 

regarding forwards (redundant or not) raised by CIR. The second limitation is that the 

cash-and-carry relationship does not hold, even for simple (with linear pay-off) 

forward contracts, when the underlying asset pays stochastic dividend(s) and/or 

provides a stochastic convenience yield (which is the case on most commodities). To 

derive their results, the authors had to assume these stochastic features away. The last 

limitation lies in that they considered only the case of forward contracts with linear 

pay-offs for which, in their infinite horizon setting, the cash-and-carry prices are 

easily derived as the equilibrium forward prices. 
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   A solution to the issue of pricing forward contracts, in particular non-redundant 

ones, thus is interesting per se since it fills a gap in financial asset price modeling. Yet 

there is another important reason why such a result is useful and awaited for. The 

pricing of redundant derivative assets by arbitrage is well understood and mastered by 

both academics and practitioners. However, a general or partial equilibrium model is 

needed to value correctly any non-redundant derivative asset as well as any primitive 

asset. The payoff(s) of the asset is (are) discounted by a risk-adjusted expected return. 

This risk adjustment is made for the systematic risk associated with the relevant asset 

only, which is correct for cash instruments. However, forward contracts will be shown 

to give rise to another systematic risk associated with the investment and/or hedging 

strategy. Therefore, an additional risk premium will have to be included in the 

discount rate. 

   In this paper, we propose a more general model in which the cash-and-carry 

equation does not necessarily hold for non-redundant forwards, yet leads to CAPM-

like pricing equations for the latter in equilibrium. It is important to note at the outset 

that we adopt a broad definition of what we call a forward contract: it is a contingent 

claim to a pay-off that is any function, not necessarily linear, of some units of a 

predetermined good or asset at a given maturity. No cash payment is ever involved 

before the contract expires. Along the way, we provide a convincing explanation as to 

why the traditional CAPMs do not hold for these contracts, and will show that this is 

also the case for the less interesting redundant ones. 

   We derive both a CCAPM and a multi-beta ICAPM for these claims and offer an 

intuitive economic interpretation of the results. The difference between these models 

and the two traditional CAPMs that hold for cash assets (and futures contracts alike) 

is explicitly related to an additional risk that stems from the very portfolio strategy 

involving forward contracts. Suppose for ease of exposition that the investor trades on 

only one such contract. When the latter is part of the optimal dynamic strategy, the 

profit or loss that occurs is locked-in in the forward position up to the contract 

maturity. Thus it is the discounted value of the accumulated gain or loss at each 

instant that is part of the investor’s wealth. This necessary discounting thus gives rise 

to an interest rate risk. Therefore, when using forward contracts in a dynamic trading 

strategy, the investor is bound to have an implicit (almost surely non-zero) 

constrained discount bond position. Hence, she must bear two risks on the forward 
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component of her wealth. The first is traditional and associated with the random 

fluctuations of the forward price, as for any risky cash asset. The second is novel and 

due to interest rate moves that randomly affect the value of her forward position, for a 

given forward price. Since she is unable to diversify away the corresponding 

systematic risk ex ante, she must be given an incentive to bear it. Consequently, the 

expected “return” on a forward (non cash) asset will include at equilibrium an extra 

premium compensating for a risk different from that of the forward asset itself. This is 

the reason why the traditional CAPMs for cash assets cannot hold for forward 

contracts. 

   This result gives rise to the interesting issue of what this risk premium becomes if 

interest rate risk can be perfectly hedged. The (somewhat subtle) answer is that the 

premium will not be affected. When the profit or loss on the forward position taken at 

date t is known at date t+, the associated risk will be a pure interest rate risk. Since 

presumably the investor would like optimally to hedge it, the possibility to hedge 

perfectly or not does in fact matter. However, at date t when the investor trades new 

contracts, he does not know yet what will be at date t+ the value of his position to be 

hedged against interest rate risk since this value depends on the fluctuation of the 

forward price between t and t+, which is random. Therefore, at time t the investor 

knows that what he will get at time t+ is not the (random) change in the forward price, 

for which he obviously demands a risk premium, as for any risky cash asset, but the 

(twice random) present value of that change that depends on the level of interest rates 

at date t+. It is this extra risk that commands an additional premium. In summary, even 

if interest rate risk in the economy can be perfectly hedged, it does not help the 

investor since he does not know ex ante the position to hedge. This implies in 

particular that the possibility to trade the discount bond whose maturity coincides with 

that of the forward contract is irrelevant for the additional premium to be present. 

   Our findings help clarify the intuition that, when an investor trades forward 

contracts, she bears an additional, interest rate related, risk. More importantly yet, we 

show a not so intuitive result we believe is fundamental. It concerns the way the 

presence of this forward trading strategy risk affects the equilibrium expected returns 

on the other (cash) assets traded in the economy. It turns out that only the expected 

“return” on the forward is affected, the required returns on the other assets remaining 

unchanged. 
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   Our main results can be summarized as follows. In addition to the consumption-

related risk premium, the CCAPM for forward contracts is shown to contain a term 

different from the traditional one relevant for cash assets, namely the riskless rate of 

interest. We name this novel term a strategy risk premium. It compensates the investor 

for the (systematic) risk that stems from his very portfolio strategy when the latter 

involves non-redundant forward contracts. Moreover, this result extends to redundant 

contracts and is valid regardless of whether the cash-and-carry relationship holds true. 

We also show that the multi-beta ICAPM for forward contracts contains adjusted risk 

premia for the market portfolio and each state variable, not the usual risk premia 

relevant for cash assets. Again, the adjustment is due to the systematic interest rate 

risk stemming from the trading strategy itself. While the traditional ICAPM shows 

that only the systematic risks associated with the random fluctuations of a cash asset 

itself are priced, the ICAPM that holds for forward contracts indicates that the 

systematic trading strategy risk is also priced. In a celebrated special case due to CIR 

(1985), we show that the magnitude of the strategy risk premium may be as large as 

that of the traditional risk premium. 

   The remainder of the paper is organized as follows. In Section II, we present the 

economic framework and describe an investor’s wealth dynamics in an incomplete 

financial market. Section III provides the investor’s optimal demands for risky assets 

including forwards. Section IV derives the CCAPM and the multi-beta ICAPM that 

apply to forward contracts and compares them with the usual ones valid for cash 

assets and futures. The last section offers some concluding remarks. For convenience, 

all proofs are gathered in a mathematical appendix.  

 

II. ECONOMIC FRAMEWORK 

We provide first a description of the economy and then an explicit expression for the 

gain/loss process generated by continuous trading on forward contracts. Finally, we 

derive the investors’ wealth dynamics. 

2.1 Technologies and financial assets 

Following CIR (1985), we assume an economy in which there is a single physical 

good, the numéraire, which may be allocated to consumption or investment. We 
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assume that there are N technological investment opportunities in the economy, all 

producing the same good. When an amount ( )tiη  of this consumption good is 

invested in technology i, (i = 1,…., N), the change in its value over time is governed 

by the following stochastic differential equation (SDE): 

 ( ) ( ) ( )( ) ( ) ( )( ) ( )tdZtY,ttdttY,tttd '
iii ii ηη ση+µη=η  (1) 

where Z(t) is an (N + K) × 1 dimensional Wiener process in RN+K, Y(t) is a K × 1 

dimensional vector of state variables, ( )( )tY,t
iηµ  is a bounded valued function of t 

and Y, and ( )( )tY,t
iησ  is a bounded (K + N) × 1 vector valued function of t and Y. 

The Wiener process is defined on a usual complete probability space (ΩΩ, F, P) where 

P is the historical probability measure. Like in CIR (1985), equation (1) specifies the 

growth of an initial investment when the output of the process is continually 

reinvested in that same process. 

   The movement of the K state variables is determined by the following system of 

SDEs: 

 ( ) ( )( ) ( )( ) ( )tdZtY,tdttY,ttdY YY Σ+µ=  (2) 

where ( )( )tY,tYµ  is a bounded K × 1 vector valued function of t and Y and 

( )( )tY,tYΣ is a bounded K × (N + K) matrix valued function of t and Y. 

   When convenient, we will write the dynamics of the N technological processes in 

the following form: 

 ( ) ( )( ) ( )( ) ( )tdZtY,tIdttY,tItd ηηηη Σ+µ=η  (3) 

where ηI  is an N × N diagonal matrix valued function of η(t) whose ith diagonal 

element is ( )tiη , ( )( )tY,tηµ  is an N × 1 dimensional vector whose ith component is 

( )( )tY,t
iηµ  and finally ( )( )tY,tηΣ  is a (K × N) + K matrix valued function whose ith 

element is ( )( )tY,t
iησ . 

   Investors have also access to an instantaneously riskless asset (money market 

account) yielding an interest rate r(t) in the numeraire good at which they can lend or 

borrow. It is in zero net supply. The diffusion process followed by r(t) is endogenous 

and will be made explicit in the special case examined at the end of Section III. 
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   In addition to the N technological investment opportunities and the riskless asset, 

non-redundant forward contracts, which are contingent claims to a specified amount 

of the physical good at a given maturity, are also available for trade in this economy. 

These financial claims are in zero net supply. We consider forward contracts only 

because, unlike cash primary assets or most options, no cash payments are involved 

until maturity. Since there is a single good in this economy, we assume without real 

loss of generality that there exists one forward contract only that, together with the N 

technologies and the riskless asset, forms the basis of our financial market.2 It is a 

claim to a payoff that is any deterministic function, not necessarily linear, of some 

units of the physical good, with maturity T. 

   Hence investors have access to (N+2) trading instruments. Note that none of our 

results depends on whether the financial market is complete or not, provided the 

forward contract we are interested in is not redundant. 

   The price of the forward contract solves the following SDE: 

 ( )tdZ)t(Fdt)t(F)t(dF '
FF σ+µ=  (4) 

where the notation F(t) is short for F(t, T); Fµ  and Fσ , respectively, are assumed a 

bounded valued function of t and Y, and a bounded (N + K) × 1 vector valued 

function of t and Y. The explicit dependence of the drift and diffusion parameters on t 

and Y(t) has been omitted for simplicity. Part of our problem is to determine these 

functions endogenously in market equilibrium. We stress that F(t, T) is the price of 

the forward, not its market value. In particular, its initial value is zero while its price is 

F(0, T). 

   The variance-covariance matrix '
ηηΣΣ  is assumed to be positive definite. The 

variance-covariance matrix of the percent changes in all risky asset prices 

(technologies and forward contract), i.e. 'ΣΣ  where 














σ

Σ
≡Σ

η

'
F

, is also assumed to be 

positive definite. 

                                                 
2 Richard and Sundaresan’s (1981) economy contains N consumption goods, thus N forward 

contracts written on them. This easy generalization would not add any economic insight to 

our results and, in particular, our pricing equations would remain identical. 
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   In our CIR-like economy, we assume for simplicity that no bond is actually traded. 

We stress that this assumption is used only to make easier the interpretation of the 

investors’ optimal strategies and is completely innocuous. Relaxing it would not 

affect any result herein derived. Indeed, the price of any risky cash asset will be seen 

to obey the usual CAPMs. Bonds, as is well known, are no exception. The only 

difference, apart from an investor’s optimal strategy slightly more complicated, would 

be that, were the number of such bonds large enough to ensure the market’s 

completeness, some optimal hedge to be defined later on would be perfect as opposed 

to imperfect. 

   Now, the riskless asset process r(t) determines an implicit yield curve whose 

characteristics are endogenous. In particular, let P(t, T), or P(t) for short, be the price 

at time t of an implicit pure discount bond whose maturity T coincides with that of the 

forward contract. Its dynamics then obeys the following SDE (for t such that 0 ≤ t 

< T): 

 ( ) ( ) ( )( ) ( ) ( )( ) ( )tdZtY,ttPdttY,ttPtdP '
PP σ+µ=  (5) 

Note that since its price is a function of the term structure that is endogenous, the 

parameters of the SDE (5) are, like those of SDE (4), determined endogenously. 

   Finally, trading in technologies and all financial assets takes place continuously in a 

frictionless market3 and only at equilibrium prices. 

 

2.2 Profit and loss from forward trading 

Let us turn now to the value of an investor’s position resulting from his trading in the 

forward contract. Let Θ  be the number of forward contracts held (as opposed to 

traded) at time t (t � T). The profit/loss account for the forward contracts is equal to: 

 )u(dF)u()t(P)t(X
t

0∫ Θ=  (6) 

The RHS of (6) is the value at date t of the profit or loss generated by the forward 

position. Since this cumulative algebraic gain is cashed-in or -out at the contract 

maturity date T only, it must be discounted using P(t). 

                                                 
3 We take exception of the fact that the technologies cannot be shorted. 
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2.3 Wealth dynamics 

Let α be the vector of proportions of wealth invested in the technologies, γ the 

proportion of wealth invested in the riskless asset and C the instantaneous 

consumption rate. Given equation (6), an investor's wealth dynamics writes: 

 

dZFPdFPW

dtCrWFPFPdFPWdW

'
F

'
P

t

0

'

P
'

FFP

t

0

'





 σΘ+σ





 Θ+Σα+





 −γ+σσΘ+µΘ+µ





 Θ+µα=

∫

∫

η

η

 (7) 

This dynamics, using the definition of wealth W ≡ dFP1WW
t

0N
' ∫ Θ+α+γ , can be 

rewritten as follows: 

 

( )

( )[ ]dZFPW'WWW

dt
CrWFP

FPW'WWW
dW

'
F

'
P

'

P
'

F

FP
'

σΘ+σγ−α−+Σα+















−γ+σσΘ+

µΘ+µγ−α−+µα
=

η

η

N

N

1

1

 (8) 

or 

 

( ) ( )
( )

( ) ( )[ ]dZFP1WW

dt
CrW

FPWW
dW

'
F

'
P

'
P

'

P

P
'

FFPP
'

σΘ+σγ−+σ−Σα+















−µ−γ+

σσ+µΘ+µ+µ−µα
=

η

η

N

N

1

1

 (9) 

Finally, to simplify notations, we denote by θ the ratio of the present value of the 

forward position to the investor's wealth, i.e., θ ≡ FP
W
1

Θ . Therefore, the wealth 

dynamics is finally given by: 

 

( ) ( )
( )

( ) ( )[ ]dZW1WW

dt
CrW

WWW
dW

'
F

'
P

'
P

'

P

P
'

FFPP
'

θσ+σγ−+σ−Σα+















−µ−γ+

σσ+µθ+µ+µ−µα
=

η

η

N

N

1

1

 (10) 

We are now fully equipped to compute optimal demands and then equilibrium 

quantities. 
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III. OPTIMAL DEMANDS FOR RISKY ASSETS 

Once the dynamics of the investor's wealth has been derived, the traditional stochastic 

dynamic programming approach à la Merton (1971) is used to find the optimal 

demand for risky assets. The modern martingale approach cannot be applied in its 

usual form to a set of assets that includes (non cash) forward contracts and its 

application subject to a number of modifications would not add any economic insight. 

   An investor in this economy maximizes the expected utility of his intertemporal 

consumption stream subject to his budget constraint. Thus, the optimal consumption 

and portfolio rules must solve: 

 Max ( )( ) 



∫

τ

t
dssC,sUE  (11) 

 subject to equation (10) and to positive αi’s and positive consumption P -a.s. 

where U is an increasing and strictly concave Von Neuman-Morgenstern utility 

function respecting the usual Inada conditions, E is the expectation operator 

conditional on the current endowment and the state of the economy. For simplicity, 

we do not introduce a bequest motive at terminal date τ. Moreover, in maximizing 

(11), the investor is assumed to limit his attention to admissible controls only. Recall 

from the previous section that the state of the economy is fully characterized by the 

vector Y(t) of state variables and wealth W(t). Finally, we assume without loss of 

generality that the investor’s horizon τ is larger than or equal to the forward contract 

expiration date T. 

   Before deriving equilibrium results, we analyze in some depth the optimal strategy 

followed by investors in our economy. This strategy is described in the following 

proposition. 

Proposition 1. The investor’s optimal demands for risky assets are equal to: 

( ) ( ) ( )
W
X

WJ
J

WJ
Jr

ˆ

ˆ

P
1'

WW

WY'
Y

1'

WW

W

P
'

FF

N1' σΣΣΣ−







−ΣΣΣΣ+








−














σσ+µ

−µ
ΣΣ=















θ

α
−−η−

1
 (12) 
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where 'ΣΣ , with 














σ

Σ
≡Σ

η

'
F

, is the instantaneous variance-covariance matrix of the 

returns on the technologies and the percent changes in the forward contract price, 

and X is the present value of the profit or loss generated by trading on the forward. 

   We stress first that in spite of the presence of X in the last term of the RHS of 

equation (12), this solution is indeed in closed form. This is because X(t) depends on 

the holdings )t(α̂  and )t(θ̂  of time t
-
, and is therefore known at date t when the new 

holdings are chosen. For instance, at date t = 0, )0(α̂  and )0(θ̂  are selected with X(0) 

equal to zero. 

   Recall that in addition to the traded assets (the forward contract, the riskless asset 

and the technologies), the agent has a constrained discount bond position stemming 

from her profit or loss generated by forward trading. Since the latter is not part of the 

investor's optimization program, it does not appear in (12). 

   The demand for risky assets thus contains three components. The first term on the 

RHS of (12) is the usual mean-variance speculative component while the last two are 

hedging components. The first hedging component is the traditional Merton-Breeden 

hedge. It is an information-based and dynamic term whose purpose is to hedge wealth 

against unfavorable shifts of the K economic state variables that drive the opportunity 

set. Note that this component is, as usual, preference dependent, and that JWY 

(≡ ∂JW/∂Y) is the cross-partial derivative that represents the effect of the state variable 

Y on the marginal value of wealth. In the case of logarithmic (Bernoulli) utility, the 

investor has a myopic behavior and this hedge would disappear since the cross partial 

derivative JWY would vanish. 

   The second hedging component results specifically from trading in forward 

contracts and would not of course be present in absence of the latter. It involves the 

fraction of wealth X/W corresponding to the forward position value times a 

covariance/variance ratio. Therefore, as intuition suggests, it depends on the fraction 

of wealth that has been generated so far on the forward position. This term however, 

unlike the preceding one, does not qualify as a Merton-Breeden component for two 

reasons. First, it is not a hedge against future random levels of state variables. Second, 

it does not depend on the utility term (-JWY/JWW), although it is not preference free 
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since both optimal X and W do depend on the investor’s utility. Rather, this hedging 

term is due to the forward position not being marked-to-market, hence bearing an 

additional (interest rate) risk on the cumulative algebraic gain that has accrued so far. 

Thus, the source of this additional risk is to be found in the forward trading strategy 

itself4. Because they anticipate that one period ahead the current value of their 

forward position will have changed, investors will optimally hedge against the interest 

rate risk brought about by their very strategy. Thus, this hedging component is not due 

to the presence of an exogenous source of non-diversifiable risk but results from the 

endogenous risk brought about by the particular nature of (non cash) forward 

contracts. 

   Through the third component of their optimal strategy, investors can achieve a 

perfect hedge of the additional interest rate risk or not depending on whether the 

financial market is complete or incomplete. But this does not of course affect equation 

(12). However, that part of wealth that is so hedged against interest rate fluctuations 

will earn the riskfree rate r(t) if perfect hedging is possible, and will earn something 

else (a random return) if it is not. 

   An important consequence of (12) is that, since the last term is not a 

Merton/Breeden hedging term, this third component will not lead to a risk premium 

for any risky asset in equilibrium. This result implies in particular that the 

technologies, although risky assets, will not command any risk premium in addition to 

the one delivered by standard pricing models, as will be shown below. Therefore, the 

introduction in the economy of non-redundant forwards does not formally affect cash 

asset returns, although it certainly alters all asset equilibrium prices. 

   The difference between forward contracts and standard cash assets (here, 

technologies) comes from the speculative part in (12). While for risky cash assets the 

usual excess return ( )rN1−µη  is involved, for forward contracts the novel excess 

return ( )( )P
'

FF σσ−−µ  appears. Since there is no actual investment in a forward 

                                                 
4 Lioui and Poncet  (2000 (a) and (b), and 2001) have derived a similar result in various 

frameworks to solve different but related issues. In particular, they have pointed out the 

crucial theoretical difference in this regard between futures and forward contracts. 

Empirically, this difference may be large or not, depending on the specific parameters of the 

diffusion processes.  
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contract (no cost-of-carry), the riskless rate of return r is absent from the forward 

excess return. However, since the forward is nonetheless a risky asset, its 

instantaneous expected return Fµ  is corrected by a term that comes directly from the 

interest rate risk stemming from the profit-and-loss account. This expected excess 

return ( )( )P
'

FF σσ−−µ  will be further elaborated on in the following sub-section. 

 

IV. INTERTEMPORAL GENERAL EQUILIBRIUM 

In an economy where the investment opportunity set driven by an arbitrary number of 

stochastic state variables, Merton (1973) derived an ICAPM that exhibits two (or 

more) betas, one vis-à-vis the market portfolio and one (or more) vis-à-vis the state 

variable(s). In another seminal paper, Breeden (1979) showed that this multi-beta 

ICAPM reduces to a single beta one when the beta is measured with respect to 

aggregate consumption (CCAPM). This is because the ultimate concern of all 

investors is real consumption, and that the latter (stochastic) variable encompasses all 

the sources of risk affecting the economy. However, CIR (1981) showed later that 

neither Merton’s nor Breeden’s models hold for non-redundant forward contracts but 

derived no alternative equations. We will provide versions of the CCAPM and the 

multi-beta ICAPM that hold for such forward contracts. 

   To obtain equilibrium relationships, we now assume, like CIR (1985) and many 

others, that a representative investor exists. Thus, aggregate wealth and individual 

wealth are equal.5 In addition, the following two market-clearing conditions must hold 

in equilibrium: 

i) the total amount invested in the technologies equals total wealth (i.e., N
'ˆ 1α = 1),  

and  

ii) the net positions in the forward market and the riskless asset are zero (i.e., γ̂  = 0 

and θ̂  = 0). 

                                                 
5 Alternatively, and equivalently, we can assume as in Richard and Sundaresan (1981) that all 

investors are identical. Then each individual wealth is a fixed and known fraction of 

aggregate wealth. See their footnote 3 on page 351, for a brief discussion of this assumption. 
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4.1 Consumption-based CAPM 

The representative investor is obviously concerned by the equilibrium expected return 

on the technologies and on the forward contract. He is also concerned by the expected 

return on the implicit cash bond that is part of his wealth. Thus our second proposition 

contrasts the CCAPM for the implicit cash bond of maturity T6 and the forward 

contract. 

Proposition 2. The consumption-based CAPM for the implicit pure discount bond 

P(t) is expressed as: 

 
Ĉ

'
P

Ĉ

ĈĈ
P U

UĈ
r σσ−=µ  (13) 

where 
Ĉ

σ  is the instantaneous volatility of the relative changes in aggregate 

consumption, and the consumption-based CAPM for the forward contract F(t) writes: 

 
Ĉ

'
F

Ĉ

ĈĈ
P

'
FF U

UĈ
σσ−σσ−=µ  (14) 

   As expected, Breeden’s traditional CCAPM holds for the cash bond (equation (13)). 

Investors are fairly compensated by the market for the systematic risk they bear from 

holding (in positive or negative amounts) the implicit discount bond generated by 

their forward position. In addition, this CCAPM of course holds for the technologies 

themselves, as is apparent from the optimal demand for α̂  [equation (12)]. This is 

because these are in effect cash assets.  

   However, the CCAPM for the forward contract is different (equation (14)). As noted 

before, investors must be compensated for the two risks they bear. The risk associated 

with the random fluctuations of the forward price itself gives rise to the usual 

premium 
Ĉ

'
F

Ĉ

ĈĈ

U

UĈ
σσ− , and the risk associated with the forward trading strategy 

generates a premium equal to minus the instantaneous covariance between the relative 

changes in the forward contract and the relative changes in the discount bond whose 

                                                 
6 Recall that there is no explicit discount bond in our CIR-like economy. 
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maturity is equal to that of the forward contract ( )P
'

F σσ− . It is interesting to remark 

that the sign of this covariance term is indeterminate.7 

   We call this novel term ( )P
'

F σσ−  a strategy risk premium. Thus, the “return”8 on a 

forward contract compensates also for the systematic risk that results from the 

covariance between the contract and its associated discount bond. The economic 

intuition behind this result is as follows. When trading on forward contracts, the 

investor generally has an implicit discount bond position and, being unable to 

diversify the corresponding systematic risk, she must be compensated for it. An 

important feature of this additional premium is that, in contrast to the premium related 

to the consumption risk of the forward price, it is preference free. This not so intuitive 

result can be explained as follows. First, at equilibrium the accumulated profit or loss 

X is obviously zero for the set of all investors (or the representative individual). And 

X/W was noted to be the only preference-dependent element of the second hedging 

term of equation (12). Second, under the assumption of homogeneous beliefs, the 

covariance ( )P
'

F σσ−  is common to all investors (or is the belief of the representative 

agent). This term thus plays to some extent the role of a riskless interest rate. In effect, 

rewriting equations (14) under an “excess return” form yields: 

 ( )
Ĉ

'
F

Ĉ

ĈĈ
P

'
FF U

UĈ
σσ−=σσ−−µ  

Thus, the RHS of the rewritten equation has exactly the same structure as the RHS of 

equation (13). This RHS does of course depend on the investor’s utility function. 

   An interesting remark concerns the relationship between our new CCAPM (14) and 

the classic cash-and-carry relationship. One can easily show that if we assume that the 

cash-and-carry relationship holds, then equation (14) follows essentially from Itô’s 

                                                 
7 To be rigorous, let us recall that the interest rate r is a real rate in this moneyless economy 

and could actually be negative in equilibrium. Therefore, both r and (-σF'σP) have 

indeterminate signs. 

8 The word “return” is written within quotes since, as noted previously, no initial payment is 

involved with a forward contract. The correct phrase is “percent change in the forward price”. 

We use both expressions equivalently. 
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lemma.9 Therefore, result (14) holds for both redundant and non-redundant forwards 

and does not depend on whether the cash-and-carry equation holds or not. However, 

our derivation not being grounded on this assumption is more general. In our setting, 

the extra term emerges from Itô's lemma applied to the present value of the profit and 

loss account. In addition, we can provide a clear economic interpretation of the result 

in terms of trading strategy risk, interpretation that is impossible from the cash-and-

carry relation. 

 

4.2 Multi-beta ICAPM 

The one-to-one relationship that is known to exist in general equilibrium between the 

CCAPM and the multi-beta ICAPM seems on a priori grounds to make the derivation 

of the latter useless. Yet the volatilities of financial assets appearing in equations (13) 

and (14) are endogenously determined, so that it is useful to characterize them as a 

function of the volatilities of the state variables and aggregate wealth. This leads to 

the multi-beta ICAPM that (i) is interesting in its own right, (ii) is easier to submit to 

empirical testing10, and (iii) has obvious and well known implications as to the current 

hotly debated issue of financial asset predictability. Our third proposition thus 

provides the ICAPM for the implicit discount bond and the forward contract. 

Proposition 3. The general equilibrium expected return on the discount bond P(t) is 

given by: 

 ∑
=

λ+λ+=µ
K

1j
YYWWP jj

P
P
W

P
P
W

r  (15) 

and the general equilibrium expected percent change in the forward contract is equal 

to: 

                                                 
9 See the derivation in the Appendix following the proof of Proposition 2. 

10 Testing the CCAPM is well known to be very difficult due to severe practical and empirical 

problems. For instance, one has to measure the “representative individual’s” utility and its 

relevant derivatives, consumption data suffer from too low a frequency, their accuracy 

depends on the quality of the samples that are used, and expenses rather than consumption 

itself are in fact measured. 



18 

 ( ) ( )∑
=

σσ−λ+σσ−λ=µ
K

1j
Y

'
PY

Y
W

'
PWWF jj

j W
F

F
F

F
W

 (16) 

where Wσ  is the instantaneous volatility of aggregate wealth, Px and Fx denote partial 

derivatives of the two asset prices, and where: 

 
j
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J
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=

 (18) 

   Since in equilibrium aggregate wealth W is the value of the market portfolio, (15) 

and (16) are ICAPM-like equations. While (15) is standard, (16) is not: In addition to 

the fact that r does not appear, as previously explained, the various risk premia 

affecting the forward expected “return” must be adjusted for the systematic interest 

rate risk linked to the presence of the implicit discount bond. This theoretical result 

also bears on empirical testing. When a CAPM-like model is applied to forward 

contracts, the same linear risk-return relationship that is tested for cash assets is 

assumed to hold, namely: 

 Percent change in the forward price = a constant + jj

K

1j

YβΣ
=

+ a noise. 

Since the 
jY

'
P σσ  are actually not constant, the above regression model is 

misspecified, and its empirically estimated parameters will be biased. 

   Incidentally, one may wonder what the multi-beta ICAPM looks like for redundant 

cash (as opposed to forward) contingent claims that are replicable using, in particular, 

the forward contract. The answer is given in the following proposition. 

Proposition 4. The general equilibrium expected return on an attainable contingent 

claim iS  is given by: 

 ∑
=

λ+λ=−µ
K

1j
Y

i
YiW

i
WiS jj

i S
S
W

S
S
W

r  (19) 
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   The multi-beta ICAPM holds in its usual form, without adjustment for the risk 

premia. This was expected since the financial claim is a cash asset. However, the 

replicating strategy is different from what is known. Since forward contracts are used, 

hedging the interest rate risk will in effect be involved. It is worth noting that this 

ICAPM holds whether the latter risk can be hedged perfectly (in special cases) or not 

(in the general case). 

   Now, the following proposition shows that the partial differential equation (PDE) 

for the forward contract is different from the one governing cash assets. We will then 

apply it to a celebrated special case in order to obtain a closed form solution. 

Proposition 5. The price of the forward contract satisfies the following PDE: 

 

( ) ( ) t

K

1j
YY

'
PYYWP

'
WW

'

K

1j

K

1k
YYY

'
Y

K

1j
WYY

'
WWWW

'
W

2

FFWFĈWWWˆ

F
2
1

FFW
2
1

0

jkjj

kjjkjj

+σσ+λ−µ+−σσ+λ−µα+

σσ+σσ+σσ=

∑

∑∑∑

=
η

= ==
 (20) 

subject to the relevant boundary condition for the forward price as dictated by the 

terms of the contract. 

   Our valuation PDE turns out to have a unique characteristic not present, to the best 

of our knowledge, in the literature on contingent claims pricing. This is due to the 

presence of several terms involving the discount bond volatility σP. This implies that 

to solve for this PDE and thus find the price of the forward contract, we must solve a 

system of two simultaneous equations. Namely, one must solve the (usual) PDE for 

the discount bond together with PDE (20). Fortunately, this can be done in two steps. 

We obtain first the price of the discount bond, and then derive by substitution the 

price of the forward contract. We provide below a specific example that gives the 

solution without formally resorting to actually solve the two PDEs.  

 

4.3 A celebrated special case 

The investors’ optimal strategy having been derived and interpreted in full generality, 

we can now focus on a special case where the cash-and-carry relationship will be 

shown to hold for a simple (linear) forward contract to deliver an amount ( )τη  of the 
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consumption good. This example is chosen as it represents the benchmark case. We 

stress that it is not redundant with the case studied by Richard and Sundaresan (1981) 

since the latter postulate that the representative agent’s horizon is infinite. We 

consider a specialized version of our economy due to Cox et al. (1985). There is a 

single state variable that obeys the square root process: 

 ( ) dzYdtYdY YYY σ+κ+ε=  (21) 

and a single technology whose dynamics is given by: 

 dzYYdt
d

ηη σ+µ=
η
η

 (22) 

where ηη σµσκε and,,,, YYY  are constants. 

   One should notice that, although this economy is affected by one source of 

uncertainty only, the market is still incomplete because of the short sale constraint 

imposed on trading on the technology. In other words, even a forward contract written 

on the technology is not redundant. 

   Finally, the representative investor is assumed to have a logarithmic utility: 

 ( )( ) ( )tLnCetC,tU tρ−=  (23) 

In such a framework, our first results easily obtain, gathered in the following 

proposition. 

Proposition 6. The equilibrium aggregate wealth is equal to: 

 ( )
( )

( ) ( )te0W
e1

e1
tW t

t

η
−

−
= ρ−

ρτ−

−τρ−

, (24) 

the equilibrium aggregate consumption is proportional to wealth: 

 ( ) ( ) ( ) ( ) ( )te0W
e1

tW
e1

tĈ t
t

η
−

ρ
=

−
ρ

= ρ−
ρτ−−τρ−

, (25) 

and the equilibrium spot rate is given by: 

 ( ) )t(Y)t(r 2
ηη σ−µ=  (26) 
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   We are now fully equipped to price a forward contract. Consider for instance a 

simple (with linear pay-off) forward contract of maturity τ to deliver an amount ( )τη  

of the consumption good. Its price is shown in the Appendix to be equal to: 

 ( ) ( )
( )τ
η

=
,tP
t

tF  (27) 

The familiar cash-and-carry relationship is recovered in this special case. However, 

we stress that it is grounded on a general equilibrium model, not on mere absence of 

arbitrage opportunity. The latter is indeed ineffective since the forward contract is not 

redundant. This important and elegant result was first obtained by Richard and 

Sundaresan (1981). However, they derived it in a somewhat simpler setting where the 

representative investor has an infinite horizon while the forward contract has finite 

maturity, which may introduce confusion and lead to the question as to why the 

forward contract is not longer-lived.  

   Now, it is well known that, in the CIR (1985) model, the price of a discount bond 

with maturity τ writes: 

 ( ) ( ) ( ) ( )tr,tBe,tA,tP ττ=τ  (28) 

where A(t, τ) and B(t, τ)  are deterministic functions. 

   Applying Ito’s lemma, we have: 

 

( )( )

( )( )( ) Y,tB

Y

Y,tB

Y
2

F

Ĉ

Y
2

P

σσ−µτ−σ=σ

σ=σ

σσ−µτ=σ

ηηη

η

ηη

 (29) 

Using (14) and substituting for (29), it follows that: 

 ( )( ) ( )( ) ( )( )
( )( ) YY,tB

Y,tB,tBY,tB

2
Y

2

2
Y

2
Y

2
Y

2

ĈFPFF

ηηηη

ηηηηηηη

σ+σσσ−µτ−

σσ−µτσσ−µτ+σσσ−µτ−=

σσ+σσ−=µ

 (30) 

The presence of the first risk premium in the RHS of the first part of equation (30) 

should not been downplayed under the false pretext that the (second) usual risk 

premium associated with consumption risk is present. It may very well be that the 
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compensation for the strategy risk is of the same magnitude, or even larger, than the 

compensation for the consumption risk. The pricing of non-redundant forward 

contracts is actually different from that of cash assets. Again, it is important to note 

that the usual cash-and-carry derivation, while applicable to this special case, would 

not by itself lead to the decomposition of the drift µF into the two components present 

in the first equality (30) and its interpretation. A general equilibrium model is 

required. 

 

V. CONCLUDING REMARKS 

We have developed a simple general equilibrium model of a one-good economy 

where the financial market is perfect but possibly incomplete. Our findings should 

help to highlight a specific feature of the financial market equilibrium, namely that the 

expected return on a forward (non cash) asset includes a premium for a risk other than 

the risk of the asset price. This result has been derived without the introduction of any 

exogenous (background) risk. Expanding our results to markets with frictions could 

be of course a natural extension of this work. The approach followed here could 

equally help analyzing other issues in financial economics such as corporate hedging 

and financial market optimal design. 
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MATHEMATICAL APPENDIX 

Proof of Proposition 1. Let ( ) ( )( )J t W t Y t, ,  be the value (indirect utility) function at 

date t � T and let L(t)J be the differential generator of J. We assume that J exists and 

is an increasing and strictly concave function of W. This assumption encompasses 

several of the assumptions made by CIR (1985). Let ψ ≡ +LJ U . Then the necessary 

and sufficient conditions for optimality are: 

0JU WĈĈ ≤−=ψ  (a) 

0Ĉ Ĉ =ψ  (b) 

( ) ( )
( )( ) ( )( )
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with usual notations for partial derivatives of the value function with respect to each 

of its arguments. The hat ^ above a variable denotes an optimal value. Equation (a) is 

the standard envelope condition while equations (b) and (d) guarantee that the optimal 

value for the consumption process and the proportions of wealth invested in the 

technologies are non-negative. 

   Using (c), (e) and (f), we have: 
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(c') hold for any vector α̂  satisfying the non-negativity constraint. Solving for (c') and 

(e') and using (f') to eliminate γ̂  yields the desired result. 

Proof of Proposition 2. Using the market clearing conditions and (e) yields: 
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Using the market clearing conditions, the aggregate wealth dynamics writes: 

 [ ] [ ]dZˆWdtĈˆWdW ''
ηη Σα+−µα=  (h) 

In our Markovian setting, the control variables may be written in a feedback form. 

Therefore, the optimal consumption process Ĉ (t,.) writes ( )Y,W,tĈ . Applying Ito's 

lemma then yields: 

 dZdt
Ĉ

Ĉd '

ĈĈ
σ+µ=  (i) 

where: 

 
Ĉ
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From the envelope condition (a), we have: 
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and therefore: 
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Using this, we have: 
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Using this and (g) yields the second part of Proposition 2. 

   The first part of the proposition follows from the same approach applied to (f) 

instead of (e). 

Derivation of (14) when the cash-and-carry relation holds. Consider a forward 

contract of maturity T written on a technology. Assuming the price of this contract 

satisfies the cash-and-carry relation, we have: 

 ( ) ( )
( )T,tP

t
T,tF

η
=  (n) 

Using: 
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and since the CCAPM holds for cash assets, we have: 
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Applying Itô's lemma to (n), one gets: 
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Using the preceding results, one gets: 
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Ĉ

ĈĈ
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UĈ

U

UĈ
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which is equation (14). 

Proof of Proposition 3. The price at each time t of the discount bond P(t, .) can also be 

written in a feedback form as P(t,Y(t),W(t)). Applying Ito’s lemma yields the 

following expression for Pσ : 

 ( )Y
'

YW
'

P PWPˆ
P
1

Σ+αΣ=σ η  (t) 

where PY is the K × 1 vector of partial derivatives of the discount bond price with 

respect to the state variables. Substituting for σP given by (t) into (13) and rearranging 

terms by using definitions (17) and (18) yields the desired result (15). 

   The same approach is followed to prove (16), using (14) instead of (13). 

Proof of Proposition 4. To prove this result, we replicate the contingent claim to be 

priced by constructing a portfolio F  comprising the optimally invested wealth, the 

forward contract and the riskless asset. Throughout the proof, to ease the notation, we 

will denote the value of the riskless asset at each date t by F0 and by F1 the value of 
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the optimally invested wealth. The number of units of each one of the assets held by 

the investor will be written as θi. The value of the contingent claim at each time t is 

equal to the value of the replicating strategy. Therefore, we have: 

 1
1

t

0

0
0 FdFPFF θ+θ+θ= ∫  (u) 

Since it is a self-financing trading strategy, its dynamics is given by: 

 1
1

t

0

0
0 dFP;FddFPdFdPdFFd θ+><θ+θ+θ+θ= ∫  (v) 

where d <F;P> stands for the instantaneous covariance between the discount bond 

price changes and the forward price changes. 

   From (15), the instantaneous expected rate of return on the optimally invested 

wealth is rW +λ  and its volatility, from (h), is ηΣα 'ˆ . Using these and equations (5) 

and (7), (v) can be rewritten: 

 

( )

( ) ( ) dZˆFFPFFF

dt
FP

rFFPFFFrF
Fd

'1
1

'

F
'

P
1

1
0

0

P

'

F1W

1
1FP

1
1

0
0

0
0





 Σαθ+σθ+σθ−θ−+















σσθ+θλ+

θ+µθ+µθ−θ−+θ
=

η

 (w) 

Substituting for (15) and (16), one gets the expected return on the contingent claim: 

 ( ) [ ][ ]

[ ][ ] '
YYWYYW

'
YYWYYW

1
1

0
0

W1
1

1
0

0F

K1K1

K1K1

F..FF..P

P..PP..
P
1

rFFF

rFrFF

λλλ+







 λλλ+θ−θ−+

λθ+θ+θ=µ

 (x) 

Rearranging terms, one gets: 

 [ ] ( )
















θ

θ−θ−

θ


















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1
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Y
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W

Y
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W
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P
1

P
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0

1

P

.

P

P

F

.

F

F

..
F

W
r

K

1

K

1

K1
 (y) 

Equation (t) relative to the volatility σP of the discount bond applies as well to that of 

the forward contract. Thus: 
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 ( )Y
'

YW
'

F FWFˆ
F
1

Σ+αΣ=σ η  (z) 

From (w), the instantaneous volatility of the contingent claim price is equal to: 

 ( ) ( )αΣθ+σθ+σθ−θ− η
ˆFFPFFF '1

1FP
1

1
0

0  (aa) 

This can be written as: 

 

( ) ( )
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














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θ
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'
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1
1
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F
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FFF
ˆ

ˆFFPFFF

 (ab) 

Using (t) and (z), we obtain: 

 

( ) ( )
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Applying Ito’s lemma to ( )Y,W,tFF=  and identifying terms, we have: 
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
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Using (y) and (ad) and substituting Si for F  yields the desired result, equation (19). 

Proof of Proposition 5. Applying Ito’s lemma to F(t,Y,W) we get: 

 

( ) t

K

1j
YYW

'

K

1j

K

1k
YYYY

K

1j
WYWYWWWW

2
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FFFĈWˆ
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kjkjjj

+µ+−µα+

σ+σ+σ=µ

∑

∑∑∑

=
η

= ==
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Using (ae) and (16) yields the desired result, equation (20). 
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Proof of Proposition 6. In the special case of a logarithmic utility function, the 

standard solution for the investor’s value function (see Ingersoll (1987) page 274) is: 

 ( )
( )

( )tLnW
e1

eW,tJ
t

t

ρ
−

=
−τρ−

ρ−  (af) 

Using the envelope condition, we have: 

 ( ) ( ) ( )tW
e1

tĈ
t−τρ−−

ρ
=   

which is equation (25). 

   Now, using (25), we have in equilibrium: 

 ( ) ( ) ( ) ( ) ( )tdZtWdt
e1

tWtdW
t η−τρ−η σ+








−
ρ

−µ=  (ag) 

which yields the desired result (24).  

   Using (c) and (f) and the fact that all the wealth is invested in the technology in 

equilibrium, we have: 

 
( ) ( )
( ) 0WJJr

0WJJ

WWPWP

WWPWP

=σσ−µ−

=σ−σσ+µ−µ

η

ηηη
 (ah) 

Solving this system yields: 

 2r ηη σ−µ=  (ai) 

Identifying from (22) yields the desired result (26). 

Proof of equation (27). We can use here the modern pricing kernel methodology, 

since investors are myopic, implying that random changes in the investment 

opportunity set do not matter to them. The price of the forward contract is such that: 

 ( ) ( ) ( )( )[ ]τ−τητΛ= FE0 t  (aj) 

where ( )τΛ  is the pricing kernel defined by )Ĉ,t(U)t( Ĉ=Λ . 

Thus, (aj) can be written as: 

 ( ) ( )[ ] ( ) ( )[ ]τητΛ=τΛ tt EEtF  (ak) 
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Consider a discount bond maturing at time τ. Its price at time t is such that: 

 ( ) ( ) ( )[ ]1Et,tP t τΛ=Λτ  (al) 

Therefore, we have: 

 ( ) ( ) ( ) ( ) ( )[ ]τητΛ=Λτ tEt,tPtF  (am) 

By definition, and using (23), (24) and (25), we have: 

 ( ) ( )
( ) ( )t0W

e1

1

Ĉ

1
eĈ,tUt t

Ĉ
η

−
ρ

===Λ

ρτ−

ρ−  (an) 

Using (am), and (an) for t = t and t = τ, and simplifying the integrals involved yields 

the desired result (27). 
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