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Abstract. Different kinds of networks, such as transportation, communication, 

computer, and supply networks, are susceptible to similar kinds of inefficiencies. 

These arise when congestion externalities make the cost for each user depend on the 

other users’ choice of routes. If each user chooses the least expensive (e.g., the fastest) 

route from the users’ common point of origin to the common destination, the result 

may be Pareto inefficient in that an alternative choice of routes would reduce the costs 

for all users. Braess’s paradox represents an extreme kind of inefficiency, in which the 

equilibrium costs may be reduced by raising the cost curves. As this paper shows, this 

paradox occurs in an (undirected) two-terminal network if and only if it is not series-

parallel. More generally, Pareto inefficient equilibria occur in a network if and only if 

one of three simple networks is embedded in it. JEL Classification: C72, R41. 
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1  Introduction 

In transportation and other kinds of physical networks with large numbers of users, 

congestion externalities are a potential source of inefficiency. A remarkable example 

of this, known as Braess’s paradox (Braess, 1968; Murchland, 1970; Arnott and 

Small, 1994), is shown in Figure 1. Cars arrive at a constant rate at vertex o of the 

depicted network and leave it at vertex d. The network consists of three fast roads (e1, 

e4 and e5) and two slow ones (e2 and e3). The travel time on each road is an increasing 

function of the flow on it, or the average number of vehicles passing a fixed point in 

the road per unit of time. (This is a reasonable assumption if the density of vehicles on 

the road is relatively low, so that the flow is well below the road’s capacity. See 

Sheffi, 1985, Chapter 13 and Figure 1.8.) However, regardless of the flow, the travel 

time on the route consisting of the three fast roads is shorter than on any of the 

alternative routes. Therefore, at (the Wardrop) equilibrium, when the entire flow 

passes on the fastest routes, all vehicles use this one. The travel time on the network 

(as computed in the caption to Figure 1) is then 21 minutes. Suppose, however, that 

the transverse road, e5, is closed, or its physical condition deteriorates to the point at 

which the travel time on it becomes similar to that on each of the two slow roads. The 

road’s new cost curve is higher than the old one: for any flow on e5, the travel time is 

longer than before. As a result of the change in costs, the old equilibrium is replaced 

by a new one, in which the transverse road is not used at all. Paradoxically, the new 

travel time is shorter than before: 20 minutes. The longer previous travel time is due 

to the motorists’ concern for their own good only, which results in overuse of the fast 

roads and consequently an inefficient equilibrium. As pointed out by Newell (1980) 

and Sheffi (1985), traffic engineers have long known that more restricted travel 

choices and reduced capacity may improve the flow in the network as a whole. For 

instance, this is the underlying principle behind many traffic control schemes, such as 

ramp metering on freeway entrances (Sheffi, 1985, p. 77).  

   Braess’s paradox is not limited to transportation networks. The potential occurrence 

of this or similar paradoxes has been demonstrated for such diverse networks as 

computer and telecommunication networks, electrical circuits, and mechanical 

systems. Remarkably, much of this literature (e.g., Frank, 1981; Cohen and Horowitz, 

1991; Cohen and Jeffries, 1997) is concerned with essentially the same network as in 
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Braess’s (1968) original example, the Wheatstone network, shown in Figure 1. As it 

turns out, there is a good reason for this. As this paper shows, this is, in a sense, the 

only two-terminal network in which Braess’s paradox can occur. More precisely, a 

necessary and sufficient condition for the existence of some cost function exhibiting 

the paradox is that the network has an embedded Wheatstone network. In networks 

without this property, called series-parallel networks, Braess’s paradox never occurs. 

Several alternative characterizations of series-parallel networks are given below. 

   Braess’s paradox is not the only kind of inefficiency caused by congestion 

externalities. Consider, for example, the series-parallel network in Figure 2(a), which 

represents the alternatives faced by weekend visitors to a certain seaside town where 

the only attractions are the two nearby beaches. The two edges joining o and v 

represent the alternatives of going to the North Beach (e1) or the South Beach (e2) on 

Saturday. The two edges joining v and d represent the same two alternatives on 

Sunday. The South Beach is more remote, and the cost of getting there is two units 

more than for the North Beach. On the other hand, it is a longer beach, and therefore 

does not get crowded as fast. However, the additional pleasure of spending the day on 

an uncrowded beach never exceeds the difference in travel costs. Therefore, at 

equilibrium, all the visitors go to the North Beach, both on Saturday and on Sunday. 

Crowding then costs each person four units of pleasure. However, if people had taken 

turns, half of them going to the South Beach on Saturday and the other half on 

Sunday, then the cost for all individuals would be lower, and equal to 3½. Thus, this 

arrangement, which is not an equilibrium, represents a strict Pareto improvement over 

the equilibrium. The difference between this example and the one in Figure 1 is that, 

in the case of Braess’s paradox, Pareto improvement results from raising the costs of 

certain facilities (e.g., increasing the travel time on the transverse road in Figure 1), 

thereby creating a new equilibrium that is better for everyone. By contrast, in the 

present example it is not possible to make everyone better off by raising the costs of 

facilities (e.g., charging congestion-dependent entry fees to beaches). Since the 

networks in Figure 2 are series-parallel, Braess’s paradox cannot occur. Hence, any 

Pareto improvement necessarily involves non-equilibrium behavior, i.e., use of certain 

routes for which less costly alternatives exist.  
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Figure 1 Braess’s paradox. A continuum of users travels from o to d on the two-

terminal Wheatstone network shown. The travel time on each edge e is an increasing 

function of the fraction x of the total flow from o to d that passes on e. The travel 

times, in minutes, are given by 1 + 6x for e1 and e4, and 15 + 2x for e2 and e3. If the 

travel time on e5 is also given by 1 + 6x, then, at equilibrium, the entire flow passes on 

e1, e5 and e4, which constitute the fastest route from o to d. The total travel time is 

then 3 × (1 + 6 × 1) = 21 minutes. If, however, the travel time on e5 is longer, and 

given by 15 + 2x, then, at equilibrium, there is no flow on that edge: half the users go 

though e1 and e3 and half though e2 and e4. The equilibrium travel time is then shorter: 

(1 + 6 × ½) + (15 + 2 × ½) = 20 minutes. 

   One of the main results of this paper is that the three networks in Figure 1 and 

Figure 2 essentially represent the only kinds of two-terminal network topologies in 

which congestion externalities may lead to Pareto inefficient equilibria. For example, 

such inefficiencies never arise in networks such as in Figure 3. The crucial difference 

between this network and those previously mentioned is that the routes in it are 

linearly independent, in the sense that each one includes at least one edge that is not 

part of any other route. This is equivalent to the following condition: none of the 

routes in the network has a pair of edges, each of which also belongs to some other 

route that does not include the other edge. In a similar, but not identical, context, 

Holzman and Law-Yone (1997, 2003) show this to be a necessary and sufficient 

condition for weak Pareto efficiency of the equilibria for all systems of nonnegative, 

nondecreasing edge costs. Their work differs from this paper mainly in referring to 

networks with a finite number of users, each of whom has a non-negligible effect on 

the others. Here, by contrast, there is a continuum of users, which may be viewed as a 
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mathematical idealization of a very large population of individuals, each with an 

almost negligible effect on the others. As this paper shows, the cases of finite and 

infinite populations differ in a number of ways. Most importantly, in the latter but not 

the former case, the connection between linear independence of the routes and 

efficiency of the equilibria also holds for heterogeneous populations, in which users 

have different cost functions. With a finite number of non-identical users, cost 

functions with Pareto inefficient equilibria exist for any nontrivial network, i.e., one 

with two or more routes. With a continuum of users, an assignment of cost functions 

with a Pareto inefficient equilibrium exists if and only if the routes in the network are 

not linearly independent. 

e3 e4 

d 

e2 e1 

o 

e5 

o 

e1 e2 

e3 e4 

d

v 

(a) (b)  

Figure 2 Another kind of inefficiency caused by congestion externalities. The cost of 

each edge e in network (a) is an increasing function of the fraction x of the total flow 

from o to d that passes on e. For e1 and e3, the cost is given by 2x. For e2 and e4, it is 

2 + x. At equilibrium, only e1 and e3 are used, and the equilibrium cost is (2 × 1) + 

(2 × 1) = 4. However, this outcome is Pareto inefficient. Splitting the flow, so that half 

of it goes through e1 and e4 and half through e2 and e3, would reduce the cost to 

(2 × ½) + (2 + ½) = 3½. (Further reduction is not possible, since it can be shown that 

the mean cost in this example cannot be less than 3½.) A similar phenomenon occurs 

in network (b). Indeed, since all routes from o to d pass through the middle edge e5, 

the cost of this edge is irrelevant. 
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Figure 3 A network with linearly independent routes. In such a network, equilibria 

are always Pareto efficient. 

   The emphasis in this paper is on topological efficiency: network topologies for 

which cost functions giving rise to inefficiencies do not exist. Most related papers put 

the emphasis on the cost functions themselves. For example, formulas yielding, under 

certain conditions, the change in cost induced by the creation of additional routes 

were obtained by Steinberg and Zangwill (1983) and Dafermos and Nagurney (1984). 

In principle, these formulas can be used to determine whether a form of Braess’s 

paradox occurs in the network. They are, however, rather complicated. An interesting 

(and, as shown by Calvert and Keady, 1993, rather unique) case, in which the 

topology of the network is irrelevant, is that of edge costs that are given by 

homogeneous functions of the same degree, i.e., each of them has the form α xβ, with 

α, β > 0, and β is the same for all edges. In this case, not only are the equilibria Pareto 

efficient but they are even socially optimal in that the mean (equivalently, aggregate) 

cost incurred by the users is minimized. Intuitively, this is because, in this case, users 

switching from one route to another make proportional changes to their own and the 

social costs (see Milchtaich, 2004).  

   The topology of a network does not indicate whether equilibria are socially optimal. 

Even for very simple networks, it is also necessary to know the functional form of the 

cost functions (Milchtaich, 2004). The same is true for the so-called price of anarchy, 

which is the ratio between the equilibrium cost and the mean cost incurred by the 

users at a social optimum. For general cost functions, this ratio is unbounded, but for 
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various natural classes of such functions, bounds do exist (Roughgarden, 2003; 

Roughgarden and Tardos, 2004). For example, the maximum cost of anarchy with 

linear edge costs is 4/3 (thus, greater than the 4:3½ ratio between the equilibrium cost 

and the mean cost at the social optimum in the example in Figure 2). Under weak 

assumptions on the class of allowable cost functions, a network with only two parallel 

edges suffices to achieve the worst possible ratio. Thus, as for social optimality, the 

network topology does not play a role in determining the price of anarchy 

(Roughgarden, 2003). This contrasts sharply with the situation for Pareto efficiency, 

in which, as this paper shows, the network topology matters. Several other properties 

of the equilibria in route selection games occupy an intermediate position between 

these two extremes in that they depend on certain “global” properties of the network. 

For example, the maximum reduction in equilibrium cost achievable by removing one 

(as in the original Braess’s paradox) or more edges in a two-terminal network is 

positively related with the number of vertices (Roughgarden, 2004). It is also 

positively related with the number of edges removed (Lin, Roughgarden and Tardos, 

2004).   

   The rest of the paper is organized as follows. The next section presents in some 

detail the needed graph-theoretic definitions and results. With few exceptions (a 

network with linearly independent routes is a notable one), standard terminology is 

used (which, however, does not always have the exact same meaning in all sources). 

Flows, cost functions, and related terms are defined in Section 3. The definition of 

equilibrium with identical users, and results about its efficiency, are given in 

Section 4. The first result links the non-occurrence of Braess’s paradox with series-

parallel networks, and the second one links (the stronger property of) Pareto 

efficiency of the equilibria with (the smaller class of) networks with linearly 

independent routes. Section 5 deals with non-identical users, and shows that, in this 

case, both properties of the equilibria are linked with networks with linearly 

independent routes. In Section 6, some of the definitions and assumptions underlying 

these results are discussed. In particular, the advantages of dealing with undirected 

rather than directed networks are explained, and the similarities and differences 

between the topological conditions for efficiency and uniqueness of the equilibrium 

(Milchtaich, 2005) are described. The proofs of all the propositions and theorems in 

this paper are given in Section 7. 
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2  Graph-Theoretic Preliminaries 

An undirected multigraph consists of a finite vertex set V and a finite edge set E. 

Each edge e joins two distinct vertices, u and v, which are referred to as the end 

vertices of e. Thus, loops are not allowed, but more than one edge can join two 

vertices. An edge e and a vertex v are said to be incident with each other if v is an end 

vertex of e. A path of length n (n ≥ 0) is an alternating sequence p of vertices and 

edges v0 e1 v1 L vn−1 en vn, beginning and ending with vertices, in which each edge is 

incident with the two vertices immediately preceding and following it and all the 

vertices (and necessarily all the edges) are distinct. Because of the latter assumption, 

each vertex and each edge in p either precedes or follows each of the other vertices 

and edges. The first and last vertices, v0 and vn, are called the initial and terminal 

vertices in p, respectively. The path vn en vn−1 L v1 e1 v0, which includes the same 

vertices and edges as p but passes through them in reverse order, is denoted by −p. If 

q is a path of the form vn en+1 vn+1 L vm−1 em vm, the initial vertex of which is the same 

as the terminal vertex of p but all the other vertices and edges are not in p, then v0 e1 

v1 L vn−1 en vn en+1 vn+1 L vm−1 em vm is also a path, denoted by p + q. A section of p is 

any path s of the form vn1 en1+1 vn1+1 L vn2−1 en2 vn2, with 0 ≤ n1 ≤ n2 ≤ n. Each section 

is uniquely identified by its initial vertex u and terminal vertex v, and may therefore 

be denoted by puv. If the length of s is zero, i.e., it does not include any edges, then u 

and v coincide. If the length is one, i.e., the section has a single edge e, then u and v 

are the two end vertices of e. In this case, s is called an arc, and may be viewed as a 

specification of the direction in which p passes through e.  

   A two-terminal network (network, for short) is an undirected multigraph together 

with a distinguished ordered pair of distinct vertices, an origin o and a destination d, 

such that each vertex and each edge belong to at least one path with the initial vertex o 

and terminal vertex d. Any path r with these initial and terminal vertices will be called 

a route. The set of all routes in a network, denoted by R, is its route set. 

   Two networks G' and G" will be said to be isomorphic if there is a one-to-one 

correspondence between their vertex sets and between the edge sets such that (i) the 

incidence relation is preserved and (ii) the origin and destination in G' are paired with 

the origin and destination in G", respectively. A network G' is a sub-network of a 
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network G" if the former is isomorphic to a network derived from the latter by 

deleting a subset of its edges and vertices, which does not include o or d. A network 

G' is embedded in a network G" if G" is isomorphic to G' or to a network derived 

from G' by applying the following operations any number of times in any order (see 

Figure 4):  

(a) The subdivision of an edge: its replacement by two edges with a single common 

end vertex.  

(b) The addition of a new edge joining two existing vertices. 

(c) The extension of a terminal vertex: addition of a new edge e joining o or d with 

another, new vertex, which becomes the new origin or destination, respectively.   

   It can be shown that, for any network G', addition and subdivision of edges always 

give a new network, with the same origin–destination pair. By using both operations, 

complete new paths, which only have their initial and terminal vertices in G', can be 

added to it. This is done by first joining the two vertices by a new edge e, and then 

subdividing e one or more times. Because each vertex and each edge in a network are 

in some route, this shows that G' is embedded in every network G'' of which it is a 

sub-network. 

o 

d 

o 

d 

d 

o o 

d 

(a) (b) (c) 

e 

 

Figure 4 Embedding. The left network is embedded in each of the other three, which 

are obtained from it by: (a) subdividing an existing edge, (b) adding a new edge, and, 

finally, (c) extending the destination. 
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   Two networks G' and G" with the same origin–destination pair, but without any 

other common vertices or edges, may be connected in parallel. The vertex and edge 

sets in the resulting network G are the unions of those in G' and G", and the origin and 

destination are the same as in these networks. Two networks G' and G" with a single 

common vertex (and, hence, without common edges), which is the destination in G' 

and the origin in G", may be connected in series. The vertex and edge sets in the 

resulting network G are the unions of those in G' and G", the origin coincides with the 

origin in G', and the destination with that in G". It is not difficult to see that, when two 

networks G' and G" are connected in parallel or in series, each of them is embedded in 

the resulting network G.  

   A network is said to be series- parallel if two routes never pass through any edge in 

opposite directions. The two networks in Figure 2 are series-parallel. The Wheatstone 

network in Figure 1 is not series-parallel, since there are two routes passing through e5 

in opposite directions. In fact, as the following proposition shows, the Wheatstone 

network is embedded in any network that is not series-parallel. (Theorem 1 of Duffin, 

1965, makes the same assertion. However, since that paper uses somewhat different 

definitions, an explicit proof is needed here, which is given in Section 7.)  

Proposition 1. For a two-terminal network G, the following conditions are 

equivalent: 

(i) G is series-parallel. 

(ii) For every pair of distinct vertices u and v, if u precedes v in some route r 

containing both vertices, then u precedes v in all such routes.  

(iii) The network in Figure 1 is not embedded in G. 

   As noted by Riordan and Shannon (1942), series-parallel networks can also be 

defined recursively. A network is series-parallel if and only if it can be constructed 

from single edges by carrying out the operations of connecting networks in series or 

in parallel any number of times. (Hence the term “series-parallel.”) This can be stated 

as follows.  

Proposition 2. A two-terminal network G is series-parallel if and only if  

(i) it has a single edge only,  

(ii) it is the result of connecting two series-parallel networks in parallel, or 
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(iii) it is the result of connecting two series-parallel networks in series. 

   One corollary of Proposition 2 is that every series-parallel network is planar and, 

moreover, remains so when a new edge, joining o and d, is added to it. Equivalently 

(see Harary, 1969), every series-parallel network can be embedded in the plane in 

such a way that o and d lie on the exterior face, or boundary. Using Proposition 2, this 

corollary can easily be proved by induction on the number of edges. Another corollary 

of Proposition 2 is the following result, which may help in verifying that a given 

network is series-parallel. 

Proposition 3. A two-terminal network G is series-parallel if and only if the vertices 

can be indexed in such a way that, along each route, they have increasing indices. 

   A network will be said to have linearly independent routes if each route has at least 

one edge that does not belong to any other route. (The reason for this name is given 

by Proposition 6 below.) The simplest such network is parallel network, which 

consists of one or more edges connected in parallel. Another example is shown in 

Figure 3. Every network with linearly independent routes is series-parallel but the 

converse is false. The two networks in Figure 2 are series-parallel but they do not 

have linearly independent routes. Indeed, the next proposition implies that at least one 

of these two networks is embedded in any series-parallel network that does not have 

linearly independent routes. The proposition also gives two other characterizations of 

networks with linearly independent routes. The first characteristic property is that 

pairs of routes never merge only in the middle: any common section extends to either 

the origin or the destination. The second property is that the route set does not contain 

a bad configuration (Holzman and Law-Yone, 1997, 2003), which is defined as a 

triplet of routes, the first of which includes some edge e1 that does not belong to the 

second route, the second route includes some edge e2 that does not belong to the first 

one, and the third route includes both e1 and e2.  

Proposition 4. For a two-terminal network G, the following conditions are 

equivalent: 

(i) G has linearly independent routes. 

(ii) For every pair of routes r and r' and every vertex v common to both routes, 

either the section rov (which consists of v and all the vertices and edges preceding 

it in r) is equal to r'ov, or rvd is equal to r'vd. 
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(iii) A triplet of routes constituting a bad configuration does not exist. 

(iv) None of the networks in Figure 1 and Figure 2 is embedded in G. 

   The following recursive characterization of networks with linearly independent 

routes, which differs from that for series-parallel ones (Proposition 2) only in having a 

more restrictive part (iii), reveals another facet of the difference between these two 

kinds of networks. This characterization is essentially a corollary of Theorem 1 of 

Holzman and Law-Yone (2003) (which, however, relates to directed networks). 

Proposition 5. A two-terminal network G has linearly independent routes if and only if  

(i) it has a single edge only,  

(ii) it is the result of connecting two networks with linearly independent routes in 

parallel, or 

(iii) it is the result of connecting in series a network with linearly independent 

routes and one with a single edge (or, equivalently, extending the origin or the 

destination in the first network). 

   Since, in every network G, each route r has a unique set of edges, it is represented 

by a unique binary vector, in which 1 is assigned to each edge e that belongs to r and 

0 to any other edge. This vector can be viewed as an element of the vector space F|E|
2 , 

so-called the edge space of G (Diestel, 2000), where |E| is the number of edges in G and 

F2 is the field of the integers modulo 2. Thus, each collection of routes in G corresponds 

to a set of vectors in the edge space. These vectors are linearly independent if and 

only if it is not possible to write any one of them as the (component-wise) sum 

modulo 2 of some of the others. As the following proposition shows, networks with 

linearly independent routes are characterized by the property that the collection of all 

routes corresponds to a linearly independent set in the edge space.1  

                                                 

   1 Note that linear independence is defined with respect to F2, not (the real field) R. For example, the 

Wheatstone network does not have linearly independent routes. Although the binary vectors 

representing its four routes are linearly independent in R|E|, they are not so in F|E|
2 , since each of them is 

equal to the sum modulo 2 of the other three. 



13 

Proposition 6. A two-terminal network G is a network with linearly independent 

routes if and only if its route set R corresponds to a linearly independent set of 

vectors in the edge space. 

3  The Model 

A flow vector for a network G is a nonnegative vector f = (fr) r∈R specifying the flow fr 

on each route r. The flow fp on each path p is defined as the total flow on all the routes 

containing p: 

 fp    = ∑
r∈R

p is a section of r

   fr. (1) 

If p is a path of length zero, consisting of a single vertex v, then fp is a junction flow: it 

gives the total flow on all the routes passing through v. In particular,  

fo  =  ∑
r∈R

 fr 

(which is clearly equal to fd) represents the total origin–destination flow. If p is a path 

of length one, consisting of a single edge e and its two end vertices, then fp is an arc 

flow: it gives the total flow on e in the direction specified by p. Each edge is 

associated with a pair of arc flows, one for each direction. In a series-parallel network, 

in which all routes pass through an edge in the same direction, only one of these flows 

can be positive. In a network with linearly independent routes, in which each route 

includes at least one edge that is not in any other route, the arc flows uniquely 

determine the flow vector.  

   A cost function for a network G is a vector-valued function c specifying the cost 

cp(f) of each path p as a function of the (entire) flow vector f.2 The following 

monotonicity condition is assumed to hold: For every path p and every pair of flow 

vectors f ̂  and f ̃ , if f ̂ s ≥ f ̃ s and f ̂ −s ≥ f ̃ −s for all sections s of p, then cp(f ̂ ) ≥ cp(f ̃ ). This 

                                                 

   2 Thus, the vectors in the domain and range of c have different dimensions: the former equals the 

number of routes in G and the latter the number of paths. Note that the costs are not assumed to be 

nonnegative. However, they may well be thought of as such. Indeed, the assumption that the costs are 

nonnegative is implicit in the definition of equilibrium (in the next section). This definition only 

considers routes, which by definition do not pass through any vertex more than once.  
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implies, in particular, that the cost of a path only depends on the flow on each of its 

sections and the flows in the opposite directions.3 A cost function will be said to be 

increasing if it satisfies the following additional condition: For every route r and every 

pair of flow vectors f ̂  and f ̃ , if f ̂ s ≥ f ̃ s  and f ̂ −s ≥ f ̃ −s for all sections s of r, and there is 

at least one section s of length one for which f ̂ s > f ̃ s, then cr(f ̂ ) > cr(f ̃ ). A cost 

function c is (additively) separable if the equality crov(f) = crou(f) + cruv(f) holds for 

every route r, every pair of distinct vertices u and v such that u precedes v in r, and 

every flow vector f. In other words, separability means that the cost of each route is 

the sum of the costs of its arcs.   

4  Efficiency of Equilibrium 

A flow vector f* is said to be an equilibrium if the entire flow in the network is on 

minimal-cost routes, that is,  

 for all routes r with fr* > 0,  cr(f*) = 
 

min
q∈R

 cq(f*). (2) 

For an equilibrium f*, the minimum in (2), denoted by c(f*), is the equilibrium cost. 

In the transportation literature, a flow vector satisfying (2) is known as Wardrop, or 

user equilibrium. This condition expresses the principle that, at equilibrium, the travel 

time on all used routes is the same, and less than or equal to that of a single vehicle on 

any unused route (Wardrop, 1952). The equilibrium condition (2) can also be given a 

variational inequality formulation (Nagurney, 1999, Theorem 4.5): For every flow 

vector f with the same total origin–destination flow as f*,  

∑
r∈R

 cr(f*) (fr* − fr) ≤ 0. 

                                                 

   3 Because this monotonicity condition involves a potentially long list of premises, the restriction it 

puts on the allowable cost functions is relatively weak. Stronger conditions, e.g., a requirement that the 

cost of a path can increase only if one of the relevant arc flows increases, could be used instead. 

However, weaker conditions here and in the next definition are preferable since they make for stronger 

results. See also the discussion in Section 6. Because of the dimensionality issue mentioned in the 

previous footnote, the present monotonicity conditions are technically incomparable with monotonicity 

and strict monotonicity as defined, e.g., by Nagurney (1999). Note, however, that the latter are wider in 

that they allow for “crosstalk,” i.e., the cost of a route may be influenced by the flow on a parallel 

route.  
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If the cost function is continuous, then, by standard results (e.g., Nagurney, 1999, 

Theorem 1.4), it follows from this formulation that for any fo ≥ 0 there is at least one 

equilibrium with a total origin–destination flow of fo. 

DEFINITION 1. Braess’s paradox occurs in a network G if there are two separable cost 

functions ĉ and c̃ such that ĉr(f) ≥ c̃r(f) for all routes r and flow vectors f, but for every 

equilibrium4 f ̂  with respect to ĉ with a total origin–destination flow of unity and every 

equilibrium4 f ̃  with respect to c̃ with a similar total origin–destination flow, the 

equilibrium costs satisfy ĉ(f ̂ ) < c̃(f ̃ ).  

   Thus, Braess’s paradox occurs if raising the edge costs can lower the equilibrium 

cost. This is the case in the example in Figure 1, in which a higher cost for the 

transverse edge e5 results in a shorter equilibrium travel time on the network. By 

Proposition 1, the network in Figure 1 is embedded in every network that is not series-

parallel. This implies that Braess’s paradox occurs in all such networks. The following 

theorem shows that it occurs only in these networks.  

Theorem 1. Braess’s paradox does not occur in a two-terminal network G if and only 

if G is series-parallel. 

   Theorem 1 confirms unproven assertions made by Murchland (1970) and Calvert 

and Keady (1993). Murchland asserts that deletion of one or more edges from a 

series-parallel network cannot be beneficial. Calvert and Keady present a theorem 

(Theorem 11) stating that Braess’s paradox cannot occur in a series-parallel physical 

network in which the potential difference between the two end vertices of each edge is 

determined as an increasing function by the quotient of the flow on the edge and an 

edge-specific conductivity factor. This refers to a version of Braess’s paradox 

occurring when the total power loss in the network can be decreased by reducing the 

conductivity of some edge, with the total origin–destination flow held constant. 

   Even though series-parallel networks never exhibit Braess’s paradox, they do not 

always have efficient equilibria. This is demonstrated by the example in Figure 2, in 

                                                 

   4 This definition may be changed a little by replacing “every equilibrium” with “some equilibrium.” 

This change does not effect any of the results below.  
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which the equilibrium flow can be rearranged in such a way that the costs of all used 

routes are below the equilibrium cost. As the next theorem shows, the reason 

inefficient equilibria occur in the networks in Figure 2 is that their routes are not 

linearly independent.  

DEFINITION 2. For given network G and cost function c, an equilibrium f*, with 

equilibrium cost c(f*), is weakly Pareto efficient if, for every flow vector f with the 

same total origin–destination flow as f*, there is some route r with fr > 0 for which 

cr(f) ≥ c(f*). The equilibrium is Pareto efficient if, for every flow vector f with the 

same total origin–destination flow as f*, either cr(f) = c(f*) for all r with fr > 0 or there 

is some route r with fr > 0 for which cr(f) > c(f*).  

Theorem 2. For a two-terminal network G, the following conditions are equivalent: 

(i) For any cost function, all equilibria are weakly Pareto efficient.  

(ii) For any increasing cost function, all equilibria are Pareto efficient.  

(iii) G has linearly independent routes. 

   The weak Pareto efficiency of the equilibria in networks with linearly independent 

routes implies that, in such networks, the equilibrium cost is uniquely determined by 

the cost function and the total origin–destination flow, and can only increase or 

remain unchanged if the former or the latter increase. With separable cost functions, 

this is also true for general series-parallel networks (see Lemma 4 below). However, 

for a non-separable cost function in a series-parallel network that does not have 

linearly independent routes, the equilibrium cost may not be unique, or may decrease 

rather than increase with rising costs. For example, suppose that, in Figure 2(a), a toll 

is charged for using the equilibrium route o e1 v e3 d. Increasing the toll from zero to 

1½ decreases the (unique) equilibrium cost linearly from 4 to 3½. (The lower 

equilibrium cost is also achievable by the following turning restriction, which is 

equivalent to infinite toll: traffic emerging from e1 is not allowed to turn into e3.) This 

example shows that Theorem 1 would not hold if, in the definition of Braess’s 

paradox, the assumption of separable cost functions were dropped. This contrasts with 

the situation in Theorem 2, which does not assume separability.  

   Theorem 2 parallels an earlier result of Holzman and Law-Yone (1997, 2003) for 

route selection games in directed networks with a finite number of players. If the set 
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of all (directed) routes in a directed network does not contain a bad configuration (as 

defined in Section 2), then, for any (finite) number of players and any nonnegative 

separable cost function, all the equilibria are weakly Pareto efficient and, moreover, 

strong in the sense that no group of players can make all its members better off by 

changing their route choices. Conversely, if a triplet of routes constituting a bad 

configuration exists, then, for any number of players, there is a nonnegative separable 

cost function for which none of the equilibria is weakly Pareto efficient. For directed 

networks, the absence of a bad configuration is a stronger condition than linear 

independence of the routes (cf. Proposition 4). For this reason, Theorem 2, in the form 

given above, does not hold for such networks. For example, the three routes in the 

directed Wheatstone network are linearly independent in the sense that each of them 

has a directed edge that is not in any other route. Nevertheless, the example in  

Figure 1 shows that equilibria in this network are not always weakly Pareto efficient.  

5  Non-Identical Users 

The most significant difference between the finite route selection games considered 

by Holzman and Law-Yone (1997, 2003) and the present model is that, in the former 

but not in the latter, heterogeneity is a potential source of inefficiency. The population 

of users is heterogeneous if there are differences in the intrinsic quality they assign to 

routes or the degree to which they are affected by congestion. For example, some 

motorists may be concerned primarily with the travel time, and others with the 

distance traveled. In finite populations (Milchtaich, 1996), such differences may lead 

to inefficient equilibria. This is demonstrated by the simple two-person game in which 

there are two parallel routes, each favored by a different person. If sharing a route 

with the other user is very costly, then there are two pure-strategy Nash equilibria, and 

the one in which both persons use their favorite routes strictly Pareto dominates that 

in which each of them uses the other route. This example can easily be extended to 

any nontrivial network (i.e., one with more than one route), which shows that 

Holzman and Law-Yone’s result cannot be extended to heterogeneous finite 

populations. By contrast, it is shown below that Theorem 2 can be extended. In 

particular, with a continuum of non-identical users, a Nash equilibrium may be strictly 

Pareto dominated by another equilibrium only in a network with an embedded 

network as in Figure 1 or Figure 2. In networks without this property, i.e., with 
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linearly independent routes, the equilibria are always weakly Pareto efficient, for both 

heterogeneous and homogeneous populations.  

   Even with a continuum of users, however, there are differences between the cases of 

identical and non-identical users. In particular, the result that, in a series-parallel 

network, Braess’s paradox cannot occur (Theorem 1) does not extend to the case of 

non-identical users. For example, in Figure 2(a), if half the users were charged a hefty 

toll for using edge e1 and the other half for using e3, they would not use these edges 

(the former would take e2 and e3 and the latter e1 and e4), and consequently the 

equilibrium costs for all users would decrease from 4 to 3½. More precisely, this is an 

example of a natural generalization of Braess’s paradox, which is defined below. This 

paradox does not occur in networks with linearly independent routes, in which the 

equilibria are weakly Pareto efficient. As Theorem 3 below shows, with non-identical 

users, these are, in fact, the only networks in which Braess’s paradox does not occur. 

   Dropping the assumption that all users of the same route incur the same costs leads 

to the following modified version of the model described in Section 3. The population 

of users is an infinite set I (e.g., the unit interval [0, 1]), endowed with a nonatomic 

probability measure (e.g., Lebesgue measure), which assigns values between zero and 

one to a σ-algebra of subsets of I, the measurable sets. These values are interpreted as 

the set sizes relative to the total population. For a network G, a strategy profile is a 

mapping σ : I → R (from users to routes) such that, for each route r, the set of all 

users i with σ(i) = r is measurable. The measure of this set, denoted by fr(σ), is the 

flow on route r. Thus, for every strategy profile σ, there is a corresponding flow 

vector f(σ) with a total origin–destination flow of unity. For each user i, a cost 

function ci specifies the cost ci
p(f) of each path p in G as a function of the flow vector 

f. As in the case of identical users, ci is assumed to satisfy the condition that, for every 

path p and every pair of flow vectors f ̂  and f ̃ , if f ̂ s ≥ f ̃ s and f ̂ −s ≥ f ̃ −s for all sections s 

of p, then ci
p(f ̂ ) ≥ ci

p(f ̃ ). The definitions of increasing and separable cost functions are 

also similar to those for the case of a homogeneous population of users. A strategy 

profile σ is a Nash equilibrium if each of the routes is a minimal-cost route for its 

users, that is, 

 for each user i,  ci
σ(i)(f(σ)) = 

 
min
q∈R

 ci
q(f(σ)). (3) 
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In this case, the minimum in (3), denoted by ci(f(σ)), is the equilibrium cost for user i. 

In the special case in which all users have the same cost function, this definition 

essentially reduces to (2).  

DEFINITION 3. For given network G and assignment of cost functions ci, a strategy 

profile σ is weakly Pareto efficient if, for every strategy profile τ, there is some user i 

for which ci
τ(i)(f(τ)) ≥ ci

σ(i)(f(σ)). A strategy profile σ is Pareto efficient if, for every 

strategy profile τ, either ci
τ(i)(f(τ)) = ci

σ(i)(f(σ)) for all users i or there is some i for 

which ci
τ(i)(f(τ)) > ci

σ(i)(f(σ)). A strategy profile σ is hyper-efficient (Milchtaich, 2004) 

if, for every strategy profile τ,  

either ci
τ(i)(f(τ)) = ci

σ(i)(f(σ)) for all users i  

or there is some i with τ(i) ≠ σ(i) for which ci
τ(i)(f(τ)) > ci

σ(i)(f(σ)). 
(H)

Braess’s paradox with non-identical users occurs in a network G if it is possible to 

assign two separable cost functions ĉi and c̃i for each user i such that ĉi
r(f) ≥ c̃i

r(f) for 

all users i, routes r and flow vectors f, but for every Nash equilibrium σ with respect 

to the first assignment and every Nash equilibrium τ with respect to the second, the 

equilibrium costs for each user i satisfy ĉi(f(σ)) < c̃i(f(τ)). 

   Except for the notion of hyper-efficiency, Definition 3 is a straightforward 

generalization of Definitions 1 and 2. Hyper-efficiency, which is meaningful also for 

identical uses, means that any effective change of route choices is harmful to some of 

those changing routes. Clearly, any hyper-efficient strategy profile σ is both Pareto 

efficient and a Nash equilibrium. Indeed, it is a strong, and even strictly strong,5 

equilibrium. This means that deviations are never profitable, not only for individuals 

but also for groups of users: Any deviation that makes someone in the group better off 

must leave someone else in it worse off. The following theorem shows that, in a 

network with linearly independent routes, if all the cost functions are increasing, the 

converse is also true. That is, under these conditions, every Nash equilibrium is hyper-

efficient and, hence, Pareto efficient and a strictly strong equilibrium. Clearly, a 

similar result also holds in the special case of identical users.  

                                                 

   5 A strategy profile σ is a strictly strong equilibrium (Voorneveld at al., 1999) if, for every strategy 

profile τ, ci
τ(i)(f(τ)) ≥ ci

σ(i)(f(σ)) for all users i or there is some i with τ(i) ≠ σ(i) for which ci
τ(i)(f(τ)) > 

ci
σ(i)(f(σ)). 

http://ieeexplore.ieee.org/xpl/abs_free.jsp?isNumber=20514&prod=CNF&arnumber=948769&arSt=836&ared=841&arAuthor=Hagstrom%2C+J.N.%3B+Abrams%2C+R.A.&arNumber=948769&a_id0=948755&a_id1=948756&a_id2=948757&a_id3=948758&a_id4=948759&a_id5=948760&a_id6=9
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Theorem 3. For a two-terminal network G, the following conditions are equivalent: 

(i) For any assignment of cost functions, all Nash equilibria are weakly Pareto 

efficient.  

(ii) For any assignment of increasing cost functions, all Nash equilibria are 

hyper-efficient.  

(iii) Braess’s paradox with non-identical users does not occur in G.  

(iv) G has linearly independent routes. 

6  Discussion 

Some properties of the equilibria in route selection games with a continuum of users 

are virtually independent of the network topology, and others strongly depend on it. 

Social optimality of the equilibria and the price of anarchy are among the former (see 

the introduction). Non-occurrence of Braess’s paradox and Pareto efficiency of the 

equilibria (this paper) and (with non-identical users) uniqueness of the equilibrium 

(Milchtaich, 2005; and see below) are among the latter. Dependence of a property on 

the network topology means that it holds for all allowable cost functions if and only if 

the network belongs to some specified non-trivial class. As this paper shows, with 

identical users, the two-terminal networks in which Braess’s paradox never occurs are 

the series-parallel ones (Theorem 1). Those in which only Pareto efficient equilibria 

occur are the networks with linearly independent routes (Theorem 2). With non-

identical users, each of these two properties is guaranteed to hold if and only if the 

network has linearly independent routes (Theorem 3). These conditions for 

topological efficiency are different from those for topological uniqueness. A two-

terminal network is said to have the latter property if, for any assignment of separable 

cost functions, the flow on each arc is the same in all Nash equilibria. (This refers to a 

heterogeneous population of users. With a homogeneous population, the equilibrium 

is always essentially unique for any network.) Two equivalent characterizations of the 

class of all two-terminal networks with the topological uniqueness property are given 

in Milchtaich (2005). This class is incomparable with the two classes considered in 

this paper: Linear independence of the routes is neither a sufficient nor a necessary 

condition for topological uniqueness, and the same is true for series-parallel network. 

For example, multiple equilibria, which differ even in the mean cost incurred by the 
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(non-identical) users, may exist in the network with linearly independent routes 

shown in Figure 3, but not in the Wheatstone network (Figure 1). A parallel network 

(which consists of several edges connected in parallel) belongs to all three classes, 

and the network obtained by connecting a single edge in parallel with the Wheatstone 

network does not belong to any of them. 

   An essential feature of the models in this paper and Milchtaich (2005) is that 

networks are undirected. This diverges from the common practice of modeling 

transportation and other kinds of networks by means of directed networks (e.g., 

Sheffi, 1985; Bell and Iida, 1997; Nagurney, 1999), so that each edge can be traversed 

in only one direction. (Thus, for example, a two-way highway is described by a pair 

of edges.) In most of the related literature, the description of a network involves these 

two kinds of data: A directed graph, which describes both the physical network and 

the direction of travel on each edge; and a corresponding system of edge costs, which 

gives the cost of each directed edge as a function of the flow on it. A different kind of 

transportation model, described by Beckmann et al. (1956), assumes all roads to be 

two-way, with the same travel costs in both directions. These authors moreover 

assume that the costs depend only on the sum of the flows in all routes passing 

through the road in either direction. (The two kinds of models coincide in the special 

case of series-parallel networks. In this case, all routes pass through an edge in the 

same direction, and so the cost of passing through it in the opposite direction and the 

effect of the opposite flow on the cost are irrelevant.) The model presented in this 

paper subsumes both these kinds of models. Here, a separable cost function associates 

with each edge a pair of edge costs—one for each direction. In each direction, the cost 

is a function of the flows on the edge in that and the opposite direction, and possibly 

also the junction flows. The first kind of model described above corresponds to the 

special case in which the cost of passing through each edge in a particular direction is 

prohibitively high. The second kind corresponds to a case in which the two costs are 

equal, and only depend on the sum of the arc flows in both directions. This shows, in 

particular, that using an undirected network does not preclude directionality. It only 

makes it part of the cost function rather than the network topology, and thus allow it 

to vary. In other words, an undirected network only precludes predetermined 

directionality. Thus, topological efficiency essentially means that, regardless of how 

the edges in the network are directed and the edge costs, inefficient equilibria do not 



22 

exist. Similarly, topological uniqueness refers to absence of multiple equilibria, 

regardless of directionality and costs. Similar properties may also be defined for 

directed networks. However, there seem to be no known results linking the topology 

of directed networks with the efficiency or uniqueness of the equilibria in nonatomic 

congestion games, other than those that can be derived from the results in this paper 

and Milchtaich (2005) as special cases.  

   The definition of cost function in this paper is rather wide. It does not assume 

separability, which means that turning restrictions, for example, can be incorporated 

simply by assigning very high (effectively, infinite) costs to certain routes (see the 

example in Section 4). It also allows route costs to be affected by the flows on their 

vertices (which may represent, for example, a crude measure of congestion at four-

way stop junctions). In Milchtaich (2005), a more standard definition is used, which 

requires cost functions to be: (i) increasing, (ii) nonnegative, and (iii) separable, with 

(iv) the cost for each user of each edge e in each direction depending only on the flow 

on e in that direction (and not on the opposite flow or the flows on the end vertices). 

Adopting the same restrictive definition here, in either the homogeneous or the 

heterogeneous case, would not affect any of the theorems. Indeed, inspection of the 

proofs of Theorems 1, 2 and 3 shows them to be also valid if the definition of cost 

function is augmented with any subset of (i)–(iv), to which the requirement of 

continuity of the payoff function may be added. This is mainly because all five 

properties hold for the cost functions in the two examples given in the introduction. 

Thus, in particular, both the possibility of non-separable cost functions and the 

possible effects of junction flows are not crucial elements of the present model. The 

notion of embedding in the wide sense used in Milchtaich (2005) is also different 

from the present notion of embedding. The former is wider than the latter, but more 

complicated, and in the present context, it does not offer any advantages. However, it 

could be used, as both Propositions 1 and 4 can be shown to also hold with 

“embedding in the wide sense” replacing “embedding.”  

   In this paper, flow is always assumed to originate in a single vertex o and terminate 

in a single vertex d. Multiple origin–destination pairs are not allowed. This restriction 

can be partially circumvented by connecting all sources to a single, fictitious, vertex, 

from which all flow is assumed to originate, and similarly for the sinks. However, 

such a construction substantially alters the network topology. This leaves open the 
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question, how does the results in this paper change when there are more than one 

origin or destination. 

7  Proofs 

This section gives the proofs for the results presented in this paper.  

Proof of Proposition 1. (i) ⇒ (iii). The network in Figure 1 has an edge, e5, through 

which two routes pass in opposite directions. It is easy to see that this property is 

preserved under the three operations that define embedding. Therefore, a network in 

which the one in Figure 1 is embedded is not series-parallel.  

(ii) ⇒ (i). This follows from the special case in which u and v are the two end vertices 

of an edge e. 

(iii) ⇒ (ii). Suppose that condition (ii) does not hold for G: There are two routes r and 

r' and two vertices u and v common to both routes, such that u precedes v in r but 

follows it in r'. Suppose that these vertices are chosen in such a way that the length of 

the section ruv is maximal. Then, any vertex u' common to r and r' that precedes u in r 

must precede v in r', and any vertex v' common to both routes that follows v in r must 

follow u in r' (see Figure 5). Let u' be the last vertex before u in r that is also in r' 

(possibly, u' = o), and v' the first vertex after v in r that is also in r' (possibly, v' = d). 

All the edges in ru'u, and all the vertices in this section of r with the exception of the 

initial and terminal ones, do not belong to r', and the same is true for rvv'. This implies 

that the network in Figure 1 is embedded in the sub-network of G consisting of all the 

vertices and edges in ru'u, rvv' and r'. Hence, it is also embedded in G.  

   The following lemma, which is essentially part of Theorem 3.3 of Harary (1969), is 

used in the proof of Proposition 2.  

Lemma 1. A network G can be obtained by connecting two other networks in series if 

and only if every two routes in G, distinct or identical, have at least one vertex in 

common, other than o and d. 

Proof. The necessity of this condition is clear. To prove sufficiency, suppose that the 

condition holds, and consider the set of all triplets (p, q, v) consisting of two distinct 

routes p and q and a vertex v common to both routes such that: (i) pov and qov do not 

have common vertices other than o and v (which implies that v ≠ d, since, by 
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assumption, routes p and q do have at least three common vertices), and (ii) pvd = qvd 

(which implies that v ≠ o, since p ≠ q). If this set is empty, then there is only one edge 

incident with o, which implies that G is the result of connecting two networks in series, 

one of which only has that single edge. Suppose, then, that the above set is nonempty, 

and choose an element (p, q, v) such that the length of pvd (= qvd) is minimal.  

CLAIM 1. The vertex v belongs to all routes in G. 

Suppose the contrary, that v does not belong to some route r. In that route, let v' be the 

first vertex that is also in pvd, and u the last vertex before v' that is also in p or in q (see 

Figure 6). Without loss of generality, it may be assumed that u is in p. Consider the 

route p' = pou + ruv' + pv'd. Clearly, (i) p'ov' and qov' do not have common vertices other 

than o and v', and (ii) p'v'd = qv'd. However, the section p'v'd is shorter than pvd, which 

contradicts the way the triplet (p, q, v) was chosen. This contradiction proves Claim 1. 

u 
v 

v' 

r' 

o 

d

r 

u' 

 
Figure 5 
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CLAIM 2. Any vertex u that precedes v in some route in G also precedes it in every 

other route to which u belongs. 

Suppose the contrary, that there are two routes r and r' such that some vertex u ≠ v 

common to both routes precedes v in r but follows it in r'. Choosing u to be the first 

such vertex in r guarantees that rou and r'ud do not have common vertices other than u 

(see Figure 5). Clearly, the route rou + r'ud does not include v. This contradicts Claim 

1, and thus proves Claim 2. 

   It follows from Claims 1 and 2 that G is the result of connecting two networks in 

series: the network G' consisting of v (as destination) and all the vertices and edges 

that precede it in some route in G, and the network G" consisting of v (as the origin) 

and all the vertices and edges that follow it in some route in G.  
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Figure 6 
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Proof of Proposition 2. Observe, first, that if a network G is the result of connecting 

two networks G' and G" in series or in parallel, then G is series-parallel if and only if 

both G' and G" are series-parallel. From this observation, it immediately follows that 

if G is series-parallel and has some route with only one edge, then G satisfies 

conditions (i) or (ii). In the rest of the proof, it will be assumed that G is series-parallel 

and all the routes in it have at least two edges. It is to be shown that G is the result of 

connecting two networks in series or in parallel. 

CLAIM. In the route set of G, “routes p and q have a vertex in common, other than o 

and d” is an equivalence relation. 

Reflexivity of the relation follows from the assumption that each route in G has at 

least two edges. Symmetry is obvious. It remains to show that the relation is 

transitive. That is, if p, q and r are three routes such that there is some vertex v ≠ o, d 

that is common to p and q and some vertex u ≠ o, d that is common to p and r, then 

there is also some vertex, other than o and d, common to q and r. Suppose this is not 

so. Without loss of generality, it may be assumed that u precedes v in p and that none 

of the other vertices in puv belongs to either q or r (see Figure 6). This assumption 

implies that the network in Figure 1 is embedded in the sub-network of G consisting 

of all the vertices and edges in puv, q and r. However, by Proposition 1, this 

contradicts the assumption that G is series-parallel. This contradiction proves the 

claim. 

   Two cases are possible. Either the above equivalence relation holds for all pairs of 

routes in G, or there are two or more equivalence classes. In the former case, it 

follows from Lemma 1 that G is the result of connecting two networks in series. In the 

latter case, choose one of the equivalence classes and consider the sub-network G' 

consisting of all the vertices and edges that belong to at least one route in this 

equivalence class, as well as the sub-network G" consisting of all the vertices and 

edges that belong to at least one route not in the class. Each vertex v, other than o and 

d, belongs to one, and only one, of these two sub-networks. (Otherwise, v would 

belong to two routes in two different equivalence classes, which is impossible by 

definition of the equivalence relation.) Therefore, each edge also belongs to one, and 

only one, of them. This implies that G is the result of connecting G' and G" in parallel.
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Proof of Proposition 3. The condition in the proposition is equivalent to the following 

one:  

There is a one-to-one function Z from the vertex set to the integers such that, for every 

pair of distinct vertices u and v, if u precedes v in some route r, then Z(u) < Z(v).  

This condition is sufficient for G to be series-parallel, since it implies that the same 

end vertex of each edge e precedes the other in every route passing through e. The 

necessity of the condition can be proved by induction on the number of edges in G. If 

there is only one edge, the condition holds trivially. Suppose that G has more than one 

edge, and that the condition holds for every series-parallel network with a smaller 

number of edges than G. By Proposition 2, G is the result of connecting two series-

parallel networks, G' and G", in series or in parallel. Since they have less edges than 

G, both networks satisfy the above condition. Thus, a function Z' as above exists for 

G' and another one Z" for G". It is not difficult to see that Z' and Z" can be chosen in 

such a way that, for every vertex u in G' and every vertex v in G", Z'(u) = Z"(v) if and 

only if u = v. This implies that the functions Z' and Z" have a unique common 

extension Z on the union of the two vertex sets, which is the vertex set in G. This 

proves that G also satisfies the above condition.  

Proof of Proposition 4. (i) ⇒ (iv). Suppose that one of the networks in Figure 1 and 

Figure 2 is embedded in G. In each of these networks, there is a route, every edge of 

which is also in some other route. It is easy to see that this property is preserved under 

the three operations that define embedding, and so it also holds for G. Hence, G is not 

a network with linearly independent routes. 

(iii) ⇒ (i). Suppose that G is not a network with linearly independent routes: There is 

some route r, every edge of which is also in some other route. It has to be shown that 

a bad configuration exists in G. Let q ≠ r be a route with the greatest number of r’s 

edges. Since only r itself can have all the edges in r, there is some edge e1 in r that is 

not in q. By assumption, e1 belongs to some route p ≠ r. By construction, p does not 

have more edges in common with r than q, and so there is at least one edge e2 common 

to r and q that is not in p. This implies that p, q and r constitute a bad configuration. 

(ii) ⇒ (iii). Suppose that a bad configuration exists: There are three routes p, q and r 

such that some edge e1 belongs to p but not to q, another one e2 belongs to q but not to 
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p, and both edges are in r, with e1 preceding e2, say. It has to be shown that condition 

(ii) does not hold. If the network is not series-parallel, this follows immediately from 

Proposition 1, since condition (ii) does not hold for the network in Figure 1 (in which 

it is violated by the two routes that include both u and v). Suppose, then, that the 

network is series-parallel. This implies that p and q pass through e1 and e2, 

respectively, in the same directions as r. Consider the set V' of all vertices in r that 

follow e1 but precede e2. Let u be the first vertex in q that is also in V', and v the last 

vertex in p that is also in V' (see Figure 7). If qou and pvd have a common vertex w, 

then pow ≠ qow and pwd ≠ qwd. The former inequality holds since e1 is in the section pow 

but not in q, and the latter inequality holds since e2 is in the section qwd but not in p. 

These two inequalities imply that condition (ii) does not hold. Suppose, then, that qou 

and pvd do not have a common vertex. This implies that u precedes v in r, because if u 

followed v, then qou + (−rvu) + pvd would be a route passing through the edges in rvu in 

opposite direction to r, which contradicts the assumption that the network is series-

parallel. Consider the two routes r and r' = qou + ruv + pvd. They satisfy rov ≠ r'ov and rvd 

≠ r'vd, since e1 and e2 are in rov and rvd, respectively, but not in r'. These inequalities 

imply that condition (ii) does not hold. 

 (iv) ⇒ (ii). Suppose that condition (ii) does not hold for G: There are two routes r 

and r' and a vertex v common to both routes such that rov ≠ r'ov and rvd ≠ r'vd. It is to be 

shown that condition (iv) also does not hold. If G is not series-parallel, this follows 

from Proposition 1. Suppose, then, that G is series-parallel. Let e1 and e2 be edges in 

rov and rvd, respectively, that are not in r'. Without loss of generality, it may be 

assumed that v is the last vertex between e1 and e2 in r that is also in r'. Let u 

(possibly, u = v) be the first such vertex (see Figure 7). Let u' be the last vertex before 

u in r that is also in r', and v' the first vertex after v in r that is also in r'. In the sections 

ru'u and rvv', only the initial and terminal vertices, and none of the edges, are in r'. By 

Proposition 1, v' and u follow v and u', respectively, also in r'. In addition, either v 

coincides with u, or it follows it also in r'. In the former case, the network in Figure 

2(a) is embedded in the sub-network of G consisting of all the vertices and edges in 

ru'u, rvv' and r'. In the latter case, the network in Figure 2(b) is embedded in this sub-

network. This implies that one of the networks in Figure 2 is embedded in G.   
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Figure 7 

Proof of Proposition 5. One direction is obvious: If G satisfies (i), (ii) or (iii), then it 

is a network with linearly independent routes. To prove the converse, suppose that G 

is a network with linearly independent routes.  

CLAIM 1. If two routes in G have a vertex in common, other than o and d, then they 

have the same first or last edge. 

This follows from condition (ii) in Proposition 4. 

CLAIM 2. In the route set of G, “routes p and q have an edge in common” is an 

equivalence relation. 

This follows from condition (iii) in Proposition 4: If route r shares an edge e1 with 

route p and an edge e2 with route q, then at least one of the edges e1 and e2 must be 

common to p and q, otherwise the three routes would constitute a bad configuration. 



30 

   Two cases are possible. Either the equivalence relation in Claim 2 holds for all pairs 

of routes in G, or there are two or more equivalence classes. In the latter case, choose 

one of the equivalence classes, and consider the sub-network G' consisting of all the 

vertices and edges that belong to at least one route in this equivalence class, as well as 

the sub-network G" consisting of all the vertices and edges that belong to at least one 

route not in the class. It follows from Claim 1 and the definition of the equivalence 

relation that every vertex in G, other than o and d, belongs to one, and only one, of 

these two networks, and the same is true for every edge. This implies that G is the 

result of connecting G' and G" in parallel. Since G is a network with linearly 

independent routes, the same is clearly true for G' and G". Hence, G satisfies (ii). 

   In the rest of this proof, it will be assumed that the equivalence relation in Claim 2 

holds for all pairs of routes in G, i.e., every route has an edge in common with every 

other route. 

CLAIM 3. All the routes in G have the same first edge, or they all have the same last 

edge.  

To prove this, suppose that there are two routes p and q that do not have the same last 

edge. Since, by assumption, they have some edge in common, it follows from Claim 1 

that their first edge is the same. Call this edge e. By a similar argument, any route r 

that does not have e as its first edge must have the same last edge as p. Similarly, it 

must have the same last edge as q. However, p and q do not have the same last edge. 

This contradiction proves that e must be the first edge in every route, which completes 

the proof of Claim 3. 

   It follows from Claim 3 that there is some edge e, with o or d as one of its end 

vertices, that belongs to all routes. This implies that e is the only edge incident with o 

or d, respectively. Therefore, either G has a single edge, or it is the result of 

connecting in series the network G' consisting of e and its two end vertices and the 

network G" consisting of the end vertex of e which is not o or d and the remaining 

vertices and edges in G. Clearly, the latter is a network with linearly independent 

routes. Hence, G satisfies (i) or (iii).  

Proof of Proposition 6. If G is a network with linearly independent routes, then by 

definition each route r in G has an edge e that is not in any other route. In the binary 
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vector representing r, the coordinate corresponding to e is 1, and in the vectors 

representing the other routes, it is 0. This implies that the former is not a linear 

combination of the latter, and so the vectors representing G’s routes are linearly 

independent. If G is not a network with linearly independent routes, then by 

Proposition 4, one of the networks in Figure 1 and Figure 2 is embedded in it. In each 

of these three networks, the sum modulo 2 of the binary vectors representing the four 

routes in the network is zero, since an even number of routes pass through each edge. 

It is easy to see that the existence of four such routes is preserved under the three 

operations that define embedding. Therefore, also in the edge space of G, the vectors 

representing the routes are not linearly independent.   

   The following three lemmas are used in the proof of Theorem 1. 

Lemma 2. Let G be a series-parallel network, and f ̂  and f ̃  two flow vectors. If the 

total origin–destination flows satisfy f ̂ o ≥ f ̃ o and f ̂ o > 0, then there is some route r 

such that, for all sections s of r of length zero or one (i.e., those consisting of only one 

vertex, or one edge and its two end vertices), f ̂ s ≥ f ̃ s and f ̂ s > 0. If f ̂ o > f ̃ o, then a 

similar result holds with the last pair of inequalities replaced by f ̂ s > f ̃ s.  

Proof. The proof of the lemma proceeds by induction on the number of edges. For a 

network with a single edge, the result is trivial. Consider, then, a series-parallel 

network G with two or more edges. The induction hypothesis is that the assertion of 

the lemma holds for any two flow vectors in every series-parallel network with a 

smaller number of edges than G. By Proposition 2, G is the result of connecting two 

series-parallel networks, G' and G", in series or in parallel. Consider, first, the case in 

which G' and G" are connected in series, so that the destination in G', v, coincides 

with the origin in G". The route sets of G and G', R and R', are connected by R' = 

{rov | r ∈ R }. (Thus, the elements of the latter are paths in G.) Every flow vector f for 

G induces a flow vector f' for G', which is given by f' = (fr') r'∈R'. By definition, the 

flow f'p on each path p in G' is the total flow on all the routes in G' containing p, that 

is,  

 f'p    = ∑
r'∈R'

p is a section of r'

   fr'. (4) 
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It is not difficult to see that this is equal to fp, the flow on p in f. Therefore, if f ̂  and f ̃  

are flow vectors for G satisfying the pair of inequalities f ̂ o ≥ f ̃ o and f ̂ o > 0, or the 

single inequality f ̂ o > f ̃ o, then similar inequalities or inequality hold for the induced 

flow vectors f ̂ ' and f ̃ '. It then follows from the induction hypothesis that there is a 

route r' in G' such that, for all sections s of r' of length zero or one, f ̂ s ≥ f ̃ s and f ̂ s > 0, 

or f ̂ s > f ̃ s, respectively. By similar considerations, there is a route r" in G" such that 

similar inequalities or inequality hold for all sections s of r" of length zero or one. 

Therefore, the same is true for the route r = r' + r" in G. This completes the proof for 

the case in which G is the result of connecting two series-parallel networks in series. 

   Next, suppose that G is the result of connecting G' and G" in parallel, so that o and d 

are also the origin and destination, respectively, in G' and G". The route sets of G' and 

G", R' and R", are disjoint, and the route set R of G is their union. Each flow vector 

f for G induces flow vectors f' and f" for G' and G", which are given by f' = (fr') r'∈R' 

and f" = (fr") r"∈R". The induced flow vectors give (by (4) or a similar equation) the 

flow f'p or f"p on each path p in G' or G", respectively. If p is not one of the zero-

length paths o and d, then f'p = fp or f"p = fp. However (unlike the case previously 

considered), the total origin–destination flows in G' and G" do not satisfy similar 

equalities. In fact, f'o + f"o = ∑ r'∈R' fr' + ∑ r"∈R" fr" = ∑ r∈R fr = fo. It follows from this 

equation that if f ̂  and f ̃  are flow vectors satisfying f ̂ o ≥ f ̃ o and f ̂ o > 0, then the 

inequalities f ̂ 'o ≥ f ̃ 'o and f ̂ 'o > 0, or f ̂ "o ≥ f ̃ "o and f ̂ "o > 0, hold. By the induction 

hypothesis, there is then some route r, either in G' or G" (hence, in G), such that, for 

all sections s of r of length zero or one, f ̂ s ≥ f ̃ s and f ̂ s > 0. By a similar argument, if f ̂ o 

> f ̃ o, there is a route r in G' or G" such that, for all sections s of r of length zero or 

one, f ̂ s > f ̃ s.  

Lemma 3. Let G be a series-parallel network, c a separable cost function, and f* a 

corresponding equilibrium. For every route r, the following conditions are equivalent:  

(i) The route r is a minimal-cost route (i.e., its cost equals the equilibrium cost 

c(f*)).  

(ii) Every edge in r is in some minimal-cost route. 
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Proof. Let r be a route satisfying (ii). It is to be shown that r satisfies (i), or 

equivalently, that for some minimal cost route q, cr(f*) = cq(f*). Clearly, it suffices to 

prove the following (stronger) claim. 

CLAIM. For every minimal-cost route q and every vertex v common to r and q, 

crov(f*) = cqov(f*).  

For v = o, the claim is trivial. Proceeding by induction on the length of rov, suppose 

that v ≠ o and that, for every minimal-cost route p that includes the vertex u 

immediately preceding v in r, crou(f*) = cpou(f*). Since r satisfies (ii), there is a 

minimal-cost route p that includes the edge e in r joining u and v. Thus, ruv = puv, and 

hence cruv(f*) = cpuv(f*). By separability of c and the induction hypothesis, this implies 

that crov(f*) = cpov(f*). To complete the proof of the claim, it remains to show that, for 

every pair of minimal-cost routes p and q with a common vertex v, cpov(f*) = cqov(f*). 

By symmetry, it suffices to show that cpov(f*) ≥ cqov(f*), or equivalently cpov(f*) + 

cqvd(f*) ≥ cq(f*). The sum on the left-hand side of the latter inequality is the cost of the 

route pov + qvd. (By (ii) in Proposition 1, pov and qvd do not have common vertices 

other than v.) This cost cannot be less than that of the minimal-cost route q, which 

proves the above inequality.  

Lemma 4. Let G be a series-parallel network, ĉ and c̃ separable cost functions such 

that ĉr(f) ≥ c̃r(f) for all routes r and flow vectors f, and f ̂  and f ̃  corresponding 

equilibria such that the total origin–destination flows satisfy f ̂ o ≥ f ̃ o. Then, the 

equilibrium costs satisfy ĉ(f ̂ ) ≥ c̃(f ̃ ).   

Proof. If f ̂  = f ̃ , then the inequality ĉ(f ̂ ) ≥ c̃(f ̃ ) follows trivially from the assumption 

that ĉr(f) ≥ c̃r(f) for all routes r and flow vectors f. Suppose, then, that f ̂  ≠ f ̃ , which 

clearly implies that f ̂ o > 0. By Lemma 2, there is some route r such that, for all 

sections s of r of length zero or one, f ̂ s ≥ f ̃ s and f ̂ s > 0. Since G is series-parallel and ĉ 

is separable, the weak inequalities ( f ̂ s ≥ f ̃ s) imply that ĉr(f ̂ ) ≥ ĉr(f ̃ ). The strict 

inequalities ( f ̂ s > 0) imply that every edge e in r is in some route q with f ̂ q > 0. By the 

equilibrium condition (2) and Lemma 3, this implies that ĉr(f ̂ ) = ĉ(f ̂ ). Hence, ĉ(f ̂ ) ≥  



34 

ĉr(f ̃ ). By the assumption concerning the cost functions, ĉr(f ̃ ) ≥ c̃r(f ̃ ), and by definition 

of equilibrium cost, c̃r(f ̃ ) ≥ c̃(f ̃ ). This proves that ĉ(f ̂ ) ≥ c̃(f ̃ ).  

Proof of Theorem 1. Lemma 4 shows that, in a series-parallel network, Braess’s 

paradox does not occur. It remains to prove the converse. By Proposition 1, if a 

network is not series-parallel, then the Wheatstone network (Figure 1) is embedded in 

it. As shown, in that particular network, Braess’s paradox does occur. The same is 

true for any network in which the Wheatstone network is embedded. This can easily 

be seen by considering the following cost-assignment rules for the edges created by 

the three operations that define embedding. For each of the two edges created by 

subdividing an existing edge, the cost is one-half that of the original edge. For a new 

edge joining two existing vertices, the cost is very high (effectively, infinite). For the 

edge e created by extending the origin or the destination, the cost is an arbitrary 

increasing function of the flow on e.  

   The following lemma is used in the proof of Theorem 2. 

Lemma 5. A series-parallel network has linearly independent routes if and only if, for 

every pair of distinct flow vectors f ̂  and f ̃  with f ̂ o ≥ f ̃ o, there is some route r such that 

f ̂ r > f ̃ r, and f ̂ s ≥ f ̃ s for all sections s of r.  

Proof. For either of the series-parallel networks in Figure 2, consider the following 

two flow vectors f ̂  and f ̃ . For the route r1 passing through the edges e1 and e3, f ̂ r1 = 0 

and f ̃ r1 = 2. For the route r2 passing through e2 and e4, f ̂ r2 = 0 and f ̃ r2 = 0. For the route 

r3 passing through e2 and e3, f ̂ r3 = 1 and f ̃ r3 = 0. For the route r4 passing through e1 

and e4, f ̂ r4 = 1 and f ̃ r4 = 0. The only routes r with f ̂ r > f ̃ r are r3 and r4. However, r3 

includes e3 and r4 includes e1, and on these two edges, the flow in f ̂  is less than in f ̃ . 

In view of Propositions 1 and 4, this example shows that for every series-parallel 

network in which the routes are not linearly independent, there is a pair of distinct 

flow vectors f ̂  and f ̃  with equal total origin–destination flows such that a route r as 

above does not exist. 

   The converse, that the condition in the lemma holds for every network G with 

linearly independent routes, will be proved by induction on the number of edges. If G 
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only has one edge, the condition clearly holds. Suppose that G has two or more edges. 

The induction hypothesis is that the condition holds for any network with linearly 

independent routes and a smaller number of edges than G. Let f ̂  and f ̃  be two distinct 

flow vectors for G with f ̂ o ≥ f ̃ o. By Proposition 5, G is the result of connecting two 

series-parallel networks, G' and G", in series or in parallel. Moreover, in the former 

case, one of these, say G", has only one edge, e. In this case, by similar arguments to 

those in the proof of Lemma 2, the induction hypothesis implies that there is some 

route r' in G' such that f ̂ r' > f ̃ r', and f ̂ s ≥ f ̃ s for all sections s of r'. The route r in G 

obtained by appending e and d to r' has the same properties. This is because every 

section s of r is: (i) a section of r', (ii) the zero-length path consisting of d alone, or 

(iii) the result of appending e and d to some section s' of r'—in which case the flows 

on s and s' are always equal. This completes the proof for the case in which G is the 

result of connecting G' and G" in series. If G is the result of connecting the two 

networks in parallel, then, again by similar arguments to those in the proof of 

Lemma 2, it follows from the induction hypothesis that there is some route r in G' or 

G" such that f ̂ r > f ̃ r, and f ̂ s ≥ f ̃ s for all sections s of r. Since r is also a route in G, this 

completes the proof.  

Proof of Theorem 2. Suppose that G is a network with linearly independent routes. Let 

c be a cost function and f* a corresponding equilibrium, with equilibrium cost c(f*). If 

f is another flow vector with the same total origin–destination flow as f*, then by 

Lemma 5, there is some route r such that fr > f*r, and  fs ≥ f*s for all sections s of r. 

Since G has linearly independent routes, there is some section s of r of length one 

such that fs = fr > f*r = f*s. It follows that cr(f) ≥ cr(f*), and if c is increasing, then cr(f) 

> cr(f*). Since fr > 0 and, by definition of equilibrium cost, cr(f*) ≥ c(f*), this proves 

that f* is weakly Pareto efficient. Moreover, if c is increasing, then f* is Pareto 

efficient.  

   Suppose now that the routes in G are not linearly independent. By Proposition 4, 

one of the networks in Figure 1 and Figure 2 is embedded in G. As shown in the 

introduction, for each of these three networks, there is an increasing, nonnegative 

separable cost function and a corresponding equilibrium that is not even weakly 

Pareto efficient. The same is true for every network in which one of these networks is 
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embedded. The proof of this is based on the same arguments as in the proof of 

Theorem 1.  

Proof of Theorem 3. It is not difficult to see that condition (i) implies (iii). Therefore, 

it suffices to show that if G has linearly independent routes, then (i) and (ii) hold, and 

if the routes are not linearly independent, then (ii) and (iii) do not hold. 

   Suppose that G has linearly independent routes. For a given assignment of cost 

functions ci, let σ be a Nash equilibrium and τ another strategy profile. If f(τ) = f(σ), 

then it follows from the equilibrium condition (3) that ci
τ(i)(f(τ)) ≥ ci

σ(i)(f(σ)) for all 

users i, and equality holds if τ(i) = σ(i). Hence, condition (H) holds. Suppose, then, 

that f(τ) ≠ f(σ). By Lemma 5, there is some route r such that fs(τ) ≥ fs(σ) for all 

sections s of r, with strict inequality for r itself and, since the routes are linearly 

independent, also for some section s of r of length one. It follows that, for every 

user i, ci
r(f(τ)) ≥ ci

r(f(σ)) ≥ min q∈R ci
q(f(σ)) = ci

σ(i)(f(σ)), and if i’s cost function is 

increasing, then the first inequality is strict. Since fr(τ) > fr(σ) ≥ 0, there is a nonempty 

(indeed, positive-measure) set of users i with τ(i) = r. This proves that the Nash 

equilibrium σ is weakly Pareto efficient. Moreover, there is a nonempty set of users i 

with τ(i) = r ≠ σ(i). If any of these users i has an increasing cost function, then, as 

shown above, ci
τ(i)(f(τ)) > ci

σ(i)(f(σ)), and hence (H) holds. This proves that if all the 

users have increasing cost functions, then the Nash equilibrium σ is hyper-efficient. 

   Suppose now that the routes in G are not linearly independent. It follows from 

Theorem 2 that condition (ii) does not hold. It remains to show that Braess’s paradox 

with non-identical users occurs in G. By Proposition 4, one of the networks in Figure 

1 and Figure 2 is embedded in G. If this is the one in Figure 1, then it follows from 

Theorem 1 that Braess’s paradox (with identical users) occurs in G. Suppose, then, 

that the embedded network is one of those in Figure 2. As shown above, Braess’s 

paradox with non-identical users occurs in the network in Figure 2(a). Essentially the 

same example shows that it also occurs in the network in Figure 2(b). This implies 

that the paradox also occurs in G. The argument is similar to that in the proof of 

Theorem 1.  
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