

Make Your Publications Visible.

A Service of

Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre

Dutta, Sourish

Working Paper

Two Approaches of Measuring Intra-industry Trade

Suggested Citation: Dutta, Sourish (2022): Two Approaches of Measuring Intra-industry Trade, Cambridge University Press (CUP), Cambridge, https://doi.org/10.33774/coe-2022-ttphh

This Version is available at: https://hdl.handle.net/10419/259000

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

https://creativecommons.org/licenses/by/4.0/

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

Two Approaches of Measuring Intra-industry Trade

Sourish Dutta Centre for Development Studies

Abstract

This paper deals with the problem of measuring intra-industry trade. In section 2, it presents two existing approaches (Balboni, 2007) to measuring intra-industry trade: the so-called "recovery of trade", developed by Balassa (1966); Grubel and Lloyd (1975) & the "type of trade" one initiated by Abd-el Rahman (1986b); Vona (1991). Then this paper presents indicators and empirical methods inspired by these two approaches. Notions of trade recovery & trade type come from two different definitions of the empirical phenomena they aim to measure. This paper also discusses these definitions and the theoretical foundations in the section 3.

1 Introduction

Starting from the end of 1960s, the problem of measuring intra-industry trade lies at the very origin of the literature on intra-industry trade. A series of empirical works describe the intensive & extensive existence of this phenomenon through statistical indicators. Indeed, Greenaway and Milner (2003) asserts that the entire literature started with statistical measurement. Among the foundational works on intra-industry trade, the articles of Balassa (1965, 1966) and the book of Grubel and Lloyd (1975) are especially notable. Because the indicators developed by these authors have acquired a seminal status in the empirical analysis of international trade, these works preceded and triggered the development of different theoretical explanations of intra-industry trade.

The theoretical analyses of intra-industry trade explore the phenomenon by adopting disparate assumptions about the nature of returns to scale, the typology of markets, and the differentiation of products subject to this type of trade. Krugman (1979), Lancaster (1980) and Helpman (1981) explain the rise intra-industry trade in horizontally differentiated products within a framework of monopolistic competition. Falvey (1981) and Shaked and Sutton (1984) respectively study the trade of vertically differentiated products in the context of perfectly competitive and oligopolistic markets. Meanwhile, Brander (1981) models the intra-industry exchange of perfectly homogeneous (and therefore undifferentiated) goods in an oligopolistic market context.

The determinants of intra-industry trade highlighted by these theoretical works are different and depend, in particular, on the type of differentiation taken into account in the various analyses. In monopolistic competition models of Krugman (1979), Lancaster (1980), and Helpman (1981), a necessary condition for the development of intra-industry trade in horizontal differentiation is the existence of economies scale in the production of different varieties. On the other hand, Falvey (1981) explains intra-industry trade in a vertical differentiation setting by the difference between the relative factor endowments of countries, where the production of all goods is in the assumption of constant returns to scale. The prediction of Falvey (1981) model depends crucially on the following assumption. The production of higher quality differentiated goods requires a greater amount of capital per unit of labour than the production of relatively low-quality ones. However, in the case of measuring intra-industry trade using very disaggregated product classifications, the assumption about the products in that same level of disaggregation having different factorial contents is debatable. In fact, Vona (1990, 1991) indicate the similarity between factor contents of products belonging to the same statistical category is very high at the disaggregated product detail levels of international classifications.

The theoretical analyzes developed during the 1980s help to strengthen the impression that intra-industry trade is a complex phenomenon and multifaceted. Indeed, the Chamberlin-Heckscher-Ohlin (C-H-O) model proposed by Helpman and Krugman (1987) explains the simultaneous growth of intra-industry trade (in horizontal differentiation) and inter-industry trade between countries. In this framework of economies of scale in the production of differentiated goods, intra-industry trade is the most important if the endowment of relative factors of production of the countries are similar, while the share of inter-industry trade is an increasing function of the difference between these endowments.

The determinants of intra-industry trade highlighted by Falvey (1981) and Helpman and Krugman (1987) are not only different, but also irreconcilable. Indeed, Falvey (1981) predicts a positive relationship between the difference in factor endowments among countries and the rise of intra-industry trade (in vertical differentiation), while the authors Helpman and Krugman (1987) show a negative relationship between the difference in factor endowments and the development of intra-industry exchanges (in horizontal differentiation). At the same time, the econometric analyses of intra-industry trade were carried out during the 1980s. The works of Balassa and Bauwens (1987) and Helpman (1987) do not lead to conclusive results of the sign of the existing relationship between the similarity of the factor endowments of trading partners and the share of intra-industry trade in bilateral trade (measured by the index of Grubel and Lloyd (1975)). Greenaway and Torstensson (1997) express very clearly the lesson that can be drawn from this first wave of econometric analyzes aimed at testing intra-industry trade theories:

"...the determinants for vertical and horizontal intra-industry trade seem to differ. This may explain why when using total intra-industry trade

as the dependent variable different econometric results have led to different conclusions. In other words, if the dependent variable in a regression is heterogeneous, it is not surprising that the coefficient for the explanatory variables is somewhat unstable."

In other words, econometric models including an intra-industry trade index total (without distinction between horizontal and vertical differentiation) as an explained variable are probably poorly specified insofar as the theoretical analysis highlighted different determinants for these two types of trade. Moreover, the theoretical models of Falvey (1981) & Helpman and Krugman (1987) suggest that the consequences of these two types of intra-industry trade are very different. In particular, adjustment costs (linked to the reallocation of resources from the importing to exporting sectors) generated by the exchanges of vertically differentiated products are greater than those generated through trade in horizontally differentiated products.

All these reasons give rise to the conviction that intra-industry trade in horizontal and vertical differentiation constitute two distinct phenomena, both in terms of determinants and consequences. From the end of the 1980s, this conviction is at the origin of developing methods and statistical indicators to separately measure the extent and evolution of these two types of trade. Thus, the development of research programs concerning intra-industry trade has been a fruitful interaction between theoretical analyses and empirical methods of measuring the importance of this phenomenon. Development of indicators to measure intra-industry trade preceded and triggered the rise of first theoretical explanations of this phenomenon. These in turn, have contributed to reviving the empirical debate on the measurement of intra-industry trade by suggesting the need to distinguish, in empirical analyses, intra-industry trade in vertical differentiation from that in horizontal one.

This paper deals with the problem of measuring intra-industry trade. In section 2, it presents two existing approaches to measuring intra-industry trade: the so-called "recovery of trade", developed by Balassa (1966); Grubel and Lloyd (1975) & the "type of trade" one initiated by Abd-el Rahman (1986b); Vona (1991). Then this paper presents indicators and empirical methods inspired by these two approaches. Notions of trade recovery & trade type come from two different definitions of the empirical phenomena they aim to measure. This paper discusses these definitions and the theoretical foundations in the section 3.

2 Measurement of Intra-industry Trade

Two different approaches to the problem of measuring intra-industry trade exist in the discipline of international trade. They are at the origin of several indicators or methods for measuring the level and development of intra-industry trade. The Trade Recovery Approach was introduced by Balassa (1966) and perfected by Grubel and Lloyd (1975, 1971). The trade type approach was proposed by Abd-el Rahman (1986a,b, 1987, 1991) and by Vona (1990, 1991) in an independent manner. Subsequently, this section refers to the approaches to the recovery of trade and the type of trade (and the indicators) through the respective acronyms B-G-L (Balassa-Grubel-Lloyd) and A-R-V (Abd-El-Rahman-Vona). Before presenting the details of the indicators developed by these authors to measure intra-industry trade, it is important to note that the B-G-L and A-R-V approaches differ fundamentally in their definition of the phenomenon of intra-industry trade (Balboni, 2007).

2.1 The Definitions of Two Approaches

The B-G-L and A-R-V approaches (Balboni, 2007) to measuring intra-industry trade depend on two different conceptions of the phenomenon they aim to understand. This subsection presents the definitions of intra-industry trade (and interindustry trade) underlying the approaches to the recovery of trade (B-G-L) and type of trade (A-R-V).

Definition 1: According to the trade recovery approach, intra-industry trade, for a given industry, is defined as the share of imports and exports (measured in value) perfectly covered (overlapped) by trade flow in the opposite direction. Inter-industry trade is the residual share of flows observed in this industry, i.e. the share of exports or imports that is not covered by a flow of imports or export in the opposite direction.

Definition 2: According to the type of trade approach, for a given industry, if the ratio of the minority flow to the majority flow is not "too low", then the set flows observed in this industry will be considered intra-industry trade. Otherwise, all flows will be considered inter-trade. Here, the minority (majority) flow is the minimum (maximum) important flow between exports and imports in value. The criterion not "too low" is defined more precisely by presenting detailed methods proposed by Abd-el Rahman (1987, 1991) and Vona (1990, 1991) to distinguish between intra-industry and inter-industry trades.

These two definitions imply different methodological choices when measuring intra-industry and inter-industry trades. Measurement methods inspired by the B-G-L approach draw the boundary between intra-industry and inter-industry trades at the interior of each industrial category identifying an industry, while the methods of A-R-V establish this boundary between the different industrial categories. In other words, trade overlap methods separate recorded trade flows by the same industry in two parts, one being intra-industry trade and the other as inter-industry

trade. On the other hand, methods based on the type of trade define the total trade recorded by each industry either as an intra-industry trade or an inter-industry trade.

In this regard, a terminological clarification is necessary. Economists using the A-R-V approach prefer to indicate cross-trade & one-to-one trade as "one-way trade" & "two-way trade", respectively (Fontagné et al., 1997, 1998). This choice is consistent with the fact that the recovery methods of exchanges and the methods of type of trade split the total trade in two different ways. Insofar as the intra-industry and inter-industry qualifiers are associated from their introduction by Grubel and Lloyd (1971, 1975), approaching the recovery of trade, economists using the type of trade approach have proposed two new definitions for the exchanges highlighted in their analyses.

However, the terms "one-to-one trade" and "cross trade" are not used in theoretical works on intra-industry trade, to which the references are made in both analyses using the type of trade approach and those using the recovery of trade. For this reason, we have chosen to use the terms "inter-industry trade" and "intra-industry trade" even when we do refer to the methods of the trade type.

2.2 Indicators of the "Trade Recovery" Approach

The indicator most used by international economists to measure the intensity of the intra-industry trade between different countries is of Grubel and Lloyd (1975). The combined form of Grubel and Lloyd (1975) indicator, which this subsection presents, is called the "synthetic" index of Grubel and Lloyd. The "synthetic" term is to distinguish it from the "simple" Grubel and Lloyd index (referring to trade flows observed in a single industry), which is at the origin. This index, indeed, was derived from an indicator used by Balassa (1966) to measure the share of interindustry trade in the total trade flow of an industry.

2.2.1 Balassa's Indicator

Indicator of Balassa (1966), denoted B_i , measures the relative importance of net trade to the total trade recorded in an industry i, defined at a level of given disaggregation of industrial classification. It is calculated by dividing the absolute value of the trade balance of industry i by the sum of exports (X_i) and imports (M_i) recorded by this industry. The indicator of Balassa (1966) can be calculated on the trade of a country (or, more generally, of a geographical area) vis-à-vis the rest of the world or vis-à-vis a particular country.

$$B_i = \frac{|X_i - M_i|}{X_i + M_i} \tag{1}$$

The B_i indicator takes values between 0 and 1. It is equal to 0 when the net trade of

industry i is zero, i.e. when exports (imports) recorded by the country in question in the industry i perfectly cover the imports (exports) of the same industry. On the other hand, this indicator equals 1 when the net trade of industry i coincides with the total trade recorded in this industry, i.e. when one of the two trade flows of this industry (either exports or imports) is equal to zero.

Balassa (1966) also develops a variant of the indicator (1), in which the balance industry j is not considered in absolute value.

$$B_i = \frac{X_i - M_i}{X_i + M_i} \tag{2}$$

Here B_i is an indicator of the trade performance of the concerned country in the industry i to a partner. Naturally, the partner considered can be another country, a geographical area or the rest of the world. In the latter case, indicator B_i will measure the overall trade performance of the country considered in the industry i. It varies between 1 (when the imports are zero) and -1 (when exports are zero).

According to Balassa (1966), when the indicator (2) is calculated from trade flows relating to industry i of a given country vis-à-vis the rest of the world, it measures the advantage (or the revealed comparative disadvantage) of this country in industry i. The use of this indicator to understand comparative advantages and therefore trade specialization is open to criticism. The B_i index only considers the trade flows of the industry i. And it does not establish any comparison between the trade in industry i and the trade flows observed in the others. Balboni (2007) concludes that B_i can be considered as a trade performance indicator recording only the effects of macroeconomic variables on exports and imports from industry i.

2.2.2 Grubel & Lloyd's Indicator

Just like the inter-industry trade indicator (1) proposed by Balassa (1966), the index of Grubel and Lloyd (1975) to measure the intensity of intra-industry trade is based on the definition of these phenomena specific to the approach of recovery of trade flows. Thus, in its simplest version taking into account the trade flows of a single industry, denoted by i, the Grubel and Lloyd indicator is calculated as the complement to the unity of Balassa's indicator (1).

$$GL_i = 1 - B_i = \frac{(X_i + M_i) - |X_i - M_i|}{X_i + M_i} = \frac{2\min(X_i, M_i)}{X_i + M_i}$$
(3)

The simple Grubel and Lloyd indicator for industry i (denoted by GL_i) is therefore calculated by the ratio of overlapped trade flows to total trade recorded by the country considered in industry i.

The indicator (3), just like the indicator (1), can be calculated from the trade flows of a given country with the rest of the world, with a geographical area including various countries, or with a particular country. The third of these options considers only bilateral trade flows in intra-industry trade indicators to minimize the bias due to the geographical aggregation of the data. This statement is valid for all indices and methods for measuring intra-industry trade.

The indicator (3) varies between 0 and 1. It takes the maximum value of 1 when all the trade flows observed in the industry i is intra-industry in nature. It settles at 0 when all trade in this industry is inter-industry. Indeed, in the first case, the value of exports perfectly covers that of imports. While in the second case, industry i registers a unidirectional trade flow and, consequently, the total trade is equal to the trade balance in absolute value.

From indicator (3), Grubel and Lloyd (1975) construct a more sophisticated, which we call the synthetic index of Grubel and Lloyd (GLS), allowing us to measure the intensity of intra-industry trade for a grouping (denoted I) of n industries (indexed by i). The GLS indicator also makes it possible to calculate the intensity of the intra-industry trade on all trade in a country. In this last case, n indicates the total number of industries in the industrial classification retained by the analysis at a given level of disaggregation.

$$GLS_{I} = \frac{\sum_{i=1}^{n} (X_{i} + M_{i}) - \sum_{i=1}^{n} |X_{i} - M_{i}|}{\sum_{i=1}^{n} (X_{i} + M_{i})}$$

$$= 1 - \frac{\sum_{i=1}^{n} |X_{i} - M_{i}|}{\sum_{i=1}^{n} (X_{i} + M_{i})}$$

$$= \frac{2\sum_{i=1}^{n} \min(X_{i}, M_{i})}{\sum_{i=1}^{n} (X_{i} + M_{i})}$$
(4)

The synthetic index of Grubel and Lloyd (1975) is the ratio of the sum of trade flows (overlapped) on the total trade of an industry group or a country. Just like the simple GL_i indicator (3), this index takes values between 0 and 1. It reaches the value of 1 when all the trade made in industries belonging to the group I is intra-industry in nature, while it settles at 0 when all the trade flows relating to these industries are of the inter-industry type.

2.3 Indicators of the "Type of Trade" Approach

Abd-el Rahman (1986a,b, 1987, 1991) and Vona (1990, 1991) formulate independently similar criticisms of the indicators belonging to the family of the trade recovery. According to these authors, the measurement of intra-industry trade from these indicators is biased to the assumption that the flows assimilated to this type of trade are necessarily in balance (overlapped). Given this hypothesis, which is the

basis of the definition of intra-industry trade used by Balassa (1966) and Grubel and Lloyd (1975), the recovery indicators (B-G-L) consider the balanced part of the exchanges carried out within an industry as a type of intra-industry trade and the unbalanced part of these exchanges as a type of inter-industry trade. According to Abd-el Rahman (1986a,b, 1987, 1991) and Vona (1990, 1991), this dual nature of flows observed within the same industry is a source of confusion, in particular, concerning the identification of the determinants of intra-industry and interindustry trade. In other words, the intra-industry trade cannot be defined as the balanced trade recorded within an industry. This definition implies the attribution of two different natures (inter- and intra-industry) to trade flows observed in the same industry. Conversely, according to these authors, all the trade flows observed within an industry must be considered either intra-industry or inter-industry. This principle is the basis of the type of trade (A-R-V) approach. It is affirmed by Vona (1991) in the following way: "It is the existence of the simultaneous exchange of very similar goods produced under very similar conditions which constitute intraindustry trade, the existence of an imbalance is irrelevant".

In this regard, we can see that the semantic choice made by Abd-el Rahman (1987), preferring to use the adjectives "one-to-one" and "crossed" instead of the adjectives respective "inter-industry" and "intra-industry", clearly reflects the desire to apprehend an empirical phenomenon different from the "intra-industry trade" measured by Grubel and Lloyd (1975). The two methods based on the principle of type of trade, making it possible to distinguish industries characterized by an intra-industry trade from those with inter-industry trade, are presented in the following.

2.3.1 Abd-EI-Rahman's Method

Abd-el Rahman (1987, 1991) separates cross trade (intra-industry) from one-way trade (inter-industry) in the following way. By using a very disaggregated product classification to empirically identify the industries, he considers that all trade carried out in a given industry (i.e. the sum of exports and imports relating to this industry) is of unambiguous type when the exchanges observed in this industry satisfy one of the two following conditions:

- They are unidirectional (exports or imports are equal to zero);
- The minority flow represents less than 10% of the majority flow (i.e. the smallest flow between exports and imports is less than 10%, in value of the largest flow).
- On the other hand, when (for a given industry) the minority flow is equal to or greater than a tenth of the majority flow, Abd-el Rahman (1987, 1991) considers that the entire trade carried out in this industry is of cross type.

Thus, Abd-el Rahman (1987, 1991) sets an arbitrary criterion (the 10% threshold) allowing to exclude from the field of cross-trade the exchanges carried out in the industries where the flows minority flows are significantly lower than majority flows. The reason for this choice is the conviction that below this threshold, minority flows can have an accidental, not justifying their inclusion in cross-exchanges.

2.3.2 Vona's Method

The method proposed by Vona (1990, 1991) is very close to that used by Abdel Rahman (1987, 1991). However, it differs from the latter by a more drastic criterion to define the typology of trade flows. Vona (1990, 1991) considers only unidirectional flows, observed from disaggregated classification, as inter-industry trade. Therefore, given an industry records both exports and imports of non-zero value, Vona (1990, 1991) considers the whole trade observed in this industry (i.e. the sum of its exports and its imports) as an intra-industry trade, even if the minority flow represents a tiny part of the majority flow.

Thus, the definition of intra-industry trade used by Vona (1990, 1991) is less restrictive than that inherent in the method of Abd-el Rahman (1987, 1991). Nevertheless, both definitions are based on the same principle, according to which the intra-industry or inter-industry concerns all the exchanges carried out in an industry and not only the balanced part of these exchanges. This principle is the basis of the so-called "type of trade" approach to the extent of intra-industry trade. Based on his own definition of intra-industry trade, Vona (1991) develops a indicator measuring the share of intra-industry trade in the total trade of a grouping (denoted I) of n industries (indexed by i). We denote this indicator VS_I (synthetic indicator from Vona (1991)).

In the same way as the synthetic index of Grubel and Lloyd (1975), the indicator VS_I can be calculated from observed trade in a particular economic sector (composed of n industries) or the total trade flows of a country with a partner. In the latter case, n is the total number of industries identified by the product classification used at a given level of disaggregation. The step prior to the calculation of the VS_I indicator consists of the distribution of the n industries into two subsets, according to the typology of trade observed in each industry. This step is used to identify the m industries recording bidirectional trade flows and the n-m industries recording unidirectional trade. Then, the index VS_I is calculated as the ratio between the total trade observed in the m industries recording two-way trade and the total trade relating to the n industries belonging to group I.

$$VS_{I} = \frac{\sum_{i=1}^{m} (X_{i} + M_{i})}{\sum_{i=1}^{n} (X_{i} + M_{i})}$$
 (5)

Like the synthetic indicator of Grubel and Lloyd (1975) (4), the indicator (5) takes

values between 0 and 1. It attains the maximum value when all the trade observed in the group of industries selected is of the intra-industry type. In this regard, it is important to note that the phenomenon of intra-industry trade, as measured by the indicator of Vona (1990, 1991), is defined in a different way from that highlighted by the indicator of Grubel and Lloyd (1975). Indeed, this indicator is not made up of the balanced trade flows (overlapped) observed within each industry. But all the two-way flows are identified at the level of the industries, regardless of their balance.

The indicator (5) can also be calculated using the method proposed by Abd-el Rahman (1987, 1991), instead of that of Vona (1990, 1991), in order to distinguish the industries according to the type of trade. In this case, the m industries taken into account in the numerator of the index (5) are those recording equal minority flows or greater than one-tenth of the majority flows. Thus, when calculated using the method of Abd-el Rahman (1987, 1991), the indicator (5) records, by construction, lower values than when calculated using the method of Vona (1990, 1991).

3 Issues of Industrial Disaggregation

A recurring problem in empirical analyses of intra-industry trade is that of the "right choice" of the level of disaggregation of the industrial classification used to define the empirical "industries". Finger (1975) initially noted, when the industrial categories retained in the empirical analysis to define the "industries" are not sufficiently disaggregated, they group together products characterized by different factor intensities. In this context, a high level of intra-industry trade, measured using the empirical methods described in the previous subsections, constitutes a "statistical illusion". As cross-flows of products with sufficiently different factor intensities are considered intra-industry trade, ultimately they indicate interindustry trade. The problem highlighted by Finger (1975) is generally defined as the problem of categorical aggregation.

Criticism of Finger (1975) is addressed in particular to Grubel and Lloyd (1975), who use the 3-digit SITC classification to define "industries" in their empirical analysis. This criticism is based on the theoretical definition of the industry specific to the H-O-S theory of international trade. Finger (1975) shows that at this level of disaggregation of empirical "industries", the variability between ratios of the factors used in the production of goods inserted in the same category is greater than between the ratios of the factors used in the production of goods belonging to different categories. Thus, according to Finger (1975), the industry is defined as a group of products characterized by a similar factor intensity at a given level of the relative prices of the generic factors of production. The "industries" retained in the empirical analysis must then be consistent with this definition, otherwise, the results of the analysis will be invalidated. In this regard, we make the following

remarks.

The theoretical definition of the industry specific to the H-O-S model, also retained in the models of Helpman and Krugman (1987) and Davis (1995), is not the only possible theoretical definition of the industry (see Chapter I). For example, this definition is not retained in the theoretical model developed by Falvey and Kierzkowski (1987), according to which the same industry includes products characterized by different capital/labour ratios. For these authors, capital is not a generic factor (which can be used indifferently in all industries), but it is specific to each industry producing differentiated goods. Thus, in their model, the industry is defined as a group of goods whose production requires the implementation of the same factors of production (and not the same factor intensities).

From this paper's point of view, a preliminary step necessary for any empirical analysis measuring the level and evolution of intra-industry trade consists in specifying the theoretical model retained as the reference explanation of trade flows. The choice of the industrial classification and its level of disaggregation, used to define the empirical "industries", must then be justified with regard to the definition of the industry used in the theoretical reference model.

If the theoretical model retains the H-O-S definition of the industry, we need to look for the best level of disaggregation of the industrial classification. Gullstrand (2002) proceeds in the manner described above when seeking an industrial classification consistent with the theoretical model of Helpman and Krugman (1987), retaining the H-O-S definition of the industry. This author asserts that the 6-digit Combined Nomenclature and Harmonized System subheadings include products with similar factorial contents. Thus, he admits that the empirical "industries" corresponding to the 6-digit categories of these classifications respect, in general, the H-O-S definition of the industry. Furthermore, when the H-O-S definition of the industry is used, an excessive industrial disaggregation of the data analyzed can cause biased results about the measurement of inter-industry and intra-industry trade.

4 Conclusion

From this paper's point of view, the definition of inter- and intra-industry trade adopted in the type of trade approach reflects the juxtaposition of traditional theoretical explanations (Ricardian and H-O-S) of inter-industry trade and explanations of intra-industry trade derived from theoretical analyzes that do not take into account the existence of inter-industry trade. We refer in particular to the theoretical models developed by Krugman (1979), Lancaster (1980) and Shaked and Sutton (1984), which explain the existence of intra-industry type exchanges between the country, but do not consider the possibility that a trade of an interindustry nature takes place simultaneously. On the other hand, this definition is not consistent with the integrated vision of inter- and intra-industry trade specific

to the theoretical models that explain the simultaneous development of these two types of trade, in a unified analytical framework. See (for example) the theoretical models proposed by Krugman (1981), Helpman and Krugman (1987), Falvey and Kierzkowski (1987), and Davis (1995).

The definition of intra-industry trade used in these theoretical models corresponds to that specific to the empirical approach to trade recovery. This definition makes it possible to understand the role of the comparative advantages of countries in determining the inter-industrial specialization of their trade, even if this specialization takes place between industries that record two-way trade in differentiated products. Moreover, all these theoretical models suggest that the use of A-R-V methods to measure the share of intra-industry trade in the bilateral trade between countries carries the risk of underestimating the inter-industrial specialization of trade, when this specialization takes place between industries with differentiated products. Indeed, the A-R-V approach, unlike the B-G-L approach, does not make it possible to highlight this specialization when it takes place between industries recording bidirectional flows.

References

- Abd-el Rahman, K. (1991). Firms' competitive and national comparative advantages as joint determinants of trade composition. *Review of World Economics*, 127(1):83–97.
- Abd-el Rahman, K. S. (1986a). La" différence" et la" similitude" dans l'analyse de la composition du commerce international. *Revue économique*, pages 307–340.
- Abd-el Rahman, K. S. (1986b). Réexamen de la définition et de la mesure des échanges croisés de produits similaires entre les nations. *Revue économique*, pages 89–115.
- Abd-el Rahman, K. S. (1987). Hypothèses concernant le rôle des avantages comparatifs des pays et des avantages spécifiques des firmes dans l'explication des échanges croisés des produits similaires. *Revue d'économie politique*, pages 165–192.
- Balassa, B. (1965). Trade liberalisation and "revealed" comparative advantage 1. *The manchester school*, 33(2):99–123.
- Balassa, B. (1966). Tariff reductions and trade in manufacturers among the industrial countries. *The American Economic Review*, 56(3):466–473.
- Balassa, B. and Bauwens, L. (1987). Intra-industry specialisation in a multi-country and multi-industry framework. *The Economic Journal*, 97(388):923–939.

- Balboni, A. (2007). Le commerce intra-branche en différenciation verticale: Modélisation et mesures empiriques. PhD thesis, Paris 9.
- Brander, J. A. (1981). Intra-industry trade in identical commodities. *Journal of international Economics*, 11(1):1–14.
- Davis, D. R. (1995). Intra-industry trade: a heckscher-ohlin-ricardo approach. *Journal of international Economics*, 39(3-4):201–226.
- Falvey, R. E. (1981). Commercial policy and intra-industry trade. *Journal of international economics*, 11(4):495–511.
- Falvey, R. E. and Kierzkowski, H. (1987). Product quality, intra-industry trade and (im) perfect competition. Technical report.
- Finger, J. M. (1975). Trade overlap and intra-industry trade. *Economic inquiry*, 13(4):581.
- Fontagné, L., Freudenberg, M., et al. (1997). *Intra-industry trade: methodological issues reconsidered*, volume 97. CEPII Paris.
- Fontagné, L., Freudenberg, M., Péridy, N., et al. (1998). *Intra-industry trade and the single market: quality matters*. Centre for Economic Policy Research London.
- Greenaway, D. and Milner, C. (2003). What have we learned from a generation's research on intra-industry trade? GEP Research Paper 44, University of Nottingham.
- Greenaway, D. and Torstensson, J. (1997). Back to the future: Taking stock on intra-industry trade. *Review of World Economics*, 133(2):249–269.
- Grubel, H. G. and Lloyd, P. J. (1971). The empirical measurement of intra-industry trade. *Economic record*, 47(4):494–517.
- Grubel, H. G. and Lloyd, P. J. (1975). *Intra-industry trade: the theory and measurement of international trade in differentiated products*, volume 12. Macmillan London.
- Gullstrand, J. (2002). Does the measurement of intra-industry trade matter? *Weltwirtschaftliches Archiv*, 138(2):317–339.
- Helpman, E. (1981). International trade in the presence of product differentiation, economies of scale and monopolistic competition: A chamberlin-heckscher-ohlin approach. *Journal of international economics*, 11(3):305–340.
- Helpman, E. (1987). Imperfect competition and international trade: Evidence from fourteen industrial countries. *Journal of the Japanese and international economies*, 1(1):62–81.

- Helpman, E. and Krugman, P. (1987). *Market structure and foreign trade: Increasing returns, imperfect competition, and the international economy*. MIT press.
- Krugman, P. R. (1979). Increasing returns, monopolistic competition, and international trade. *Journal of international Economics*, 9(4):469–479.
- Krugman, P. R. (1981). Intraindustry specialization and the gains from trade. *Journal of political Economy*, 89(5):959–973.
- Lancaster, K. (1980). Intra-industry trade under perfect monopolistic competition. *Journal of international Economics*, 10(2):151–175.
- Shaked, A. and Sutton, J. (1984). Natural oligopolies and international trade. in. kierzkowsky, h.(ed.), monopolistic competition and competition in international trade.
- Vona, S. (1990). Intra-industry trade: a statistical artefact or a real phenomenon? *PSL Quarterly Review*, 43(175).
- Vona, S. (1991). On the measurement of intra-industry trade: some further thoughts. *Weltwirtschaftliches archiv*, 127(4):678–700.