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Dynamic Factor Trees and Forests

A Theory-led Machine Learning Framework for
Non-Linear and State-Dependent Short-Term U.S. GDP
Growth Predictions

Daniel Ehmann

ETH Zurich

Abstract

This article proposes so-called Dynamic Factor Forests (DFF) for macroeconomic fore-
casting, which extend the model-based trees of Zeileis, Hothorn, and Hornik (2008) in the
spirit of Garge, Bobashev, and Eggleston (2013) to model-based forests and synthesize
the recent machine learning, business cycle and dynamic factor model literature within
a unified statistical machine learning framework. DFF's correspond to state-dependent,
non-linear and smoothed forecasting models that allow us to embed theory-led factor
models in powerful tree-based machine learning ensembles conditional on, for instance,
the business cycle state. An extensive out-of-sample forecasting experiment for short-term
U.S. GDP growth provides encouraging results in favor of DFF's.



1 INTRODUCTION

1. Introduction?

Machine learning systems in general and deep learning systems in particular have
achieved notable breakthroughs in predictive accuracy in recent years (cf. e.g. Es-
teva et al., 2017; LeCun, Bengio, & Hinton, 2015; McAfee & Brynjolfsson, 2017).
Unfortunately, however, the predictive ability and interpretative feasibility of
these systems stand usually in conflict with one another (Breiman, 2001b) as
their inner working mechanisms are typically complex and opaque and therefore
difficult to understand — an issue known as the “black box” problem (Appen-
zeller, 2017; Mittelstadt et al., 2016; Mittelstadt & Floridi, 2016; Mukherjee,
2017; Veltri, 2017).

As the algorithmic modeling principles embedded in most machine learning
algorithms are fundamentally different from the stochastic modelling principles
employed in conventional econometric techniques, the two paradigms give rise
to different strengths: While the former typically excels at predictive tasks, the
latter is particularly strong at inferential analyses (cf. Athey & Imbens, 2019;
Breiman, 2001b; McAfee & Brynjolfsson, 2017; Mullainathan & Spiess, 2017;
Veltri, 2017; Wochner, 2018). A promising new field of research in statistical
machine learning seeks to fruitfully merge these two paradigms so as to endow
machine learning algorithms with theory-led and parametric models while main-
taining their high predictive accuracy (cf. Athey & Imbens, 2017, 2019; Seibold et
al., 2016; Varian, 2014; Zeileis et al., 2008). To take an example outside the field
of economics — which inspired this research — consider the benefits of treatment
effects in medical applications, which are likely to differ between individuals and
may depend, for instance, on their demographics and health conditions (cf. Athey
& Imbens, 2006, 2017, p. 10; Seibold et al., 2016). Seibold et al. (2016) promote
advances in personalized medical healthcare by employing a model-based tree
that is able to autonomously identify distinct patient subgroups with heteroge-
nous medical treatment effects based on a set of personal health conditions.

This article adopts and adapts these ideas for macroeconomic forecasting and
proposes so-called Dynamic Factor Forests (DFF), which extend model-based
trees proposed in Zeileis et al. (2008) to model-based forests in the spirit of
Garge et al. (2013) and synthesize the recent machine learning, dynamic factor
model and business cycle literature within a unified statistical machine learning
framework for model-based (MOB) recursive partitioning. DFFs are non-linear,
state-dependent and smoothed forecasting models, which reduce to the standard
Dynamic Factor Model (DFM) as a special case and allow us to embed theory-led
factor models in powerful tree-based machine learning ensembles conditional on,
for instance, the state of the business cycle. A dynamic factor forest combines
hundreds of dynamic factor trees (DFT), each of which is grown from a (block-)
bootstrapped sample (cf. Garge et al., 2013; see Breiman, 1996a, 2001a; Hastie,
Tibshirani, & Friedman, 2009, for bootstrap aggregation (bagging) of (decorre-
lated) trees; see Canty, 2002; Politis & Romano, 1994, for block-bootstrapping).

aA previous version of this paper was published under the same title in the KOF Working Paper Series of ETH Zurich in
2020 as well as under the title “Dynamic Factor Forests — A Theory-led Machine Learning Framework for Non-Linear
and State-Dependent Short-Term U.S. GDP Growth Predictions” in Ehmann (2021) (see acknowledgements).




1 INTRODUCTION

Dynamic factor trees therefore consist of two key ingredients (cf. Zeileis et al.,
2008): First, to benefit from big macroeconomic datasets, we build upon the
recent dynamic factor model literature (e.g. Stock & Watson, 2011, 2016; Siliver-
stovs & Wochner, 2021) and embed factor-augmented autoregressive processes as
parametric models within the MOB-framework. While we begin with traditional
factors derived from principal components, our framework adopts a deliberately
broad notion of factors as we also examine novel kinds of factor extraction meth-
ods in the spirit of the recent forecasting literature (Ehmann, 2020; H. H. Kim
& Swanson, 2018; Tu & Lee, 2019). Second, analogous to the health conditions
of patients in Seibold et al. (2016), we choose, in the spirit of the business cycle
literature (e.g. Chauvet & Potter, 2013; Doz & Fuleky, 2020, for reviews), the
health conditions of the economy (proxied via recession probability indices) as
partitioning variable to derive the model-based regression tree structure. While
we start with recession probability indices as a single partitioning variable, the
conditioning sets are subsequently extended to more complex ones in order to
allow for generalized and time-varying state-dependent patterns as the MOB-
framework autonomously detects interactions among the partitioning variables
in the conditioning set (cf. e.g. Zeileis et al., 2008; Goulet Coulombe, 2020). A
dynamic factor forest is then estimated via Zeileis et al.’s (2008) and Garge et
al.’s (2013) model-based recursive partitioning algorithm in six steps: (1) a dy-
namic factor model is estimated, (2) parameter instability tests with regards to
(a random subset of) the partitioning variable(s) are performed, (3) if instabili-
ties are present, the initial parametric model is autonomously split in a tree-like
fashion into two sub-states such that the local fit in each sub-state is maximized,
(4) the procedure is recursively repeated in each sub-state until a stopping crite-
rion (such as minimum state size) is reached (also see Zeileis & Hothorn, 2015;
Hothorn & Zeileis, 2020). (5) As deeply grown trees are likely to overfit, we con-
sider in addition to pruning strategies (cf. e.g. Zeileis & Hothorn, 2015; Zeileis et
al., 2008; James, Witten, Hastie, & Tibshirani, 2013), the inclusion of Ridge- and
Lasso-based regularization techniques to enable a state-dependent regularization
(cf. Quan, Wang, Gan, & Valdez, 2020). (6) Steps (1) to (5) return a single DFT
and DFFs are obtained in analogy to Breiman’s (1996a) bagging by repeating
these steps for a large number of bootstrapped samples and aggregating their
predictions (cf. Garge et al., 2013). While each DFT typically results in multi-
ple regimes with a sharp transition between regimes (cf. Zeileis et al., 2008), the
bagging principles in DFFs allow to turn these hard into soft transitions such
that DFFs essentially represent a smoothed version of DFTs (cf. Bithlmann &
Yu, 2002; Schlosser et al., 2019).

Based on Stock and Watson’s (2017) views in their summary article on time
series econometrics, we see both conceptual and empirical advantages to mo-
tivate such a modeling strategy. On the conceptual side, Stock and Watson
(2017) expect that “the next steps towards exploiting additional information in
large datasets will need to use new statistical methods guided by economic the-
ory.” (ibid., p. 83). Model-based recursive partitioning may provide a promising
framework in this regard (cf. Veltri, 2017; Zeileis et al., 2008, for a general dis-
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cussion): While standard regression tree algorithms split the feature space into
non-overlapping subgroups and fit a trivial model, such as the sample mean, to
each of these (cf. e.g. Breiman, Friedman, Stone, & Olshen, 1984; Hastie et al.,
2009; James et al., 2013), dynamic factor trees and forests, instead, allow us to
fit non-trivial dynamic factor models to each subgroup (e.g. Zeileis et al., 2008),
which not only deliver great empirical performance but are also well-grounded
in macroeconomic equilibrium theories (cf. e.g. Forni, Giannone, Lippi, & Reich-
lin, 2009; Stock & Watson, 2006, 2011, 2016, 2017, and references therein; also
e.g. Diebold & Rudebusch, 1996, p. 69ff.).] On the empirical side, Stock and
Watson (2017) refer to the forecasting models’ repeated inability to capture the
severity of economic downturns as the “Mother of All Forecast Errors” (ibid.,
p. 82) and question in the context of dynamic factor models “whether there is
exploitable nonlinear structure [...] that could perhaps be revealed by modern
machine learning methods.” (ibid., p. 83). The proposed state-dependent ma-
chine learning approach may contribute along these lines in that they allow for
non-linearities by fitting distinct models to autonomously detected subsets of the
data (cf. Seibold et al., 2016; Zeileis et al., 2008) and thereby equip the mod-
els (in analogy to the regime switching literature) with the flexibility to react
differently to movements of the underlying series in case of deteriorating and
improving economic conditions (cf. e.g. K. Kim & Swanson, 2016; also Doz &
Fuleky, 2020, for a review). Siliverstovs and Wochner’s (2021) results motivate
such a state-dependent modeling design too.

This article contributes to the current state of the literature by synthesizing
three burgeoning streams of the macroeconomic forecasting literature within a
unified statistical machine learning framework in a mixed-frequency setup and
several points deserve consideration: First, the machine learning literature put
forth an increasing number of studies reporting that standard tree-based ensem-
bles, such as random forests, can have great predictive power for a range of
macroeconomic and financial indicators (e.g. J. C. Chen et al., 2019; Ehmann,
2020; Goulet Coulombe et al., 2019; Khaidem et al., 2016; Medeiros et al., 2021;
Wochner, 2018; also see Garcia, Medeiros, & Vasconcelos, 2017 who find sat-
isfactory performance). While standard regression trees belong to the class of
non-parametric methods (cf. X. Chen & Ishwaran, 2012), model-based trees are
closely related yet clearly distinct in that they embed parametric models within
tree-based structures and are thus semi-parametric in nature (Jones, Mair, Simon,
& Zeileis, 2020; Zeileis et al., 2008). Second, the proposed modeling approach
is closely related to the business cycle literature that combines regime-switching
ideas with dynamic factor models so as to treat expansions and recessions as dis-
tinct stochastic entities (Diebold & Rudebusch, 1996; see discussions in Diebold,
2003 and Doz & Fuleky, 2020, and references therein). For instance, Chauvet
and Potter (2013) show in their comprehensive assessment of leading forecasting
models that Markov-Switching Dynamic Factor Models (MS-DFMs) rank among
the best models in terms of out-of-sample forecasting performance, especially
during recessions. While these MS-DFMs and their recent extensions (e.g. Ca-
macho et al., 2018; Doz et al., 2020) may attain good predictive performance and
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accurately replicate empirically observed facts, they are limited in at least two
respects: On the one hand, they are often constrained to switch between two
states, which may, according to Leiva-Leon et al. (2020) and Carstensen et al.
(2020), be too restrictive because the depth and severity of recessions is likely
to differ across the sample and precludes the models’ ability to account for more
subtle state-dependent patterns. On the other hand, any endeavours to allow for
more than a selected few states in Markov-Switching models can quickly result
in serious computational problems (Audrino, 2006). Model-based recursive par-
titioning principles employed in our DFTs and DFFs, instead, are less subject
to these restrictions: They do not fix the number of states a-priori but deter-
mine the number of states endogenously and are able to autonomously adapt
the number of states over time (cf. Zeileis et al., 2008; also Audrino, 2006). At
the same time, DFTs are computationally fairly efficient and the computational
costs for DFFs scale, in analogy to regression trees and forests, approximately
linearly in the number of DFTs and may thus be weighed against the desired
level of accuracy or stability (cf. Biau & Scornet, 2016). Third, our dynamic
factor forests are related to threshold models in general and smooth transition
regression (STR) models in particular (see e.g. Kock & Terasvirta, 2011, for a
review). While STR models rely on an exogenous choice of a parametric tran-
sition function to smoothen the transition between states (Kock & Terésvirta,
2011, and references therein), the bootstrap aggregation principles embedded in
dynamic factor forests offer not only the advantage to smoothen the decision
boundaries in a non-parametric and purely data driven way but can also accom-
modate smoothing over multiple regimes (cf. Bithlmann & Yu, 2002; Schlosser
et al., 2019). The idea to bridge parametric threshold models and tree-based
machine learning algorithms is related to previous work in Da Rosa et al. (2008)
who embed STRs in non-parametric regression trees as well as Audrino (2006)
and Audrino and Medeiros (2011) who fit parametric AR-GARCH models to lo-
cal, tree-structured partitions of the data and thereby carefully incorporate the
dynamics in the conditional variance for their short-term predictions of the in-
terest rate. Concerning the specification of the conditional mean, Audrino and
co-authors fit autoregressive (GARCH-type) processes to tree-based partitions
whereas we augment the local models with information from a vast number of
predictors and fit factor-augmented autoregressive processes to tree-structured
partitions of the data. Fourth, as indicated above, while we start with a de-
liberately narrowly specified conditioning set, we subsequently extend to more
complex variations to account for possibly generalized and time-varying state-
dependent dynamics (e.g. Goulet Coulombe, 2020 and Zeileis et al., 2008, and
references therein; also Audrino & Medeiros, 2011). A valuable property of DFFs
in case of such multivariate conditioning sets is the randomized variable selection
during tree estimation in analogy to Breiman’s (2001a) random forest, which al-
lows to decorrelate the different DFTs for enhanced predictive performance (cf.
Hastie et al., 2009, James et al., 2013, Zeileis et al., 2008, Hothorn & Zeileis,
2020, Garge et al., 2013, and references therein). Fifth, building upon Quan et
al. (2020), we extend the framework of Zeileis et al. (2008) from OLS-based to
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Lasso- and Ridge-based state-dependent model fitting in the terminal nodes of
deeply grown (dynamic factor) trees. This inclusion of state-dependent Ridge
and Lasso penalization (see Hastie et al., 2009, for a review) offers an alternative
regularization approach as opposed to the common tree-based pruning techniques
(Zeileis & Hothorn, 2015; Zeileis et al., 2008, for model-based trees; Breiman et
al., 1984; James et al., 2013, for conventional trees). We consider this extension
as particularly interesting because it not only allows to mitigate overfitting but
also enables the different state-dependent models to adopt conceptually distinct
model designs in a data-driven way (cf. James et al., 2013). For instance, we could
think of a situation where the state-dependent Lasso regularization imposes an
autoregressive process in expansionary states and a factor augmented autoregres-
sive process in contractionary ones (cf. K. Kim & Swanson, 2016). Indeed, we
find that this type of regularization can perform superior to pruning mechanisms
and yields among the very best results when combined with conditioning sets that
allow for time-varying state-dependent dynamics. The generalized time-varying
parameter (GTVP) model of Goulet Coulombe (2020) is a closely related, inter-
esting variation that allows to fit parametric models to tree-like partitions of the
data. GTVPs grow all trees deep and impose Ridge as well as random walk re-
strictions to regulate GTVPs. Sixth, we contribute to the literature by examining
the impact of using novel instead of traditional PCA-based factors within DFFs
in the spirit of the most recent forecasting literature (Ehmann, 2020; H. H. Kim
& Swanson, 2018; Tu & Lee, 2019) and examine the merits of Kernel and Sparse
Principal Components as well as Partial Least Squares (Hastie et al., 2009, for a
review). Similar to these studies, we shall also consider both plain and targeted
versions of the factors (Bai & Ng, 2008). Finally, as discussed above, we start
with recession probability indices as a single partitioning variable that we obtain
from external sources (see Section 3 for details). In this sense, the approach out-
lined heretofore can be considered as a single-stage machine learning approach.
However, there is a growing literature that strives to predict recession probabil-
ities more accurately in data-rich environments by means of machine learning
techniques (e.g. Dopke, Fritsche, & Pierdzioch, 2017; Ng, 2014; Pierdzioch &
Gupta, 2020; also see Doz & Fuleky, 2020 for a recent discussion). We build
upon these advances and expand the analyses to a two-stage machine learning
framework, where we predict the probability of a recession in a first stage and use
it subsequently (possibly in combination with generalized and penalized exten-
sions outlined above) within the proposed DFTs and DFFs as a second stage. Our
approach to predict recession probabilities is closely related to the ones adopted
in, for instance, Ng (2014), Dopke et al. (2017) and Pierdzioch and Gupta (2020)
but distinct in that we additionally implement a smoothing step. Smoothing is
inspired by Ng (2014) who expressed a lack of sufficient persistence in her machine
learning-based recession probability predictions as well as Chauvet and Hamilton
(2006) and Hamilton (2018) who find smoothened recession probabilities to be
useful for inferring the likely future state of the economy.

This article assesses the empirical performance of the proposed dynamic fac-
tor trees and forests against their two constituent benchmarks, standard dynamic
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factor models and standard regression trees and forests, as well as conventional
benchmarks, such as autoregressive and distributed lag processes. The main anal-
yses are based on three distinct FRED datasets (FRED-MD, FRED-QD, FRED;
see Section 3), which can be combined to a balanced panel with real GDP growth
as dependent variable, 375 explanatory variables plus a recession probability indi-
cator (RPI) from October 1967 to September 2018 (e.g. FRED, 2019; McCracken,
2019; McCracken & Ng, 2016, 2019a, 2019b, 2020). The analyses make two key
modeling assumptions: First, to cope with mixed frequencies, we follow Kim
and Swanson’s (2014) approach and interpolate quarterly GDP to a monthly fre-
quency. We will show the robustness of our results by means of two alternative
interpolation methods (see Section 4.3.1) and run the experiment also in quar-
terly frequency (see Section 4.3.4). Second, as a consequence, we also interpolate
the recession probability index to a monthly frequency and assume the series to
be released together with all other monthly indicators in FRED-MD. Under this
interpolation and publication scheme, we consider to have an accurate monthly
proxy for the RPI available. This assumption also allows us to make our results
more comparable with the existing Markov-switching literature, which typically
derives the state probabilities from the most recent set of available predictors (cf.
Kuan, 2002, and references therein). We assess the sensitivity of this assumption
by predicting the missing values on the current edge (see Section 4.3.8) and show
robustness for two alternative RPIs (see Section 4.3.7).

We find considerable empirical evidence in favor of the proposed dynamic fac-
tor trees and forests. Our out-of-sample forecasting experiment shows that they
yield significant gains over standard dynamic factor models and show that the ex-
tension from DFTs to DFF's yields valuable improvements in predictive accuracy.
Interestingly, our evaluations a la Chauvet and Potter (2013) and Siliverstovs
and Wochner (2021) show that DFFs state-dependent model design allows to
systematically improve upon DFMs in both expansionary and recessionary peri-
ods. In view of the generally strong performance of DFMs in settings with many
predictors (cf. Chauvet & Potter, 2013; Stock & Watson, 2017), we perceive these
additional improvements as notable gains in predictive accuracy. Additionally,
we find carefully designed narrow conditioning sets to perform generally supe-
rior to generic and broad sets that simply include a vast number of features.
Nonetheless, even in the latter case, the model is typically still able to outper-
form standard dynamic factor models. With regards to model tuning, we find
pruning and penalization strategies (Ridge and Lasso) to work both generally
well. Yet, we also show that one can be clearly better: For instance, in case of
DFTs, Lasso tends to perform persistently better than Ridge and quite frequently
also (slightly) better than pruning strategies. Furthermore, the novel factors tend
to show generally good performance but they are not substantially superior or
inferior to PCA-based factors, which is broadly consistent with the findings re-
ported in Ehmann (2020). Interestingly, we also find for these novel types in
the present framework that a targeting step as in Bai and Ng (2008) typically
results in superior performance. On top of that, we also document that the exten-
sion to a two-stage machine learning framework can be successful. Specifically,
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we find that the internalization of recession probability predictions via nonlinear
and regularized linear machine learners and smoothers can result in DFFs that
outperform dynamic factor models in statistically significant ways (especially for
one-step ahead predictions). Finally, our findings qualify as fairly robust against
common robustness tests, which range from alternative interpolation and aggre-
gation methods to extended evaluation windows and rolling estimation schemes
over to alternative recession probability indices and model specifications.

Building upon Siliverstovs and Wochner (2021), Ehmann (2020) as well as
Wochner (2018), the remainder of this article is organized as follows: Section
2 sets out the modeling environment and formalizes dynamic factor trees and
forests. Section 3 describes the data. Section 4 evaluates the models’ forecasting
performance and their robustness. Section 5 concludes with directions for future
research.

2. Modeling Framework

2.1. Setup, Notation and Environment

For the definition of our modeling framework, we follow the notational and me-
thodical conventions in the relevant literature (e.g. Elliott & Timmermann, 2016;
Stock & Watson, 2006, 2016; Siliverstovs & Wochner, 2021; Wochner, 2018).
The timeline ¢ € {1,...,T} is divided into an estimation window (Dec. 1967 —
Dec. 1997) and forecasting window (Jan. 1998 — Sep. 2018) and let @) denote the
last time period of the first estimation window (Dec. 1997), so that the recursive
estimation window is given as ., = {1,...,7} with 7 € {Q,...,T — h}, and the
forecasting window as .7 = {Q+1,..., T —h+1}, where h € {1,3} corresponds
to the monthly forecasting horizon (cf. e.g. Siliverstovs & Wochner, 2021).
Denoting vectors and matrices in bold letters, the dataset consists of four dif-
ferent types of stationary variables: The dependent variable, Y;(h) € R, the set of
K mean-zero and unit-variance standardized explanatory variables, Xt(l) € RK
(including their 1st and 2nd-order lags; cf. H. H. Kim & Swanson, 2014) as well
as the partitioning variables, Zt(l) € RP, which are used in the MOB-framework
to segment the sample space into S distinct subsets (cf. Zeileis et al., 2008). We
extract the factors, Ft(l) € R%, analogously to Stock and Watson (2009) and
Siliverstovs and Wochner (2021) from the full sample via principal components
analysis (PCA) (e.g. Stock & Watson, 2002b, 2006, 2016, for details). These
full factor estimates are stable and can be consistently estimated provided that
instabilities are limited (see Bates, Plagborg-Mgller, Stock, & Watson, 2013, for
precise definitions; also Bai & Han, 2016 and Stock & Watson, 2002a, 2016, and
references therein). Moreover, besides these plain factors extracted from all pre-
dictors, we consider targeted factors in the spirit of Bair et al. (2006) and Bai
and Ng (2008) derived from a targeted set of predictors via hard-thresholding at
the 5% level when considering the pairwise correlations between predictors and
the response. As outlined above, in addition to plain and targeted PCA-based
factors above, we follow the recent literature (e.g. Ehmann, 2020; H. H. Kim &
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Swanson, 2018; Tu & Lee, 2019) and examine plain and targeted factors derived
from Partial Least Squares (PLS) of Wold (1975 as cit. in Hastie et al., 2009,
p. 94), Kernel Principal Component Analysis (KPCA) proposed in Scholkopf et
al. (1997) as well as factors derived from Sparse Principal Component Analysis
(SPCA) proposed in Zou et al. (2006) from all as well as a targeted subset of vari-
ables.?2 As summarized in Ehmann (2020), PLS extracts factors in a supervised
fashion (also see Hastie et al., 2009), KPCA corresponds to a non-linear extension
of PCA (also see Scholkopf et al., 1997) whereas SPCA method introduces sparse
factor loadings for better interpretability and mitigation of overfitting in high-
dimensional settings (also see Erichson et al., 2020; Zou et al., 2006). We refer the
reader to Ehmann (2020) for a summary of the methods and to Hastie et al. (2009)
for a comprehensive treatment. Further, the bracketed super-indices indicate the
h-period ahead stationarity transformation of dependent and independent vari-
ables (cf. e.g. Stock & Watson, 2012). Finally, let Wt(l) = (1,}/;(1), .. .,Yt(j)LH),
denote additional controls that include an intercept constant and autoregressive
dependent variables up to lag L, such that the relevant dataset for model esti-
mation is given as Dgh) = (Y;@L,It(l),) = (Y;(f,)l,Wt(l),,Ft(l)/, Zt(l)/). The general
form of the predictive model can then be given as,

N h h h I 1 h
t(—i—i)L ,LL§+)h 6§+)h J (h)( t( )) 675—}—)}1’ (1)
Where }/;(h;)

specific predictive function of the inputs It(l) and €,
et al., 2009; James et al., 2013; Medeiros et al., 2021).

is the dependent variable in period ¢ + h, f( (It(l)) some horizon-
the error term (e.g. Hastie

2.2. Dynamic Factor Trees®
2.2.1. Formal Model

Simply put, Zeileis et al.’s (2008) model-based recursive partitioning algorithm
is a general statistical framework that allows to fit parametric models to distinct
subsets of the data. As the authors explain, a key advantage of their framework
is that these subsets (or states) are autonomously detected through the recursive
application of parameter instability tests over the space spanned by the parti-
tioning variable(s) in a tree-based fashion. Their algorithm is therefore capable
to autonomously detect nonlinearities arising from interactions of variables and
fits, in case of their presence, local models to subsets of the data that yield better
fit than a single global model for all observations (cf. Zeileis & Hothorn, 2015;
Zeileis et al., 2008). Their implementation therefore requires the specification of
two key ingredients: The parametric model and partitioning variable. With re-
gards to the former we build upon the recent factor model literature (e.g. Stock &
Watson, 2011, 2016; Siliverstovs & Wochner, 2021) and employ factor-augmented
autoregressive processes. With regards to the latter, we use in line with the busi-
ness cycle and structural breaks literature (Chauvet & Potter, 2013, and Doz &

bAs indicated in the text, parts of this section follow closely Zeileis et al. (2008) as well as Zeileis and Hothorn (2015)
(also see Kopf, Augustin, & Strobl, 2013, for a thorough review).
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Fuleky, 2020, and references therein), recession probability indices as partitioning
variable within the MOB-framework.

To formalize their approach, let M(1s, ¢s; D(h)) denote the parametric dy-
namic factor model with parameter coefficients 15 and ¢ in state s € {1,..., S5}
for dataset D™ the MOB algorithm seeks to minimize the objective function,
Yoies. A, bs; Dﬁh)), for a given loss function Q(-) (Zeileis et al., 2008). As de-
tailed in Zeileis et al. (2008), Zeileis and Hothorn (2015) and Kopf et al. (2013),
the algorithm starts in the first state with all observations and derives a state-
dependent model in case of a single partitioning variable in four key steps:

(1) estimate the parametric model, M(-), in the current state by minimizing
the objective function (e.g. via OLS if €(+) is the squared residual loss);

(2) run score-based fluctuation tests for parameter instability over all P parti-
tioning variables in Z; and if instabilities are present (at significance level
«), determine the variable p* with the most significant instability; else,
stop;

(3) determine the optimal split point ¢* for Zf,l?t such that the objective func-

tion, given as the sum of local objective functions in the two resulting sub-
h h
states, Yieqiiz,. < XWsn Bori D)+ Liciz,e ioc) U Wias e DY),

is minimized;

(4) split the current state according to (p*,(*) into two sub-states, namely
) = {t|Zp+4+ < ¢*} and S5 {t|Zp»+ > ¢*}, and repeat the pro-
cedure in each substate until stability is achieved or the minimum node
size, 1, is reached.

A few points deserve further attention: First, the partitioning variable is allowed
to be either be categorical or numerical, where the former provides the possibility
to exogenously determine different states (via manual discretization of a numeric
variable) whereas the latter allows to endogenously determine different states
(based on automated detection mechanisms) (cf. Strobl, Wickelmaier, & Zeileis,
2011; Zeileis & Hornik, 2007; Zeileis et al., 2008). Second, the empirical parameter
instability tests are based on generalized M-fluctuation tests that assess whether
or not the scores of estimated objective functions w,; = 3(Q(¢S,$S;Dt(h)))/
8((1/3;, (f)’s)) deviate systematically from zero over Z,.’, and use robust standard
errors to account for possibly heteroscedastic and autocorrelated errors (Zeileis
et al., 2008, p. 496ff. and Zeileis & Hornik, 2007, and references therein). These
fluctuation or instability tests comprise several well-known tests employed in the
macroeconomiic literature on structural breaks, such as Andrews’ (1993) Lagrange
multiplier test for single discrete breaks in numeric variables (cf. Zeileis et al.,
2008, p. 497f.; Rossi, 2013, p. 1236ff.; Zeileis, 2005), which were shown to be able
to detect structural breaks in factor models (Breitung & Eickmeier, 2011) (see
Zeileis et al., 2008, p. 496ff., and references therein for the case of categorical
variables). Third, as the recursive testing procedure can entail multiple testing,
the p-values are Bonferroni-adjusted (Zeileis & Hothorn, 2015, p. 4; Zeileis et al.,
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2008). This procedure yields a non-linear and state-dependent dynamic factor
model with S many states, which we call “Dynamic Factor Trees” (DFT). We
may formalize these discussions as,

S
i =30 (00w + ) ED) 1(2 € Rufovm) (@)
s=1

where s and ¢4 denote the regression coefficients, Rs(-) defines the set of ob-
servations in state s that depend (among others) on key hyper-parameters «,
~ as well as n and 1(-) corresponds to the indicator function, which evaluates
to unity whenever the condition is satisfied and to zero else (cf. e.g. Kock &
Terasvirta, 2011, and Chauvet & Potter, 2013 summarize closely related regime-
switching models®; e.g. Breiman et al., 1984 and Hastie et al., 2009, p. 307ff.
and p. 61ff., for conventional regression trees and penalized regression and e.g.
Stock & Watson, 2002b, 2006, 2016, for DFMs; cf. Zeileis et al., 2008). Addi-
tionally, As denotes the state-specific £1- or fo-norm penalty parameters arising
from fitting Tibshirani’s (1996) Lasso or Hoerl and Kennard’s (1970) Ridge in
the terminal nodes of each tree to shrink parameter coefficients towards zero (cf.
Quan et al., 2020; Hastie et al., 2009). Moreover, notice that the dynamic factor
model emerges as a special case from equation (2) in case of a single state Ry and
the absence of penalization. Finally, equation (2) is related to Stock and Watson
(2009) in that they find the best predictive model to be one that uses full sample
factors and allows for state-dependent (or time-varying) regression coefficients.

2.2.2. Empirical Implementation

When trees are recursively grown at full depth, they tend to overfit the data,
which can be mitigated via pruning (Breiman et al., 1984; James et al., 2013,
p. 303ff.). The MOB framework offers two main tree pruning mechanisms to
determine the optimal tree depth: A pre-pruning approach where statistical pa-
rameter instability tests serve as an early stopping criterion and prevent further
tree growth when no significant instabilities can be detected (at significance level
a) or post-pruning that initially grows the trees deep but subsequently prunes
them back based on an information criterion, 7, such as BIC (e.g. Zeileis &
Hothorn, 2015, and references therein; also Zeileis et al., 2008). While we ex-
amine pre-pruning mechanisms as a robustness test, our estimation results rely
on post-pruning techniques, which are well-established in the tree-based litera-
ture (e.g. Audrino & Medeiros, 2011; James et al., 2013). Alternatively, another
commonly applied procedure to optimize performance is hyper-parameter tuning
(of the minimum state size, n) via cross-validation (CV) (cf. e.g. James et al.,
2013). Following Wochner (2018), we implement Racine’s (2000) blocked cross-
validation (for n) that divides the sample into ten (approximately) equally long
blocks and discards an equivalent of one year of observations on either side to
mitigate dependencies between test and training sets. Finally, rather than fitting
OLS to each terminal substate, we examine the impact of Ridge and Lasso pe-
nalization when trees are grown deep (cf. Quan et al., 2020), i.e. when neither
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pruning nor minsize optimization is active.

2.3. Dynamic Factor Forests
2.3.1. Formal Model

Our discussions above, have so far only considered a single dynamic factor tree.
A single tree, however, is characterized by sharp (rather than smooth) transi-
tions, which create instabilities and cause trees to be sensitive to minor changes
in the data (Bithlmann & Yu, 2002, Breiman, 1996b, Garge et al., 2013, and ref-
erences therein; James et al., 2013; Zeileis et al., 2008). Forests, in contrast, build
upon bootstrap aggregation (bagging) principles and average among a multitude
of trees, each of which is grown from bootstrapped samples (Breiman, 1996a,
2001a; Hastie et al., 2009; James et al., 2013), which alleviates the instabilities
by turning the sharp thresholds of trees into soft thresholds, so that forests essen-
tially represent a smoothed version of trees (cf. Bithlmann & Yu, 2002; Schlosser
et al., 2019).

Garge et al. (2013) extended Zeileis et al.’s (2008) model-based recursive par-
titioning to tree ensembles. We extend dynamic factor trees in a similar vein and
propose Dynamic Factor Forests (DFF) by augmenting the algorithmic procedure
of DFTs with three steps: First, to decorrelate the individual DFTs analogously
to Breiman’s (2001a) random forests, we do not consider all P variables but rather
a random subset of P = max(|P/3],1) predictors in step 2 (e.g. Hastie et al.,
2009, p. 5871f.; James et al., 2013; Garge et al., 2013; Zeileis et al., 2008; Hothorn
& Zeileis, 2020). Second, following previous work (Ehmann, 2020; Medeiros et
al., 2021; Wochner, 2018), each of the DFTs in DFFs is grown from a (stationary)
block-bootstrapped sample (Politis & Romano, 1994; Canty, 2002, for details).
Third, in the spirit of conventional bagging (cf. Breiman, 1996a; Hastie et al.,
2009, p. 282ff.), we subsequently average among all fitted dynamic factor trees
and may therefore characterize dynamic factor forests as,

'ut+h - B Z

Z(wmbs)wt + 8}, (o) FLV) 120V € Rise.m)
3)

where the parameters v, ; and ¢y, are the state-dependent parameters for the
b-th bootstrap and Ry s(cv,7y,n) denotes the s-th sub-state of the b-th dynamic
factor tree.

2.3.2. Empirical Implementation

Our DFFs consist of B = 500 DFTs (unless mentioned otherwise), which appears
to be sufficiently high given that Garge et al. (2013) propose B = 300 as default
value for model-based forests. In analogy to DFTs, DFFs can apply a pruning or
hyper-parameter tuning strategy. In the latter case, cross-validated 7 is initially
derived via blocked cross-validation for the original sample and subsequently used
for each block-bootstrapped sample. Unless stated differently, individual DFT's in
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DFF's are post-pruned and the estimations of the parametric models in equation
(2) and (3) build upon Stock and Watson (2012) and Siliverstovs and Wochner
(2021) and use factor-augmented autoregressive processes with L = 2 lags and
R =5 factors.

2.4. Benchmarks

As dynamic factor trees and forests bridge dynamic factor models with regression
trees and forests, we shall compare DFTs and DFFs against these two main
benchmarks. Additionally, we also examine an extension of the DFM model as
well as five conventional benchmarks typically employed in the relevant literature
(e.g. H. H. Kim & Swanson, 2014; Siliverstovs & Wochner, 2021; Stock & Watson,
2012).

2.4.1. Main Benchmarks

Dynamic Factor Models (DFM)
Our first benchmark model of interest is the standard DFM,

v = e W s o FY gl (4)

where parameter coefficients are estimated from the original sample (OS) and use
L = 2 autoregressive lags as well as R = 5 factors, unless stated differently (e.g.
Stock & Watson, 2002b, 2006, 2016; Siliverstovs & Wochner, 2021). In analogy
to DFF's above, we will also consider a bootstrapped version, where we estimate
a standard dynamic factor model for each bootstrapped sample (BS) (yielding
1y and ¢) and subsequently average among all bootstrapped model coefficients.
These models will be abbreviated as OS-DFM and BS-DFM, respectively.

Regression Trees (RT) and Random Forests (RF)

Conventional regression trees follow an algorithmic procedure that recursively
optimizes a (least quares) objective function by repeatedly sub-dividing the pre-
dictor space spanned by the (typically large number of) variables in V;f(l) € RM
into two mutually exclusive regions R and fitting a constant model to each of
these until some stopping criterion is reached (e.g. the minimum quantity of ob-
servations per region 7)) and can be formally described as a piecewise constant
model of the form,

,U«H_h = Z ps1 5(77)) (5)

with R again denoting region s € {1,...,S5} (e.g. Breiman et al., 1984, James
et al., 2013, p. 303ff. and Hastie et al., 2009, p. 307ff., for elaborate treatments;
also Medeiros et al., 2021; Wochner, 2018). The best estlmator for gos (in a
least squares sense) corresponds to the sample average, @5 = T Yoer. Y + h, with
Ts = |{t: Vt(l) € Rs}| many observations in region Rs and | - | designating the
size of the set (Hastie et al., 2009, p. 307f.; Breiman et al., 1984).
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While the trees in forests are usually grown deep and have low bias albeit
a high variance, random forests aim to reduce the increased variance not only
by aggregating among numerous trees via bootstrap aggregation principles but
also by decorrelating the trees via random predictor selections in each recursive
splitting step (cf. Breiman, 1996a, 2001a; Hastie et al., 2009; James et al., 2013).
The predictive equation of Breiman’s (2001a) random forests can be expressed
as,

Mt-i-h_EZZ bs 6,R'bs( )) (6)

and thereby averages among B many (decorrelated) trees (cf. e.g. Hastie et al.,
2009, p. 307ff., 587ff.). Similar to Medeiros et al. (2021), our empirical imple-
mentations of regression trees and random forests allow Vt(l) to embrace a large
set of M predictors; namely, all K predictors Xt(l), the first L = 2 autoregressive
terms in Wt(l), as well as the first R = 5 factors in Ft(l). Moreover, as regression
trees are grown from the original sample and random forests from bootstrapped
samples, we abbreviate the former as OS-RT and the latter as BS-RF. Specifi-
cally, with respect to BS-RF's, we follow analogously to the DFFs above the time
series forest literature (e.g. Ehmann, 2020; Medeiros et al., 2021; Wochner, 2018)
and employ (stationary) block-bootstrapped samples (cf. Canty, 2002; Politis &
Romano, 1994).

2.4.2. Extended Benchmarks
Recession Probability Augmented Dynamic Factor Models (DFM-RP)

In an extension, we shall further consider another benchmark that is closely
related to the regime-switching dynamic factor model estimated in Chauvet and
Potter (2013),

Y =W+ ¢ Y 9’z 4 Y, (7)

where we directly include our partitioning variable as an explanatory variable
into the DFM model (ibid., see their equation (16) on p. 164; also see references
therein). While Chauvet and Potter (2013) use Markov-switching processes, we
employ related albeit exogenously provided recession probability indices as par-
titioning variables (see Section 3 and 4). In analogy to the previous section, we
will also consider a bootstrapped version, where we estimate equation (7) for
each bootstrapped sample (yielding vy, ¢, and 9p) and then average among all
bootstrapped model coefficients. We shall abbreviate the corresponding models
as OS-DFM-RP and BS-DFM-RP, respectively.

2.4.3. Common Benchmarks

Similar to recent work (e.g. Medeiros et al., 2021; Siliverstovs, 2017b; Siliverstovs
& Wochner, 2021; Stock & Watson, 2012; Wochner, 2018), we employ the follow-
ing five common benchmarks: Historic mean (HMN), Y;t(H)L @+ 6£Z)h, autore-
gressive processes with either a two, four or BIC-based lag order L (AR2, ARA4,

13
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ARL), Y, +h = Wt(1 + eg +)h, as well as combined autoregressive distributed lag
models (CADL). The CADL model first estimates for each explanatory variable
in X, M an autoregressive distributed lag model, Y, +h = ¢’W + E’Uk(;lt) + egi)h
with U]g t) = (Xgts---s Xpt—r41) and L = 2 for both autoregressive and dis-
tributed’lag terms, and subsequently averages the predictions of these models
among all k € {1,..., K} (H. H. Kim & Swanson, 2014; Siliverstovs & Wochner,

2021).

2.5. Forecast Evaluation

We will assess forecasting performance in terms of relative Root Mean Squared
Forecast Errors (RMSFE) of any two models m and b as follows,

(h)
MSFE,,
relative RMSFE("), = &()
b RMSFEb
where,
1/2
(h) _ 1 (h) _p) )2
RMSFEz - T — Q —h+1 Z (Y;H-h }/z',t-i-h)
=
where Y(H)-h denotes the h-period ahead prediction of model i € {m,b} (e.g.

Korobilis, 2017; Hyndman & Koehler, 2006; Siliverstovs & Wochner, 2021; Stock
& Watson, 2012). Moreover, we assess superior predictive ability of our dynamic
factor trees and forests against the standard dynamic factor model by means of
directed Diebold Mariano (1995) tests,

e e [() ] =B [(0)] e e ()] > e [0

and install, as in Siliverstovs and Wochner (2021), two cautionary measures
through the use of heteroscedasticity and autocorrelation robust standard errors
(for h > 1) as well as McCracken’s (2007) critical values for nested model com-
parisons. Borrowing McCracken’s (2007, p. 724) argument, directed testing is ap-
plied because our main models, m, (DFT, DFF) and main benchmark, b, (DFM)
are nested.® Finally, building upon Welch and Goyal (2008), the state-dependent
evaluation literature promotes the use of the cumulative sum of squared forecast
error differences (CSSFED) between two models b and m,

CSSFEDW

t1
h _ () 2 () )2
b,m(to’tl) - Z <Eb,t+h> - ( mt+h)
t=to
~(h) (h) (h)
it+h — =Yih— Yz’,t+h
to assess the forecast performance over time (see e.g. Siliverstovs, 2017a, 2020;

Siliverstovs & Wochner, 2021). While a horizontal movement of CSSFED indi-
cates similar performance between model m and b, an upward [downward] trend-

where €; and with continuously increasing ¢y, which allows us

ing series indicates persistent superiority [inferiority] of model m over b, whereas
an upward [downward] jumping series indicates transient superiority [inferiority]
(e.g. Siliverstovs, 2017a; Siliverstovs & Wochner, 2021).
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3. Data

We bridge three distinct FRED datasets for our main analyses all of which are
provided by the Federal Reserve Bank of St. Louis. We use 125 monthly indi-
cators from FRED-MD and the quarterly GDP time-series from FRED-QD as
dependent variable, all of which are available from 1960 until 2018 (McCracken
& Ng, 2019a, 2019b; see McCracken, 2019).5 FRED-MD and FRED-QD consti-
tute fairly new data services ever since 2015 and 2018, respectively, that manage
data revisions and real-time updates (cf. McCracken & Ng, 2016, 2020; also Mc-
Cracken, 2019) and find increasing use among macroeconomists (e.g. Korobilis,
2017; Medeiros et al., 2021; Siliverstovs & Wochner, 2021; Wochner, 2018). The
third FRED source corresponds to the Econbrowser Recession Indicator (ERI)-
Index, which builds upon the work of Marcelle Chauvet and James Hamilton
(2006) and provides the probability of a recession at any given quarter since Oc-
tober 1967 (see FRED, 2019; Hamilton, 2018).” Hence, a balanced panel with
information from all three sources is available as of October 1967.

Similar to Siliverstovs and Wochner (2021), the following data transformations
were applied: First, less than 0.35% of the datasets were classified as outliers
in FRED-MD and these were substituted with the median of the previous five
observations (see Stock & Watson, 2012, online appendix B) and no outliers were
detected for the GDP series in FRED-QD. Second, all data were stationarity
transformed as defined in McCracken and Ng (2019a; 2019b) and all recession
probability indices in use were first differenced. Following Stock and Watson
(2012), the dependent variable was h-period stationarity transformed (ibid., see
their Table B.2) as indicated by the super-index (h) in Yt(fl)z

To cope with mixed frequencies, we follow Kim and Swanson (2014) who pro-
posed to interpolate quarterly GDP values. As is well known, interpolations,
however, may induce a measurement error and can affect the dynamics of the
interpolated series and its associations with other variables (Angelini, Henry, &
Marcellino, 2006, and references therein). To mitigate the concerns that a partic-
ular choice of interpolation method is driving our results, we will examine in total
three distinct interpolation methods and will also assess the results in quarterly
frequency as a robustness test (see Section 4.3). Our main specifications in Sec-
tion 4.1 interpolate GDP (in levels) via Denton-Cholette (DCO) (Sax & Steiner,
2013 for a summary; Denton, 1971 and Dagum & Cholette, 2006 for detailed
treatments).® Finally, similar to previous research (e.g. Siliverstovs & Wochner,
2021; Wochner, 2018), we assume the same publication structure for all variables
as in the last vintage date and pursue a quasi real-time forecasting exercise’ and
for variables with ragged edges, we align the observations via Altissimo et al.’s
(2010) lagging procedure.
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Benchmarks Dynamic Factor Trees Dynamic Factor Forests
Horizon Results Models rRMSFE Models rRMSFE
HMN OS-DFM(F) 0.841 BS-DFM(F) 0.839
1.001 OS-RT(F) 1.210 BS-RF(F) 0.857
v
g DFT-NUM(F) 0.773*** DFF-NUM(F) 0.741***
AR4 [ DFT-BIN40(F) 0.797*** DFF-BIN40(F) 0.772***
0.924 DFT-BIN50(F) 0.795*** DFF-BIN50(F) 0.764***
- DFT-BIN60(F) 0.802*** DFF-BIN60(F) 0.767***
ARL ¢ OS-DFM(TF) 0.802 BS-DFM(TF) 0.800
0.894 % OS-RT(TF) 1.325 BS-RF(TF) 0.851
©
L_; DFT-NUM(TF) 0.772*** DFF-NUM(TF) 0.719***
CADL % DFT-BIN40(TF) 0.789** DFF-BIN40(TF) 0.746***
0.922 f‘%’ DFT-BIN50(TF) 0.779** DFF-BIN50(TF) 0.741***
= DFT-BIN60(TF) 0.787** DFF-BIN60(TF) 0.740***
HMN OS-DFM(F) 0.914 BS-DFM(F) 0.909
1.014 OS-RT(F) 1.474 BS-RF(F) 0.953
[
‘8 DFT-NUM(F) 0.830*** DFF-NUM(F) 0.801***
AR4 ® DFT-BIN40(F) 0.853** DFF-BIN40(F) 0.824***
0.970 DFT-BIN50(F) 0.827*** DFF-BIN50(F) 0.824***
he3 DFT-BIN60(F) 0.829*** DFF-BIN60(F) 0.824***
ARL g OS-DFM(TF) 0.894 BS-DFM(TF) 0.892
0.975 5 OS-RT(TF) 1.400 BS-RF(TF) 0.951
©
i DFT-NUM(TF) 0.845** DFF-NUM(TF) 0.786***
CADL % DFT-BIN40(TF) 0.849** DFF-BIN40(TF) 0.820***
0.943 f‘%’ DFT-BIN50(TF) 0.840*** DFF-BIN50(TF) 0.816***
= DFT-BINGO(TF) 0.820*** DFF-BIN60(TF) 0.813***

Notes: The table entries show the relative root mean squared forecast error (RMSFE) of a particular model against the AR2
benchmark (settings: recursive scheme; DCO interpolation; Jan. 1998 first vintage; ERI-Index partitioning variable). DFT and
DFF models are pruned via BIC criterion. The star symbols indicate the level of statistical significance from a one-sided Diebold
Mariano (1995) test that assesses superiority in predictive performance of dynamic factor trees and forests (namely, DFT(F),
DFT(TF), DFF(F) and DFF(TF)) or conventional regression trees and forests (namely, OS-RT(F), OS-RT(TF), BS-RF(F), BS-
RF(TF)) against the corresponding (italicized) standard dynamic factor model (namely, OS-DFM(F), OS-DFM(TF), BS-DFM(F),
and BS-DFM(TF)). For example, superior predictive ability of the DFT(TF) model is assessed against the OS-DFM(TF) model.
The HMN, AR4, ARL and CADL benchmarks are compared against DFM(F). For nested model comparisons, McCracken's (2007)
critical values are employed. The three FRED datasets outlined in Section 3 are used. The entries for DFTs and DFFs are bold if
they have equal or lower MSFE than the corresponding DFM. The best model of each of the four groups per horizon is underlined.
Factors are targeted based on a hard-threshold in the spirit of Bai and Ng (2008). The symbols *, **, *** indicate significance at
the 10%, 5% and 1% level, respectively. For more details, see Section 4.1.

Table 1: Main Results (relative RMSFE)

4. Results

4.1. Main Results

The main results of our direct out-of-sample forecasting experiment for horizons
h = 1 (nowcasts) and h = 3 (forecasts) is based on a recursively expanding
scheme over a forecasting window of slightly more than 20 years (Jan. 1998 until
Sep. 2018). Our proposed models can be divided into four main groups depending
on the model type (DFT vs. DFF) and factor targeting (plain factors (F) vs. tar-
geted factors (TF)). Within each of these four categories, we further distinguish
between numeric (NUM) and binary measurement scales of the partitioning vari-
able, where the latter discretize Zt(l) by assigning a binary classification to the
values above and below the 40, 50, and 60th percentile of the partitioning variable,
respectively (BIN40, BIN50, BIN60). Such a binary discretization (exogenously)

16



4 RESULTS

determines “good” and “bad” states, which limits the number of possible splits
and may mitigate overfitting risks, particularly when the imposed regularizations
appear to be weak (see Section 2 and 4.3; cf. Zeileis et al., 2008; also Strobl et
al., 2011 and Zeileis & Hothorn, 2015).

4.1.1. Full Sample Evaluation

Table 1 summarizes our main results in terms of relative RMSFE against the
AR2 benchmark over the full evaluation sample and highlights several interesting
results: First, the dynamic factor tree and forest entries are printed in bold if they
are superior in terms of RMSFE than the corresponding dynamic factor model.
An inspection of Table 1 provides strong evidence in favor of the proposed models
and highlights that dynamic factor trees and forests are statistically significantly
superior to the standard dynamic factor model. In terms of MSFE, dynamic fac-
tor trees and forests tend to improve upon the standard dynamic factor models
by over 20%. For example, the best performing dynamic factor forest for three-
month ahead predictions (DFF-NUM(TF)) achieves a relative MSFE of 0.617
whereas the standard targeted dynamic factor model from bootstrapped sample
(BS-DFM(TF)) has a relative MSFE of 0.796. Second, the results also appear
to be well in accord with the targeting literature (e.g. Bai & Ng, 2008; Stock &
Watson, 2012; Boivin & Ng, 2006) in that targeting tends to improve predictive
performance. Moreover, numeric rather than binary partitions are often able to
meaningfully exploit the richer information and perform slightly superior. Third,
consistent with the tree-based ensemble and forecast combination literature (e.g.
Medeiros et al., 2021; Breiman, 1996a, 2001a; James et al., 2013, Hastie et al.,
2009 and Elliott & Timmermann, 2016, for reviews), dynamic factor forests sys-
tematically improve upon dynamic factor trees in all cases. Fourth, we notice
that DFTs and DFFs can systematically improve upon standard regression trees
and random forests. As is also shown, regression trees perform rather poorly,
which was to be expected because of the high risks of overfitting whereas ran-
dom forests successfully overcome these concerns (cf. Breiman, 1996a, 2001a; e.g.
James et al., 2013, for a discussion).

4.1.2. Sub-Sample Evaluation

To better understand the evolution of these forecasting improvements, we fol-
low the burgeoning state-dependent forecast evaluation literature and examine
(in addition to full sample forecast evaluations above) also those for the sub-
samples in boom and bust periods according to NBER (2020) (e.g. Chauvet &
Potter, 2013; Fossati, 2018; Siliverstovs, 2017a; Siliverstovs & Wochner, 2021).
Table 2 reveals that the DFT and DFF models perform better than the DFM in
both recessionary and expansionary subsamples. Specifically, during recessions
they typically achieve seizable and statistically significant improvements over the
DFM, whereas in expansions the improvements are still present but more mod-
erate in terms of size and significance. Especially at higher forecasting horizons,
the performance during expansions is similar to those of the AR2 benchmark,
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BM Dynamic Factor Trees Dynamic Factor Forests
Horizon Results Models rRMSFE Models rRMSFE
HMN 0S-DFM(F) 0.979 BS-DFM(F) 0.976
0.991 £ OS-RT(F) 1.451 BS-RF(F) 0.948
+—
5 AR4 & DFT-NUM(F) 0.939***  DFF-NUM(F) 0.888***
o 0.966 DFT-BIN50(F) 0.968 DFF-BIN50(F) 0.921***
[0}
u% ARL & OS-DFM(TF) 0.941 BS-DFM(TF) 0.939
0.936* & OS-RT(TF) 1.584 BS-RF(TF) 0.950
CADL t DFT-NUM(TF) 0.930 DFF-NUM(TF) 0.861***
A 0.956 F  DFT-BIN5O(TF)  0.943 DFF-BIN5O(TF)  0.887***
=1
HMN 0S-DFM(F) 0.655 BS-DFM(F) 0.654
1.012 £ OS-RT(F) 0.872 BS-RF(F) 0.744
=
s AR4 & DFT-NUM(F) 0.533***  DFF-NUM(F) 0.535***
‘B 0.877 DFT-BIN50(F) 0.544***  DFF-BIN50(F) 0.539***
()
5 ARL & OS-DFM(TF) 0.613 BS-DFM(TF) 0.612
0.847 £ OS-RT(TF) 0.962 BS-RF(TF) 0.725
CADL t DFT-NUM(TF) 0.549** DFF-NUM(TF) 0.520***
0.883 ~  DFT-BIN5O(TF)  0.544***  DFF-BINSO(TF)  0.534***
HMN OS-DFM(F) 1.067 BS-DFM(F) 1.064
1.003** £  OS-RT(F) 1.819 BS-RF(F) 1.023
5 AR4 & DFT-NUM(F) 1.028** DFF-NUM(F) 1.003***
@ 0.999 DFT-BIN50(F) 1.028** DFF-BIN50(F) 1.025%*
3]
u% ARL & OS-DFM(TF) 1.058 BS-DFM(TF) 1.059
1.000 &  OS-RT(TF) 1.740 BS-RF(TF) 1.013
CADL t DFT-NUM(TF) 1.068 DFF-NUM(TF) 0.982***
0971+ + DFT-BIN5O(TF)  1.043 DFF-BIN50(TF) 1.005**
h=3
HMN OS-DFM(F) 0.769 BS-DFM(F) 0.761
1.023 £ OS-RT(F) 1.116 BS-RF(F) 0.894
5 AR4 & DFT-NUM(F) 0.623***  DFF-NUM(F) 0.587***
‘a 0.946 DFT-BIN50(F) 0.616***  DFF-BIN50(F) 0.612***
(]
§ ARL & OS-DFM(TF) 0.735 BS-DFM(TF) 0.730
0.954 &  OS-RT(TF) 1.044 BS-RF(TF) 0.898
CADL t DFT-NUM(TF) 0.605***  DFF-NUM(TF) 0.576***
0.919 ~ DFT-BIN5O(TF)  0.629***  DFF-BIN50O(TF)  0.619***

Notes: Building upon Chauvet and Potter (2013) and Siliverstovs and Wochner (2021), the table entries show the relative RMSFE of
a particular model against the AR2 benchmark for expansionary and recessionary sub-samples separately (settings: recursive scheme;
DCO interpolation; Jan. 1998 first vintage; ERI-Index partitioning variable). Recessions and expansions are determined according to
NBER (2020). For h = 1 and h = 3, the forecast evaluation window contains 249 and 247 monthly time periods, respectively; the
expansionary sub-sample contains 221 and 219 observations and the remaining observations belong to the recessionary sub-sample.
BM stands for benchmarks. For more details about table entries, see notes in Table 1.

Table 2: Main Results for Sub-Samples (relative RMSFE)

which is again in accord with the state-dependent forecast evaluation literature
(cf. e.g. Siliverstovs & Wochner, 2021).

Building upon Siliverstovs (2017a; 2020) and Siliverstovs and Wochner (2021),
Figure 1 provides the CSSFED of the dynamic factor model from original samples
(by = OS-DFM(TF)) against the targeted dynamic factor tree (m; = DFT-NUM(TF))
as well as the CSSFED of the dynamic factor model from bootstrapped sam-
ples (b = BS-DFM(TF)) against the targeted dynamic factor forest (mg =
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Notes: This figure shows the CSSFED of the conventional dynamic factor model against the top-performing dynamic factor trees and forests in
Table 1 and displays recession classifications of NBER (2020) (settings: recursive scheme; DCO interpolation; Jan. 1998 first vintage; ERI-IDX
partitioning variable; BIC-based pruning). An upward {horizontal} [downward] movement of CSSFED indicates superior {equal} [inferior]
performance of DFT or DFF over DFM (Siliverstovs, 2017a, 2020; Siliverstovs & Wochner, 2021). While the absolute levels of two CSSFED
in Figure 1.a and 1.b may not be compared quantitatively because the CSSFED are not measured on similar scales (non-standardized SFED)
(cf. Siliverstovs & Wochner, 2021), they reveal qualitatively similar dynamics. The figure is based on the three FRED datasets (see Section 3).

Figure 1: DFTs and DFF's Relative Performance against DFMs over Time (CSS-
FED)

DFF-NUM(TF)). As explained in Section 2.5, the figure visualizes how the rel-
ative performance of these models evolves over the evaluation window: The two
series show an upward trending behavior as well as larger upward jumps during re-
cessions (with slight to pronounced deterioriations in the aftermath of recessions).
At the same time, we also see considerable differences between the CSSFED series
for DFTs and DFFs and when and how DFFs are able to improve upon DFTs.
In short, while both DFTs and DFFs can improve upon DFMs, the superiority
in DFFs performance is not only more pronounced but also more persistent than
the one of DFTs.

4.2. Extended Results

We examine additionally the following extensions: First, we consider our aug-
mented DFM benchmarks (see Section 2.4.2). Second, we extend the previous
analyses by keeping the same parametric form in our DFTs and DFFs (see Sec-
tion 2.3) but allow the partitioning sets to take more complex multi-variate forms
so as to allow for generalized and time-varying state-dependent dynamics. Specif-
ically, we consider, on the one hand, in analogy to the structural change point
literature (cf. Goulet Coulombe, 2020, Zeileis et al., 2008, and references therein;
also Audrino & Medeiros, 2011) the inclusion of time in addition to the ERI-Index
as partitioning variable and label the corresponding models DFT-NUM-PLUS-T
and DFF-NUM-PLUS-T, respectively. On the other, as the forest literature often
considers a large number of predictors (e.g. Goulet Coulombe, 2020; Medeiros et
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al., 2021), we incorporate in addition to the ERI-Index all contemporaneous ex-
planatory variables and refer to the corresponding models as DFT-NUM-PLUS-X
and DFF-NUM-PLUS-X, respectively. Third, we examine the impact of using
Lasso-based penalization to enable differing state-dependent model designs (cf.
Quan et al., 2020). Finally, we examine the use of novel factors within the pro-
posed framework of DFFs (see Section 2.1).

4.2.1. Recession-Probability Augmented DFM

The results of the first two extensions are shown in Table 3 together with some
results from Table 1 for better comparability. First, we notice that dynamic factor
forests (DFF-NUM) perform about equally well as the augmented dynamic factor
benchmarks (DFM-RP) — which is broadly in line with Chauvet and Potter
(2013) in that DFM-RP models are closely related to their Markov-switching
dynamic factor model, which also achieved strong predictive performance in their
setting.

4.2.2. Generalized and Time-Varying State-Dependent Dynamics

Second, we find that DFTs and DFFs with multivariate partitioning sets are
generally able to outperform the corresponding DFMs with DFFs showing again
more robust performance than DFTs. However, relative to the univariate set-
tings in Table 1, larger partitioning sets can be both helpful and harmful for
performance: While the augmentation with T can lead to notable additional im-
provements of DFF-NUM-PLUS-T over DFF-NUM (especially at h = 3), the
augmentation with X generally cause the performance of DFF-NUM-PLUS-X to
drop below that of DFF-NUM. Nonetheless, even in the latter case, DFF-NUM-
PLUS-X is still better than the DFM. These results appear generally comparable
to Goulet Coulombe (2020) as well as broadly consistent with the guiding princi-
ple in high-dimensional settings that the addition of relevant features is generally
beneficial whereas the addition of irrelevant features can have unfavourable con-
sequences for out-of-sample performance (see discussion in James et al., 2013, p.
2411t.).

4.2.3. Ridge- and Lasso-based Penalization

Third, Table 4 shows the results for the alternative regularization scheme inspired
by Quan et al. (2020): As can be seen, the penalized DFTs and DFFs can indeed
yield more accurate results than their non-penalized and unpruned counterparts.
In other words, the regularization appears to bear positive effects. Moreover,
when comparing the performance of this kind of regularization with the post-
pruning results in Table 1, we realize that Ridge- and Lasso-based penalization
may even perform superior to BIC-based tree pruning in some (but not all) cases.
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Benchmarks Dynamic Factor Trees Dynamic Factor Forests
Horizon Results Models rRMSFE Models rRMSFE
HMN OS-DFM(F) 0.841 BS-DFM(F) 0.839
1.001 » OS-DFM-RP(F) 0.773*** BS-DFM-RP(F) 0.772***
Ie]
E DFT-NUM(F) 0.773*** DFF-NUM(F) 0.741***
AR4 %  DFT-NUM-PLUS-T(F) 0.770*** DFF-NUM-PLUS-T(F) 0.740***
h1 0.924 DFT-NUM-PLUS-X(F) 0.834* DFF-NUM-PLUS-X(F) 0.788***
ARL w OS-DFM(TF) 0.802 BS-DFM(TF) 0.800
0.894 g OS-DFM-RP(TF) 0.755*** BS-DFM-RP(TF) 0.754***
©
L DFT-NUM(TF) 0.772*** DFF-NUM(TF) 0.719***
CADL 0 DFT-NUM-PLUS-T(TF) 0.779** DFF-NUM-PLUS-T(TF) 0.714***
0.922 = DFT-NUM-PLUS-X(TF) 0.784*** DFF-NUM-PLUS-X(TF) 0.757***
HMN OS-DFM(F) 0.914 BS-DFM(F) 0.909
1.014 »n OS-DFM-RP(F) 0.781*** BS-DFM-RP(F) 0.780***
o]
§ DFT-NUM(F) 0.830*** DFF-NUM(F) 0.801***
AR4 L  DFT-NUM-PLUS-T(F) 0.832** DFF-NUM-PLUS-T(F) 0.788***
he3 0.970 DFT-NUM-PLUS-X(F) 0.853*** DFF-NUM-PLUS-X(F) 0.855***
ARL w OS-DFM(TF) 0.894 BS-DFM(TF) 0.892
0.975 g OS-DFM-RP(TF) 0.775*** BS-DFM-RP(TF) 0.774***
@
L DFT-NUM(TF) 0.845** DFF-NUM(TF) 0.786***
CADL B DFT-NUM-PLUS-T(TF) 0.829** DFF-NUM-PLUS-T(TF) 0.757***
0.943 F DFT-NUM-PLUS-X(TF) 0.930 DFF-NUM-PLUS-X(TF) 0.831***

Notes: The table entries show the relative RMSFE of a particular model against the AR2 benchmark (settings: recursive scheme; DCO interpolation;
Jan. 1998 first vintage; ERI-IDX partitioning variable; BIC-based pruning). The acronyms PLUS-T and PLUS-X refer to sets of splitting variables
that incorporate, in addition to the ERI-Index, time (T) and all contemporaneous explanatory variables (X), respectively. For more details, see notes

in Table 1.

Table 3: Extended Results: Generalized Partitioning Sets (relative RMSFE)

4.2.4. Generalized and Time-Varying State-Dependent Dynamics with
Lasso-based Penalization

Fourth, Table A.1 combines the two previous extensions and examines both Lasso-
based regularization and generalized partitioning sets. While the results remain
overall fairly comparable to the ones above, we notice that BIC-based pruning ap-
pears superior to Lasso-based pruning when too many splitting variables (PLUS-
X) are available. Interestingly, however, we notice that the Lasso in combination
with time-augmented partitioning sets (PLUS-T) typically achieves the very best
results among the ones considered so far. Specifically, the time-augmented DFFs
in Table A.1 with Lasso-based regularization systematically outperform the cor-
responding DFF's of the main results in Table 1 (neither time-augmentation nor
Lasso-based penalization), the ones provided in the extended results in Table
3 (time-augmented partitioning set) as well as those of Table 4 (Lasso-based
penalization). This underpins the importance of allowing both generalized time-
varying state-dependent dynamics as well as regime-switching behaviour between
structurally distinct models.
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Benchmarks Dynamic Factor Trees Dynamic Factor Forests
Horizon Results Models rRMSFE Models rRMSFE
HMN OS-DFM(F) 0.841 BS-DFM(F) 0.839
1.001 » OS-RT(F) 1.210 BS-RF(F) 0.857
Ie]
E DFT-NUM(F) 0.772*** DFF-NUM(F) 0.753***
AR4 % DFT-NUM-RIDGE(F) 0.769*** DFF-NUM-RIDGE(F) 0.751***
h1 0.924 DFT-NUM-LASSO(F) 0.771*** DFF-NUM-LASSO(F) 0.750***
ARL w OS-DFM(TF) 0.802 BS-DFM(TF) 0.800
0.894 g OS-RT(TF) 1.325 BS-RF(TF) 0.851
©
L DFT-NUM(TF) 0.755*** DFF-NUM(TF) 0.730***
CADL t DFT-NUM-RIDGE(TF) 0.751*** DFF-NUM-RIDGE(TF) 0.733***
0.922 = DFT-NUM-LASSO(TF) 0.748*** DFF-NUM-LASSO(TF) 0.729***
HMN OS-DFM(F) 0.914 BS-DFM(F) 0.909
1.014 » OS-RT(F) 1.474 BS-RF(F) 0.953
o]
12 DFT-NUM(F) 0.844*** DFF-NUM(F) 0.816***
AR4 L DFT-NUM-RIDGE(F) 0.842*** DFF-NUM-RIDGE(F) 0.816***
he3 0.970 DFT-NUM-LASSO(F) 0.835*** DFF-NUM-LASSO(F) 0.813***
ARL w OS-DFM(TF) 0.894 BS-DFM(TF) 0.892
0.975 g OS-RT(TF) 1.400 BS-RF(TF) 0.951
@
L DFT-NUM(TF) 0.853** DFF-NUM(TF) 0.803***
CADL % DFT-NUM-RIDGE(TF) 0.850** DFF-NUM-RIDGE(TF) 0.807***
0.943 F DFT-NUM-LASSO(TF) 0.839*** DFF-NUM-LASSO(TF) 0.800***

Notes: The table entries show the relative RMSFE of a particular model against the AR2 benchmark (settings: recursive scheme; DCO interpolation;
Jan. 1998 first vintage; ERI-IDX partitioning variable; no pruning). The DFTs and DFFs do neither apply pre- nor post-pruning but apply Ridge

and Lasso regularization. For more details, see notes in Table 1.

Table 4: Extended Results: Penalized DFTs and DFFs (relative RMSFE)

4.2.5. Novel Factors

Table A.2 examines the impact of employing novel rather than traditional fac-
tors in our state-dependent models (see Section 2.1). While we find that all three
tend to perform generally well in that the DFTs and DFF's appear to be generally
superior to DFMs, we do not find any material improvements over PCA-based
factors. In fact, we find PLS- and SPCA-based factors to perform generally some-
what worse whereas KPCA-based factors can perform slightly better than PCA-
based factors. Interestingly, we find that targeting tends to be generally helpful
for PLS-, KPCA- as well as SPCA-based factors. Table A.3 takes the novel factor
examination one step further and assesses the time-augemented partitioning set
together with Lasso-based penalization. Relative to the results shown in Table
A.2, PLS shows markedly better performance in all cases and DFFs also show
superior results, which indicates that time-augmented partitioning sets together
with Lasso-based penalization also appear to be useful for novel factors.

4.2.6. Two-Stage Machine Learning Framework

One of the key ingredients to the previous analyses was the recession probability
indicator (ERI-Index), which we retrieved from external sources (see Section 3 for
details). In a sense, the approach outlined until this point may be considered as
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a single-stage machine learning approach. In a final key extension, we build upon
recent work and extend our approach to a two-stage machine learning framework
by internalizing the prediction of the recession probability in a first stage before
using it within DFTs and DFFs in a second stage.

Our first stage builds directly upon the recent work in Ng (2014), Dopke et
al. (2017) and Pierdzioch and Gupta (2020) (among others) who proposed to use
machine learners such as boosted regression trees to predict the probability of
a recession in data-rich environments. We will consider in addition to Boosted
Regression Trees (BRT), Random Forests (RF) as another non-linear classifier
as well as Lasso (LAS) as a regularized linear classification technique to produce
predicted recession probabilities (PRP) (see e.g. Friedman, 2001, 2002, for boost-
ing, Breiman, 2001a, for random forests and Tibshirani, 1996, for lasso; see Hastie
et al., 2009 for an excellent textbook treatment of all three methods). All three
methods are trained to classify monthly NBER (2021) recessions from the set
of contemporaneous explanatory variables and are tuned via cross-validation to
yield the best receiver operating characteristic (ROC) curves, which are robust to
changing class distributions (Fawcett, 2006; see Kuhn, 2008, 2019, for implemen-
tation details). As discussed in Ng (2014), however, machine learning procedures
such as boosting may yield insufficiently persistent recession probability predic-
tions with only little or no autoregressive dynamics at all (also see Chauvet &
Hamilton, 2006 and Hamilton, 2018 for distinct yet related discussions about
smoothened PRPs). An arguably simple yet potentially expedient approach to
deal with this issue at least partially is a subsequent smoothing step that ap-
plies trend filtering techniques. Specifically, we use the Hodrick-Prescott (1997)
(HP) filter to generate a smoother series of predicted recession probabilities (see
Balcilar, 2019 for implementation details). Our second stage then subsequently
uses the smoothed PRP within DFTs and DFFs'?, possibly in combination with
generalized partitioning sets and state-dependent regularization.

Table 5 shows the result from using our internalized PRP instead of the ERI-
Index. As is evident from the table, DFTs and DFFs tend to yield more accurate
predictions than our main autoregressive benchmark in all cases and may produce
even significantly better predictions than their DFM counterparts, especially for
one-step ahead predictions. Among the different PRP methods used, random
forests appear to have a slight advantage. Table A.15 shows the results for our
internalized PRP in combination with a generalized partitioning set that addi-
tionally includes time as well as Lasso-based state-dependent penalizations. At
least for one-step ahead predictions, DFFs still tend to produce substantially and
significantly better results than DFMs but under these specifications no longer
for multi-step ahead predictions. Moreover, in direct comparison with the pre-
vious results for the ERI-Index, we find that the ERI-Index appears to perform
generally even better than PRP-Indices. Nonetheless, we perceive the results
for PRP to be certainly encouraging as they show that the extension to a two-
stage machine learning framework can also improve upon DFMs in statistically
significant ways.
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4.3. Robustness Results

This section examines how sensitive our estimation results are with respect to
several modeling choices and assumptions. We will hereafter assess alternatives
typically encountered in the relevant literature (e.g. H. H. Kim & Swanson, 2014;
Siliverstovs & Wochner, 2021; Stock & Watson, 2012). We will incorporate the
extended analyses with augmented partitions and penalized regressions for the
robustness tests on the two alternative interpolation methods, rolling window
estimations as well as extended forecasting windows.

4.3.1. Alternative Interpolations

To assess the robustness of our results with regards to the choice of a particular
interpolation method, we shall examine three distinct ones: Our main specifi-
cations interpolate GDP (in levels) via Denton-Cholette (DCO), which seeks to
preserve the movement at a higher frequency (cf. Sax & Steiner, 2013, and refer-
ences therein; also Dagum & Cholette, 2006). Kim and Swanson (2014) propose
to interpolate GDP via Chow-Lin (1971), which can either be applied to station-
ary or co-integrated series (Sax & Steiner, 2013, p. 80ff.). In the former case, GDP
(in growth rates) is interpolated here from a dynamic factor model with monthly
factors (CLU).!! In the latter, GDP (in levels) is interpolated from three monthly
co-integrated series (CL3).!2 All three interpolations (DCO, CL3, CLU) are im-
plemented via Sax et al. (2020) and qualify as equally appropriate as there has not
yet emerged a general consensus on a first best interpolation method (Guérin &
Marcellino, 2013). Table A.4 shows the result for the CLU-based interpolations of
GDP growth. As can be seen the results are fairly similar to DCO-interpolations
both in terms of size and significance (except for DFT(TF)s at h = 1 because the
algorithm prunes the DFTs to a single-state model). Still DFFs outperform the
DFMs and tend to be substantially better than conventional benchmarks (e.g.
HMN, ARL). An analogous result holds for CL3 interpolations: Table A.5 shows
that the main results can be qualitatively maintained but are quantitatively less
pronounced in terms of size and significance than CLU and DCO. Interestingly,
we also find that Lasso-based penalization can yield the best-performing DFT
and DFF models for CLU at h = 1 and for CL3 at A = 3 and we notice that
these improvements can be quite pronounced. Moreover, we find that the time-
augmented partitioning sets tend to improve the predictive performance of DFTs
for CLU at h =1 and DFTs and DFFs for CL3 at h = 3.

4.3.2. Rolling Windows

While our main results are based on recursively expanding windows, Table A.6
examines the effect of using rolling schemes with window lengths of 300 months
(see e.g. H. H. Kim & Swanson, 2014; Stock & Watson, 2012). The table shows
that our main findings are robust to this change. In fact, the results strengthen
our main findings in that the improvements of DFTs and DFFs over DFMs
tend to be slightly more accentuated under rolling than under recursive windows.
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Moreover, as opposed to our previous setting, the considered extensions of Lasso-
and Ridge-based penalization as well as extended partitioning sets tend to work
generally less well than the previous robustness test.

4.3.3. Extended Forecasting Window

While the forecast evaluation window for the main specification in Section 4.1
includes over 20 years (1998-2018) with almost 250 monthly predictions, we ex-
amine an extension of the evaluation window to 1985-2018 with over 400 monthly
observations (cf. e.g. Siliverstovs & Wochner, 2021; Wochner, 2018). Table A.7
shows that the main results still persist but are weaker in terms of size (especially
for nowcasts), which indicates that the nowcasting over the post-millennial period
appears to be better than over the pre-millennial period (also see Wochner, 2018,
for related findings). As the sources of these differences cannot be attributed to
insufficient power due to shorter sample sizes (because DFFs tend to split over
the pre-millennial era), they appear to be, at least in part, structural in the sense
that the proposed methodology appears to work worse over the pre-millennial
period (1985-2000).

Additionally, we notice that both Lasso and Ridge can yield some improve-
ments for DFTs and DFF's generally benefit from having a time-augmented par-
titioning variable. The augmentation with a vast number of contemporary indi-
cators performs generally still better than the standard DFM but generally worse
than the more narrowly specified partitioning sets.

4.3.4. Quarterly Frequency

Table A.8 provides the estimation results for quarterly series by quarterly ag-
gregation of the monthly FRED-MD series (cf. e.g. Foroni & Marcellino, 2013).
These estimation results employ cross-validated minimum state sizes because we
made the experience that information criteria can often regularize the models
too heavily, forcing them frequently into a single state model, which leaves only
little room for performance differences over and above the DFM (see discussions
in Section 2). The results in Table A.8 paint an encouraging picture and indicate
that our main findings extend fairly well to the quarterly frequency case (in case
of CV-based regularization).

4.3.5. Pre-Pruning

As stated in Section 2, we examine both pre- and post-pruning strategies. In
contrast to the post-pruning approach of our main results, Table A.9 highlights
the results from a pre-pruning strategy. The two approaches appear to perform
approximately equivalently well and leave our main findings quantitatively and
qualitatively unaffected.
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4.3.6. Single Factor and Ten Factors

While the main results are all based on five dynamic factors, Table A.10 and
A.11 examine the model performance with only a single factor and ten factors
(cf. Siliverstovs & Wochner, 2021; Stock & Watson, 2016). The ten factor model
tends to perform slightly superior than the one factor model in terms of relative
RMSFE over the AR2 benchmark. While the one factor model is able to split
DFTs more frequently, the performance of DFFs appears to be quite comparable
to the five factor model.

4.3.7. Alternative Recession Probability Indices

While our main specifications make use of the ERI-index (see Chauvet & Hamil-
ton, 2006; Hamilton, 2018), the Federal Reserve Bank of Philadelphia (FRBP)
conducts the Survey of Professional Forecasters (SPF) and provides the mean sur-
vey response concerning the probability of a recession in the current (SPF-REC1-
IDX) and next quarter (SPF-REC2-IDX) ever since 1968 (see FRBP, 2018, 2019).
These survey-based indicators shall be used as alternative partitioning variables
to the data-based version of the ERI-index. In analogy to our main analyses,
the quarterly SPF-REC1 and SPF-REC2 indices are interpolated to monthly fre-
quencies via Denton-Cholette (cf. Sax & Steiner, 2013, and references therein).
The results in Table A.12 and A.13 provide empirical support for the proposed
dynamic factor trees and forests for these alternative recession probability in-
dices: At all horizons the results are only slightly weaker and still outperform the
standard DFM and rank in the majority of cases as the first best model among all
those considered. This suggests that the proposed methodology is not dependent
on the ERI-index and generalizes to alternative recession probability indicators.

4.3.8. Publication Lag

The ERI-Index has a fairly consistent publication structure and is released with
a publication lag of 4 to 6 months.'> While the main results assumed the ERI-
index to be released together with all monthly indicators, i.e. having a one
month lag, we may alternatively seek to predict the missing values arising from
lagged publications (cf. e.g. Bulligan, Marcellino, & Venditti, 2015). Inspired by
Kim and Swanson (2016), we infer the missing values on the current edge, Zfih,
with a simple regime-switching model that alternates between predictions from
a distributed lag model and a beta regression model (cf. Cribari-Neto & Zeileis,
2010; Hill, Griffiths, Lim, & Lim, 2011).1* Table A.14 provides the estimation
results and indicates that the timely release of the ERI-index contains indeed
relevant information — particularly for the 3-months ahead forecasts. While the
nowcasting results (h = 1) remain fairly robust to publication lags, the forecasting
results (h = 3) are weaker.

These findings suggest that the employed ERI-index entails both advantages
and disadvantages: On the one hand, it appears to be the one that yields the best
performance in our modeling framework among all indices considered. On the
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other, the index is unfortunately not (yet) available in a monthly frequency and
publication lags appear to weaken model performance to some extent. In light
of these results, a high-frequency real-time release of the ERI-index & la Aruoba,
Diebold and Scotti’s (2009) business cycle indicator appears to be desirable. In
any case, the analyses have made clear that a weaker performance due to publi-
cation lags can only hardly be considered as a weakness of the proposed dynamic
factor trees and forests but constitute rather a limitation of the data.

5. Conclusion

This study proposed dynamic factor trees and forests based on Zeileis et al.’s
(2008) model-based recursive partitioning algorithm and its extension in the
spirit of Garge et al. (2013), which allow to embed theory-led dynamic factor
models within tree-based machine learning ensembles conditional on the state of
the business cycle (see Section 1 and 2). Building upon recent advances outlined
above, we also studied more complex conditioning sets to account for generalized
and time-varying state dependent dynamics under forest-based randomization
schemes, examined the inclusion of Lasso-based regularization to enable switching
mechanisms between structurally distinct state-dependent models, studied novel
factor extraction methods within the proposed DFF framework and extended the
framework to two stages by internalizing the predictions of recession probabilities
based on machine learning classifiers that may cope with data-rich environments.
In our out-of-sample forecasting exercise for short-term GDP growth predictions,
we generally find significant empirical evidence that DFFs can indeed system-
atically outperform standard dynamic factor models in both expansive and con-
tractive periods. The results also qualify as fairly robust against a large number
of robustness tests. These observations corroborate the idea that the proposed
state-dependent models are indeed able to beneficially exploit the time-varying
dynamics in good and bad times — much like sailors who benefit from maneu-
vering their ships differently in stormy and calm seas (cf. K. Kim & Swanson,
2016; Diebold & Rudebusch, 1996).

We see several possible avenues for future research: The generalizability of the
proposed modelling framework will have to be examined for alternative dependent
variables and countries. This is relevant because it is not certain a-priori that it
will generalize as well to alternative settings because other series and states may
exhibit structurally distinct characteristics: For instance, Corradi and Swanson’s
(2014) test for structural instability in dynamic factor models rejects the null of
stability for US GDP growth but fails to reject the null for the S&P500, producer
price index or the 10-year Treasury-bond rate. Likewise, Carstensen et al. (2020,
p. 830f.) argue that cross-country differences in the persistence of the very same
series can greatly affect the success of factor-based autoregressive processes across
different countries. Additionally, we find the provision of a vast set of partitioning
variables to be generally inferior than a carefully selected one and more research is
needed to better guide its composition (also see Goulet Coulombe, 2020). Hence,
future work along these lines will contribute towards a better comprehension of
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the circumstances and environmental conditions needed to bring novel modeling
architectures to fruition and may ultimately provide policy makers with better
guidance in selecting the most appropriate tools for their decisions.

Notes

. Theoretical equilibrium models often assume that macroeconomic dynamics are driven by a few shocks,

such as technology or monetary policy shocks (Bai & Ng, 2007; Giannone, Reichlin, & Sala, 2006). Dy-
namic factor models are consistent with these assumptions and rest on the idea that the co-movements
among many economic variables can be decomposed into two (orthogonal) sources: A “common com-
ponent” (common shocks or common factors) that captures a few unobserved factors that govern the
dynamics of many variables plus a “idiosyncratic component”, which captures residual peculiarities of
each individual series (e.g. D’Agostino, Giannone, Lenza, & Modugno, 2016; Diebold & Rudebusch,
1996; Forni et al., 2009; Giannone et al., 2006; Stock & Watson, 2002b, 2006, 2016, 2017). Further-
more, theoretical business cycle equilibrium models can be shown to take a factor-like structure in case
of measurement errors (cf. e.g. Giannone et al., 2006, and Diebold & Rudebusch, 1996, and references
therein).

. Targeting for these factors is done analogously to the PCA-based case.

. Equation (2) is, for instance, closely related to standard regime switching models, such as threshold

autoregressive (TAR) models: Specifically, if there were no factors present and if the partitioning vari-
able corresponded to lagged values of the dependent variable, then equation (2) would take a similar
structure as the self-exciting threshold autoregressive model (cf. e.g. Kock & Terésvirta, 2011, p. 62ff.,
and references therein).

. Notice that the default minsize 7 in each terminal node is set to be ten times the number of estimated

parameters, which also provides some cushion against overfitting (see Hothorn & Zeileis, 2020).

. The determination of McCracken’s (2007) critical values for two nested models requires the difference in

the number of model parameters, ko (excess parameters). For A\; many terminal nodes in the dynamic
factor tree in period ¢, there are (At — 1) X (1+ L + R) many excess parameters relative to the dynamic
factor model (i.e. one additional intercept, L additional autoregressive lags and R additional factors per
additional terminal node). To determine ko for trees [and forests], we use the average number of terminal
nodes, A = 1/|.%%| 2321 At [and X = 1/|.7%| 23:1 1/B 25:1 Ab,t]. Moreover, since the maximum k2
provided by McCracken (2007) is limited to 10, we use k2 = min(\, 10).

. The raw datasets for FRED-MD actually provide information for 128 monthly and 248 quarterly macro-

economic indicators (see McCracken & Ng, 2019a, 2019b). From FRED-MD, we dropped monthly and
quarterly datasets which are not available at the beginning of 1960 (cf. e.g. Wochner, 2018) and retained
quarterly GDP from FRED-QD. Plain factors are subsequently extracted from the 375 contemporaneous,
first and second order lags of the monthly indicators (cf. Ehmann, 2020; H. H. Kim & Swanson, 2014).
Moreover, to retain the UMCSENTx index (FRED-MD), which is only available in quarterly frequency until
Q4-1977, the initial values were interpolated via Denton-Cholette (Sax & Steiner, 2013, and references
therein).

. The FRED mnemonic of the index is JHGDPBRINDX. We will cope with the mixed-frequency problem

by interpolating quarterly recession probability indices via Denton-Cholette (Sax & Steiner, 2013, and
references therein) and will examine the quarterly frequency equivalent as a robustness test.

. Flow variables are typically interpolated such that the sum or mean of the monthly interpolated values

correspond to the quarterly observed value (Chipman & Lapham, 1995, p. 89) and the sum is typically
chosen for flow variables, such as GDP or national income (ibid., p. 92). However, whether the mean
or the sum is chosen for the interpolation of GDP levels is not directly relevant because the two can be
shown to yield the same logarithmic growth rate, Yt(h) =In(y¢) — In(y¢—p) with y; denoting the level
of GDP in period ¢ (cf. e.g. Siliverstovs & Wochner, 2021; Stock & Watson, 2012; McCracken & Ng,
2019b).

. Notice that we assume the recession probability index to be released together with FRED-MD variables.

The robustness of this assumption will be assessed in Section 4.3.8.

For computational reasons, DFFs are based on B = 200 bootstrapped samples.

(h

As previously explained, we use h-period differenced growth rates, Y; ) — In(y¢) — In(y;—p) as dependent
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variables, where y; is the level of GDP in period ¢ (cf. Stock & Watson, 2012; Siliverstovs & Wochner,
2021; also see McCracken & Ng, 2019b). While the quarterly growth rates, Y, 3), can be simply derived
from the interpolated GDP levels via DCO and CLS this task is more complex for CLU as it does not
impute the levels, y¢, but monthly growth rates, Y Hence7 for h = 3, we will reconstruct the quarterly
growth rates, Y;( ) from the monthly growth rates, Yt< ) , by summing over the three adjacent values of
Yt(l), because

¥ = o + v + v
(In(ye) — In(ye—1)) + (In(ye—1) — In(ye—2)) + (In(ye—2) — In(yi—3))
= In(y:) — In(ys-3).

The Chow-Lin (1971) interpolation “CL3” is obtained via the three co-integrated series with FRED-
mnemonics DPCERA3MO86SBEA, SRVPRD and CE160V. Stationarity of the errors is warranted in that the
(augmented) Dickey-Fuller test (Trapletti, Hornik, & LeBaron, 2019) for the residuals of the regression
in levels rejects the null of non-stationarity at the 1% significance level (see e.g. Hill et al., 2011, Chapter
12, for an elaborate discussion of cointegration).

For example, for vintage dates in Jan, Feb and May 2018 (Q1 2018), the index is available until Sep 2017
(Q3 2017). Likewise, for vintage dates in April, May and June 2018 (Q2 2018), the index is available
until Dec 2017 (Q4 2017) (see Hamilton, 2018).

Formally, the regime-switching model is given as (see K. Kim & Swanson, 2016, for a related specifica-
tion),
Ztt)h =1(Z4n < C)Zfalﬁ it (1= 1(2eqn < g))Zl(BleTA R

where Z]SE 4R designates the prediction from a distributed lag model with BIC chosen number of
Y;li lags with iy € {0,1,...,4} (cf. Hill et al., 2011) and Z](BE))TA .t+n, is the predicted value of a beta-
regression with a logit-link functlon for the mean and precision equatlon (see Cribari-Neto & Zeileis,
2010, and references therein). Both mean and pI‘eClSlOl’l equations are BIC optimized over Yt_lly lags
with iy € 0 1 ,4}, the first i linear factors F< )t with ip € {1,...,10} and the first i¢ quadratic
factors (Fi@ ) Wlth ig € {0,...,10} (cf. Bai & Ng, 2008). Flnally7 ¢ =0.21 and Z;4p corresponds to
the predicted raw value of the 1ndex from the beta regression.
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A. Appendix: Tables and Figures

Benchmarks Dynamic Factor Trees Dynamic Factor Forests
Horizon Results Models rRMSFE Models rRMSFE
HMN OS-DFM(F) 0.841 BS-DFM(F) 0.839
1.001 w OS-RT(F) 1.210 BS-RF(F) 0.857
]
‘g DFT-NUM(F) 0.772*** DFF-NUM(F) 0.753***
AR4 L  DFT-NUM-PLUS-T(F) 0.762*** DFF-NUM-PLUS-T(F) 0.730***
h1 0.924 DFT-NUM-PLUS-X(F) 0.924 DFF-NUM-PLUS-X(F) 0.799***
ARL w OS-DFM(TF) 0.802 BS-DFM(TF) 0.800
0.894 g OS-RT(TF) 1.325 BS-RF(TF) 0.851
©
L DFT-NUM(TF) 0.755*** DFF-NUM(TF) 0.730***
CADL B DFT-NUM-PLUS-T(TF) 0.801 DFF-NUM-PLUS-T(TF) 0.713***
0.922 = DFT-NUM-PLUS-X(TF)  0.869 DFF-NUM-PLUS-X(TF) 0.767***
HMN OS-DFM(F) 0.914 BS-DFM(F) 0.909
1.014 » OS-RT(F) 1.474 BS-RF(F) 0.953
<]
E DFT-NUM(F) 0.844*** DFF-NUM(F) 0.816***
AR4 L  DFT-NUM-PLUS-T(F) 0.852** DFF-NUM-PLUS-T(F) 0.777***
he3 0.970 DFT-NUM-PLUS-X(F) 0.897* DFF-NUM-PLUS-X(F) 0.868***
ARL w OS-DFM(TF) 0.894 BS-DFM(TF) 0.892
0.975 g OS-RT(TF) 1.400 BS-RF(TF) 0.951
T
L DFT-NUM(TF) 0.853** DFF-NUM(TF) 0.803***
CADL B DFT-NUM-PLUS-T(TF)  0.806*** DFF-NUM-PLUS-T(TF) 0.754***
0.943 F DFT-NUM-PLUS-X(TF)  0.943 DFF-NUM-PLUS-X(TF) 0.831***

Notes: The table entries show the relative RMSFE of a particular model against the AR2 benchmark (settings: recursive scheme; DCO interpolation;
Jan. 1998 first vintage; ERI-IDX partitioning variable; no pruning). Lasso-based regularization for the generalized partitioning sets ‘PLUS-T' and
‘PLUS-X". The acronyms PLUS-T and PLUS-X refer to sets of splitting variables that incorporate, in addition to the ERI-Index, time (T) and all

contemporaneous explanatory variables (X), respectively. For more details, see notes in Table 1.

Table A.1: Extended Results: Lasso-based Penalization with Generalized Parti-

tioning Sets (relative RMSFE)
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Benchmarks Dynamic Factor Trees Dynamic Factor Forests
Horizon Results Models rRMSFE Models rRMSFE
HMN OS-DFM(F) 0.841 BS-DFM(F) 0.839
1.001 w OS-RT(F) 1.210 BS-RF(F) 0.857
I°]
E DFT-NUM-PLS(F) 0.879 DFF-NUM-PLS(F) 0.828*
AR4 %  DFT-NUM-KPCA(F) 0.794*** DFF-NUM-KPCA(F) 0.755***
h1 0.924 DFT-NUM-SPCA(F) 0.816** DFF-NUM-SPCA(F) 0.780***
ARL w OS-DFM(TF) 0.802 BS-DFM(TF) 0.800
0.894 S OS-RT(TF) 1.325 BS-RF(TF) 0.851
©
- DFT-NUM-PLS(TF) 0.819 DFF-NUM-PLS(TF) 0.739***
CADL 0 DFT-NUM-KPCA(TF)  0.768*** DFF-NUM-KPCA(TF)  0.716***
0.922 = DFT-NUM-SPCA(TF)  0.777** DFF-NUM-SPCA(TF) 0.732***
HMN OS-DFM(F) 0.914 BS-DFM(F) 0.909
1.014 n OS-RT(F) 1.474 BS-RF(F) 0.953
o]
§ DFT-NUM-PLS(F) 0.877** DFF-NUM-PLS(F) 0.867**
AR4 L DFT-NUM-KPCA(F) 0.829*** DFF-NUM-KPCA(F) 0.806***
he3 0.970 DFT-NUM-SPCA(F) 0.939 DFF-NUM-SPCA(F) 0.867**
ARL w  OS-DFM(TF) 0.894 BS-DFM(TF) 0.892
0.975 g OS-RT(TF) 1.400 BS-RF(TF) 0.951
T
L DFT-NUM-PLS(TF) 0.803*** DFF-NUM-PLS(TF) 0.781***
CADL B DFT-NUM-KPCA(TF)  0.831*** DFF-NUM-KPCA(TF)  0.774***
0.943 F DFT-NUM-SPCA(TF)  0.872** DFF-NUM-SPCA(TF) 0.816***

Notes: The table entries show the relative RMSFE of a particular model against the AR2 benchmark (settings: recursive scheme; DCO
interpolation; Jan. 1998 first vintage; ERI-IDX partitioning variable; BIC-based pruning). The acronym PLS refers to Partial Least Squares
and the acronyms KPCA and SPCA refer to Kernel and Sparse PCA, respectively. For more details, see notes in Table 1.

Table A.2: Extended Results: Novel Factors (PLS, KPCA and SPCA) (relative
RMSFE)
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Benchmarks Dynamic Factor Trees Dynamic Factor Forests
Horizon  Results Models rRMSFE Models rRMSFE
HMN OS-DFM(F) 0.841 BS-DFM(F) 0.839
1.001 » OS-RT(F) 1.210 BS-RF(F) 0.857
S
*g DFT-PLUS-T-PLS(F) 0.762*** DFF-PLUS-T-PLS(F) 0.774***
AR4 Y  DFT-PLUS-T-KPCA(F) 0.798*** DFF-PLUS-T-KPCA(F) 0.751***
he1 0.924 DFT-PLUS-T-SPCA(F) 0.818** DFF-PLUS-T-SPCA(F) 0.753***
ARL w OS-DFM(TF) 0.802 BS-DFM(TF) 0.800
0.894 g OS-RT(TF) 1.325 BS-RF(TF) 0.851
©
- DFT-PLUS-T-PLS(TF) 0.738*** DFF-PLUS-T-PLS(TF) 0.709***
CADL B DFT-PLUS-T-KPCA(TF)  0.775** DFF-PLUS-T-KPCA(TF) 0.711***
0.922 F  DFT-PLUS-T-SPCA(TF) 0.793* DFF-PLUS-T-SPCA(TF) 0.721***
HMN OS-DFM(F) 0.914 BS-DFM(F) 0.909
1.014 w OS-RT(F) 1.474 BS-RF(F) 0.953
[*]
‘g DFT-PLUS-T-PLS(F) 0.810*** DFF-PLUS-T-PLS(F) 0.837***
AR4 L  DFT-PLUS-T-KPCA(F) 0.895* DFF-PLUS-T-KPCA(F) 0.794***
he3 0.970 DFT-PLUS-T-SPCA(F) 0.884* DFF-PLUS-T-SPCA(F) 0.825***
ARL w OS-DFM(TF) 0.894 BS-DFM(TF) 0.892
0.975 g OS-RT(TF) 1.400 BS-RF(TF) 0.951
©
- DFT-PLUS-T-PLS(TF) 0.793*** DFF-PLUS-T-PLS(TF) 0.763***
CADL B DFT-PLUS-T-KPCA(TF)  0.827** DFF-PLUS-T-KPCA(TF) 0.748***
0.943 F DFT-PLUS-T-SPCA(TF) 0.891* DFF-PLUS-T-SPCA(TF) 0.774***

Notes: The table entries show the relative RMSFE of a particular model against the AR2 benchmark (settings: recursive scheme; DCO interpolation;
Jan. 1998 first vintage; ERI-IDX partitioning variable; no pruning). Lasso-based regularization is applied. For space considerations 'DFT-NUM-PLUS-T'
and 'DFF-NUM-PLUS-T' were abbreviated to 'DFT-PLUS-T' and 'DFF-PLUS-T'. The acronym PLS refers to Partial Least Squares and the acronyms
KPCA and SPCA refer to Kernel and Sparse PCA, respectively. For more details, see notes in Table 1.

Table A.3: Extended Results:

tioning Sets with Novel Factors (relative RMSFE)

Lasso-based Penalization for Generalized Parti-
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Benchmarks Dynamic Factor Trees Dynamic Factor Forests

Horizon  Results Models rRMSFE Models rRMSFE

OS-DFM(F) 0.892 BS-DFM(F) 0.890

HMN OS-RT(F) 1.182 BS-RF(F) 0.877
1.063 E DFT-NUM(F) 0.887* DFF-NUM(F) 0.844**~
%  DFT-BIN50(F) 0.890 DFF-BIN50(F) 0.858***
- DFT-NUM-PLUS-T(F) 0.902 DFF-NUM-PLUS-T(F) 0.843
AR4 DFT-NUM-PLUS-X(F) 0.895 DFF-NUM-PLUS-X(F) 0.872***
0.983 DFT-NUM-RIDGE(F) 0.836*** DFF-NUM-RIDGE(F) 0.839***
h=1 DFT-NUM-LASSO(F) 0.826*** DFF-NUM-LASSO(F) 0.830***

OS-DFM(TF) 0.867 BS-DFM(TF) 0.866

ARL . OS-RT(TF) 1.270 BS-RF(TF) 0.867+
1.003 E DFT-NUM(TF) 0.867 DFF-NUM(TF) 0.828***
o DFT-BIN50(TF) 0.867 DFF-BIN50(TF) 0.843***
Eo DFT-NUM-PLUS-T(TF) 0.865 DFF-NUM-PLUS-T(TF) 0.830***
CADL DFT-NUM-PLUS-X(TF) 0.867 DFF-NUM-PLUS-X(TF) 0.854***
0.931 DFT-NUM-RIDGE(TF) 0.834**~ DFF-NUM-RIDGE(TF) 0.831***
DFT-NUM-LASSO(TF) 0.831*** DFF-NUM-LASSO(TF) 0.820***

OS-DFM(F) 0.883 BS-DFM(F) 0.880

HMN OS-RT(F) 1.404 BS-RF(F) 0.937
1.078 E DFT-NUM(F) 0.779*** DFF-NUM(F) 0.762***
&  DFT-BIN50(F) 0.785*** DFF-BIN50(F) 0.783***
- DFT-NUM-PLUS-T(F) 0.757*** DFF-NUM-PLUS-T(F) 0.781***
AR4 DFT-NUM-PLUS-X(F) 0.796*** DFF-NUM-PLUS-X(F) 0.807***
0.989 DFT-NUM-RIDGE(F) 0.789*** DFF-NUM-RIDGE(F) 0.778***
h—3 DFT-NUM-LASSO(F) 0.779*** DFF-NUM-LASSO(F) 0.769***

OS-DFM(TF) 0.864 BS-DFM(TF) 0.862

ARL . OS-RT(TF) 1.440 BS-RF(TF) 0.927
1.010 L‘,_L“) DFT-NUM(TF) 0.782*** DFF-NUM(TF) 0.751***
o DFT-BIN50(TF) 0.788*** DFF-BIN50(TF) 0.780***
ED DFT-NUM-PLUS-T(TF) 0.772*** DFF-NUM-PLUS-T(TF) 0.771***
CADL DFT-NUM-PLUS-X(TF) 0.920 DFF-NUM-PLUS-X(TF) 0.805***
0.932 DFT-NUM-RIDGE(TF) 0.783*** DFF-NUM-RIDGE(TF) 0.768***
DFT-NUM-LASSO(TF) 0.774*** DFF-NUM-LASSO(TF) 0.753***

Notes: The table entries show the relative RMSFE of a particular model against the AR2 benchmark (settings: recursive scheme; Chow-Lin (CLU)
interpolation; Jan. 1998 first vintage; ERI-IDX partitioning variable; BIC-based pruning). The penalized DFTs and DFFs are unpruned. For more

details, see notes in Table 1.

Table A.4: Robustness Results: Chow-Lin (CLU) Interpolation
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Benchmarks Dynamic Factor Trees Dynamic Factor Forests
Horizon  Results Models rRMSFE Models rRMSFE
OS-DFM(F) 0.943 BS-DFM(F) 0.942
HMN OS-RT(F) 1.451 BS-RF(F) 0.941
1.004 E DFT-NUM(F) 0.943 DFF-NUM(F) 0.922***
%  DFT-BIN50(F) 0.943 DFF-BIN50(F) 0.935***
- DFT-NUM-PLUS-T(F) 0.955 DFF-NUM-PLUS-T(F) 0.929***
AR4 DFT-NUM-PLUS-X(F) 0.965 DFF-NUM-PLUS-X(F) 0.941*
0.990 DFT-NUM-RIDGE(F) 0.963 DFF-NUM-RIDGE(F) 0.932**
h=1 DFT-NUM-LASSO(F) 0.972 DFF-NUM-LASSO(F) 0.932**
OS-DFM(TF) 0.927 BS-DFM(TF) 0.926
ARL . OS-RT(TF) 1.454 BS-RF(TF) 0.951
0.998 E DFT-NUM(TF) 0.927 DFF-NUM(TF) 0.908***
o DFT-BIN50(TF) 0.927 DFF-BIN50(TF) 0.922***
Eo DFT-NUM-PLUS-T(TF) 0.949 DFF-NUM-PLUS-T(TF) 0.910***
CADL DFT-NUM-PLUS-X(TF) 0.929 DFF-NUM-PLUS-X(TF) 0.934
0.971 DFT-NUM-RIDGE(TF) 0.949 DFF-NUM-RIDGE(TF) 0.925*
DFT-NUM-LASSO(TF) 0.944 DFF-NUM-LASSO(TF) 0.910**
OS-DFM(F) 0.930 BS-DFM(F) 0.928
HMN OS-RT(F) 1.563 BS-RF(F) 0.969
1.014 E DFT-NUM(F) 0.907** DFF-NUM(F) 0.861***
&  DFT-BIN50(F) 0.918* DFF-BIN50(F) 0.876***
- DFT-NUM-PLUS-T(F) 0.897** DFF-NUM-PLUS-T(F) 0.841***
AR4 DFT-NUM-PLUS-X(F) 0.966 DFF-NUM-PLUS-X(F) 0.889***
0.980 DFT-NUM-RIDGE(F) 0.897** DFF-NUM-RIDGE(F) 0.866***
h—3 DFT-NUM-LASSO(F) 0.890** DFF-NUM-LASSO(F) 0.864***
OS-DFM(TF) 0.931 BS-DFM(TF) 0.930
ARL . OS-RT(TF) 1.474 BS-RF(TF) 0.962
1.012 L‘,_L“) DFT-NUM(TF) 0.897** DFF-NUM(TF) 0.864***
o DFT-BIN50(TF) 0.938 DFF-BIN50(TF) 0.890***
ED DFT-NUM-PLUS-T(TF) 0.916* DFF-NUM-PLUS-T(TF) 0.826***
CADL DFT-NUM-PLUS-X(TF) 1.007 DFF-NUM-PLUS-X(TF) 0.888***
0.956 DFT-NUM-RIDGE(TF) 0.889** DFF-NUM-RIDGE(TF) 0.866***
DFT-NUM-LASSO(TF) 0.859*** DFF-NUM-LASSO(TF) 0.844**~

Notes: The table entries show the relative RMSFE of a particular model against the AR2 benchmark (settings: recursive scheme; Chow-Lin (CL3)
interpolation; Jan. 1998 first vintage; ERI-IDX partitioning variable; BIC-based pruning). The penalized DFTs and DFFs are unpruned. For more

details, see notes in Table 1.

Table A.5: Robustness Results: Chow-Lin (CL3) Interpolation

44



A APPENDIX: TABLES AND FIGURES

Benchmarks Dynamic Factor Trees Dynamic Factor Forests

Horizon  Results Models rRMSFE Models rRMSFE

OS-DFM(F) 0.885 BS-DFM(F) 0.881

HMN OS-RT(F) 1.182 BS-RF(F) 0.877
0.998 E DFT-NUM(F) 0.809*** DFF-NUM(F) 0.772***
%  DFT-BIN50(F) 0.811*** DFF-BIN50(F) 0.792***
- DFT-NUM-PLUS-T(F) 0.806*** DFF-NUM-PLUS-T(F) 0.780***
AR4 DFT-NUM-PLUS-X(F) 0.822*** DFF-NUM-PLUS-X(F) 0.815***
0.935 DFT-NUM-RIDGE(F) 0.802*** DFF-NUM-RIDGE(F) 0.776***
h=1 DFT-NUM-LASSO(F) 0.800*** DFF-NUM-LASSO(F) 0.770***

OS-DFM(TF) 0.814 BS-DFM(TF) 0.813

ARL . OS-RT(TF) 1.208 BS-RF(TF) 0.879
0.909 E DFT-NUM(TF) 0.742*** DFF-NUM(TF) 0.715***
o DFT-BIN50(TF) 0.767*** DFF-BIN50(TF) 0.740***
Eo DFT-NUM-PLUS-T(TF) 0.763*** DFF-NUM-PLUS-T(TF) 0.730***
CADL DFT-NUM-PLUS-X(TF) 0.765*** DFF-NUM-PLUS-X(TF) 0.746***
0.938 DFT-NUM-RIDGE(TF) 0.760*** DFF-NUM-RIDGE(TF) 0.727**~*
DFT-NUM-LASSO(TF) 0.753*** DFF-NUM-LASSO(TF) 0.727***

OS-DFM(F) 0.964 BS-DFM(F) 0.956

HMN OS-RT(F) 1.209 BS-RF(F) 0.971
1.020 E DFT-NUM(F) 0.839*** DFF-NUM(F) 0.805***
&  DFT-BIN50(F) 0.853*** DFF-BIN50(F) 0.841***
- DFT-NUM-PLUS-T(F) 0.833*** DFF-NUM-PLUS-T(F) 0.848***
AR4 DFT-NUM-PLUS-X(F) 0.855*** DFF-NUM-PLUS-X(F) 0.899***
0.973 DFT-NUM-RIDGE(F) 0.837*** DFF-NUM-RIDGE(F) 0.805***
h—3 DFT-NUM-LASSO(F) 0.839*** DFF-NUM-LASSO(F) 0.810***

OS-DFM(TF) 0.940 BS-DFM(TF) 0.933

ARL . OS-RT(TF) 1.422 BS-RF(TF) 0.970
0.980 L‘,_L“) DFT-NUM(TF) 0.775*** DFF-NUM(TF) 0.753***
o DFT-BIN50(TF) 0.850*** DFF-BIN50(TF) 0.819***
ED DFT-NUM-PLUS-T(TF) 0.797*** DFF-NUM-PLUS-T(TF) 0.819***
CADL DFT-NUM-PLUS-X(TF) 0.820*** DFF-NUM-PLUS-X(TF) 0.847***
0.960 DFT-NUM-RIDGE(TF) 0.786*** DFF-NUM-RIDGE(TF) 0.761***
DFT-NUM-LASSO(TF) 0.790*** DFF-NUM-LASSO(TF) 0.764***

Notes: The table entries show the relative RMSFE of a particular model against the AR2 benchmark (settings: rolling scheme; DCO interpolation;
Jan. 1998 first vintage; ERI-IDX partitioning variable; BIC-based pruning). The rolling window has a length of 300 observations. The penalized
DFTs and DFFs are unpruned. For more details, see notes in Table 1.

Table A.6: Robustness Results: Rolling Windows
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Benchmarks Dynamic Factor Trees Dynamic Factor Forests

Horizon  Results Models rRMSFE Models rRMSFE

OS-DFM(F) 0.865 BS-DFM(F) 0.864

HMN OS-RT(F) 1.325 BS-RF(F) 0.878
0.998 E DFT-NUM(F) 0.819*** DFF-NUM(F) 0.797***
%  DFT-BIN50(F) 0.834*** DFF-BIN50(F) 0.816***
- DFT-NUM-PLUS-T(F) 0.859*** DFF-NUM-PLUS-T(F) 0.791***
AR4 DFT-NUM-PLUS-X(F) 0.867 DFF-NUM-PLUS-X(F) 0.828***
0.927 DFT-NUM-RIDGE(F) 0.826*** DFF-NUM-RIDGE(F) 0.802***
h=1 DFT-NUM-LASSO(F) 0.828*** DFF-NUM-LASSO(F) 0.798***

OS-DFM(TF) 0.831 BS-DFM(TF) 0.830

ARL . OS-RT(TF) 1.417 BS-RF(TF) 0.872
0.894 E DFT-NUM(TF) 0.811*** DFF-NUM(TF) 0.773***
o DFT-BIN50(TF) 0.815*** DFF-BIN50(TF) 0.793***
Eo DFT-NUM-PLUS-T(TF) 0.861 DFF-NUM-PLUS-T(TF) 0.767***
CADL DFT-NUM-PLUS-X(TF) 0.819*** DFF-NUM-PLUS-X(TF) 0.799***
0.924 DFT-NUM-RIDGE(TF) 0.811*** DFF-NUM-RIDGE(TF) 0.783***
DFT-NUM-LASSO(TF) 0.807*** DFF-NUM-LASSO(TF) 0.779***

OS-DFM(F) 0.947 BS-DFM(F) 0.943

HMN OS-RT(F) 1.565 BS-RF(F) 0.991
1.015 E DFT-NUM(F) 0.900*** DFF-NUM(F) 0.859***
&  DFT-BIN50(F) 0.902*** DFF-BIN50(F) 0.880***
- DFT-NUM-PLUS-T(F) 1.027 DFF-NUM-PLUS-T(F) 0.853***
AR4 DFT-NUM-PLUS-X(F) 0.941** DFF-NUM-PLUS-X(F) 0.900***
0.975 DFT-NUM-RIDGE(F) 0.896*** DFF-NUM-RIDGE(F) 0.865***
h—3 DFT-NUM-LASSO(F) 0.892*** DFF-NUM-LASSO(F) 0.863***

OS-DFM(TF) 0.931 BS-DFM(TF) 0.926

ARL . OS-RT(TF) 1.515 BS-RF(TF) 0.987
0.987 L‘,_L“) DFT-NUM(TF) 0.906*** DFF-NUM(TF) 0.841***
o DFT-BIN50(TF) 0.908*** DFF-BIN50(TF) 0.871***
ED DFT-NUM-PLUS-T(TF) 0.935** DFF-NUM-PLUS-T(TF) 0.824**~
CADL DFT-NUM-PLUS-X(TF) 0.972 DFF-NUM-PLUS-X(TF) 0.878***
0.944 DFT-NUM-RIDGE(TF) 0.898*** DFF-NUM-RIDGE(TF) 0.859***
DFT-NUM-LASSO(TF) 0.887*** DFF-NUM-LASSO(TF) 0.852***

Notes: The table entries show the relative RMSFE of a particular model against the AR2 benchmark (settings: recursive scheme; DCO interpolation;
Jan. 1985 first vintage; ERI-IDX partitioning variable; BIC-based pruning). The penalized DFTs and DFFs are unpruned. For more details, see

notes in Table 1.

Table A.7: Robustness Results: Extended Forecasting Window (1985-2018)
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Benchmarks Dynamic Factor Trees Dynamic Factor Forests
Horizon  Results Models rRMSFE Models rRMSFE
HMN OS-DFM(F) 0.739 BS-DFM(F) 0.744
1.115 £ OS-RT(F) 1.335 BS-RF(F) 0.859
AR4 ,_1_% DFT-NUM(F) 0.709** DFF-NUM(F) 0.686***
h—0 1.004 DFT-BIN50(F) 0.703*** DFF-BIN50(F) 0.708***
ARL 8 OS-DFM(TF) 0.754 BS-DFM(TF) 0.762
1.025 &  OS-RT(TF) 1.419 BS-RF(TF) 0.847
CADL ‘5‘}, DFT-NUM(TF) 0.719*** DFF-NUM(TF) 0.703***
0.869 = DFT-BIN50(TF) 0.705*** DFF-BIN50(TF) 0.722***
HMN OS-DFM(F) 0.973 BS-DFM(F) 0.977
1.060 g OS-RT(F) 1.637 BS-RF(F) 0.967
AR4 ,_j_% DFT-NUM(F) 0.899*** DFF-NUM(F) 0.903***
he=1 1.006 DFT-BIN50(F) 0.920*** DFF-BIN50(F) 0.921***
ARL g OS-DFM(TF) 0.866 BS-DFM(TF) 0.874
1.002 &  OS-RT(TF) 1.501 BS-RF(TF) 0.940
CADL ‘é"o DFT-NUM(TF) 0.825*** DFF-NUM(TF) 0.840***
0.945 = DFT-BIN50(TF) 0.862* DFF-BIN50(TF) 0.863**

Notes: The table entries show the relative RMSFE of a particular model against the AR2 benchmark (settings: recursive scheme;
quarterly frequency; Q1 Jan. 1998 first vintage; ERI-IDX partitioning variable; without pruning). The results for the predictions in
the 3rd month of every quarter are shown. The DM-tests require h = 1 for both forecasting horizons and were derived accordingly
(cf. Hyndman et al., 2019). The hyper-parameter for minsize was determined via cross-validation. For more details, see notes in

Table 1.
Table A.8: Robustness Results: Quarterly Frequency
Benchmarks Dynamic Factor Trees Dynamic Factor Forests
Horizon  Results Models rRMSFE Models rRMSFE
HMN OS-DFM(F) 0.841 BS-DFM(F) 0.839
1.001 g OS-RT(F) 1.210 BS-RF(F) 0.857
AR4 ,_j_% DFT-NUM(F) 0.770*** DFF-NUM(F) 0.748***
he=1 0.924 DFT-BIN50(F) 0.763*** DFF-BIN50(F) 0.759***
ARL 8 OS-DFM(TF) 0.802 BS-DFM(TF) 0.800
0.894 & OS-RT(TF) 1.325 BS-RF(TF) 0.851
CADL ‘5_5 DFT-NUM(TF) 0.760*** DFF-NUM(TF) 0.727***
0.922 = DFT-BIN50(TF) 0.739*** DFF-BIN50(TF) 0.734***
HMN OS-DFM(F) 0.914 BS-DFM(F) 0.909
1.014 £ OS-RT(F) 1.474 BS-RF(F) 0.953
AR4 ,_‘,_% DFT-NUM(F) 0.843*** DFF-NUM(F) 0.815***
h—3 0.970 DFT-BIN50(F) 0.827*** DFF-BIN50(F) 0.821***
ARL 8 OS-DFM(TF) 0.894 BS-DFM(TF) 0.892
0.975 &  OS-RT(TF) 1.400 BS-RF(TF) 0.951
CADL ‘E;_‘j) DFT-NUM(TF) 0.853** DFF-NUM(TF) 0.802***
0.943 = DFT-BIN50(TF) 0.819*** DFF-BIN50(TF) 0.812***

Notes: The table entries show the relative RMSFE of a particular model against the AR2 benchmark (settings: recursive scheme;
DCO interpolation; Jan. 1998 first vintage; ERI-IDX partitioning variable). The estimation employs pre-pruning at significance level
0.1%. For more details, see notes in Table 1.

Table A.9: Robustness Results: Pre-Pruning
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Benchmarks Dynamic Factor Trees Dynamic Factor Forests
Horizon  Results Models rRMSFE Models rRMSFE
HMN OS-DFM(F) 0.873 BS-DFM(F) 0.872
1.001 £ OS-RT(F) 1.388 BS-RF(F) 0.855
AR4 L‘,_% DFT-NUM(F) 0.801*** DFF-NUM(F) 0.777***
h—1 0.924 DFT-BIN50(F) 0.791*** DFF-BIN50(F) 0.788***
ARL 8 OS-DFM(TF) 0.895 BS-DFM(TF) 0.896
0.894 &  OS-RT(TF) 1.222 BS-RF(TF) 0.854
CADL ‘E;_L DFT-NUM(TF) 0.804*** DFF-NUM(TF) 0.795***
0.922 ~  DFT-BIN50(TF) 0.808*** DFF-BIN50(TF) 0.806***
HMN OS-DFM(F) 0.897 BS-DFM(F) 0.879
1.014 g OS-RT(F) 1.434 BS-RF(F) 0.953
AR4 ,_',_% DFT-NUM(F) 0.802*** DFF-NUM(F) 0.747***
h=3 0.970 DFT-BIN50(F) 0.796** DFF-BIN50(F) 0.793**
ARL 8 OS-DFM(TF) 0.915 BS-DFM(TF) 0.908
0.975 & OS-RT(TF) 1.405 BS-RF(TF) 0.951
CADL % DFT-NUM(TF) 0.785*** DFF-NUM(TF) 0.759***
0.943 = DFT-BIN50(TF) 0.811** DFF-BIN50(TF) 0.810**

Notes: The table entries show the relative RMSFE of a particular model against the AR2 benchmark (settings: recursive scheme;
DCO interpolation; Jan. 1998 first vintage; ERI-IDX partitioning variable; BIC-based pruning). The RTs, RFs, DFMs, DFTs and
DFFs were estimated with 1 factor. For more details, see notes in Table 1.

Table A.10: Robustness Results: One Factor

Benchmarks Dynamic Factor Trees Dynamic Factor Forests
Horizon Results Models rRMSFE Models rRMSFE
HMN OS-DFM(F) 0.767 BS-DFM(F) 0.765
1.001 g OS-RT(F) 1.317 BS-RF(F) 0.853
AR4 ,_',_% DFT-NUM(F) 0.767 DFF-NUM(F) 0.714***
he=1 0.924 DFT-BIN50(F) 0.767 DFF-BIN50(F) 0.728***
ARL g OS-DFM(TF) 0.772 BS-DFM(TF) 0.773
0.894 &  OS-RT(TF) 1.196 BS-RF(TF) 0.850
CADL *é‘;) DFT-NUM(TF) 0.772 DFF-NUM(TF) 0.706***
0.922 = DFT-BIN50(TF) 0.772 DFF-BIN50(TF) 0.731***
HMN OS-DFM(F) 0.838 BS-DFM(F) 0.837
1.014 £ OS-RT(F) 1.397 BS-RF(F) 0.949
AR4 L‘E DFT-NUM(F) 0.801** DFF-NUM(F) 0.761***
h—3 0.970 DFT-BIN50(F) 0.818* DFF-BIN50(F) 0.780***
ARL 8 OS-DFM(TF) 0.843 BS-DFM(TF) 0.843
0.975 &  OS-RT(TF) 1.393 BS-RF(TF) 0.948
CADL ‘é‘}, DFT-NUM(TF) 0.808** DFF-NUM(TF) 0.752***
0.943 = DFT-BIN50O(TF) 0.826* DFF-BIN50(TF) 0.776***

Notes: The table entries show the relative RMSFE of a particular model against the AR2 benchmark (settings: recursive scheme;
DCO interpolation; Jan. 1998 first vintage; ERI-IDX partitioning variable; BIC-based pruning). The RTs, RFs, DFMs, DFTs and
DFFs were estimated with 10 factors. For more details, see notes in Table 1.

Table A.11: Robustness Results: Ten Factors
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Benchmarks Dynamic Factor Trees Dynamic Factor Forests
Horizon  Results Models rRMSFE Models rRMSFE
HMN OS-DFM(F) 0.841 BS-DFM(F) 0.839
1.001 £ OS-RT(F) 1.210 BS-RF(F) 0.857
AR4 L‘,_% DFT-NUM(F) 0.840 DFF-NUM(F) 0.828**
h—1 0.924 DFT-BIN50(F) 0.840 DFF-BIN50(F) 0.834*
ARL 8 OS-DFM(TF) 0.802 BS-DFM(TF) 0.800
0.894 &  OS-RT(TF) 1.325 BS-RF(TF) 0.851
CADL ‘E;_L DFT-NUM(TF) 0.798+ DFF-NUM(TF) 0.789***
0.922 ~  DFT-BIN50(TF) 0.798+ DFF-BIN50(TF) 0.794***
HMN OS-DFM(F) 0.914 BS-DFM(F) 0.909
1.014 g OS-RT(F) 1.474 BS-RF(F) 0.953
AR4 ,_',_% DFT-NUM(F) 0.913 DFF-NUM(F) 0.908
h=3 0.970 DFT-BIN50(F) 0.913 DFF-BIN50(F) 0.910
ARL 8 OS-DFM(TF) 0.894 BS-DFM(TF) 0.892
0.975 & OS-RT(TF) 1.400 BS-RF(TF) 0.951
CADL % DFT-NUM(TF) 0.883* DFF-NUM(TF) 0.886**
0.943 = DFT-BIN50(TF) 0.883* DFF-BIN50(TF) 0.883**

Notes: The table entries show the relative RMSFE of a particular model against the AR2 benchmark (settings: recursive scheme;
DCO interpolation; Jan. 1998 first vintage; SPF-REC1-IDX partitioning variable; BIC-based pruning). For more details, see notes

in Table 1.

Table A.12: Robustness Results: 1st SPF-Recession Probability Index

Benchmarks Dynamic Factor Trees Dynamic Factor Forests
Horizon Results Models rRMSFE Models rRMSFE
HMN OS-DFM(F) 0.841 BS-DFM(F) 0.839
1.001 g OS-RT(F) 1.210 BS-RF(F) 0.857
AR4 ,_',_% DFT-NUM(F) 0.840 DFF-NUM(F) 0.785***
he=1 0.924 DFT-BIN50(F) 0.840 DFF-BIN50(F) 0.825***
ARL g OS-DFM(TF) 0.802 BS-DFM(TF) 0.800
0.894 &  OS-RT(TF) 1.325 BS-RF(TF) 0.851
CADL *é‘;) DFT-NUM(TF) 0.792*** DFF-NUM(TF) 0.752***
0.922 = DFT-BIN50(TF) 0.798+ DFF-BIN50(TF) 0.787***
HMN OS-DFM(F) 0.914 BS-DFM(F) 0.909
1.014 £ OS-RT(F) 1.474 BS-RF(F) 0.953
AR4 L‘E DFT-NUM(F) 0.911 DFF-NUM(F) 0.870**
h—3 0.970 DFT-BIN50(F) 0.913 DFF-BIN50(F) 0.907
ARL 8 OS-DFM(TF) 0.894 BS-DFM(TF) 0.892
0.975 &  OS-RT(TF) 1.400 BS-RF(TF) 0.951
CADL ‘é‘}, DFT-NUM(TF) 0.874*** DFF-NUM(TF) 0.875**
0.943 = DFT-BIN50O(TF) 0.883* DFF-BIN50(TF) 0.880**

Notes: The table entries show the relative RMSFE of a particular model against the AR2 benchmark (settings: recursive scheme;
DCO interpolation; Jan. 1998 first vintage; SPF-REC2-IDX partitioning variable; BIC-based pruning). For more details, see notes

in Table 1.

Table A.13: Robustness Results: 2nd SPF-Recession Probability Index
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Benchmarks Dynamic Factor Trees Dynamic Factor Forests
Horizon  Results Models rRMSFE Models rRMSFE
HMN OS-DFM(F) 0.841 BS-DFM(F) 0.839
1.001 g OS-RT(F) 1.210 BS-RF(F) 0.857
AR4 E DFT-NUM(F) 0.811*** DFF-NUM(F) 0.801***
he=1 0.924 DFT-BIN50(F) 0.816** DFF-BIN50(F) 0.805***
ARL 8 OS-DFM(TF) 0.802 BS-DFM(TF) 0.800
0.894 & OS-RT(TF) 1.325 BS-RF(TF) 0.851
CADL ‘é'.o DFT-NUM(TF) 0.779** DFF-NUM(TF) 0.796*
0.922 = DFT-BIN50(TF) 0.794* DFF-BIN50(TF) 0.777***
HMN OS-DFM(F) 0.914 BS-DFM(F) 0.910
1.014 £  OS-RT(F) 1.473 BS-RF(F) 0.954
AR4 L‘,_% DFT-NUM(F) 0.924 DFF-NUM(F) 0.947
h—3 0.970 DFT-BIN50(F) 0.912 DFF-BIN50(F) 0.906*
ARL 8 OS-DFM(TF) 0.894 BS-DFM(TF) 0.892
0.975 &  OS-RT(TF) 1.399 BS-RF(TF) 0.951
CADL ‘E;_';, DFT-NUM(TF) 1.002 DFF-NUM(TF) 0.962
0.943 = DFT-BIN50(TF) 0.897 DFF-BIN50(TF) 0.896

Notes: The table entries show the relative RMSFE of a particular model against the AR2 benchmark (settings: recursive scheme;
DCO interpolation; Jan. 1998 first vintage; ERI-IDX partitioning variable; BIC-based pruning). Assuming the absence of a publication
lag of the ERI-IDX is relaxed and missing values are inferred from a regime-switching model (see Section 4.3.8). For more details,

see notes in Table 1.

Table A.14: Robustness Results: Publication Lag
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