
Xing, Haipeng

Article

A singular stochastic control approach for optimal
pairs trading with proportional transaction costs

Journal of Risk and Financial Management

Provided in Cooperation with:
MDPI – Multidisciplinary Digital Publishing Institute, Basel

Suggested Citation: Xing, Haipeng (2022) : A singular stochastic control approach for optimal
pairs trading with proportional transaction costs, Journal of Risk and Financial Management,
ISSN 1911-8074, MDPI, Basel, Vol. 15, Iss. 4, pp. 1-23,
https://doi.org/10.3390/jrfm15040147

This Version is available at:
https://hdl.handle.net/10419/258870

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

  https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.3390/jrfm15040147%0A
https://hdl.handle.net/10419/258870
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Citation: Xing, Haipeng. 2022.

A Singular Stochastic Control

Approach for Optimal Pairs Trading

with Proportional Transaction Costs.

Journal of Risk and Financial

Management 15: 147. https://

doi.org/10.3390/jrfm15040147

Academic Editor: David Allen

Received: 14 February 2022

Accepted: 12 March 2022

Published: 23 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Risk and Financial
Management

Article

A Singular Stochastic Control Approach for Optimal Pairs
Trading with Proportional Transaction Costs
Haipeng Xing

Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA;
haipeng.xing@stonybrook.edu; Tel.: +1-631-632-1892

Abstract: Optimal trading strategies for pairs trading have been studied by models that try to
find either optimal shares of stocks by assuming no transaction costs or optimal timing of trading
fixed numbers of shares of stocks with transaction costs. To find optimal strategies that determine
optimally both trade times and number of shares in a pairs trading process, we use a singular
stochastic control approach to study an optimal pairs trading problem with proportional transaction
costs. Assuming a cointegrated relationship for a pair of stock log-prices, we consider a portfolio
optimization problem that involves dynamic trading strategies with proportional transaction costs.
We show that the value function of the control problem is the unique viscosity solution of a nonlinear
quasi-variational inequality, which is equivalent to a free boundary problem for the singular stochastic
control value function. We then develop a discrete time dynamic programming algorithm to compute
the transaction regions, and show the convergence of the discretization scheme. We illustrate our
approach with numerical examples and discuss the impact of different parameters on transaction
regions. We study the out-of-sample performance in an empirical study that consists of six pairs of U.S.
stocks selected from different industry sectors, and demonstrate the efficiency of the optimal strategy.

Keywords: free-boundary problem; pairs trading; stochastic control; trading strategies; transaction
costs; transaction regions

1. Introduction

Pairs trading is one of proprietary statistical arbitrage tools used by many hedge
funds and investment banks. It is a short-term trading strategy that first identifies two
stocks whose prices are associated in a long-run equilibrium and then trades on temporary
deviations of stock prices from the equilibrium. Though pairs trading is a simple market
neutral strategy, it has been used and discussed extensively by industrial practitioners in
the last several decades; see detailed discussion in Vidyamurthy (2004), Whistler (2004),
Ehrman (2006), Lai and Xing (2008), and references therein.

Besides its wide practice in financial industry, pairs trading also draws much attention
from academic researchers. For instance, Gatev et al. (2006) examined the risk and returns
of pairs trading using daily data collected from the U.S. equity market and concluded
that the strategy in general produces profit higher than transaction costs. To investigate
the pairs trading strategy analytically, Elliott et al. (2005) modeled the spread of returns
as a mean-reverting process and proposed a trading strategy based on the model. This
motivates subsequent researchers to formulate pairs trading rules as stochastic control
problems for an Ornstein–Uhlenbeck (OU) process and a correlated stock price process.
In particular, Mudchanatongsuk et al. (2008) assumed the log-relationship between a
pair of stock prices follows a mean-reverting process, and considered a self-financing
portfolio strategy that only allows positions that were long in one stock and short in the
other with equal dollar amounts. They then formulated a portfolio optimization based
stochastic control problem and obtained the optimal solution to this control problem in
closed form via the corresponding Hamilton–Jacobi–Bellman (HJB) equation. Relaxing the
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equal dollar constraint, Tourin and Yan (2013) extended Mudchanatongsuk et al. (2008)’s
approach and study pairs trading strategies with arbitrary amounts in each stock without
any transaction costs.

Instead of deriving optimal weights of stocks in pairs trading, another line of study on
pairs trading strategies fixes the number of traded shares for each stock during the entire
trading process and considers only the optimal timing of trades in the presence of fixed or
proportional transaction costs. Specifically, Leung and Li (2015) studies the optimal timing
to open or close the position subject to fixed transaction costs and the effect of stop-loss
level under the OU process by constructing the value function directly. Zhang and Zhang
(2008), Song and Zhang (2013), and Ngo and Pham (2016) studied the optimal pairs trading
rule that is based on optimal switching among two (buy and sell) or three (buy, sell, and
flat) regimes with a fixed commission cost for each transaction, and solve the problem by
finding viscosity solutions to the associated HJB equations (quasi-variational inequalities).
Lei and Xu (2015) studied the optimal pairs trading rule of entering and exiting the asset
market in finite horizon with proportional transaction cost for two convergent assets. Note
that, although transaction costs are considered in these strategies, since the number of
traded shares of stocks are fixed during the entire trading period, these strategies are still
far from traders’ practical experience in reality.

The above study on optimal pairs trading focuses either on optimal trading shares
without transaction costs or optimal trading times with fixed trading shares in the presence
of transaction costs. To relax the assumption of fixed trading shares in the latter study, this
paper uses a singular stochastic control approach to study the joint effect of optimal trading
shares and optimal trading times in pairs trading process with proportional transaction
costs. For convenience, we assume the same diffusion and Urnstein–Uhlenbeck processes
for one stock and its spread with the other stock as those in Mudchanatongsuk et al. (2008).
However, different from Mudchanatongsuk et al. (2008) who used a trading rule which
requires to short one stock and long the other in equal dollar amounts, we consider a
delta-neutral rule under which the ratio of traded shares for two stocks is fixed and this
fixed ratio is determined by the cointegration relationship of two stocks. Hence, when the
number of shares of one stock is determined, based on the rule of delta neutral, the number
of shares for the other stock is also determined. Besides the weight of shares need to be
optimally chosen, we also assume a proportional transaction cost for each trade and hence
the optimal times of trading also needs to be decided.

With the above assumptions, we solve the optimal pair trading problem by the singular
stochastic control approach in Davis et al. (1993). As the overall transaction cost based
on the above assumption depends on both trading times and the numbers of shares in
each trade, we compute the terminal utility of wealth over a fixed horizon and formulate
the problem of choosing optimal trading times and the number of shares as a singular
stochastic control problem. We derive the Hamilton–Jacobi–Bellman equations for this
problem, and show that the value function of the problem is the unique viscosity solution
of a quasi-variational inequality. We further argue that the quasi-variational inequality
is equivalent to a free boundary problem so that the state space consisting of one stock
price and its spread with the other stock can be naturally divided into three transaction
regions: long the first stock and short the second, short the first and long the second, and
no transaction. The implied transaction regions can help us determine not only optimal
times of each transaction, but also the optimal number of shares in each transaction. To
compute the boundaries of these transaction regions, we develop a numerical algorithm
that is based on discrete time dynamic programming to solve the equation for the negative
exponential utility function, and show that the numerical solution converges to the unique
continuous-time solution of the problem.

To demonstrate the advantage of joint consideration of optimal shares and optimal
trading times in pair trading, we carry out both simulation and empirical studies. Specifi-
cally, we study the time-varying transaction regions (or trading boundaries) for a specific
set of model parameters, and investigate the impact of variations of model parameters on
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transaction regions and performance of the optimal strategy. For comparison purposes, we
also consider a benchmark strategy based on the deviation of the spread from its long-term
mean and is popular among practitioners. In both simulation studies and real data analysis,
we show that the optimal trading strategy performs better than the benchmark strategy.

The rest of the paper is organized as follows. Section 2 first formulates the model and
then derive the Hamilton–Jacobi–Bellman equations associated with the singular stochastic
control problems. It shows the existence and uniqueness of the viscosity solution for the
variational inequalities, which are equivalent to the portfolio optimization problem, and
reduces the problem into a free boundary problem. Section 2 also considers the optimal
trading problem with exponential utility functions. In Section 3, we discretize the free
boundary problem and propose a discrete time dynamic programming algorithm. We
also demonstrate that the solution of the discretized problem converges to the viscosity
solution of the variational inequalities. Sections 4 and 5 provide simulation and empirical
studies of the model and the optimal trading strategy, and compare its performance with a
benchmark trading strategy. Some concluding remarks are given in Section 6.

2. A Pairs Trading Problem with Proportional Transaction Costs
2.1. Model Specification

Consider a pair of two stocks P and Q, and let p(t) and q(t) denote their prices at time
t, respectively. We assume that the price of stock P follows a geometric Brownian motion,

dp(t) = µp(t)dt + σp(t)dB(t), (1)

where µ and σ are the drift and the volatility of stock P, and B(t) is a standard Brownian
motion defined on a filtered probability space and specified later. Denote x(t) the difference
of the logarithms of the two stock prices, i.e.,

x(t) = log q(t)− log p(t) = log(q(t)/p(t)). (2)

We assume that the spread follows an Ornstein–Uhlenbeck process

dx(t) = κ(θ − x(t))dt + νdW(t), (3)

where κ > 0 is the speed of mean reversion, and θ is the long-term equilibrium level to
which the spread reverts. We assume that (B(t), W(t)) is a two-dimensional Brownian
motion defined on a filtered probability space (Ω,Ft,P), and the instantaneous correlation
coefficient between B(t) and W(t) is ρ, i.e.,

E[dW(t)dB(t)] = ρdt. (4)

The above assumptions are same as those in Mudchanatongsuk et al. (2008). With
these assumptions, we can express the dynamics of q(t) as

dq(t) =
[
µ + κ(θ − x(t)) +

1
2

ν2 + ρσν
]
q(t)dt + σq(t)dB(t) + νq(t)dW(t). (5)

In the presence of proportional transaction costs, the investor pays 0 < ζp, ζq < 1 and
0 < ηp, ηq < 1 of the dollar value transacted on purchase and sale of the underlying stocks
P and Q. Denote Lp(t) and Mp(t) two nondecreasing and non-anticipating processes and
represent the cumulative number of shares of stock P bought or sold, respectively, within
the time interval [0, t], 0 ≤ t ≤ T. Let yp(t) be the number of shares held in stock P, i.e.,
yp(t) = Lp(t)−Mp(t), and similarly, we define Lq(t), Mq(t), and yq(t) = Lq(t)−Mq(t)
for stock Q. Denote g(t) the dollar value of the investment in bond which pays a fixed
risk-free rate of r. Then, the investor’s position in two stocks and the bond is driven by

dyp(t) = dLp(t)− dMp(t), dyq(t) = dLq(t)− dMq(t) (6)
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and

dg(t) = rg(t)dt + bp p(t)dMp(t)− aqq(t)dLq(t) + bqq(t)dMq(t)− ap p(t)dLp(t), (7)

where ai = 1 + ζi and bi = 1− ηi for i = p, q.
We then need to choose a rule to determine the number of shares of stocks P and Q

bought or sold at time t. Note that, Mudchanatongsuk et al. (2008) assumed no transaction
cost and considered the strategy that always shorts one stock and longs the other in equal
dollar amount, i.e., p(t)dLp(t) + q(t)dMq(t) = 0 or p(t)dMp(t) + q(t)dLq(t) = 0 at time t.
Lei and Xu (2015) and Ngo and Pham (2016) considered a delta-neutral strategy that always
long one share of a stock and short one share of the other stock, i.e., dyp(t) = −dyq(t) = 1
or dyp(t) = −dyq(t) = −1 at time t. Here, we also consider a delta-neutral strategy that
requires the total of positive and negative delta of two assets is zero, hence it suggests that
the number of shares of stock P bought (or sold) at time t are same as the number of shares
of stock Q sold (or bought), i.e.,

dLp(t) = dMq(t), dMp(t) = dLq(t). (8)

Equation (8) implies that
dyq(t) = −dyp(t)

at any time t. Comparing to Lei and Xu (2015) and Ngo and Pham (2016), we remove the
constraint dyp(t) = −dyq(t) = 1 or −1 and allow yp(t) = −yq(t) to be a control variable.
Using Equations (5) and (8), the dynamics of g(t) in Equation (7) can be simplified as

dg(t) = rg(t)dt−
(
ap − bqex(t))p(t)dLp(t) +

(
bp − aqex(t))p(t)dMp(t). (9)

The process (Lp(t), Mp(t)) together with our delta-neutral strategy provides us an
admissible trading strategy. For convenience, we denote T (g0) the set of admissible trading
strategies that an investor starts at time zero with amount g0 of the investment in bond and
zero holdings in two stocks (i.e., yp(0) = yq(0) = 0), which indicates that the numbers of
shares held in stocks P and Q at time t are yp(t) and −yp(t), respectively. For notational
convenience, we omit the subscript of yp(t) and denote yp(t) as y(t) in our discussion.
Then, Equations (1), (3), (6) and (9) compose the market model in the time interval [0, T],
which describes a stochastic process of (p(t), x(t), yp(t), g(t)) in R+ ×R×R×R.

Denote the terminal value of the pairs trading portfolio by J(x(T), p(T), y(T)). Note
that, under our assumption, y(T) indicates that the investor’s positions in stocks P and Q
are y(T) and −y(T), respectively, then the liquidated value of the portfolio is

J(p(T), x(T), y(T)) = A+(p(T), x(T))y(T)1{y(T)≥0} + A−(p(T), x(T))y(T)1{y(T)<0}, (10)

where
A+(p, x) = (bp − aqex)p, A−(p, x) = (ap − bqex)p.

Furthermore, if the investment in bond at terminal time T is g(T), the terminal wealth
of the investor is given by g(T) + J(p(T), x(T), y(T)). Suppose that the investor’s utility
U : R −→ R is a concave and increasing function with U(0) = 0. We assume that the
investor’s goal is to maximize the expected utility of terminal wealth under the market
model (1), (3), (6) and (9),

V(t, p, x, y, g) = sup
(Lp(t),Mp(t))∈T (g0)

E
{

U(g(T) + J(p(T), x(T), y(T))|p(t) = p,

x(t) = x, yt = y, g(t) = g
}

.
(11)
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Furthermore, given trading strategies (Lp, Mp), the total trading cost incurred over
[t, T] can be expressed as

C(Lp, Mp; t, T) =
∫ T

t
er(T−u)A−(p(u), x(u))dLp(u)−

∫ T

t
er(T−u)A+(p(u), x(u))dMp(u)

−J(p(T), x(T), y(T)). (12)

and the total profit over [t, T] is −C(Lp, Mp; t, T).

2.2. The Hamilton-Jacobi-Bellman Equations and Free Boundary Problems

We now derive the Hamilton–Jacobi–Bellman (HJB) equations, associated with the
stochastic control problems, for the utility maximization problem (11). Consider a class of
trading strategies such that Lp(t) and Mp(t) are absolutely continuous processes, given by

Lp(t) =
∫ t

0
l(u)du, Mp(t) =

∫ t

0
m(u)du,

where l(u) and m(u) are positive and uniformly bounded by ξ < ∞. Then, (1), (3), (6)
and (9) provides us a system of stochastic differential equations with controlled drift, and
the Bellman equation for a value function denoted by Vξ is

L1,oVξ + sup
0≤lt ,mt≤ξ

{[
L1,bVξ

]
lt −

[
L1,sVξ

]
mt

}
= 0,

for (t, p, X, y, g) ∈ [0, T] × R+ × R × R × R, in which the operators L, B, and S are
defined as

L1,o :=
∂

∂t
+ κ
(
θ − x

) ∂

∂x
+ µp

∂

∂p
+ rg

∂

∂g
+

1
2

ν2 ∂2

∂x2 + ρνσp
∂2

∂p∂x
+

1
2

σ2 p2 ∂2

∂p2 ,

L1,b :=
∂

∂y
−
(
ap − bqex(t))p(t)

∂

∂g
,

L1,s :=
∂

∂y
−
(
bp − aqex(t))p(t)

∂

∂g
.

The optimal trading strategy is then determined by considering the following three
possible cases:

(i) buying stock P and sell stock Q at the same rate l(t) = ξ (i.e., m(t) = 0) when

L1,bVξ ≥ 0, L1,sVξ > 0; (13)

(ii) selling stock P and buy stock Q at rate m(t) = ξ (i.e., l(t) = 0) when

L1,bVξ < 0, L1,sVξ ≤ 0; (14)

(iii) doing nothing (i.e., l(t) = m(t) = 0) when

L1,bVξ ≤ 0, L1,sVξ ≥ 0. (15)

Note that the case L1,bVξ > 0 and L1,sVξ < 0 can not occur, as all value functions are
increasing functions of g.

The above argument shows that the optimization problem (11) is a free boundary
problem in which the optimal trading strategy is defined by the inequalities (i), (ii), and
(iii) for a given value function. Besides, the state space [0, T]×R+ ×R×R×R is par-
titioned into buy, sell, and no-transaction regions for stock P, which are characterized by
inequalities (13), (14) and (15), respectively. For sufficiently large ξ, the state space remains
divided into a buy region B, a sell region S , and a no-transaction region N for stock P, which
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are correspondingly the sell region, the buy region, and the no transaction region for stock Q
due to Equation (8). Obviously, the buy and sell regions for stock P are disjoint, as it is
not optimal to buy and sell the same stock at the same time. We denote the boundaries
between the no-transaction region N and the buy and sell regions B and S as ∂B and ∂S ,
respectively.

Let ξ → ∞, the class of admissible trading strategies becomes T (g0). We can guess
that the state space is still divided into three regions, a region of buying P and selling Q, a
region of selling P and buying Q, and a no-transaction region. Then, the optimal trading
strategy requires an immediate move to the boundaries of buy or sell regions, if the state is
in the buy region B or the sell region S . Actually, we can obtain equations that each of the
value functions should satisfy as follows.

(i) In region B of buying P and selling Q, the value function remains constant along
the path of the state, dictated by the optimal trading strategy, and therefore, for δy ≥ 0

V(t, p, x, y, g) = V(t, p, x, y + δy, g− (ap − bqex)pδy), (16)

where δy is the number of shares of stock P bought and stock Q sold by the investor. δy can
be any positive value up to the number required to take the state to ∂B, so letting δy→ 0
in (16) yields

L1,bV = 0. (17)

(ii) Similarly, in region S of selling P and buying Q, the value function obeys the
following equation for δy ≥ 0

V(t, p, x, y, g) = V(t, p, x, y− δy, g + (bp − aqex)pδy), (18)

where δy is the number of shares of stock P sold and stock Q bought by the investor. δy can
be any positive value up to the number required to take the state to ∂S , so letting δy→ 0
in (18) yields

L1,sV = 0. (19)

(iii) In the no-transaction region, the value function obeys the same set of equations
obtained for the class of absolutely continuous trading strategies, and therefore the value
function is given by

L1,oV = 0, (20)

and the pair of inequalities, shown above in (15), also hold. Note that, due to the continuity
of the value function, if it is known in the no-transaction region, it can be determined in
both the buy and sell regions by (17) and (19), respectively.

In the buy region B, L1,sV < 0, and, in the sell region S , L1,bV > 0. Additionally, from
the two pairs of inequalities (13) and (14), we may conjecture that L1,oV in (20) is negative
in both the buy region B and the sell region S . Therefore, the above set of equations can be
summarized as the following fully nonlinear partially differential equations (PDE):

min
{
−L1,bV,L1,sV,−L1,oV

}
= 0 (21)

for (t, p, X, y, g) ∈ [0, T]×R+ ×R×R×R. Note that the above discussion also yields the
following free boundary problem for the singular stochastic control value function:

L1,bV = 0 in B
L1,sV = 0 in S
L1,oV = 0 in N

V(T, p, x, y, g) = U(g + J(p, x, y)).

(22)

We next show that the value function given by (11) is a constrained viscosity solution
of the variational inequality (21) on [0, T]×R+ ×R×R×R, and it is the unique bounded
constrained viscosity solution of (21). The proof is given in the Appendix A.
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Theorem 1. The value function V(t, p, x, y, g) is a constrained viscosity solution of (21) on
[0, T]×R+ ×R×R×R.

Theorem 2. Let u be a bounded upper semicontinuous viscosity subsolution of (21), and v a
bounded from below lower semicontinuous viscosity supersolution of (21), such that u(T, x) ≤
v(T, x) for all x ∈ R+ ×R×R×R. Then u ≤ v on [0, T]×R+ ×R×R×R.

2.3. Optimal Trading with Exponential Utility Functions

We next assume that the investor has the negative exponential utility function

U(z) = 1− exp(−γz), (23)

where γ is the constant absolute risk aversion (CARA) parameter such that−U′′(z)
/

U′(z) = γ.
For Equation (21), this utility function can reduce much of computational effort and is easy
to interpret. Note that for the utility function (23), the definition of the value function (11)
can be expressed as

V(t, p, x, y, g) = 1− exp
(
− γger(T−t)

)
H(t, p, x, y), (24)

where H(t, p, x, y) is a convex nonincreasing continuous function in y and defined by

H(t, p, x, y) = inf
Lp(t),Mp(t)∈T (g0)

E
{

exp[−γJ(p(T), x(T), y(T)]
∣∣p(t) = p, x(t) = x, y(t) = y

}
= 1−V(t, p, x, y, 0).

Plug (24) into (21), and define the following operators for H(t, p, x, y) on [0, T]×R+ ×
R×R,

L2,o H =
∂H
∂t

+ κ(θ − x)
∂H
∂x

+ µp
∂H
∂p

+
1
2

ν2 ∂2H
∂x2 + ρνσp

∂2H
∂p∂x

+
1
2

σ2 p2 ∂2H
∂p2 ,

L2,bH =
∂H
∂y

+ γer(T−t)A−(p, x)H,

L2,sH =
∂H
∂y

+ γer(T−t)A+(p, x)H.

Then (21) is transformed into the following PDE for H(t, p, x, y)

min
{
L2,bH,−L2,sH,L2,o H

}
= 0 (25)

with the following boundary conditions

H(T, p, x, y) = exp
{
− γJ(p, x, y)

}
.

Correspondingly, the free boundary problem (22) becomes
L2,o H = 0 y ∈ [Yb(t, p, x), Ys(t, p, x)]
L2,b H = 0 y ≤ Yb(t, p, x)
L2,sH = 0 y ≥ Ys(t, p, x)

H(T, p, x, y) = exp
{
− γJ(p, x, y)

}
.

(26)

in which Yb(t, p, x) and Ys(t, p, x) are the buy and sell boundaries for stock P, respectively.
Note that the function H(t, p, x, y) is evaluated in the four-dimensional space [0, T]×R×
R×R. Furthermore, this suggests that while (t, ut, wt) is inside the no-transaction region,
the dynamics of h(t, u, w, y) are driven by two-dimensional standard Brownian motions
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{zt, t ≥ 0} and {wt, t ≥ 0} with correlation ρ. In the buy and sell regions, it follows
from (26) that

H(t, p, x, y) = exp{−γer(T−t)A−(p, x)[y−Yb(t, p, x)]}H(t, p, x, Yb(t, p, x)), y ≤ Yb(t, p, x),

H(t, p, x, y) = exp{−γer(T−t)A+(p, x)[y−Ys(t, p, x)]}H(t, p, x, Ys(t, p, x)), y ≥ Ys(t, p, x).

3. Discretization and a Numerical Algorithm

The solution of the PDE (21) or (25) can be obtained by turning the stochastic differ-
ential Equations (1), (3), (6) and (9) into Markov chains and then applying the discrete
time dynamic programming algorithm. The discrete state is X = (χ,p,x, ϑ,g), whose
elements denote time, price of stock P, spread, number of shares of stock P, and amount
in the bank in a discrete space. The value function, denoted by V, are given a value at
the final time by using the boundary conditions for the continuous value functions over
the discrete subspace (p,x, ϑ,g), and then they are estimated by proceeding backward in
time by using the discrete time algorithm. As in the continuous time case, this algorithm
is the same for both value functions and is derived below for a value function denoted
by Vδ(χ,p,x, ϑ,g), where ρ is a discretization parameter, which depends on the discrete
time interval tδ. If tδ and the resolution of the ϑ-axis ϑδ are sent to zero, then the above
discrete value function converges to a viscosity subsolution and a viscosity supersolution
of the PDE (21). Therefore, all the discrete value functions converge to their continuous
counterparts; this is due to the uniqueness of the viscosity solution.

Consider an evenly spaced partition of the time interval [0, T]: χ = {δ, 2δ, . . . , nδ}, where
δ = T/n, and two evenly spaced partitions of the space intervals z = {0,±

√
δ,±2

√
δ, . . . , }

andw = {0,±
√

δ,±2
√

δ, . . . , }. The grid p is defined by z via the following transformation,

pi = exp
(
(µ− 1

2
σ2)T + ziσ

√
T
)

. (27)

Note that the SDE (3) implies that the asymptotic distribution of X(t) is Normal (θ, ν2/(2κ)),
we define grid x by

xj = θ +
ν√
2κ
wj. (28)

Denote χi = iδ for i = 1, . . . , n− 1. The dynamics (1) and (3) of P(t) and X(t) implies
the following transition density for (p(χi),x(χi)),(

p(χi+1)

xχi+1

)∣∣∣∣∣
(
p(χi)

xχi

)
∼ N

((
logp(χi) + (µ− 1

2 σ2)δ

(1− δκ)x(χi) + δκθ

)
,
(

δσ2, δρσν
δρσν, δν2

))
. (29)

We also note that the discrete time equation for the amount in the bank g(χ) is

g(χi+1) = g(χi) exp(rδ).

Given the grid defined above, the discrete time dynamic programming principle is
invoked, and the following discretization scheme is proposed for PDE (21):

Vδ(χi,p(χi),x(χi), ϑ,g(χi)) = max
{

Vδ
(
χi,p(χi),x(χi), ϑ + ξ,g(χi)− (ap − bqex(χi))p(χi)ξ

)
,

Vδ
(
χi,p(χi),x(χi), ϑ− ξ,g(χi) + (bp − aqex(χi))p(χi)ξ

)
,

E
{
Vδ
(
χi+1,p(χi+1),x(χi+1), ϑ,g(χi+1)

)} }
.

(30)

where ξ > 0 is a real constant and i = 0, . . . , n− 1. This scheme is based on the principle
that the investor’s policy is the choice of the optimum transaction. We next show that, as
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the discretization parameter δ→ 0, the solution Vδ of (30) converges to the value function
V, or, equivalently, to the unique constrained viscosity solution of (21).

Theorem 3. The solutionVδ of (30) converges locally uniformly as δ→ 0 to the unique continuous
constrained viscosity solution of (21).

For the exponential utility function U(z) = 1− exp(−γz), the value function V can
be expressed as (24), and its discretization scheme is given by

Vδ(χi,p(χi),x(χi), ϑ,g(χi)) = 1− exp
(
− γg(χi)er(T−χi)

)
Hδ(χi,p(χi),x(χi), ϑ).

Then, the discretization scheme (30) can be reduced to

Hδ(χi,p(χi),x(χi), ϑ) = min
{

Fb(p(χi),x(χi), ξ) ·Hδ(χi,p(χi),x(χi), ϑ + ξ),

Fs(p(χi),x(χi), ξ) ·Hδ(χi,p(χi),x(χi), ϑ− ξ), E
{
Hδ
(
χi+1,p(χi+1),x(χi+1), ϑ

)} }
.

(31)

where
Fb(p(χi),x(χi), ξ) = exp

{
γξ A−(p(χi),x(χi))er(T−χi)

}
,

Fs(p(χi),x(χi), ξ) = exp
{
− γξ A+(p(χi),x(χi))er(T−χi)

}
.

4. Simulation Studies
4.1. Buy and Sell Regions

We use the numerical algorithm proposed in Section 2 to studies the buy and sell
boundaries of the pairs trading strategy. Our study focuses on two aspects of the problem.
The first is the property of buy and sell boundaries (or no transaction regions) for a given
set of model parameters, and the other is the impact of different model parameters on
the shape of buy and sell boundaries. Without loss of the generality, we assume the time
horizon T = 1 and p(0) = 1 in all our simulation studies.

We first consider a baseline scenario. The parameter values in the baseline scenario
are µ = 0.2, σ = 0.4, θ = 0.1, κ = 1, ν = 0.15, ρ = 0.5, r = 0.01, γ = 5 and ζp = ζq =
ξp = ξq = 0.0005. For convenience, we label the setting of the baseline parameter values
as Scenario 1 or (S1). We discretize the state space (t, p, x, y, g) and use the developed
Markov chain approximation to solve the discretized optimization problem. Figure 1
shows the buy and sell surfaces of (S1) at time t = 0.05, 0.35, 0.65, and 0.95. To better
read the figure, we also show in Figures 2 and 3 the buy and sell boundaries of (S1) at
prices p = 0.845, 1.095, 1.400, 2.108, and x = 0.023, 0.092, 0.157, 0.266, respectively. These
points are chosen such that they correspond to the 24%, 48%, 72%, and 96% quantiles of the
distribution of p(T) and asymptotic distribution of x(t), respectively. We find the following
from these figures. First, at a given time and a given price level, the no transaction region
becomes narrower when the spread gets larger, and the no transaction region moves from
the negative to the positive when the spread turns from the negative to the positive. For
example, at t = 0.05 and p(t) = 0.845, the no transaction region changes from [−9.4,−8.0]
at x(t) = 0.023 to [−4.6,−3.4] at x(t) = 0.092, [−0.7, 0.2] at x(t) = 0.157, and [3.2, 3.7] at
x(t) = 0.266. Second, at a given time and a given spread level, the no transaction region
becomes narrower when the price p(t) gets larger, and the no transaction region moves
up when the price becomes larger. For instance, at t = 0.05 and x(t) = 0.023, the no
transaction region changes from [−9.4,−8.0] at p(t) = 0.845 to [−6.8,−5.6] at p(t) = 1.095,
[−4.9,−3.9] at p(t) = 1.400, and [−2.7,−2.0] at p(t) = 2.108. Note that the movement
of the no transaction region with respect to price change but with a fixed spread level is
relatively smaller than that with respect to spread change but with a fixed price level. Third,
when time ellipses from 0 to 1, the no transaction region moves upward. For instance,
at the fixed price-spread level (p(t), x(t)) = (1.095, 0.092), the no transaction intervals at
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t = 0.05, 0.35, 0.65 and 0.95 are [−2.6,−1.6], [−2.1,−1.2], [−1.5,−0.7], and [−0.8,−0.2],
respectively.

Figure 1. Buy and sell boundaries of the baseline scenario (S1) at different times.

We then discuss the impact of different parameter values on the buy and sell bound-
aries (or no transaction regions). Besides the parameter values in (S1), we now consider
other 18 sets of parameter values, labeled as Scenarios 2–19. In each of Scenarios 2–19,
all parameters values are same as those in (S1) except one parameter is changed as the
specification; see Table 1 that summarizes parameter values in all 19 scenarios. For example,
Scenario 2 uses parameter values µ = 0.1 and assume all other parameters σ, θ, κ, ν, ρ, r, γ
and ζp = ζq = ξp = ξq have same values as those in (S1). We discretize the state space
(t, p, x, y, g), and use the developed Markov chain approximation to solve the discretized
optimization problem for Scenarios 2–19.
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Figure 2. Buy and sell boundaries of at prices Pt = 0.845 (top left), 1.095 (top right), 1.400 (bottom
left), and 2.108 (bottom right) and different times.

Figure 3. Buy and sell boundaries of at spread Xt = 0.023 (top left), 0.092 (top right), 0.157 (bottom
left), and 0.266 (bottom right) and different times.

To compare the buy and sell boundaries (or no transaction regions) among different
scenarios, we plot the buy and sell boundaries over time at four fixed points (p(1), x(1)) =
(0.9, 0.09), (p(2), x(2)) = (0.9, 0.12), (p(3), x(3)) = (1.5, 0.09), and (p(4), x(4)) = (1.5, 0.12),
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respectively. Figures 4–12 demonstrate variations of the buy and sell boundaries over time
for different values of µ, σ, θ, κ, ν, ρ, r, γ, ζp(= ζq = ξp = ξq), respectively. In each figure, we
plot the buy and sell boundaries for (p(i), x(i)), i = 1, 2, 3, 4 on the top left, top right, bottom
left, and bottom right, respectively, we also use the solid (dashed, dotted) lines to represent
the baseline value (the smaller value, the larger value) of the parameter under comparison.
Figure 4 suggests that when µ increases, the buy and sell boundaries move downward at
all four points. Figure 5 indicates that when σ increases, the buy and sell boundaries move
upward at (p(1), x(1)) and (p(2), x(2)), but move downward at (p(3), x(3)) and (p(4), x(4)).
Figure 6 shows that, when θ increases, the buy and sell boundaries move downward at all
four points. Figure 7 indicates that, when κ increases, the buy and sell boundaries move
downward, and the magnitude of such movement is larger at (p(1), x(1)) than the other three
points. Figure 8 shows that, when ν increases, the buy and sell boundaries move upward at
(p(i), x(i)), i = 1, 2, 3, but move downward at (p(4), x(4)). Figure 9 suggests that, when the
correlation ρ changes from the negative to the positive, the buy and sell boundaries move
downwards at (p(1), x(1)) and (p(2), x(2)), but move upward at (p(3), x(3)) and (p(4), x(4)).
Figure 10 indicates that variations of interest rate r have little impact on the buy and sell
boundaries. Figure 11 shows that, when the risk aversion parameter γ increases, the buy
and sell boundaries move upward at (p(i), x(i)), i = 1, 2, 3, but move downward at (p(4), x(4)).
Figure 12 suggests that, when the transaction cost increases, the center of the no transaction
region seems to not change, but the region gets wider.

Table 1. Parameter values of different scenarios.

(S1) µ = 0.2, σ = 0.4, θ = 0.1, κ = 1, ν = 0.15, ρ = 0.5,
r = 0.01, γ = 5 and ζp = ζq = ξp = ξq = 0.0005.

(S2) µ = 0.1 (S8) κ = 0.8 (S14) r = 0.005
(S3) µ = 0.3 (S9) κ = 1.2 (S15) r = 0.03
(S4) σ = 0.2 (S10) ν = 0.1 (S16) γ = 3
(S5) σ = 0.6 (S11) ν = 0.2 (S17) γ = 8
(S6) θ = −0.05 (S12) ρ = −0.2 (S18) ζp = ζq = ξp = ξq = 0.0001
(S7) θ = 0.3 (S13) ρ = 0.6 (S19) ζp = ζq = ξp = ξq = 0.0010

Figure 4. Buy and sell boundaries of at fixed prices (p(i), x(i)), i = 1, 2, 3, 4 for µ = 0.1 (dashed),
0.2 (solid), 0.3 (dotted).
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Figure 5. Buy and sell boundaries of at fixed price (p(i), x(i)), i = 1, 2, 3, 4 for σ = 0.2 (dashed),
0.4 (solid), 0.6 (dotted).

Figure 6. Buy and sell boundaries of at fixed price (p(i), x(i)), i = 1, 2, 3, 4 for θ = −0.05 (dashed),
0.1 (solid), 0.3 (dotted).
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Figure 7. Buy and sell boundaries of at fixed price (p(i), x(i)), i = 1, 2, 3, 4 for κ = 0.8 (dashed),
1 (solid), and 1.2 (dotted).

Figure 8. Buy and sell boundaries of at fixed price (p(i), x(i)), i = 1, 2, 3, 4 for ν = 0.1 (dashed),
0.15 (solid), and 0.2 (dotted).
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Figure 9. Buy and sell boundaries of at fixed price (p(i), x(i)), i = 1, 2, 3, 4 for ρ = −0.2 (dashed),
0.5 (solid), and 0.6 (dotted).

Figure 10. Buy and sell boundaries of at fixed price (p(i), x(i)), i = 1, 2, 3, 4 for r = 0.005 (dashed),
0.01 (solid), and 0.03 (dotted).
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Figure 11. Buy and sell boundaries of at fixed price (p(i), x(i)), i = 1, 2, 3, 4 for γ = 3 (dashed),
5 (solid), and 8 (dotted).

Figure 12. Buy and sell boundaries of at fixed price (p(i), x(i)), i = 1, 2, 3, 4 for ζp = ζq = ξp = ξq =

0.0001 (dashed), 0.0005 (solid), and 0.0010 (dotted).

4.2. Performance of the Strategy

We also perform simulation studies to investigate the performance of the optimal
trading strategy. For comparison purpose, we also consider a benchmark strategy that is
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analogous to the relative-value arbitrage strategy used in Gatev et al. (2006) and based
on standard deviation of the spread. Specifically, the strategy opens a position when the
spread exceeds twice the standard deviation of the spread process, and closes the position
when either price converges or the maturity is reached. As the benchmark strategy doesn’t
specify the number of shares of stocks that should be bought or sold, we assume that the
number of shares of stocks traded each time is one.

We simulate the price process pt and the spread process xt to compare the perfor-
mance of the benchmark strategy and our strategy in scenarios (S1)–(S19). Assume that
T = 1, and we discretize the time interval (0, 1] as {0.01, 0.02, . . . , 0.99, 1}, so that we
have 100 trading periods. For each scenario, we simulate 1000 paths of {(pt, xt)|t =
0, 0.01, . . . , 0.99, 1, p0 = 1}, and for each simulated path (pt, xt), we implement the bench-
mark strategy and the optimal strategy at t = 0.01, 0.02, . . . , 0.99 and close the position
at T = 1. Let i = b, o represent the benchmark and the optimal strategies, respectively.
For each realized trading strategies, denote N(i) as the number of trades (i.e., buy and
sell) among the 100 trading periods and PL(i) = −C(i)(Lp, Mp; 0, 1) the total profit made
during the trading process. Note that the benchmark strategy trades only one share of
stock each time while the number of shares of stocks in the optimal strategy are “optimally”
chosen based on the buy and sell regions, we define PS(i) as the the average profit (or loss)
generated from the maximum number of shares of stocks during the trading process. That
is, PS(i) := −C(i)(Lp, Mp; 0, 1)/ maxt |Y(i)

t |, where Y(i)
t is the number of shares of stock P

at t = 0.01, 0.02, . . . , 0.99.
Table 2 summarizes the mean and standard error of N(i), PL(i), and PS(i) (i = o, b) for

1000 paths in each scenario. We note that the total numbers of trades N(o) in the optimal
strategy range from 45.736 to 55.821 for (S1)–(S17), and increases (or decreases) significantly
when the transaction costs decreases (or increases) in (S18) and (S19). In comparison to this,
the total numbers of trades N(b) in the benchmark strategy are much smaller, essentially,
between 1 and 2. This suggests the benchmark strategy is much more conservative than
the optimal strategy. For the realized profit over the trading period, PL(o) is much larger
than PL(b) as the optimal strategy can choose to buy or sell the “optimal” number of shares
of stock pairs, while the benchmark strategy only buy or sell one share of stock pair. PS(o)

and PS(b) remove the impact of number of shares of traded stocks, and provide the average
earning per traded stock, and we notice that PS(o) is still significantly higher than PS(b).

Table 2. Performance of strategies.

N(o) PL(o) PS(o) N(b) PL(b) PS(b)

(S1) 52.289 (0.247) 0.349 (0.019) 0.048 (0.004) 1.094 (0.084) 0.005 (0.002) 0.005 (0.002)
(S2) 53.218 (0.241) 0.389 (0.020) 0.051 (0.004) 1.094 (0.084) 0.006 (0.002) 0.006 (0.002)
(S3) 51.348 (0.253) 0.318 (0.019) 0.046 (0.004) 1.094 (0.084) 0.004 (0.002) 0.004 (0.002)
(S4) 52.999 (0.208) 0.378 (0.019) 0.054 (0.003) 1.094 (0.084) 0.007 (0.002) 0.007 (0.002)
(S5) 51.896 (0.275) 0.326 (0.019) 0.040 (0.005) 1.094 (0.084) 0.003 (0.004) 0.003 (0.004)
(S6) 49.299 (0.235) 0.357 (0.020) 0.032 (0.003) 1.094 (0.084) 0.003 (0.002) 0.003 (0.002)
(S7) 54.233 (0.262) 0.344 (0.019) 0.064 (0.005) 1.094 (0.084) 0.008 (0.003) 0.008 (0.003)
(S8) 55.821 (0.304) 0.359 (0.021) 0.062 (0.006) 1.094 (0.084) 0.005 (0.003) 0.005 (0.003)
(S9) 45.736 (0.254) 0.266 (0.016) 0.046 (0.003) 1.094 (0.084) 0.005 (0.002) 0.005 (0.002)

(S10) 46.347 (0.292) 0.228 (0.016) 0.042 (0.005) 1.052 (0.083) 0.004 (0.002) 0.004 (0.002)
(S11) 57.689 (0.212) 0.489 (0.022) 0.053 (0.003) 1.206 (0.084) 0.007 (0.002) 0.007 (0.002)
(S12) 46.774 (0.248) 0.325 (0.015) 0.065 (0.003) 1.140 (0.086) 0.008 (0.001) 0.008 (0.001)
(S13) 53.516 (0.245) 0.361 (0.020) 0.045 (0.004) 1.140 (0.087) 0.006 (0.002) 0.006 (0.002)
(S14) 54.027 (0.232) 0.579 (0.032) 0.048 (0.004) 1.094 (0.084) 0.005 (0.002) 0.005 (0.002)
(S15) 50.031 (0.266) 0.219 (0.012) 0.049 (0.004) 1.094 (0.084) 0.005 (0.002) 0.005 (0.002)
(S16) 52.300 (0.247) 0.347 (0.019) 0.048 (0.004) 1.094 (0.084) 0.005 (0.002) 0.005 (0.002)
(S17) 52.261 (0.247) 0.357 (0.019) 0.050 (0.004) 1.094 (0.084) 0.006 (0.002) 0.006 (0.002)
(S18) 73.801 (0.286) 0.339 (0.019) 0.045 (0.004) 1.094 (0.084) 0.006 (0.002) 0.006 (0.002)
(S19) 42.996 (0.222) 0.339 (0.019) 0.049 (0.004) 1.094 (0.084) 0.004 (0.002) 0.004 (0.002)
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5. Real Data Studies

We test our model with real market data in this section. We present the sample and
explain our methodology first, and then show the results and discussion.

A key step of implementing pairs trading strategy is to select two stocks for pairs
trading. Gatev et al. (2006) illustrate how this can be done by using stock price data. An
alternative to this approach is to use fundamentals analysis to select two stocks that have
almost the same risk factor exposures; see Vidyamurthy (2004). In this study, we consider
a hybrid of these two approaches. Specifically, we restrict two stocks P and Q to belong
to the same industry sector. Table 3 lists six pairs of stocks selected from four different
sectors. For each pair of stocks P and Q, we compute the spread by regressing log price
of stock Q on the log price of stock P, and the fitted values of the regression is considered
as the “transformed” price of P. Figure 13 shows six pairs of the original prices of Q and
transformed prices of P over time.

Table 3. Six pairs of stocks selected from different industries.

Sector Stock Q Stock P

Consumer goods Apple Inc. (AAPL) Procter & Gamble Co. (PG)
Consumer goods Coca-Cola Co. (KO) PepsiCo, Inc. (PEP)
Technology Alphabet Inc Class A (GOOGL) Microsoft Corporation (MSFT)
Technology AT&T Inc. (T) Verizon Communications Inc. (VZ)
Industrial goods Boeing Corporation (BA) General Electric Company (GE)
Financial Goldman Sachs Group Inc. (GS) JPMorgan Chase & Co. (JPM)

Figure 13. Original (solid) and transformed (dashed) prices of six pairs of stocks.
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We then apply the optimal strategy and the benchmark strategy in Section 4.2 to test
the out-of-the-sample performance. Specifically, we use the past three years of the historical
data of each pair to estimate the model parameter, and run a unit-root test to conclude if the
spread xt is a stationary process. If xt is not stationary, we do not implement any strategies.
Otherwise, we implement both the optimal strategy and the benchmark strategy. Note that
the optimal strategy can optimally choose the number of shares of stocks in each trade,
while we still trade one unit of stock in the benchmark strategy. Table 4 shows the number
of trades N(i), the accumulated profit (in U.S. dollars) at maturity PL(i), and the average
profit per traded share PS(i) over two testing periods, for i = o (the optimal strategy) and
i = b (the benchmark strategy). Table 4 suggests that the benchmark strategy is much more
conservative than the optimal strategy. Besides, the average profits per traded share PS(o)

of the optimal strategy are much larger than that of the benchmark strategy except for the
stock pair (KO, PEP).

Table 4. Performance of strategies.

Pairs Year N(o) PL(o) PS(o) N(b) PL(b) PS(b)

(AAPL, PG) 2014 58 8.56 2.173 0 0 0
2015 70 25.439 3.91 0 0 0

(BA, GE) 2014 97 27.866 1.292 0 0 0
2015 165 168.543 1.982 20 0.455 0.455

(T, VZ) 2014 127 77.908 2.158 2 0.603 0.603
2015 131 115.587 2.883 0 0 0

(GOOGL, MSFT) 2015 103 94.271 6.734 8 1.623 1.623
2016 135 65.957 6.296 0 0 0

(GS, JPM) 2015 100 7.654 0.195 6 −2.54 −2.54
2016 200 94.542 2.375 8 −1.66 −1.66

(KO, PEP) 2015 142 37.51 0.675 22 10.154 10.154
2016 165 217.878 4.059 4 5.983 5.983

6. Concluding Remark

The problem of optimal pairs trading has been studied by many academic researchers
and financial practitioners. Existing models and methods try to find either the optimal
shares of stocks by assuming no transaction costs, or the optimal timing of trading fixed
number of shares of stocks with transaction costs. In contrast to these analysis, this paper
studies the joint effect of optimal shares and optimal trading times in pairs trading process
with proportional transaction costs. Under the assumption that the investor’s aim is
to maximize the expected utility of terminal wealth, the optimal pair trading problem
can be written as a singular stochastic control problem and solved by the approach in
Davis et al. (1993). We then demonstrate the advantage of joint consideration of optimal
shares and optimal trading times in pair trading via simulation and empirical studies.

The following issues may need further investigation to make this study more practical.
First, our approach can be easily extended for nonexponential utility functions. In such a
case, the optimization problem involves five (instead of four) variables, and the numerical
algorithm in our paper needs to be modified to adapt for five variables. Second, our
approach can be extended to solve the optimal co-integration trading, which involves n
stocks with m co-integration relationship. Third, many empirical studies suggest that stock
price processes can be better approximated by incorporating jumps. Using the framework
and algorithms developed in Xing et al. (2017), the method developed here can be extended
to the case that price processes follow geometric jump-diffusion processes. In such a case,
the value function of the corresponding variational inequalities involve integro-differential
equations, which can be solved by extending our numerical algorithm.
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Appendix A. Proof of Theorems

Proof of Theorem 1. In our case, the state X is (s, x), where x = (p, x, y, g). Let X0 =
(s0, p0, x0, y0, G0), it follows that there exists an optimal trading strategy, dictated by the
pair of processes (L∗p(t), M∗p(t), where X∗0(t) = (t, p∗0(t), x∗0(t), y∗0(t), g∗0(t)) is the optimal
trajectory, with X∗0(s0) = X0.

(i) First, we prove that V is a viscosity subsolution of (21) on [0, T]×R+×R×R×R).
For this, we must show that, for all smooth functions φ(X), such that V(X)− φ(X) has a
local maximum at X0, the following inequality holds:

min
{
−Bφ(X0),Sφ(X0),−Lφ(X0)

}
≤ 0. (A1)

Without loss of generality, we assume that V(X0) = φ(X0) and V ≤ φ on [0, T] ×
R+ ×R×R×R. We argue by contradiction: if the arguments inside the operator of (A1)
satisfy −Bφ(X0) > 0 and Sφ(X0) > 0, then there exists θ > 0, such that −Lφ(X0) > θ.
From the fact that φ is smooth, the above inequalities become −Bφ(X) > 0, Sφ(X) > 0,
and −Lφ(X) > θ, where X = (t, p, x, y, g) ∈ B(X0), a neighborhood of X0. In Lemma 1, it
is shown that X∗0(t) has no jumps, P-a.s., at X0 = X∗0(s0). Hence, τ(ω), defined by

τ(ω) = inf{t ∈ (s0, T] : X∗0(t) /∈ B(X0)},

is positive P-a.s., and therefore the integral along X∗0(t)

−θ
∫ τ

s0

dt >E
∫ τ

s0

Bφ(X∗0(t))dL∗(t)− E
∫ τ

s0

Sφ(X∗0(t))dM∗(t) + E
∫ τ

s0

Lφ(X∗0(t))dt

=E{I1} − E{I2}+ E{I3},
(A2)

where (L∗(t), M∗(t)) is the optimal trading strategy at X0. Applying Itô’s formula to φ(X),
where the state dynamics are given by (1)–(6), we get

E{φ(X∗0(τ))} = φ(X0) + E{I1} − E{I2}+ E{I3}. (A3)

Since V(X) ≤ φ(X), for all X ∈ B(X0), and V(X0) = φ(X0), (A2) and (A3) yield

E{V(X∗0(τ))} ≤ V(X0) + E{I1} − E{I2}+ E{I3} < V(X0)− θ
∫ τ

s0

dt,

which violates the dynamic programming principle, together with the optimality of
(L∗(t), M∗(t)). Therefore, at least one of the arguments inside the minimum operator
of (A1) is nonpositive, and hence the value function is a viscosity subsolution of (21).

(ii) In the second part of the proof, we show that V is a viscosity supersolution of (21).
For this, we must show that, for all smooth functions φ(X), such that V(X)− φ(X) has a
local minimum at X0, the following inequality holds:

min
{
−Bφ(X0),Sφ(X0),−Lφ(X0)

}
≥ 0, (A4)
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where, without loss of generality, V(X0) = φ(X0) and V(X) ≥ φ(X) on [0, T]×R+ ×R×
R×R. In this case, we prove that each argument of the minimum operator of (A4) is
non-negative.

Consider the trading strategy L(t) = L0 > 0, s0 ≤ t ≤ T, and M(t) = 0, s0 ≤ t ≤ T.
By the dynamic programming principle,

V(s0, p0, x0, y0, g0) ≥ V(s0, p0, x0, y0 + L0, g− (ap − bqeX0)p0L0).

This inequality holds for φ(s, p, x, y, g) as well, and, by taking the left-hand side to
the right-hand side, dividing by L0, and sending L0 → 0, we get Bφ(X0) ≤ 0. Similarly,
by using the trading strategy L(t) = 0, s0 ≤ t ≤ T, and M(t) = M0 > 0, s0 ≤ t ≤ T, the
second argument inside the minimum operator is found to be non-negative.

Finally, consider the case where no trading is applied. By the dynamic programming
principle

E{V(Xd
0(t))} ≤ V(s0, p0, x0, y0, g0), (A5)

where Xd
0(t) is the state trajectory of starting at s0, when M(t) = L(t) = 0, s0 ≤ t ≤ T,

given by (1)–(6) as
Xd

0(t) = (t, p(t), x(t), y0, g(t))

and Xd
0(t) ∈ B(X0). Therefore, by applying Itô’s rule on φ(s, X, B, y, G), inequality (A5) yields

E

{ ∫ t

s0

Lφ(Xd
0(ξ))dξ

}
≤ 0,

and, by letting t → s0, the third argument inside the minimum operator is found to be
non-negative. This complete the proof.

Lemma A1. Assume that −Bφ(X0) > 0, and denote the event that the optimal trajectory X∗0(t)
has a jump of size ε, along the direction (0, 0, 0, 1,−(ap − bqex0)p0) by A(ω). Assume that the
state (after the jump) is (s0, p0, x0, y0 + ε,−(ap − bqex0)B0ε) ∈ B(X0). Then,(

Bφ(X0)
)

P(A) ≥ 0, (A6)

therefore P(A) = 0. Similarly, if Sφ(X0) > 0, then the optimal trajectory has no jumps along the
direction (0, 0, 0,−1, (bp − aqex0)p0), P-a.s. at x0.

Proof. By the principle of dynamic programming,

V(s0, p0, x0, y0, g0) = E
{

V(s0, p0, x0, y0 + ε,−(ap − bqex0)B0ε)
}

=
∫

A(ω)
V(s0, p0, x0, y0 + ε,−(ap − bqex0)B0ε)dP +

∫
A(ω)

V(s0, p0, x0, y0, g0)dP,

and therefore∫
A(ω)

[
φ(s0, p0, x0, y0 + ε,−(ap − bqex0)B0ε)− φ(s0, p0, x0, y0, g0)

]
dP ≥ 0,

since V(X) ≤ φ(X) for all X ∈ B(X0) and V(X0) = φ(X0). Therefore,

lim sup
ε→0

{ ∫
A(ω)

φ(s0, p0, x0, y0 + ε,−(ap − bqex0)p0ε)− φ(s0, p0, x0, y0, g0)

ε
dP
}
≥ 0,

and, by Fatou’s lemma,

∫
A(ω)

lim sup
ε→0

{φ(s0, p0, x0, y0 + ε,−(ap − bqex0)B0ε)− φ(s0, p0, x0, y0, G0)

ε

}
dP ≥ 0,
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which implies (A6).

Proof of Theorem 3. Let

Vδ(t, p, x, y, g) =
{
Vδ(χ,p,x, y,g) if t ∈ [χ, χ + δ), y ∈ [ν, ν + κδ),
Z(p,x, y,g) if t = T

and
V(X) = lim

Y→X
inf
δ→0
{Vδ(Y)} and V(X) = lim

Y→X
sup
δ→0
{Vδ(Y)}, (A7)

where X = (t, p, x, y, g). We will show that V(X) and V(X) are a viscosity supersolution
and a viscosity subsolution of (21), respectively. Combining this with the uniqueness of the
viscosity solution of (21) yields V(X) ≥ V(X) on [0, T]×R+ ×R×R×R. The opposite
inequality is true by the definition of V(X) and V(X), and therefore

V(X) = V(X) = V(X),

which, together with (A7), also implies the local uniform convergence of Vδ to V.
Note that we only prove that V is a viscosity supersolution of (21), as the arguments

for V is identical. Let X0 be a local minimum of V − φ on [0, T]×R+ ×R×R×R, for
φ ∈ C1,2([0, T]×R+ ×R×R×R). Without loss of generality, we may assume that X0 is
a strict local minimum, that V(X0) = φ(X0), and that φ ≤ −2× supδ{||Vδ||∞} outside the
vall B(X0, R), R > 0, where V(X)− φ(X) ≥ 0.

Then, there exist sequences δn ∈ R+ and Yn ∈ [0, T]×R+ ×R×R×R, such that

δn → 0, Yn → X0,Vδn(Yn)→ V(X0), Yn if a global minimum point of Vδn
j − φ.

Let hn = Vδn − φ; then

hn → 0 and Vδn
j (X) ≥ φ(X) + hn(X) for any X ∈ [0, T]×R+ ×R×R×R. (A8)

To show that V is a viscosity supersolution of (21), it suffices to show that

min
{
−Bφ(X0),Sφ(X0),−Lφ(X0)

}
≥ 0. (A9)

Let Yn = (si,pn,xn, yn,gn), where si ∈ [χi, χi + δn) and yδn ∈ [ϑn, ϑn + κδn). Denote

Y
(0)
n = (χn,pn,xn, yn,gn),

Y
(1)
n =

(
χn,pn,xn, ϑn + κδn,gn − (ap − bqexn)pnκδn

)
,

Y
(2)
n =

(
χn,pn,xn, ϑn − κδn,gn + (bp − aqexn)pnκδn

)
.

Then,

Vδn(Y
(0)
n ) = max

{
Vδn(Y

(1)
n ),Vδn(Y

(2)
n ), E

{
Vδn(Y

(0)
n+1)

} }
.

Now, we look at the following three cases.
Case 1. It holds that Vδn(Y

(0)
n ) = Vδn(Y

(1)
n ). Then (A8) implies that

Vδn(Y
(0)
n ) ≥ φ(Y

(1)
n ) +Vδn(Y

(0)
n )− φ(Y

(0)
n ),
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and therefore

0 ≥ lim inf
n

{φ(Y
(1)
n )− φ(Y

(0)
n )

δn

}
≥ lim inf

δ→0

{φ(Y
(1)
0 )− φ(Y

(0)
0 )

δ

}
=

∂φ(X0)

∂y
− (ap − ex0(t))p0(t)

∂φ(x0)

∂g
.

Case 2. It holds that Vδn(Y
(0)
n ) = Vδn(Y

(2)
n ). Arguing similarly to case 1, we get

0 ≥ −
(∂φ(X0)

∂y
− (bp − aqex0(t))p0(t)

∂φ(X0)

∂g

)
.

Case 3. It holds that Vδn(Y
(0)
n ) = E

{
Vδn(Y

(0)
n+1)

}
. Then (A8) implies that

Vδn(Y
(0)
n ) ≥ E

{
φ(Y

(0)
n+1)

}
+Vδn(Y

(0)
n )− φ(Y

(0)
n+1),

and therefore

0 ≥ lim inf
n

{φ(Y
(0)
n+1)− φ(Y

(0)
n )

δn

}
≥ lim inf

δ→0

{φ(Y
(0)
1 )− φ(Y

(0)
0 )

δ

}
= Lφ(X0).

Combining the results in cases 1–3 yields (A9), and the proof is complete.
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