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Abstract: This paper proposes a semiparametric local polynomial estimator for modelling agricultural
time-series. We consider the modelling of the crop yield variable according to determined financial
risk factors in Turkey. The derivation of a semiparametric local polynomial estimator is provided
with its fundamental statistical properties to estimate the semiparametric time-series model. This
paper attaches importance to precision agriculture (PA) and therefore a local polynomial technique
is considered due to some advantages it has over alternative methods. The introduced estimator
provides less estimation risk, involving both parametric and nonparametric components that allow
the estimator to represent the data structure better. From that, it can be said that the proposed
estimator and model is beneficial to agricultural researchers for financial decision-making processes.

Keywords: local polynomial regression; crop yield; financial risk; semiparametric time series

1. Introduction

In an agricultural context, profitability, sustainability, efficiency in resource usage,
quality of production and managing decisions are supported by “precision agriculture”
(PA) which involves methodologies, modeling tools and strategies to improve the quality
of financial decision marking in the agricultural sector. Different methodologies of data
modelling are used for PA, including regression models (Van de Putte et al. 2010), artificial
neural networks (Shoshi et al. 2021; Kujawa and Niedbała 2021) and other machine learning
techniques (Chlingaryan et al. 2018; Liakos et al. 2018). In addition, there are a lot of studies
about PA from other fields of applied science, such as electronical engineering, chemistry,
biology and other natural sciences. This paper accounts for the data modelling part through
the use of a semiparametric time series model and local polynomial estimator, providing
estimates with less risk and a more accurate representation of the data structure.

For the last decade, data science applications and modelling tools have been more
frequently used in agricultural studies, leading to extensive literature on the subject. In the
context of regression modelling, some important studies are as follows: Gonzalez-Sanchez
et al. (2014) focused on accurate yield estimation based on machine learning methods and
a linear regression model. Regarding the use of nonparametric methods in agricultural
data analysis, Färe et al. (2013) presented a detailed review. Grigorios (2009) introduce
a nonparametric regression-based kernel density estimator to represent the production
function. Sam (2010) modeled the market risks of the agricultural futures of corn, soybeans
and wheat by using a nonparametric kernel estimator. In addition, Zvizdojevic and Vukotic
(2015), Ogundari and Brümmer (2011), Wang et al. (2016), Majumdar et al. (2017) and
Shoshi et al. (2021) provide important contributions in the modeling of agricultural data
using regression models and other machine learning techniques.
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The studies given above involve using parametric and nonparametric analysis tools to
model agricultural data. Note that parametric methods such as linear regression models
require strict assumptions about data structure. Moreover, it should be emphasized that
nonparametric estimators, unlike parametric approaches, are very flexible, however, their
estimation quality and accuracy diminish greatly if several predictors are added to the
model, which is known as the “curse of dimensionality”. This paper considers a semipara-
metric time-series regression model to solve both problems: the curse of dimensionality and
the need for strict assumptions regarding data structure. Therefore, avoiding the disadvan-
tages of the two aforementioned regression models, the benefits of using semiparametric
regression models, which combine the features of parametric and nonparametric models
simultaneously, can be clearly seen. Although there are a number of studies about the use
of semiparametric time series model in the literature, in applications pertinent to “pre-
cision agriculture”, the lack of semiparametric techniques is evident. To go into detail,
the parametric component of the model is interpreted as a linear regression model, while
the nonparametric component allows flexibility from the strict structural assumptions
associated with linear regression. Moreover, interpretation of the semiparametric model is
easy and understandable. Some of the important studies on the semiparametric time series
model are as follows: Kato and Shiohama (2009), Gao and Phillips (2010), and Aydın and
Yılmaz (2021). These studies used kernel and spline-based estimators and applied these
estimators to different application fields including econometrics, censored time-series data
and medical applications.

In contrast to the studies mentioned above, the main purpose of this study is to
contribute to PA by proposing a semiparametric local polynomial estimator (LPE) for
modelling agricultural time-series data and to show the effects of the three main financial
risk factors (currency exchange rates, foreign investment, and interest rates) on agricultural
data. Note that if statistical importance and better qualified estimates are obtained using
LPE for the response variable (i.e., crop yield values), it may provide a critical advantage in
managing agricultural productivity and financial decision-making processes. It follows
that the effective features of the response variable can be shown through the statistical
significance of the parametric and nonparametric components of the model. The statistical
properties of the LPE are derived in Section 3. Both the semiparametric time-series model
and LPE can be easily understood and interpreted, which is beneficial for farm managers
and researchers carrying out data analysis for the purpose of predicting sound financial
decisions in the agricultural sector.

The data analyzed in this paper involves agricultural data and financial risk factors
obtained from all over Turkey. The dataset contains data points from 1962 to 2020. Cereal
yield (kg per hectare) is considered as the response variable. The determined predictors
are official exchange rate (USD), foreign direct investment (% of GDP) and interest rate, as
decided by the Central Bank of the Republic of Turkey. The nonparametric covariate of
land used for cereal production is determined by comparing the relationship between land
(km2) and yield.

The organization of the paper is as follows: Section 2 offers a detailed overview of
both the semiparametric time-series model and LPE. Section 3 provides the finite sample
properties of the introduced LPE as well as the evaluation metrics to measure the quality
of the LPE in modeling crop yield data. Section 4 is comprised of the analysis and results
for the estimation of the semiparametric time-series model for the crop yield data. The
parametric and nonparametric components of the model are presented individually. Finally,
conclusions are described in Section 5.

2. Materials and Methods
2.1. Semiparametric Time-Series Model

Consider the semiparametric time-series model of the form

Yt = Xtβ+ f (zt) + εt, t = 1 ≤ t ≤ n (1)
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where Yts are the values of response variable, which is stationary time-series, Xt =(
X1t, . . . , Xpt

)
is a (n× p)-dimensional matrix of predictors in time t, β =

(
β1, . . . , βp

)′
is a (p× 1)-dimensional vector of regression coefficients, f (zt) is an unknown smooth
function to be estimated based on values of nonparametric variable zts and finally, εt’s are
the stationary autoregressive error terms given by

εt = ρεt−1 + ut (2)

where ρ is an autocorrelation parameter and uts are independent and identically distributed
(i.i.d.) random error terms with ut ∼ N

(
0, σ2

ut

)
and |ρ| < 1. Note that if ρ = 0, model (1)

becomes an ordinary semiparametric regression model.

2.2. Local Polynomial Estimator (LPE)

Assuming that β = 0 in model (1) and ρ = 0 in (2), model (1) turns into a classical
nonparametric regression model. Following from Fan et al. (1997), by applying the local
polynomial regression technique in a neighborhood of z0, a regression function f (zt) can
be approximated locally by a polynomial of order q. Based on Taylor’s expansion in zt at a
neighbourhood of z0, the qth degree polynomial approximation of f (zt) can be expressed as

f (zt) ≈
q

∑
j=0

f (j)(z0)

j!
(zt − z0)

j =
q

∑
j=0

bj(zt − z0)
j (3)

From (3), this polynomial expression is locally fitted using weighted least squares
based on kernel methods, meaning local polynomial regression. However, in this paper, a
semiparametric time-series model is considered. Therefore, the LPE based on weighted least
squares should be obtained by minimizing the following criterion (4) due to autocorrelation
adjustment and parametric component terms. Accordingly, the local weighted least squares
criterion can be defined as follows:

min
b,β

n

∑
i=1

R

{
Yi −

q

∑
j=0

(zt − z0)
jbj − X′tβ

}2

K
(

zt − z0

h

)
(4)

where Σ is (n× n)-dimnesional symmetric and a positive-definite covariance matrix
required to solve the autocorrelation problem between the autoregressive error terms
εt ∼ Nn(0, Σ) given in (2). The elements of Σ are calculated as follows:

Σ =
σ2

u
1− ρ2 R, Ri,j = ρ|i−j|, 1 ≤ (i, j) ≤ n. (5)

In practice, Σ is unknown, but it is needed for the estimation. In order to make simple
the illustration of the estimation procedure, we assume that Σ is known. K(.) is a kernel
function to compute the weights of each zt point and h is the bandwidth parameter that

controls the size of the local neighborhood of z0. Accordingly, semiparametric LPEs (b̂j,
^
β)

of
(
bj,β

)
can be obtained by minimizing (4). It should be noted that in vector and matrix

notation (4) can be written as follows:

min
b,β

(Y− Bb− Xβ)TΣ−1(Y− Bb− Xβ)T (6)

where Y = (Y1, Y2 . . . , Yn)
T , b =

(
b0, . . . , bq

)T , B and X matrices are written as

B =


1 (z1 − z0) · · · (z1 − t0)

p

1 (z2 − z0) · · · (z2 − t0)
p

...
1

...
(zn − z0)

...
. . .

...
(zn − z0)

p

and X =


X11 X12 · · · X1p
X21 X22 . . . x2p

...
Xn1

...
Xn2

...
...

. . . Xnp
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After solving Equation (6) with respect to the derivative of b, some algebraic operations

denote that the estimate
^
b is given by

^
b =

(
B
′
Σ−1B

)−1
B
′
Σ−1(Y− Xβ) (7)

Following from the Taylor expansion in (3), it is necessary to select the first element

of the vector
^
b = (b̂0, . . . , b̂q) for obtaining f̂ (z0) = b̂0. Note that this leads to the semi-

parametric LPE of the nonparametric time-series function for an arbitrary point z0. Thus,
similar to Speckman (1988), the estimate of function can be defined as

f̂h(z0; h) =
n

∑
i=1

ωi′
(

Bi
′ΣiQi

)−1Qi
′Σ−1

i
(
Yi − X′iβ

)
= Sh(Y− Xβ) (8)

where Sh = ω1
′
(

B
′
Σ−1B

)−1
B
′
Σ−1 denotes the local polynomial smoother matrix (or

penalty matrix), and ω′1 = (1, z, . . . , zq) is a R(p+1) dimensional matrix having 1 in the
first position.

By using the local polynomial smoothing matrix Sh given after (8), the partial residuals
can be computed to estimate the regression coefficients of the parametric component of
the semiparametric time-series model. Hence, minimization criterion (6) is rewritten as a
weighted least squares based on the partial residuals, as follows:

min
β

n

∑
i=1

Σ−1
i

{
Ỹi −

~
X
′
iβ

}2
=
√

Σ−1
(

~
Y−

~
Xβ
)2

(9)

where Σ is defined as in (5),
~
Y = (In − Sh)Y and

~
X = (In − Sh)X. Also note that In is an

(n× n) identity matrix. Thus, the LPE of
^
β can be obtained by minimizing (9). It is defined

as follows:
^
β =

(
~
X
′
Σ−1

~
X
)−1 ~

X
′
Σ−1

~
Y (10a)

After this step, when the vector
^
β found in (10a) is substituted into (8), the estimate of

^
f corresponding to the nonparametric component of the model based on the LPE can be
obtained by

^
f = Sh

(
Y− Xβ̂

)
(10b)

where Sh is defined in (8). The vector of fitted values is defined as

µ = Xβ̂+
^
f = HhY =

^
Y (10c)

where Hh = Sh + (In − Sh)X
(

~
X
′
Σ−1

~
X
)−1 ~

X
′
Σ(In − Sh).

3. Statistical Properties and Evaluation Metrics

In this section, the finite sample properties of the proposed LPE are discussed. Re-
garding the parametric component of the model, Equation (10a) is expanded to show the

bias and variance of
^
β. Note that partial residuals are needed here; these are defined after

Equation (9). Because the model involves autoregressive error terms, both bias and variance
involve the Σ matrix. Before the calculations are made, some assumptions are needed in
order to obtain accurate bias and variance of the regression coefficients. These assumptions
are as follows:
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A1. Regression function f (.) is bounded its second partial derivative.

A2. Matrix of parametric covariates
(
X1, . . . , Xp

)T ∈ Rp have a continuous density function
d(.).

A3. Cov(
^
β) is bounded as sup

(
Cov(

^
β)

)
< ∞.

A4. Standard assumptions of Kernel function K(.) are ensured. These are: K(.) is a
continuous bivariate kernel function and

∫
K(u)du = 1.

A5. To provide the asymptotic normality, Cov(
^
β) is bounded away from zero as 0 <

inf
(

Cov(
^
β)

)
, which is considered together with A3. The bias and variance of the regression

coefficients are presented in Theorem 1 under these assumptions.

Theorem 1. Assume that (A1)–(A5) are ensured. The expanded form of β̂ is thus given by:

^
β =

(
~
X
′
Σ−1

~
X
)−1 ~

X
′
Σ−1

~
Y
∗
Ĝ =

(
~
X
′
Σ−1

~
X
)−1 ~

X
′
Σ−1(In − Sh)

Y= β+

(
~
X
′
Σ−1

~
X
)−1 ~

X
′
Σ−1

~
f +

(
~
X
′
Σ−1

~
X
)−1 ~

X
′
Σ−1

(
I− SDL

hi

)
ε

(11)

where
~
f = (I− Sh)f is the partial residuals for f. From (11), the bias and covariance matrix of

^
β

can be inferenced easily as follows:

Bias
(

^
β

)
= E

(
^
β−β

)
=

(
~
X
′
Σ−1

~
X
)−1 ~

X
′
Σ−1

~
f (12)

Cov
(

^
β

)
= σ2

[(
~
X
′
Σ−1

~
X
)−1 ~

X
′
Σ(In − Sh)

2Σ−1
~
X
(

~
X
′
Σ−1

~
X
)−1

]
(13)

Also, if n→ ∞,
∣∣∣∣Bias(

^
β)

∣∣∣∣ ≡ Op

(
n−1/2

)
and Cov(

^
β) ≡ Op

(
n−1).

Proof of Theorem 1 is given in Appendix A. Theorem 2 is provided below to demon-

strate the distribution of
^
β.

Theorem 2. Assume that (A1)–(A5) are confirmed. Let φ(.) be the distribution function of the

standard normal distribution and M =
√

Cov(β̂). Accordingly, the following expressions can be
written:

P(
(

^
β−β)

M
≤ η) = φ(η) + op(1), when n→ ∞

Here, this result shows that whether smooth function f (.) does or does not exist in the model,

the estimate of
^
β has a

√
n-convergence to β.

Proof of Theorem 2 is given in Appendix B.
Note that the bias and variance–covariance matrix of the regression coefficients given

in (12) and (13) are used a measurement tool to evaluate the behaviors of the LPE in
crop yield data modelling. Moreover, note that model variance σ2 is generally unknown.
Therefore, an estimate of σ2 is used, calculated as follows:

σ̂2 =

(
Y−

^
Y
)T(

Y−
^
Y
)

tr(H)
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where H and
^
Y are given in (10c).

In addition, root mean squared (RMSE) scores for the nonparametric component
estimation are calculated as:

RMSE
(

f,
^
f
)
=

√√√√n−1
n

∑
j=1

[
f
(
zj
)
− f̂

(
zj
)]2

=

√(
f−

^
f
)T(

f−
^
f
)

(14)

After the parametric and non-parametric components, two criteria popular in the time-
series literature are introduced to show the performance of the LPE for the semiparametric
time-series model. These criteria are given below:

MARE = n−1
n

∑
t=1

∣∣Yt − Ŷt
∣∣/|Yt|, MAPE = n−1

n

∑
t=1

∣∣Yt − Ŷt
∣∣/Yt (15)

Hence, the performance of the LPE can be evaluated by using fitted values from
the time-series model. Note that semiparametric LPE estimator shows its difference by
involving both parametric and nonparametric components. These feature makes LPE
more flexible than its conventional alternatives such as linear estimators or autoregressive
models. In this context, from our point of view, the effects of the financial risk factors on
the crop yield are represented by LPE estimator better than existing methods.

In addition, Table 1 is presented below to provide some basic information about the
data of interest. Detailed information about the data is given in Section 4. Table 1 involves
the descriptive statistics of the variables.

Table 1. Descriptive statistics of cereal yield dataset.

log(Yieldt) Exchanget Foreignt Interestt Landt

Min 7.02 0.00 0.02 8.00 16.20
Max 8.10 1.9 3.62 87.79 16.46
Range 1.08 1.9 3.60 79.79 0.26
Median 7.66 0.00 0.54 22.78 16.40
Mean 7.62 0.52 1.06 33.68 16.38
SE of mean 0.04 0.09 0.12 2.93 0.01
Std.
Deviation 0.31 0.69 0.92 22.49 0.07

Coef.
Variation 0.04 1.32 0.88 0.67 0.00

4. Analysis of the Effects of Financial Risk Factors on Crop Yield

As mentioned in Section 1, a cereal yield dataset collected between years 1962 and 2020
is modelled by the introduced LPE. The dataset was collected from the following website:
https://data.worldbank.org/indicator/NV.AGR.TOTL.ZS?locations=TR (accessed on 28
January 2022). The cereal yield (kg/hectare) (yield) variable is considered as a response
variable to be explained using a multiple predictor time-series model. Note here that
there are lots of potential predictors to model the yield variable. However, this study
focuses on some of the main financial risk factors that are explained below in detail. In this
section, the important predictors are determined according to linear correlation between
the predictors and the response variable. The nonparametric covariate of the model is
decided by observing its scatter plot versus the yield. Accordingly, explanatory variables
for both the parametric and nonparametric components of the model are listed as follows:

Covariates generating the parametric components:

• Official exchange rate (USD annually average)—Exchange;
• Foreign direct investment (% of GDP)—Foreign;
• Interest ratio—Interest.

https://data.worldbank.org/indicator/NV.AGR.TOTL.ZS?locations=TR
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Notice that the variable names used in the semiparametric time-series model are given
on the right side of the list.

Figure 1 is obtained by using R software. Figure 1 displays the correlations between
the parametric covariates and yield, which is used as the response variable. It should
also be noted that panel (a) in Figure 1 shows the scatter plots for each combination of
variables, as well as the density plots for each variable and the graph giving the correlations
between the variables, while panel (b) displays the correlogram showing the strength of
the correlations between the variables.
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Figure 1. Pairs of parametric covariates and correlogram with response variable log(Yield). (a) Pairs
with densities and correlations. (b) Correlogram. Asterisks (***) denote that correlations are statisti-
cally significant in 95% confidence level.

Nonparametric covariate:

• Land under cereal production (km2)—Land.

The reason for choosing “Land under cereal production” as a nonparametric covariate
can be clearly seen in Figure 2. It seems that there is a clear nonlinear relationship between
response variable yield.
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From the information given above, the semiparametric time-series model is written as
follows:

log(Yieldt) = β1Exchanget + β2Foreignt + β3 Interest + f (Landt) + εt (16)

where t = 1, . . . , 59 and εt are autoregressive error terms, as defined in Equation (2). Here,
the vector of regression coefficients can be notated as β = (β1, β2, β3)

T and their LPE

estimate is then
^
β. Similarly, if f = ( f (land1), . . . , f (land59))

T is specified as a vector, and

its LPE estimate is expressed as
^
f. Note that one of the commonly used methods in the

time-series literature for obtaining a model for yieldt responses is an autoregressive (AR)
model. Therefore, an AR model is used as a benchmark method and the quality of each of
the two models is compared. Note that Aydın and Yılmaz (2021) have previously discussed
a similar comparison. The Dickey–Fuller test is applied to determine the optimum lag for
the AR model and the results are shown in Table 2.

Table 2. Augmented Dickey–Fuller test for stationary of the yield.

No. Lag ADF Statistic p-Value

0 −4.9713 p < 0.01 *
1 −3.2139 0.0938
2 −2.7427 0.2706
3 −2.187 0.4898

* The null hypothesis that the series is non-stationary is rejected at 95% confidence level.

It can be seen from Table 1 that the yield series are stationary without lag when the
trend coefficient is added to the model. In order to represent data, this paper considers
an AR(2) model according to AIC criterion, and model coefficients are estimated as γ1 =
0.662 and γ2 = 0.264. Thus, the AR(2) model is given in (17) as

yieldt = 0.662(yieldt−1) + 0.264(yieldt−2) + ut (17)

where uts are normally distributed with a constant variance (white noise). Additional
results of the analysis are provided in following figures and tables.

The following tables (Tables 3 and 4) contain the scores for measuring the quality of
both the semiparametric time series (based on LPE) and the AR(2) models, respectively.
The minimum scores are indicated with an asterisk. Obviously, the LPE gives the minimum
mean absolute percentage error (MAPE), mean absolute relative error (MARE) and model
variances. This means that the best estimates are obtained with LPE, not AR(2). Note that
the performance values of AR(2) are not too distant from those of LPE. However, regarding
overall model performance, LPE appears to be superior.

Table 3. Values of evaluation metrics form the estimated semiparametric and AR(2) models.

MAPE MARE ^
σ

2

LPE 0.1404 * 0.5177 * 0.2280 *
AR(2) 0.1597 0.5357 0.4397

*: The best performance scores.

Table 4. Bias and variances of regression coefficients obtained from LPE.

β̂1 = 2.376 β̂2 = 1.678 β̂3 = 0.114

Var
(

^
β

)
0.105 0.034 0.594

Bias
(

^
β

)
0.573 0.396 0.055
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Table 4 shows the bias and variances of the parametric component estimated using the
LPE. Here, β̂1 denotes the effect of Exchanget to the model, β̂2 shows the contribution of
f oreignt and β̂3 denotes the effect size of Interestt on the variables. According to the values
of the regression coefficients, it can be seen that Exchanget affects the response variable the
most. This variable is highly dependent on the sensitive economical structure of Turkey.
Interestingly, foreign investment seems to have an effect on the yield, however, we cannot
say for certain what is the correlation between these two variables. In Turkey, higher foreign
investment may indirectly affect the price of fertilizers, animal feed and pesticides, which
are the main agricultural expenditures. Therefore, the yield may be positively affected by
foreign investment. On the other hand, while the interest ratio in the country seems to have
little effect on the yield, this is not significant enough proof to reject its long-term effect on
the yield or other important agricultural indicators. Therefore, the relationship between
agricultural indicators and the interest ratio should be closely inspected.

Figure 3 contains the bar graph of the scores given in Table 3. With the exception of the
MARE criterion, the performance of the LPE and AR(2) models are similar. However, in
general, the LPE solves the targeted modeling problem more efficiently than the traditional
AR(2) model, which is an expected result because the semiparametric time-series model
includes the non-parametric component. The success of the LPE in this context is illustrated
in Figure 4. An estimated curve of f (Landt) and its 95% confidence interval are also given
in this figure. The RMSE value for the estimated curve is 0.4192. Figure 4 also shows that
the estimate obtained from LPE satisfactorily represents the data.
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As can be seen in Figure 4, the relationship between log(Yieldt) and Landt is clearly
nonlinear. Due to the AR model using linear modelling structure, it cannot catch the pure
nonlinear relationships such as log(Yieldt) and Landt. In this context, the merit of the
introduced LPE estimator should be emphasized because it can represent both linear and
nonlinear relationships between the variables.
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5. Conclusions

This paper discusses modelling crop yield data using a new semiparametric estimator
based on a local polynomial estimation model, LPE. A Turkish cereal yield dataset is
considered as the real-world data example. The results are given in Section 4. In order to
determine the accuracy of the LPE’s performance, the AR model, which is the traditional
method used in modeling time-series data in the literature, is used as a benchmark and
the results of a comparison between the two methods are presented. The results given in
Tables 3 and 4 and Figures 3 and 4 show that the proposed LPE estimator gives satisfactory
estimates for both the parametric and nonparametric components. In this context, it can
be said that using the LPE estimator for agricultural data successfully models crop yield
with less risk. Although this paper considers the AR model as a benchmark method, crop
yield prediction is studied by several authors based on different estimation techniques.
For instance, Chandio et al. (2020) investigated the effects of climate change factors in
cereal yield in Turkey between the dates 1968–2014. Differently from our paper, they
considered linear regression to estimate the cereal yield. Although linear models are a
widely used method for modelling time series, they cannot catch the nonlinear effects of
the explanatory variables, which means the semiparametric estimator reduces the risk.
Some similar studies can be ordered as follows: Çakır et al. (2014) used artificial neural
networks to estimate the cereal yield in Turkey. Moreoever, Chandio et al. (2021) inspected
modelling cereal production for different phenomena. By considering the methods given
in the mentioned studies, a detailed comparison study can be made to show explicitly the
behaviors of the introduced semiparametric estimator and the alternative nonparametric
and semiparametric estimation methods in future research. On the other hand, the LPE
estimator involves only one nonparametric component, and its performance depends on
the optimal bandwidth parameter. Accordingly, more than one nonparametric component
limits the LPE estimator, and its calculation process is more complicated than the AR and
linear models. However, the performance of LPE can tolerate these disadvantages.
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Appendix A. Proof of Theorem 1

As mentioned in Section 2,
^
β = (X̃

T
X̃)
−1

X̃
T ~

Y. Assume that assumptions (A1)–(A5) are

ensured and ‖(In − S)f‖ = ‖
~
f‖ = Op(n−1/2) By using this information and Equation (11),

if n→ ∞ the following expression can be written as∣∣∣∣Bias(
^
β)

∣∣∣∣ =
∣∣∣∣∣(~

X
′
Σ−1

~
X)
−1 ~

X
′
Σ−1

~
f

∣∣∣∣∣ ≤ (
~
X
′
Σ−1

~
X)
−1 ~

X
′
Σ−1f̃

∣∣∣∣Bias(
^
β)

∣∣∣∣ ≡ Op‖n−1/2‖2 (A1)

According to A3, Cov(
^
β) depends on a constant v and can be written as follows:

Cov(
^
β) = σ2[(

~
X
′
Σ−1

~
X)
−1 ~

X
′
Σ(In − Sh)

2Σ−1
~
X(

~
X
′
Σ−1

~
X)
−1

] ≤ vn−2(In − S)
~
X

2
(A2)

Here, ‖(In − S)
~
X

2
‖ ≤ 2‖

~
X‖

2
+ 2‖ST

~
X‖

2
. If it is assumed that ‖

~
X‖

2
= Op(n), then the

right side of (A2) is given by

n−2‖(In − S)
~
X‖

2
= Op(n−1) (A3)

Thus, proof of Theorem 1 is completed

Appendix B. Proof of Theorem 2

Using the inequality ‖(In − S)
~
X‖

2
≤ 2‖

~
X‖ + 2‖ST

~
X‖

2
and (A3), the following is

obtained

‖(In − S)
~
X‖

2
≤ 1

2
‖

~
X‖

2
+ 2‖ST

~
X‖

2
=

1
2
‖

~
X‖

2[
1 + op(1)

]
(A4)

by using (A2) and the following equation:

lim
n→∞

P(Cov(
^
β)) ≥ v(

~
X

T ~
X)
−1

= 1 (A5)

Then, from Equations (12) and (A2),∣∣∣∣∣
(

~
X

T ~
X
)−1 ~

X
T~

f

∣∣∣∣∣
M

= op(1) (A6)

https://data.worldbank.org/indicator/NV.AGR.TOTL.ZS?locations=TR
https://data.worldbank.org/indicator/NV.AGR.TOTL.ZS?locations=TR
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Thus, when n→ ∞ , the asymptotic normality of (β−
^
β) can be written in (A7),

P(
(

~
X

T ~
X)
−1 ~

X
T
(In − Sh)(Y− Xβ− f)

M
≤ η) = P(

(
^
β−β)

M
≤ η) = φ(η) + op(1) (A7)
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