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Abstract: COVID-19 has affected almost all sectors of the economy, including the real estate markets
across different countries in the world. A rich body of literature has emerged in analyzing real
estate market trends and revealing important information. However, few studies have used a spatial
perspective to investigate the impact of COVID-19 on property values. The main purposes of this
study are as follows: (1) to explore the spatial distribution and spatial patterns of housing price
changes during the COVID-19 pandemic crisis in the U.S. real estate market and (2) to model the
spatially nonstationary relationships between the housing price change and COVID-19 characteristics.
We find that housing price changes differ across space and appear associated with the spatial
distribution of the COVID-19 case rates. The housing market volatility is amplified by the uneven
distribution of some socioeconomic factors. The spatially uneven housing price changes may bring
an uneven spillover effect to the rest of the economy and lead to divergence in economic growth
across different areas.

Keywords: COVID-19; housing value; spatial analysis; U.S.; geographically weighted
regression (GWR)

1. Introduction

Since the initial outbreak of COVID-19, the pandemic has generated severe global
economic disruptions. These disruptions have resulted in one of the largest economic
recessions in the United States (U.S.) since the Great Depression (Del Giudice et al. 2020).
COVID-19 has affected almost all sectors of the economy, including the real estate markets
across different countries in the world (Nicola et al. 2020). Governments across the world
developed different policies to fight the negative consequences of the pandemic crisis on
the housing market (Kholodilin 2020). Since home equity is the single largest financial
asset for most households and numerous jobs are connected with the real estate sector,
structural breaks in property values may lead to even more profound macroeconomic
and microeconomic consequences. Housing price changes can play an important role in
fueling the growth or decline of the economy. For example, the cooling of the housing
market triggered an economic recession in 2007. Previous studies found strong effects of
housing prices on economic consumption and production (Case et al. 2005; Miller et al.
2011a, 2011b). Notably, the recent changes in the real estate market during the COVID-19
pandemic have produced speculation of an urban exodus in the current socioeconomic
climate. As the emphasis on properly conducting safety measures necessary to mitigate the
impacts of COVID-19 grows, many people have become circumspect in terms of their daily
choices. Concerning pandemic restrictions have led city-dwellers to reevaluate where to
reside. As densely populated neighborhoods are at higher risk of spreading COVID-19,
the desire to relocate to a city’s less dense suburbs has dramatically increased (Liu and Su
2021; Ramani and Bloom 2021; Li and Zhang 2021). A key economic evaluation arises as to
whether the desire for living in rural or suburban neighborhoods, where individuals have
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greater freedom and safety from disease, outweighs the economic opportunities in urban
areas that held significant merits over the former prior to the pandemic.

The study of pandemic-induced fundamental changes in consumer behavior along
with other key real estate issues has generated substantial scholarly interest (Goodman
and Magder 2020). A rich body of literature has emerged in analyzing market trends and
revealing important information (Kuk et al. 2021; Verhaeghe and Ghekiere 2021). Balemi
et al. (2021) provided a comprehensive literature review of the latest academic insights into
how this pandemic has affected housing, commercial real estate, and the mortgage market.
Hoesli and Malle (2021) analyzed the effects of the COVID-19 pandemic on commercial real
estate prices, particularly in European markets, emphasizing the differences across property
types. In the Middle East, Ahsan and Sadak (2021) and Tanrıvermiş (2020) examined the
possible effects and impacts of the COVID-19 outbreak on Turkish real estate development.
In Oceania, Hu et al. (2021) inspected COVID-19’s effect on Australian housing prices
considering two factors: epidemiological severity and policy intervention. In Europe,
Verhaeghe and Ghekiere (2021) studied the impact of the COVID-19 pandemic on ethnic
discrimination in the housing market of a metropolitan city in Belgium. Marona and Tomal
(2020) assessed the impact of the COVID-19 pandemic upon the workflow of real estate
brokers and their clients’ attitudes in Krakow, Poland. Del Giudice et al. (2020) and De
Toro et al. (2021) evaluated the short- and mid-run COVID-19 effects on housing prices
in Italy. Blakeley (2021) and Uchehara et al. (2020) provided a wide-ranging insight into
the effects of the COVID-19 crisis on real estate in the U.K. In Asia, Hamzah et al. (2020)
argued that a U-shaped recovery is more likely to hit the real estate industry. Chong
and Liu (2020), Qian et al. (2021), and Cheung et al. (2021) investigated the impact of
COVID-19 on housing prices in China. In the U.S., Yoruk (2020) explored the early effect of
the COVID-19 pandemic on the U.S. housing market. Jones and Grigsby-Toussaint (2020)
acknowledged that racial and ethnic minorities experienced the worst housing outcomes
of this COVID-19 pandemic. Beard (2020) recommended policy actions to mitigate the
most negative impacts on housing access applicable both in Michigan and nationwide.
Ling et al. (2020) and Ramani and Bloom (2021) studied the effect of COVID-19 on U.S.
commercial real estate prices. D’Lima et al. (2020) provided evidence of housing market
effects following government shutdown responses to COVID-19 using micro-level data on
U.S. residential property transactions. Bayoumi and Zhao (2020), Wang (2021), Nicola et al.
(2020), and Zhao (2020) found that the U.S. real estate market has hitherto shown little sign
of distress.

Despite these studies, very few studies have used a spatial perspective to investigate
the impact of COVID-19 on property values (Li and Zhang 2021; Liu and Su 2021; Ramani
and Bloom 2021; Wang 2021; Yilmazkuday 2020). On the one hand, previous studies in
literature showed that housing prices are spatially autocorrelated. Realtors know that
“location, location, location” determines housing prices. The geographic location of a
house affects access to employment, shopping, recreation, neighborhood characteristics,
environmental amenities, and public services. Geographic location, therefore, affects real
estate business concerning housing supply, marketing, and financing. Geographic location
plays an important role in determining the market value of a property. On the other
hand, infectious diseases such as COVID-19 have substantial geographic variations in
range and intensity of transmission induced by the uneven geographic distribution of
vulnerable populations and risk factors that facilitate the spatial dispersion of the virus.
Spatial attributes, such as population density and airport and road connectivity, should
be linked to the geographic disparities of COVID-19 risk and transmission rates. Urban
areas with connectivity enhanced by air transport and dense populations may have a faster
spread of COVID-19 infection compared to rural and less connected areas with sparse
populations. Because both housing values and COVID-19 vary a great deal with different
geographic locations, there might be different impacts of COVID-19 on housing values
across different geographic locations.
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In addition to spatial autocorrelation, housing price may also exhibit spatial hetero-
geneity within a large housing market due to localized supply and demand imbalances
(Goodman 1981; Goodman and Thibodeau 1998). The awareness of limitations of tradi-
tional hedonic price analysis has led to the development of a wide range of spatial models
accounting for spatial effects in residential data sets (Anselin et al. 1996). Spatial models
explicitly account for two major spatial effects in housing prices typically ignored in global
hedonic housing price models: spatial dependency and spatial heterogeneity (Anselin
1988). Geographically weighted regression (GWR) is one of these spatial models addressing
spatial dependency and spatial heterogeneity (Brunsdon et al. 1996). In fact, GWR is a
local spatial modeling approach that explicitly allows parameter estimates to vary over
space (Brunsdon et al. 1996; Fotheringham et al. 2003). Lately, GWR has been utilized
in housing price prediction (e.g., Li et al. 2016; Lu et al. 2014; Yu et al. 2007). For exam-
ple, Yu et al. (2007) employed GWR to examine spatial dependence and heterogeneity of
housing-market dynamics in the City of Milwaukee. Bitter et al. (2007) compared two
approaches to examine spatial heterogeneity in housing attribute prices within the Tucson,
Arizona, housing market: the spatial expansion method and GWR. They found that GWR
outperforms the spatial expansion method in terms of explanatory power and predictive
accuracy. Recently, Li and Wei (2020) used GWR to examine the local geographies of the
housing value bust (2008–2012) and boom (2012–2016) since the financial crisis in Salt Lake
County, Utah.

In fact, there are many publications in the literature studying the effects of past crises on
the housing market, such as health epidemics (e.g., Wong 2008; Tyndall 2019; Francke and
Korevaar 2021; Custodio et al. 2021; D’Lima and Thibodeau 2022) and the global financial
crisis (e.g., Maclennan and OSullivan 2011; Murphy 2011; Forrest and Yip 2011; Jones and
Richardson 2014; Grimes and Hyland 2015). Some publications studied the effects of past
crises on the housing market from the spatial perspective (e.g., Aalbers 2009; Martin 2011;
Li and Wei 2020). However, to the best of our knowledge, it seems that no publication has
investigated the spatial relationships between COVID-19 infection and housing values, and
consequently no publication has applied GWR to study the spatial relationships. This paper
intends to use the GWR model for investigating the spatial impacts of COVID-19 on the
housing price changes in the U.S. real estate market. We will explore the spatial dependency
and spatial heterogeneity of property value changes in the U.S. during the COVID-19
pandemic. Specifically, the main purposes of this study are as follows: (1) to explore the
spatial distribution and spatial patterns of housing price changes during the COVID-19
pandemic crisis in the U.S. real estate market and (2) to model the spatially nonstationary
relationships between the housing price change and COVID-19 characteristics. We aim to
address the following research questions: Is there a relationship between COVID-19 cases
and housing price changes? If so, how significant is the relationship? How does this spatial
relationship vary as regards the uneven distribution of COVID-19 characteristics and other
socioeconomic variables, such as population, employment, education, and poverty data
across different counties in the U.S.?

2. Data and Methodology
2.1. Data

This study used data from four primary sources: Zillow Home Index Value (ZHVI),
USA Facts, the U.S. Census Bureau, and the U.S. Department of Agriculture. Table 1 lists
all data sets used and their corresponding types, names, geographic information system
(GIS) abbreviation attribute names, and sources. The housing value data were downloaded
from the Zillow Research website. ZHVI represents the “typical” home value for a region
and is a smoothed, seasonally adjusted measure of the typical home value and market
changes across a given region and housing type (Zillow Research 2021). We used ZHVI
data to measure the housing price change rates from May 2020 to May 2021 in different
U.S. counties. We chose the month of May because the impact of the outbreak of COVID-
19 pandemic on housing price began to appear in May 2020. Although the COVID-19
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pandemic crisis started to occur in later 2019 and the COVID-19 cases started to spike in
the latter half of March 2020 in the U.S., the impact on housing price had a delayed effect
(Atkinson et al. 2020). The price changes, in fact, lagged a couple of months, so the month
of May should be a good representative month in 2020 for studying housing price changes
during the pandemic. Data of county-level COVID-19 case numbers and density rates were
collected from USA Facts. This comprehensive COVID-19 data source aggregated data
from the Centers for Disease Control and Prevention (CDC) and state-level and local-level
public agencies. County-level COVID-19 data were confirmed by referencing state and local
agencies directly. Population, employment, education, poverty, and other socioeconomic
data were acquired from the U.S. Census Bureau and the U.S. Department of Agriculture.
GIS data used in this study include (1) U.S. county shapefile and (2) major U.S. cities
data. The former was downloaded from the U.S. Census Bureau website, while the latter
were downloaded from the ESRI ArcGIS Hub. We converted all of the GIS data from
the WGS 1984 Geographical Coordinate System to the NAD 1983 (2011) Contiguous USA
Albers Projected Coordinate System for spatial data analysis. We conducted spatial joins to
integrate the various data together based on the U.S. FIPS state and county codes using
ArcGIS Pro software.

Table 1. Data names and sources.

Data Types Data Names GIS Abbrev. Attribute
Names Data Sources

Home Value

Zillow Home Value Index (ZHVI) data
2020–2021

Zillow Research Data:
https://www.zillow.com/
research/data/ (accessed

on 6 June 2021).

Change rates of ZHVI from May 2020 to
May 2021 C5_20_21 Calculated by authors

COVID-19 Data

Number of COVID-19 cases by 30 June
2021 COVID USA Facts:

https://usafacts.org/
visualizations/

coronavirus-covid-19
-spread-map (accessed on

30 July 2021).COVID-19 rates by 30 June 2021 COVID_R

Population,
Employment,

Education, Poverty,
and Other

Socioeconomic Data

Total population POP

U.S. Census Bureau: https:
//covid19.census.gov/

search?collection=Dataset
(accessed on 10 July 2021).

Population density POP_DENSITY

Percent of households with income in the
past 12 months that was less than USD

75,000
HOUSELT75KP

Total population that worked at home POP_WORK_HOME

Percent of civilian employed population
16 years and over in healthcare

practitioners and technical occupations
HCTOCC_CALC

Average household size HOUSEHOLD_SIZE

Total civilian noninstitutionalized
population with health insurance

coverage
POP_INSUR

Percent of population with no health
insurance coverage POP_NO_INSUR

Percent of households with Internet at
home PER_ INTERNET

https://www.zillow.com/research/data/
https://www.zillow.com/research/data/
https://usafacts.org/visualizations/coronavirus-covid-19-spread-map
https://usafacts.org/visualizations/coronavirus-covid-19-spread-map
https://usafacts.org/visualizations/coronavirus-covid-19-spread-map
https://usafacts.org/visualizations/coronavirus-covid-19-spread-map
https://covid19.census.gov/search?collection=Dataset
https://covid19.census.gov/search?collection=Dataset
https://covid19.census.gov/search?collection=Dataset
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Table 1. Cont.

Data Types Data Names GIS Abbrev. Attribute
Names Data Sources

Total households with a computer HH_COMPUTER

Total households with a broadband
Internet subscription HH_INTERNET

Number employed annual average, 2020 EMPLOYED

U.S. Department of
Agriculture:

https://www.ers.usda.
gov/data-products/

county-level-data-sets/
download-data/ (accessed

on 10 July 2021).

Bachelor degree or higher, 2015–2019 BACHELOR

Percent of adults with a bachelor degree
or higher, 2015–2019 PER_BACHELOR

Estimate of people of all ages in poverty
2019 POVALL

Estimate of median household income
2019 MEDHHINC

Numeric change in resident total
population 1 July 2018 to 1 July 2019 N_POP_CHG

Natural increase of population in period
1 July 2018 to 30 June 2019 NATURAL_IN

GIS Data

U.S. county shapefile

U.S. Census Bureau:
https://www2.census.

gov/geo/tiger/TIGER202
0/COUNTY/ (accessed on

6 June 2021).

The shapefile of major U.S. cities

ESRI ArcGIS Hub:
https://hub.arcgis.com/

datasets/esri::
usa-major-cities/about

(accessed on 16 June 2021).

2.2. Ordinary Least Squares (OLS) Regression and Exploratory Regression Analysis

Regression analysis was used in this study to first model, examine, and explore the
spatial relationships between the housing price change rate and the impact factors behind
housing price change, such as COVID-19 cases/rates, population, employment, education,
poverty, and other socioeconomic data. OLS is a well-known regression technique and
is the proper starting point for all spatial regression analyses. OLS is a global model to
understand or predict housing price change values using explanatory variables. It uses a
single regression equation to represent the housing price change process over the space of
all of the U.S. counties. The OLS equation is written as follows:

Yi = β0 + ∑
k

βk Xik + εi (1)

where Yi is the housing price change rate for a county i in this study; β0 is constant intercept;
Xik is the kth independent or explanatory variable for modeling the housing price change
rate among COVID-19 cases/rates, population, employment, education, poverty, and other
socioeconomic variables; βk is the regression coefficient of the explanatory variable Xik
and represents the strength and the type of the relationship that the explanatory variable
Xik has with the housing price change rate; and εi is the random error term or residual. εi
indicates the unexplained portion of the housing price change rate. The magnitude of the
residuals from a regression model is a measure of model fit. Large residuals indicate poor
model fit.

It is difficult to find a properly specified OLS model for analyzing the relationships
between housing price change rates and the COVID-19 cases/rates because there are many

https://www.ers.usda.gov/data-products/county-level-data-sets/download-data/
https://www.ers.usda.gov/data-products/county-level-data-sets/download-data/
https://www.ers.usda.gov/data-products/county-level-data-sets/download-data/
https://www.ers.usda.gov/data-products/county-level-data-sets/download-data/
https://www2.census.gov/geo/tiger/TIGER2020/COUNTY/
https://www2.census.gov/geo/tiger/TIGER2020/COUNTY/
https://www2.census.gov/geo/tiger/TIGER2020/COUNTY/
https://hub.arcgis.com/datasets/esri::usa-major-cities/about
https://hub.arcgis.com/datasets/esri::usa-major-cities/about
https://hub.arcgis.com/datasets/esri::usa-major-cities/about
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potential explanatory variables to explain the housing price change rate in the U.S. during
the COVID-19 pandemic. Based on the literature review and data availability, we tested 20
COVID-19 and socioeconomic explanatory variables to find a properly specified OLS model
for explaining housing price change rates in this study. Please see Table 1 for the details of
the 20 explanatory variables used in this study. We first used the exploratory regression
tool in ArcGIS Pro to find properly specified OLS models. The exploratory regression tool
in ArcGIS Pro is a data mining tool, which will try all possible combinations of the 20
explanatory variables to see which models pass all of the necessary OLS diagnostics. By
evaluating all possible combinations of the 20 explanatory variables, the tool can find the
best OLS model that best explains housing price change rates in the U.S. during the COVID-
19 pandemic within the context of user-specified criteria. The exploratory regression tool
is similar to stepwise regression found in many statistical software packages. The main
difference is that stepwise regression only looks for models with high adjusted R2 values
while the exploratory regression tool looks for models that meet all of the requirements
and assumptions of the OLS method.

The exploratory regression analysis tested all combinations of the 20 explanatory
variables for redundancy, completeness, significance, bias, and performance based on the
specified minimum and maximum numbers of explanatory variables each model should
contain, along with threshold criteria for adjusted R2, coefficient p-values, variance inflation
factor (VIF) values, Jarque–Bera p-values, and spatial autocorrelation p-values. Valid values
for adjusted R2 range from 0.0 to 1.0. The value of 0.0 indicates that passing models explain
0% of the variations in the housing price change rates, and the value of 1.0 indicates that
passing models explain 100% of the variations in the housing price change rates. The cutoff
explanatory variable coefficient p-values represent the confidence level required for all
coefficients in the passing models. Small coefficient p-values reflect a stronger confidence
level. Valid values for this parameter range from 1.0 down to 0.0. The typical value of
0.05 indicates that passing models only contain explanatory variables whose coefficients
are statistically at the 95% confidence level (p-values smaller than 0.05). Variance inflation
factor (VIF) values reflect how much redundancy (multicollinearity) there is among model
explanatory variables. When the VIF value is higher than 7.5, it indicates an unstable model
with the multicollinearity problem. A smaller VIF value indicates passing models with
less redundancy. Jarque–Bera p-values indicate whether the model residuals are normally
distributed or not. If the Jarque–Bera p-value is statistically significant (small), the model
residuals are not normally distributed and the model is biased. So, passing models should
have large Jarque–Bera p-values. In this study, we also conducted exploratory regression
analysis to test regression residuals using the spatial autocorrelation tool for models with
the three highest adjusted R2 results. Randomly distributed residuals may show a properly
specified model, while significant clustering in regression residuals may indicate model
misspecification. When the spatial autocorrelation p-value is statistically significant (small),
it indicates that the model is likely missing one or more key explanatory variables and the
model cannot be trusted.

2.3. Geographically Weighted Regression (GWR)

While the exploratory regression analysis based on OLS can be used to analyze the as-
sociation relationships between the housing price change rate and the explanatory variables,
the global OLS models assume stationary relationships or structurally stable relationships
over space. The parameter estimates of the OLS models assume spatial stationarity, suppos-
ing the relationships between the housing price change rate and the explanatory variables
to be spatially constant. This means that a single model will be fitted to all of the county
data and be applied equally to the whole U.S. study area. The coefficients of the OLS
models will be constant across all of the U.S. counties. This may be highly unrealistic for
the housing price change rate variable. Variations or spatial nonstationarity in relationships
between the housing price change rate and the explanatory variables over space commonly
exist in a relatively large real estate market. We, therefore, should take into account the
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spatial nonstationarity when analyzing the housing price change rate and the explanatory
variables. A method that focuses on local association and local instabilities is needed for
accurate spatial analysis and modeling of housing price change rates in the U.S. during the
COVID-19 pandemic.

In this study, GWR was used to model local association and local instability relation-
ships between the housing price change rate and the explanatory variables. GWR is a
local spatial regression model and takes into account both spatial dependency and spatial
heterogeneity. It extends the traditional regression framework by allowing local rather than
global parameters to be estimated (Fotheringham et al. 2003) so that the model is written as
follows:

Yi = β0(ui, vi) + ∑k βk (ui, vi)Xik + εi (2)

where Yi is the housing price change rate for a county i, (ui, vi) denotes the coordinates
of the ith county in space, β0(ui, vi) is the constant intercept at location (ui, vi) for county
i, and βk (ui, vi) is a realization of the continuous function βk (u, v) at location (ui, vi)
for county i (i.e., coefficients β0 and βk vary for each county feature location). Xik is
the kth independent or explanatory variable for modeling housing price change rates,
such as COVID-19 cases/rates, population, employment, education, poverty, or other
socioeconomic variables, and εi is the random error term or residual.

The GWR model takes into account spatial autocorrelation when it estimates its
parameters: its parameters are estimated using a distance-weighting scheme. The weights
are chosen such that those observations near the estimated point in space have more
influence on the model result than observations further away; in other words, here the data
of counties closer to i are weighted more than those farther away. In the GWR model, the
parameter estimation is expressed in matrix form as follows:

β̂(ui, vi) = (XTW(ui, vi)X)
−1

XTW(ui, vi)y (3)

where the bold type denotes a matrix, β̂ represents an estimate of the parameter vector β,
and W(ui, vi) is an n by n matrix whose off-diagonal elements are zero and whose diagonal
elements denote the geographical weighting of each of the n observed data for regression
point i.

The spatial weighting matrix, in which the neighborhood information is characterized
and spatial autocorrelation is taken into account, is important to estimate parameters in
the GWR model. Several functions have been proposed to determine the spatial weighting
matrix (Fotheringham et al. 2003). For example, the weight of each county can be calculated
by applying the Gaussian function:

wij = e−0.5(dij/h)2
(4)

where wij is the weight of the observed housing price change rate at county j for estimating
the housing price change rate at county i, h is referred to as a bandwidth, and dij is the
distance between county i and county j. This function is a distance decay function. The
weights obtained by this function are nonzero no matter how far they are from the county i.
Another commonly used weighting function is the bisquare distance decay kernel function: wij =

[
1− (

dij
h )

2
]2

, if dij < h

wij = 0, if dij ≥ h
(5)

The bandwidth may be fixed or adaptive. A potential problem of the kernel function
with a fixed bandwidth is that for some counties in the study area there may be only a
few surrounding counties available to calibrate the regression model if the county data
are sparse around the central locations. Alternatively, an adaptive bandwidth can be used
to reduce the problem. The kernel function with adaptive bandwidth adapts itself in
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the neighborhood size to the variations in the density of county data. In this study, an
adaptive bandwidth was adopted to encapsulate a smaller area where county data are
rich and a larger area where county data are sparse. This ensured that an equal number of
observations would receive a nonzero weighting at all regression points.

The major advantage of the GWR over other spatial models such as the spatial autore-
gressive model and the spatial error model is that GWR can model spatial nonstationarity,
while the others cannot. GWR is a local spatial model, while other spatial models such
as the spatial autoregressive model and the spatial error model are global spatial models.
This means that the GWR assumes the relationships between dependent variable and
explanatory variables are intrinsically different across space, while other spatial models
assume the relationships are stationary or location-independent. Global spatial models
use the same parameters over space for model calibration and prediction. Therefore, any
spatial variations in the model processes can only be measured by the error term. However,
GWR can address the issue of spatial nonstationary directly and allow the parameters or
the relationships to vary over space. In addition, GWR can estimate local standard errors
and derive local t statistics. It also can calculate local goodness-of-fit measure and local
leverage measures. We can perform tests to assess the significance of the spatial variation
in the local parameter estimates with GWR.

In summary, in this study, GWR, a local form of linear regression, was used to model
spatially varying relationships between the housing price change rate and the explanatory
variables (e.g., COVID-19 cases/rates and other socioeconomic variables). On the one hand,
GWR builds local models at each point, which are independent of the models built in the
neighboring points. Therefore, it can take into account spatial heterogeneity. On the other
hand, GWR exploits the spatial dimension by using the positive autocorrelation between
the point being estimated and neighboring points in space and in this way accommodates
stationary autocorrelation. GWR in essence specifies a separate regression model at every
U.S. county, thus enabling unique coefficients to be estimated at each county location. GWR
constructs these separate equations by incorporating the data of housing price change rates
and the explanatory variables of the county features falling within the neighborhood of each
target county feature. One powerful aspect of GWR is that it can explore spatially varying
relationships between the housing price change rate variable and the explanatory variables
via creating coefficient raster surfaces for the model intercept and each explanatory variable.

3. Results

To determine whether or not the outbreak of the COVID-19 pandemic has brought
some effects on housing price changes in the U.S. real estate market, we first drew the
averaged housing price change trend graph based on the data of all of the U.S. counties
from 1 January 2019 to 31 May 2021 in Figure 1. It can be seen that housing prices increased
greatly since the start of the COVID-19 pandemic. Figure 2 shows some county examples
of housing price changes from 1 January 2019 to 31 May 2021. It can be seen that while
the housing prices in most U.S. counties increased steadily from 1 January 2019 to 31 May
2021, the price change patterns are not the same. Most have steady increase patterns, but
some have slow-down or even dip patterns in the early stage of the COVID pandemic
(April/May 2020) or right before the COVID pandemic. This suggests that the COVID-19
pandemic may have affected housing price changes differently across different counties in
the U.S. real estate market.



J. Risk Financial Manag. 2022, 15, 139 9 of 25J. Risk Financial Manag. 2022, 15, x FOR PEER REVIEW 9 of 25 
 

 

 
Figure 1. Averaged housing price changes from 1 January 2019 to 31 May 2021. 

 
Figure 2. Examples of housing price changes from 1 January 2019 to 31 May 2021. 

To determine whether or not the outbreak of the COVID-19 pandemic has brought 
some uneven effects on housing price change in the U.S, we visualized housing price 
change rates across different U.S. counties during the pandemic year of 2020–2021 (from 

Figure 1. Averaged housing price changes from 1 January 2019 to 31 May 2021.

J. Risk Financial Manag. 2022, 15, x FOR PEER REVIEW 9 of 25 
 

 

 
Figure 1. Averaged housing price changes from 1 January 2019 to 31 May 2021. 

 
Figure 2. Examples of housing price changes from 1 January 2019 to 31 May 2021. 

To determine whether or not the outbreak of the COVID-19 pandemic has brought 
some uneven effects on housing price change in the U.S, we visualized housing price 
change rates across different U.S. counties during the pandemic year of 2020–2021 (from 

Figure 2. Examples of housing price changes from 1 January 2019 to 31 May 2021.

To determine whether or not the outbreak of the COVID-19 pandemic has brought
some uneven effects on housing price change in the U.S, we visualized housing price change
rates across different U.S. counties during the pandemic year of 2020–2021 (from 1 May
2020 to 1 May 2021). Figure 3 shows the visualization map of housing price change rates
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during the pandemic year of 2020–2021. Blue colors represent the negative housing price
change rates while yellow and red colors denote the positive housing price change rates.
The white colors inside the maps indicate that some counties have no available housing
price data. Please note that there are 252 counties without ZHVI data among the total 3108
counties. Therefore, we conducted spatial analysis and modeling for the 2856 U.S. counties
having available ZHVI data, and the other 252 counties were omitted from further analysis
in this study. From the maps, it can be seen that in general the housing prices dramatically
increased in the majority of the U.S. counties during the pandemic year of 2020–2021.
Housing prices in some counties increased by more than 30%. However, the housing prices
changed unevenly across the U.S. real estate market during the pandemic year. While
housing prices increased in the majority of the U.S. counties, there were still some counties
having decreased housing prices. The housing prices in some counties decreased by more
than 5%. We compared the housing price changes during the pandemic year of 2020–2021
with those during the nonpandemic year of 2019–2020 (from 1 May 2019 to 1 May 2020).
Figure 4 shows the map of housing price change rates during the nonpandemic year of
2019–2020 using the same graduated color symbols as Figure 3. Comparing Figure 3 to
Figure 4, it can be found that the housing prices increased much more in the majority of the
U.S. counties during the pandemic year of 2020–2021 than during the nonpandemic year
of 2019–2020. This may indicate that the COVID-19 pandemic crisis brought an effect to
the U.S. real estate markets and the U.S. residential housing prices in most U.S. counties
increased greatly during the pandemic crisis. To determine where the increased areas or
the decreased areas were located, we overlaid the U.S. cities map with the map of housing
price change rates during the pandemic year of 2020–2021, as shown in Figure 5. It can be
seen that the hot spots with housing price increases mainly occurred in the areas around
some of the major U.S. cities while the cold spots with housing price decreases were mainly
located in some rural areas in the Midwest, Southwest, and Southeast regions.
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To identify the connections between COVID-19 infection and housing price change,
both OLS and GWR were used to model the association relationships between the housing
price change rate variable and the explanatory variables, such as COVID-19 cases/rates,
population, employment, education, poverty, and other socioeconomic variables. To find
properly specified OLS models, all possible combinations of the 20 potential explanatory
variables in Table 1 were evaluated using the exploratory regression tool in ArcGIS Pro.
We tried setting the parameter “Minimum Number of Explanatory Variables” as 4, 5, 6, 7,
8, 9, and 10. Regardless of the minimum number of the explanatory variables required,
the explanatory variable “COVID_R” or “COVID” was always among the significant
explanatory variables selected for the regression models with the highest adjusted R-
squared (Adj-R2) values. This indicates that the COVID-19 cases/rates variable is one of
the most important explanatory variables for modeling the housing price change rates in
the U.S. real estate market during the pandemic crisis. COVID-19, therefore, has obviously
affected the U.S. real estate market. Table 2 lists the exploratory regression outputs with the
highest Adj-R2 results when choosing six explanatory variables. Table 3 lists the exploratory
regression outputs with the highest Adj-R2 results when choosing 10 explanatory variables.
It can be seen that the explanatory variable “COVID_R” is one of the significant explanatory
variables for all of the models with the highest Adj-R2 values. Compared with models
1, 2, and 3 in Table 2, it can be seen that the Adj-R2 of models 4, 5, and 6 in Table 3 only
increased by 0.03 after four more explanatory variables were added. Considering model
simplicity and increased multicollinearity problems for models 4, 5, and 6 in Table 3, the
models 1, 2, and 3 in Table 2 are preferred over the models 4, 5, and 6 in Table 3. So, only
the models 1, 2, and 3 in Table 2 were further evaluated in the next steps.

The small Adj-R2 result (0.24) and the SA (global Moran’s I) p-value 0 for tested models
1, 2, and 3 indicate that all the models have spatially autocorrelated regression residuals
and some key explanatory variables might be missed. The JB p-value of 0 for tested models
1, 2, and 3 indicates that the tested models 1, 2, and 3 are far away from having normally
distributed residuals and there is model bias. This means that a key variable may be
missed from the models or some of the modeled relationships are nonlinear. The K(BP)
statistic p-value of 0 for the tested models 1, 2, and 3 suggests that there are nonstationarity
problems in the models. This means that there are statistically significant regional variations
of relationships between the dependent variable (housing price change rate here) and the
explanatory variables. Because relationships between the dependent and explanatory
variables are inconsistent across the study area, the computed standard errors may be
artificially inflated. Therefore, using the GWR may improve the model results. Because the
model with a lower AICc value designates a better-performing model, model 1 with the
lowest AICc value was chosen to run OLS and GWR for further analysis.

Table 2. The exploratory regression output report with the highest adjusted R2 results when choosing
six explanatory variables for ordinary least squares (OLS) regression.

Adj-R2 AICc JB K(BP) VIF SA Model

0.24 16,961.04 0.00 0.00 94.17 0.00
OLS Model 1: +HOUSEHOLD_SIZE *** +PER_INTERNET
*** +HH_COMPUTER *** −COVID_R *** BACHELOR ***

−POVALL ***

0.24 16,961.89 0.00 0.00 32.85 0.00 OLS Model 2: +PER_INTERNET *** −COVID_R ***
+EMPLOYED *** −BACHELOR *** −NATURAL_IN ***

0.24 16,963.80 0.00 0.00 95.84 0.00 OLS Model 3: +HH_COMPUTER *** −COVID_R ***
−BACHELOR *** +PER_BACHELOR *** −POVALL ***

Abbreviations: Adj-R2—adjusted R-squared; AICc—Akaike’s information criterion; JB—Jarque–Bera p-value;
K(BP)—Koenker (BP) statistic p-value; VIF—max variance inflation factor; SA—global Moran’s I p-value; model
variable sign (+/−); model variable significance (* = 0.10; ** = 0.05; *** = 0.01).
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Table 3. The exploratory regression output report with the highest adjusted R2 results when choosing
10 explanatory variables for OLS regression.

Adj-R2 AICc JB K(BP) VIF SA Model

0.27 16,857.81 0.00 0.00 108.47 0.00

OLS Model 4: +HOUSELT75K *** +DP03_0024E **
+HOUSEHOLD_SIZE *** +PER_INTERNET ***

+HH_COMPUTER *** −COVID_R *** −BACHELOR ***
+PER_BACHELOR*** −POVALL *** −NATURAL_IN ***

0.27 16,860.68 0.00 0.00 98.43 0.00

OLS Model 5: +HOUSELT75K *** +HOUSEHOLD_SIZE
*** +PER_INTERNET *** +HH_COMPUTER ***

−COVID_R *** −BACHELOR *** +PER_BACHELOR ***
−POVALL *** +MEDHHINC *** −NATURAL_IN ***

0.27 16,860.68 0.00 0.00 98.43 0.00

OLS Model 6: +HOUSELT75K *** +HOUSEHOLD_SIZE
*** +PER_INTERNET *** +HH_COMPUTER ***

−COVID_R *** +MEDIAN_HOU *** −BACHELOR ***
+PER_BACHELOR *** −POVALL *** −NATURAL_IN ***

Table Abbreviations: Adj-R2—adjusted R-squared; AICc—Akaike’s information criterion; JB—Jarque–Bera p-
value; K(BP)—Koenker (BP) statistic p-value; VIF—max variance inflation factor; SA—global Moran’s I p-value;
model variable sign (+/−); model variable significance (* = 0.10; ** = 0.05; *** = 0.01).

Table 4 lists the summary of the OLS results for model 1. The largest VIF value (94.17)
for the explanatory variable HH_COMPUTER indicates that the variable is redundant with
other explanatory variables. Removing the explanatory variable HH_COMPUTER from
model 1 may solve the multicollinearity problem in model 1 and reduce the model bias
or model unreliability issue. Since we only wanted to include variables that can explain
a unique aspect of the housing price change rates, we chose only one of the redundant
variables to be included in further analysis; thus, the explanatory variable HH_COMPUTER
was removed from model 1 in further analysis.

Table 4. Summary of the OLS results with six explanatory variables.

Variable Coefficient StdError t-Statistic Probability Robust_SE Robust_t Robust_Pr VIF

Intercept −8.457 1.287 −6.572 0.000 * 1.414 −5.981 0.000 * -
HOUSEHOLD_SIZE 2.366 0.362 6.537 0.000 * 0.406 5.820 0.000 * 1.042

PER_INTERNET 0.172 0.011 15.001 0.000 * 0.012 14.602 0.000 * 1.235
HH_COMPUTER 0.000 0.000 13.684 0.000 * 0.000 9.683 0.000 * 94.174

COVID_R −0.027 0.003 −8.731 0.000 * 0.003 −8.242 0.000 * 1.044
BACHELOR −0.000 0.000 −12.869 0.000 * 0.000009 −9.345 0.000 * 38.875

POVALL −0.000 0.000 −9.867 0.000 * 0.000 −7.108 0.000 * 21.803

* indicates a statistically significant p-value (p < 0.01).

Table 5 lists the summary of the OLS results with the explanatory variable
HH_COMPUTER being removed. It can be seen that the VIF values of the explanatory
variables are all less than 7.5 now. This indicates that there is no serious multicollinear-
ity problem in the model and no redundancy among the remaining explanatory vari-
ables (HOUSEHOLD_SIZE, PER_INTERNET, COVID_R, BACHELOR, POVALL) anymore.
We also tested the effect of removing the explanatory variable BACHELOR instead of
HH_COMPUTER. However, after BACHELOR is removed, both HH_COMPUTER and
POVALL still have VIF values greater than 13.1. We, therefore, used the model with
HH_COMPUTER being removed for further analysis.
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Table 5. Summary of the OLS results with five explanatory variables.

Variable Coefficient StdError t-Statistic Probability Robust_SE Robust_t Robust_Pr VIF StdCoef

Intercept −11.704 1.305 −8.965 0.000* 1.459 −8.022 0.000 * - 0
HOUSEHOLD_SIZE 2.436 0.373 6.521 0.000 * 0.414 5.889 0.000 * 1.041 0.112

PER_INTERNET 0.217 0.011 19.128 0.000 * 0.012 18.148 0.000 * 1.134 0.342
COVID_R −0.026 0.003 −8.155 0.000 * 0.003 −7.864 0.000 * 1.043 −0.140

BACHELOR −0.000 0.0003 −0.556 0.578 0.000 −0.440 0.660 5.655 −0.022
POVALL 0.000 0.000 3.880 0.000 * 0.000 2.400 0.016 * 5.418 0.152

* indicates a statistically significant p-value (p < 0.01).

For the five explanatory variables (HOUSEHOLD_SIZE, PER_INTERNET, COVID_R,
BACHELOR, POVALL) used in the OLS model, each of them explains a unique aspect of
the housing price change rates. The coefficient or the standardized coefficient (StdCoef)
for each explanatory variable reflects both the strength and type of the relationship the
explanatory variable has with the housing price change rate. The positive sign associated
with the coefficients or the standardized coefficients of the explanatory variables HOUSE-
HOLD_SIZE, PER_INTERNET, and POVALL reflects the positive relationship between
the housing price change rate and the three explanatory variables. This means that areas
with larger households, higher percentages of households with Internet at home, and/or
more people of all ages in poverty have larger housing price change rates. The negative
coefficients or the standardized coefficient values of the explanatory variables COVID_R
and BACHELOR reveal the negative relationships between the housing price change rate
and these two explanatory variables. This means that areas with higher COVID rates
and/or more people having bachelor degrees or higher have smaller housing price change
rates. Please note that the unstandardized coefficients should not be used to compare
their importance/influence in the model because the explanatory variables are measured
in different units. The standardized coefficients are measured in the unit of standard
deviation; therefore, they can be used to rank explanatory variables since this eliminates
the units of measurement of the explanatory and dependent variables. The standardized
coefficient values show that COVID_R explains about 14.0% of the housing price change
rates, while PER_INTERNET explains about 34.2%, HOUSEHOLD_SIZE explains about
11.2%, POVALL explains about 15.2%, and BACHELOR explains only about 2.2%. The t
test was used to assess whether an explanatory variable is statistically significant. The very
small probability or robust probability (p-value) values of the four explanatory variables
HOUSEHOLD_SIZE, PER_INTERNET, COVID_R, and POVALL indicate that the chance
of their coefficients being essentially zero is very small, so these variables are statistically
significant. This means that these explanatory variables are important to the regression
model if the relationships being modeled are primarily linear and the explanatory variables
are not redundant to the other explanatory variables in the model.

Table 6 lists summary diagnostics of the OLS model with the five explanatory variables
(HOUSEHOLD_SIZE, PER_INTERNET, COVID_R, BACHELOR, POVALL).

The small coefficient of determination R2 value indicates only 19.6% of the variation
in the dependent variable (the housing price change rate variable) is explained by the
OLS model. The Adj-R2 value is just a bit lower than the R2 value. Please note that the
Adj-R2 value reflects model complexity (the number of variables) as it relates to the data
and is consequently a more accurate measure of model performance. The Adj-R2 value
of 0.194 indicates that the explanatory variables used in the linear OLS regression explain
approximately 19.4% of the variation of the housing price change rates. In other words,
the OLS model only tells about 19.4% of the housing price change rates. Both the joint
F-statistic (F-Stat) and joint Wald statistic (Wald) are measures of overall model statistical
significance. The joint F-statistic is trustworthy only when the Koenker (BP) statistic (K(BP))
is not statistically significant. Since the Koenker (BP) statistic is significant, the joint Wald
statistic rather than the joint F-statistic was used to determine overall model significance.
The very small p-value (probability) of the joint Wald statistic (9.916 × 10−127) indicates
that the OLS model is a statistically significant model. The very small K(BP) probability
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value (1.116 × 10−12) indicates that there is statistically significant nonstationarity in the
OLS model. This means that the explanatory variables in the OLS models do not have a
consistent relationship with the housing change rates across the geographic space and data
space. Therefore, the OLS model with statistically significant nonstationarity may be a
good candidate for GWR analysis. The JB statistic indicates whether the model residuals
are normally distributed. The p-value (probability) of 0 for this test means that the residuals
are not normally distributed, indicating the OLS model is biased. The bias may be the result
of model misspecification (e.g., a key variable being missed from the model) when the
residuals have statistically significant spatial autocorrelation. The statistically significant JB
test may also occur when the OLS is used to model nonlinear relationships (e.g., the data
include influential outliers or there is strong heteroscedasticity).

Table 6. Summary diagnostics of the OLS model with the five explanatory variables (HOUSE-
HOLD_SIZE, PER_INTERNET, COVID_R, BACHELOR, POVALL).

Diag_Name Diag_Value

AIC 17,140.804
AICc 17,140.843

R2 0.196
Adj-R2 0.194
F-Stat 138.857
F-Prob 2.220 × 10−16 *
Wald 596.804

Wald-Prob 9.916 × 10−127 *
K(BP) 65.007

K(BP)-Prob 1.116 × 10−12 *
JB 1006.814

JB-Prob 0 *
* indicates a statistically significant p-value (p < 0.01).

To determine whether or not the biased OLS model is caused by misspecification,
spatial autocorrelation of the OLS regression residuals was assessed by (1) mapping the
standardized residuals of the OLS results and (2) calculating the Anselin’s local Moran’s I
for cluster and outlier analysis. Figure 6 shows the assessment results of the OLS residual
spatial autocorrelation: the map in Figure 6a visualizes the standardized residuals, and the
map in Figure 6b shows the clusters and outliers of the standardized residuals. It can be
seen that the regression residuals are not spatially random (Figure 6a), and there are clear
spatial clusters of high and low residuals (model underpredictions and overpredictions)
(Figure 6b), which indicate the existence of significant spatial autocorrelation. The statisti-
cally significant spatial autocorrelation of the OLS regression residuals may indicate that
one or more key explanatory variables are missed from the model or there are spatially
heterogeneous association relationships between the housing price change rate and the
explanatory variables. Therefore, the OLS results cannot be trusted.
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Figure 7 shows the histogram of the OLS standardized residuals. It can be seen that
the histogram span is fairly wide and there are some large positive residuals and some
large negative residuals. The mean is almost zero due to the fact that the positive residuals
are almost equal to the negative residuals. Figure 8 shows the scatterplot of the OLS
standardized residuals. It can be seen that the scatterplot has a clear trend. This trend
(nonrandom pattern) means that the OLS model does not fit well and has large room for
improvement.
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The statistically significant spatial autocorrelation in the OLS model residuals suggests
that the OLS model is not a good model here. The OLS regression model, which is a global
statistic model, probably only represents a broad spatial trend and may mask significant
local variations. To deal with regional variations, GWR, which can incorporate regional
variations into regression, was further explored in this study. The same explanatory
variables (HOUSEHOLD_SIZE, PER_INTERNET, COVID_R, BACHELOR, POVALL) were
used for GWR analysis to explore the association relationships between the housing price
change rate and the five explanatory variables across the U.S. counties. Table 7 shows the
GWR model diagnostic results.

Table 7. The geographically weighted regression (GWR) model diagnostic results.

Diagnostic
Names R2 Adj-R2 AICc σ2 σ2 MLE

Effective Degree
of Freedom

Diagnostic
values 0.744 0.506 17,167.570 14.476 7.490 1477.734

Compared with the R2 (0.196) and Adj-R2 (0.194) of the OLS model (Table 6), the
R2 and Adj-R2 of the GWR model are largely improved, with the values of 0.744 and
0.506, respectively (Table 7). The higher R2 and Adj-R2 values indicate that a much higher
proportion of the variation of the housing price change rates is accounted for by the GWR
regression model. Compared with the variance (σ2) value (23.59) of the OLS model, the
smaller σ2 value (14.48) of the GWR model indicates a smaller least-squares estimate of
the variance for the GWR residuals. The value of the σ2 MLE, a maximum likelihood
estimate (MLE) of the variance of the GWR residuals, is small (7.49), which is preferable.
The value of the effective degree of freedom (1477.734) reflects a tradeoff between the
variance of the fitted values and the bias in the coefficient estimates, and it is related to the
choice of neighborhood size, which is 6 in this study and was chosen via the trial-and-error
learning method.

Figure 9 shows the spatial autocorrelation assessment results of the GWR residuals:
the map in Figure 9a visualizes the standardized residuals of the GWR results, and the map
in Figure 9b shows the clusters and outliers of the GWR standardized residuals based on the
calculated local Moran’s I values. Comparing these mapping results with those in Figure 6,
it can be seen that the GWR regression residuals are almost spatially random (Figure 9a)
and there are very few clusters of high and low GWR residuals (model underprediction
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and overprediction) (Figure 9b). This indicates that the GWR model is much better than
the OLS model and the GWR results can be trusted.
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Figure 9. Spatial autocorrelation assessment results of the geographically weighted regression (GWR)
residuals. (a) Standardized residuals of the GWR results; (b) clusters and outliers of the GWR
standardized residuals.

Figure 10 shows the histogram of the GWR standardized residuals. Compared with
the histogram of the OLS standardized residuals (shown in Figure 7), it can be seen that
the histogram of the GWR standardized residuals has a fairly narrow span and there are
fewer large positive residuals and fewer large negative residuals. Most of the residuals
are very small and close to 0. Table 8 lists some statistics of the GWR standardized residu-
als. The standard deviation is 0.885, which is smaller than that of the OLS standardized
residuals (0.999). The small skewness value (0.77) indicates that the distribution of the
GWR standardized residuals is close to the normal distribution. The value of kurtosis,
7.33, indicates a leptokurtic distribution, which produces more outliers than the normal
distribution. Figure 11 shows the scatterplot of the GWR standardized residuals. Compared
with the scatterplot of the OLS standardized residuals shown in Figure 8, it can be seen
that the scatterplot of the GWR standardized residuals has a nearly random pattern. This
nearly random pattern means that the GWR model fits quite well.
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Table 8. Statistics of the GWR standardized residuals.

Mean Median Std. Dev. Count Min Max Sum Skewness Kurtosis

−0.00114 −0.073 0.885 2856 −4.045 6.248 −3.257 0.771 7.333
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Figure 12 shows the local coefficient maps for the explanatory variables in the GWR
modeling, which demonstrate the obvious spatial variation of the relationships between
the housing price change rate and the five explanatory variables (HOUSEHOLD_SIZE,
PER_INTERNET, COVID_R, BACHELOR, POVALL). The local coefficients for every ex-
planatory variable change with locations from negative to positive. This indicates the
spatially nonstationary relationships between the housing price change rate and the ex-
planatory variables. Please note that the coefficient values of the variable POVALL are very
small (close to zero) but are still statistically significant, which means that the variable is
significant for the GWR model. Because the explanatory variables are expressed in different
units, it would be unfair to compare the coefficient values of the explanatory variables
to rank their contributions to the housing price change rate in the model. Although the
coefficient values are not suitable here for comparison between explanatory variables, they
are proper for interpreting the spatial variation of the relationships between the housing
price change rate and each independent variable.

The local coefficients of the COVID-19 rate range from −0.18 to 0.13, indicating it
may have negative or positive contributions to the housing price change rate in different
counties, depending on the specific locations. The COVID-19 rate variable has a negative
influence on the housing price change rate mainly in the densely populated areas (e.g.,
Los Angeles, Seattle, New York City, and Florida) and has a positive influence mainly in
the sparely populated areas (e.g., Idaho, Arizona, and Maine), especially in the southeast
and west regions. However, there are some exceptions; for example, the coefficients of
COVID-19 rate in North Dakota (a sparely populated area) are obviously negative, but in
Chicago (a densely populated area) they are almost neutral (no influence). There should be
some special reasons behind the exceptions.
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Figure 12. Local coefficient maps for explanatory variables in the GWR model.

Local R-squared (R2) was used to explore the capability of the GWR model to fit the
observation data. The high local R2 values mean good performances. Figure 13 shows the
local R2 map of the GWR model. Obviously, the values of local R2 change with spatial
locations. It has a fairly small standardized deviation (0.131). The minimum local R2 value
is 0.048 and the maximum value is 0.94. Local R2 values are higher than 0.80 in many U.S.
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counties. Only a very few counties have local R2 values less than the R2 (0.196) or Adj-R2

(0.194) of the OLS model. This means that the GWR model performed much better than the
OLS model for almost all of the U.S. counties.
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4. Discussions and Conclusions

Although many studies have been conducted to investigate the impacts of the COVID-
19 pandemic on the real estate markets in the world, the spatial dimension of such impacts
is still underexplored. There seems to be no publication in the literature modeling the
spatial effect of the COVID-19 pandemic on housing price changes. Focusing on spatial
autocorrelation and heterogeneity, we quantitatively examined the effect of the COVID-
19 pandemic on housing price changes across U.S. counties using spatial analysis and
modeling methods.

In general, housing prices rose significantly across the U.S. during the COVID-19
pandemic. Housing prices increased primarily because of a surge in demand and a decrease
in supply in most U.S. counties. The boom, however, was spatially heterogeneous. Some
areas saw a housing price increase of more than 30%, while some other areas saw almost
no increase or a decrease. Housing price changes depend largely on local conditions. This
means that the impact of COVID-19 on housing price changes is not uniform across the
U.S. real estate market. This result is consistent with the results of studying the impact
of the global financial crisis on the housing market from a geographic perspective. For
example, Li and Wei (2020) found that housing price changes after the global financial crisis
differed across space and were strongly associated with the spatial distribution of local
neighborhood conditions and urban amenities. Martin (2011) also found that the global
financial crisis had locally varying impacts on housing markets.

To understand the factors that affected the housing price changes in the U.S. residential
housing market, we first used the exploratory regression tool in ArcGIS Pro to find a
properly specified OLS model for explaining housing price change rates in this study. We
tested 20 explanatory variables, including the COVID-19 cases variable, the COVID-19
rate variable, and 18 other socioeconomic variables. We explored the best OLS models
with different minimum numbers (4 to 10) of explanatory variables. No matter how we set
up the minimum number of explanatory variables, the COVID-19 rate (or cases) variable
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was always among the selected significant variables for the regression models with the
highest Adj-R2 values. This finding suggests that housing price changes in the U.S. real
estate market have a solid connection with COVID-19 characteristics during the COVID-19
pandemic.

We explored the OLS model with five explanatory variables (HOUSEHOLD_SIZE,
PER_INTERNET, COVID_R, BACHELOR, POVALL) after removing the multicollinearity
problem. We found that there is spatial autocorrelation in the OLS regression residuals. The
spatial autocorrelation implies that the spatial distribution of the OLS regression residuals
is nonrandom and the statistical independence assumption is violated in the OLS regression
analysis. To explore the spatial nonstationary relationships between housing price change
rate and COVID-19 factor, the GWR model, which explicitly allows parameter estimates
to vary over space, was adopted in this study using the same five explanatory variables
(HOUSEHOLD_SIZE, PER_INTERNET, COVID_R, BACHELOR, POVALL). We found that
the explanatory variables HOUSEHOLD_SIZE, PER_INTERNET, and POVALL all have
positive relationships with the housing price change rate. This means that the areas with
larger households, higher percentages of households with Internet at home, and/or more
people of all ages in poverty have larger housing price change rates. The explanatory
variables COVID_R and BACHELOR have negative relationships with the housing price
change rate. This means that the areas with higher COVID rates and/or more people having
bachelor degrees or higher have smaller housing price change rates. It turns out that the
GWR model is more suitable to accurately describe the spatial heterogeneity. The statistical
improvement of GWR over OLS suggests that the GWR model has a better capability to
characterize the spatial nonstationarity relationships between the housing price change rate
and the explanatory variables, including the COVID-19 rate. The local coefficient map of
the COVID-19 rate explanatory variable shows that housing price change rates are strongly
associated with the spatial distribution of the COVID-19 rates. This means that the influence
of COVID-19 on the U.S. real estate market is spatially imbalanced. The housing market
volatility is also amplified by the uneven distributions of some socioeconomic factors, such
as average household size, percent of households with Internet at home, education, and
poverty variables. The GWR model has the unique advantage of visually demonstrating the
spatially different association relationships between COVID-19 characteristics and housing
price change rates among U.S. counties.

The uneven housing price changes may bring an uneven spillover effect to the rest
of the economy and lead to divergence in economic growth across different areas. For
example, the spatial difference in housing price change may result in different saving and
consumption behaviors of homeowners and renters. Homeowners and renters would
increase or decrease their saving and consumption based on the housing price increase or
decrease in their locations. Housing market investment or construction may also behave
differently because of the varying house price changes across space. In general, rising
housing prices in some places may encourage consumer spending and lead to higher
economic growth because of the wealth effect. On the contrary, falling housing prices in
other places may negatively affect consumer confidence and housing construction and
lead to lower economic growth. Via spatially uneven housing price changes, several
broad economic outcomes such as income, employment, and total output may be affected
differently across the different locations as a consequence. Therefore, policymakers may
benefit from monitoring spatially different housing price changes in different property
markets to make effective policies to fight against the COVID-19 pandemic. The findings
from our study imply that governments, policymakers, and/or related businesses should
consider local situations or local economic activities when they form their real estate market
policies or take actions to fight recession due to the heterogeneous impacts of the COVID-
19 pandemic on the housing market. In addition to the available federal programs and
legislation, more effective local policies and programs should be developed to improve
housing affordability by considering local situations. Local specific housing policies and
programs may address the lack of housing affordability that the spatially heterogeneous
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U.S. communities face. Spatially homogeneous policies and programs may not be helpful
for some U.S. communities with different situations.
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