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Abstract: This study investigates the tail dependence structures of sovereign credit default swaps
(CDSs) and three global risk factors in BRICS countries using a copula approach, which is popular
for capturing the “true” tail dependence based on the “distribution-adjusted” joint marginals. The
empirical results show that global market risk sentiment comoves with sovereign CDS spreads
across BRICS countries under extreme market events such as the pandemic-induced crash of 2020,
with Brazil reporting the highest bilateral convergence followed by China, Russia, and South Africa.
Furthermore, oil price volatility is the second biggest risk factor correlated with CDS spreads for
Brazil and South Africa, while exchange rate risk exhibits very low co-dependence with CDS spreads
during extreme market downturns. On the contrary, exchange rate risk is the second largest risk factor
co-moving with China and Russia’s CDS spreads, while oil price volatility exhibits the lowest co-
dependence with CDS in these countries. Between oil price and currency risk, evidence of single risk
factor dominance is found for Russia, where exchange rate risk is largely dominant, and policymakers
could promulgate financial sector regulations that mitigate spill-over risks such as targeted capital
controls when markets are distressed.

Keywords: global risk factors; credit default swaps; sovereign credit risk; copula approach

JEL Classification: C46; F36; G11; G15

1. Introduction

BRICS economies enjoyed a significant rise (i.e., quadrupled) in foreign investment
inflows in the last 20 years as global investors diversify away risk and pursue investments
with higher yields, resulting in net portfolio inflows peaking at USD 55.5bn in 2019, up from
USD 12.3bn in 2009 (World Bank 2021). The continued deepening of bilateral and intergroup
trade cooperation has ultimately resulted in inseparable interdependence across various
macroeconomic fundamentals (see Figures 1 and 2) such as external account balances, gross
domestic product (GDP), portfolio investments, foreign (FX) liquidity reserves, interest rate
spreads, foreign direct investment (FDI), and sovereign credit risk (CIA Factbook 2021).
Among others, these fundamentals are key drivers of sovereign credit risk commonly
measured by sovereign CDS spreads (Yang et al. 2018; Caillault and Guegan 2005; Wang
et al. 2020; Blommestein et al. 2016; Tabak et al. 2016).

The first quarter (Q1) of 2020 witnessed a simultaneous and sudden spike in sovereign
CDS spreads for all BRICS economies which coincided with the global oil price shocks and
outbreak of the coronavirus pandemic, collectively amplifying negative global economic
outlook and bearish market sentiments. The global pandemic outbreak resulted in severe
socio-economic consequences such as an extended halt in cross-country tourism travel
and shutdown in global trade activities, which further exacerbated the market volatilities
and propagated large negative shockwaves, evident through the largest drops in global
economic growth beyond the lowest lows recorded during the global financial crisis (GFC)
(Wang et al. 2020). At this time, sovereign CDS spreads for all BRICS countries overshot to
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all-time highs (as much as 450 basis points for South Africa), exacerbated by noise traders
executing knee-jerk reactionary trades ordering the mass disposal of emerging market
bonds in their global portfolios. Investors hoarding their risky portfolios demanded a
higher premium for holding emerging market risk, such as BRICS sovereign bonds, leading
to an increase in the CDS spreads, which indicates the heightened cost of insuring against
sovereign default risk. Therefore, understanding the dependence structure between CDS
spreads and global risk becomes vital for financial stability.

From the BRICS perspective, the sovereign CDS literature is limited to examining CDS
risk determinants and how driving factors compare between BRICS and G7 economies. A
recent study on BRICS investigated the dependence structure of sovereign CDS and oil price
volatility in BRICS and G7 countries using copula with wavelet analysis and found evidence
of simultaneous co-movements during economic prosperity, but divergence was evident
during macroeconomic downturns (Yang et al. 2018). They used copulas to investigate the
intensity of association, which focused on the association of sovereign CDS spreads and
exchange rate and/or oil price risk and reported the existence of empirical relationships
across developed and emerging markets” sovereign CDSs (Caillault and Guegan 2005;
Wang et al. 2020).

While the above studies pioneered non-parametric analyses of sovereign CDSs and
other global risks in the BRICS context, they focused on examining how global risks drive
sovereign CDS volatility, with sovereign CDS presumed to be endogenously determined.
These studies provide insights on how global risk factors influence sovereign credit risk;
however, they are silent on whether the impact of such global determinants is linear and
homogenous across BRICS. The cross- and within-country comparison of factor inter-
dependence is presently ignored in the empirical literature. Against this backdrop and
considering that sovereign CDS volatility is indeed a measure of sovereign credit risk,
one can conjecture a possible dependency among global risk factors, especially during
widespread market crashes such as the GFC where markets collapse jointly. A struc-
turally heterogeneous block of countries such as BRICS could exhibit varying bivariate
co-movement patterns, which must be considered by policymakers when formulating joint
macroeconomic policies to advance the shared economic aspirations to compete in the
global trade arena. To the best of our knowledge, very few existing studies have analysed
the convergence between these risks, while most studies have attempted to use several
risk factors to explain the uncertainty in sovereign credit risk. The imminent dependence
structure between global risk factors remains unaddressed.

This study analyses the bivariate dependence structures between sovereign credit risk
and individual global risk factors (oil price volatility, global sentiment, and exchange rate
risks), with the underlying dependence structures assumed to differ within and across
BRICS countries, due to idiosyncratic economic architectures such as the degree of exposure
to import—export markets and structural strengths of the individual economies. The
marginal propensity to consume global commodities such as oil could determine the
impact intensity of oil price shocks such that heavy oil consumers get affected differently
relative to light consumers that are self-sufficient net exporters. For example, heavy oil
consumers such as China and Saudi Arabia are dependent on global oil supply dynamics
to cover short-run domestic oil consumption demand; therefore, oil price fluctuations and
exchange rate risks will materially alter procurement prices, while light oil consumers are
unlikely to be heavily impacted (Galariotis et al. 2016).

Understanding the co-movement between global risk categories remains crucial to
the global investors community and policymakers alike. Not only does risk dependence
analysis help investors, asset managers, and portfolio analysts with risk-adjusted portfolio
allocation decisions, but it also provides insights in setting and monitoring sectoral- or
country-specific risk appetite. Given country-specific idiosyncrasies, regulators may equally
gain insights on how global risks propagate into domestic financial markets and what
their direct implications on a country’s risk perception are. This, in turn, may inform
targeted policy interventions to mitigate the adverse effects of external risks on the domestic
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economy and local financial market. The next section reviews the existing literature and
describes the methodology to fill the identified gap. Section 3 discusses the empirical
findings, and the last section concludes.

2. Empirical Review, Materials and Methods
2.1. Empirical Literature Review

In the existing literature, dependence structure analysis is grounded on financial
contagion or co-movement theory, which offers several reasons for convergence in financial
returns and associated risk measures. Contagion theory describes the extreme propagation
of financial shocks to other related markets, which manifests in various ways such as the
spill-over of risks, co-movements, or the convergence of risks, herding behaviour, and
coordinated aggregate demand shifts (Bauwens et al. 2012). The co-movement of risk factors
arise as a manifestation of contagion, and this study focuses on bivariate co-movement as
an implication of contagion risk, which is driven by growing the interconnectedness of the
markets under study and their macroeconomic fundamentals (Yang et al. 2018; Ballester
and Gonzalez-Urteaga 2020; Boubaker and Sghaier 2013; Galariotis et al. 2016).

Based on this theory, financial returns converge in line with fundamentals as well as
coordinated traders’ behaviour, causing sustained aggregate demand shifts in the financial
markets, ultimately resulting in co-movements in fundamentally unrelated risk measures
(Aas 2004). This theory predicts that, as aggregate demand in emerging market sovereign
bonds gains bearish momentum during periods of elevated global risks, the sovereign CDS
spreads ultimately rise (implying weakening credit risk profile), resulting in evident nega-
tive co-movements between sovereign CDSs and global risk sentiments (McNeil et al. 2002;
Barberis et al. 2005). Similarly, stronger co-dependencies are predicted for CDSs and other
global risks such as oil price risk and exchange rate risk.

The existing literature follows two distinct but related approaches in studying sovereign
CDS and global risks factors; one assumes exogeneity, while the other approach relies on
the endogeneity of CDS spreads. The first focuses on the contagion effects of CDS risks
on the domestic market and macroeconomic fundamentals (Fermanian and Scaillet 2002;
McNeil et al. 2002; Tabak et al. 2016). Accordingly, Grammatikos and Vermeulen (2012)
reported the significant transmission of sovereign debt crisis shocks onto the European
financial sector stock returns and exchange rates, a finding which is common in the liter-
ature (Wang et al. 2013; Ballester and Gonzalez-Urteaga 2020). However, this approach
is criticised for ignoring the indisputable impact of universal access to global financial
markets, which is the conduit for colossal financial shockwaves in the debt capital mar-
kets (ultimately amplifying volatility in the domestic financial markets) during stressed
macroeconomic conditions such as the global financial crisis (Blommestein et al. 2016;
Brechmann 2010; McNeil et al. 2002; Tabak et al. 2016; Wang et al. 2020; Nelsen 2006).

The second approach considers sovereign CDS spreads as an endogenous factor and
investigates the impact of various global risk factors on sovereign credit risk (Blommestein
et al. 2016; Brechmann 2010). Global risk factors are exogenous in nature, and empiri-
cal evidence attests that the sovereign risk profile of emerging economies is demonstra-
bly and evidently vulnerable to global shocks (Augustin et al. 2020; Tabak et al. 2016;
Grammatikos and Vermeulen 2012). Therefore, the exogeneity assumption often fails empir-
ical rigour, particularly in emerging markets where sovereign CDSs exhibit extreme volatil-
ity during periods of bearish global risk sentiment and catastrophic risk events such as a
global financial crisis and the global coronavirus pandemic (Kalbaska and Gatkowski 2012;
Alter and Beyer 2014; Augustin et al. 2020).

Recent empirical studies apply the theory of co-movements to investigate the re-
lationship between risk factors, arguing that co-movements found in asset returns also
occur across risk variables (Blommestein et al. 2016; Brechmann 2010; Tabak et al. 2016;
Wang et al. 2013). Choe et al. (2020) recently examined systemic risk spill-overs in sovereign
CDSs and focused on the contagion effect, reporting evidence of contagion risk and si-
multaneity during the European sovereign debt crisis and global financial crisis events.
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An Asian region-focused study documented evidence of co-movements in sovereign CDS
spreads across Asian countries and major sub-regions, a result which is widely reported in
the literature across developed and emerging markets (Alter and Beyer 2014; Fermanian
and Scaillet 2002; McNeil et al. 2002; Tabak et al. 2016).

The study by Lovreta and Pascual (2020) analysed the dependence patterns between
bank and sovereign credit risk using the endogenous estimation of the timing of structural
breaks. The endogenous approach is superior to the exogenous selection of break dates
commonly applied in the literature, and it prevents the problem of choosing the size
and location of important turning points associated with extreme tail events. Their study
reported three phases characterised by changes in the bank-sovereign dependence structure,
and a bi-directional relationship was only evident at the peak of the European sovereign
debt crisis.

Lovreta and Pascual (2020) also argued that endogenously detected turning points
coincide with crucial public events that affect global investors’ risk perceptions on the
government’s capacity and willingness to repay debt and support distressed banks. Their
findings also evidenced that structural dependence in the system extends to co-movements
between bank and sovereign credit risk volatility, as reported by Wang et al. (2020). While
their study deployed a vector autoregressive (VAR) framework to study short-run dynamic
linkages among financial markets, it is related to our work as it documents bivariate
structural dependence between risk factors, which is the focus of our study. They used
the VAR model a as benchmark and then analysed its stability using tests for structural
changes of unknown, with results showing evidence of significant structural breaks on
individual CDS returns series and on individual equations of the VAR system.

The latest study by Wang et al. (2020) used four Jump-GARCH models to forecast the
jump diffusion volatility, which was used as the risk factor. The linear and asymmetric
nonlinear effects were analysed, and the value at risk of banks was estimated by support
vector quantile regression. They document three key findings. First, the Jump diffusion
GARCH model is better than the Continuous Diffusion GARCH model, and the discrete
jump volatility is significant in terms of the volatility process of bank stock price. Secondly,
the jump behaviour of bank stock prices is heterogeneous due to different sensitivity to ab-
normal information shocks. Thirdly, the support vector quantile regression model performs
better than the parametric quantile regression and nonparametric quantile regression for
banks, based on the jump diffusion volatility information. Moreover, C]-GARCH models
are suitable for most banks, while ARJI-R2-GARCH models are more suitable for small-
and medium-sized banks.

With various methodologies applied in the empirical literature, we note the contribu-
tions of Hasebe (2013) and Aas et al. (2009) in comparing the goodness of fits and inference
for vine copulas when the bivariate copulas are all (i) t copulas, (ii) Gumbel copulas, (iii)
Clayton copulas, and (iv) Frank/normal copulas (Aas and Berg 2009; Fischer et al. 2009).
These bivariate copulas are either reflection symmetric or have one-directional (one of
upper or lower) tail dependence. They used vine copulas with two-parameter bivariate
linking copulas where lower tail dependence differed from upper tail dependence to check
if there was some reflection asymmetry in the joint tails of financial asset returns. Their
comparative results based on AIC and BIC show evidence that the Student-t copula is the
optimally superior fit to capture tail dependences and reflective symmetry. The second-best
copula fits were three families of bivariate copulas, namely BB1, BB4, and BB7 in the latter,
which interpolate independence and the Frechet upper bound copulas and have upper and
lower tail dependence that can range independently from 0 to 1. For robustness checks,
they used five European market indices of similar sizes for analysis and comparison, and
the conclusions were similar (Iuga and Mihalciuc 2020; Joe 1997).
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This study builds upon the foundations laid by the extant literature and analyses
co-movements across several risk factors such as sovereign credit risk and other global
risk factors including oil price risk, risk sentiment, and exchange rate volatility. Within
the BRICS context, the sovereign CDS literature is limited to examining how sovereign
risk determinants compare between BRICS and developed economies, but bivariate risk
factor co-dependence has received limited attention. The recent study by Yang et al. (2018)
broadly examines core determinants of CDS risk and how risk factor intensity compares
between BRICS and G7 economies, and their findings complement non-parametric studies
based on copula techniques, which report co-movement between sovereign CDS spreads
and exchange rate and/or oil price risk across developed and emerging markets. They
investigated the dependence structure of sovereign CDS and oil price volatility in BRICS
and G7 countries using copula with wavelet analysis and found evidence of simultaneous
co-movements during economic prosperity, but divergence was evident during macroeco-
nomic downturns (Yang et al. 2018).

The above studies pioneered the non-parametric analysis of sovereign CDS and other
global risks in the BRICS context, investigating how global risks drive sovereign CDS
volatility, with sovereign CDS presumed to be endogenously determined. While they
explain how global risk factors influence sovereign credit risk for BRICS economies, they
are silent on whether the impact of such global drivers is homogenous within and across
BRICS countries if one considers that BRICS countries are structurally diverse in their
political and economic architecture. During extreme market downturns such as financial
crashes (Global pandemic-market crash of 2020), the emerging markets’ credit fundamentals
and risk indicators collapsed alongside each other concurrently, suggesting that risk factors
could be correlated and converge overtime, as documented in stylised facts in the literature
(Aas and Berg 2009; Grammatikos and Vermeulen 2012). Where bivariate co-dependence
exists, the nature of bilateral convergence could be too costly to ignore for a block of
heterogeneous countries, which can exhibit varying bivariate interaction patterns.

This study seeks to provide cross- and within-country comparison of the dependence
structures between individual global risk factors and sovereign CDS spreads in BRICS. The
rest of this study is structured as follows: Section 2.2 presents the data and methodology,
Section 3 discusses the empirical results, while Section 4 concludes the study with some
policy implications.

2.2. Data Description, Transformations, and Visual Inspections
2.2.1. Data Scoping, Collection Frequency, and Transformations

This empirical study used daily observations sourced from Thomson Reuters of the
Brent crude oil price, global equity market volatility index, local exchange rates against
the US dollar, and sovereign CDS spreads data collected over five years from 21 March
2016 to 18 March 2021. The sovereign CDS spreads and exchange rates for Brazil, Russia,
China, and South Africa were collected for further analysis, but India was excluded due
to the limited availability of data on sovereign CDS spreads. Most importantly, the scope
of analysis was aligned to the maturity profile of the sovereign CDS contracts (up to five
years’ maturity), which represents the highly liquid and most actively traded sovereign
CDSs in the secondary market, thereby allowing for the collection of high-frequency data
or daily observations for all variables. On the contrary, if one selects 10 years” maturity CDS
contracts, high-frequency data are limited due poor liquidity on longer-dated instruments
compared to 5 year CDSs that are highly traded, supported by sufficient depths of short-
dated tenor instruments (Lovreta and Pascual 2020; Wang et al. 2020; Yang et al. 2018).This
scope is consistent with many leading papers that examined the dependence structure of
sovereign CDSs and other risk factors across many developed and developing markets
(Wang et al. 2020; Kalbaska and Gatkowski 2012; Alter and Beyer 2014).
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All data collected was converted into daily returns which are stationary, with the
augmented Dickey—Fuller (ADF) tests confirming the absence of unit roots. The daily
returns were calculated using the natural logarithm of today’s closing price divided by the
closing price of the previous day, formally represented by the below function:

P Index;
n=(5) =) =
where P; is the daily closing price of Brent crude oil, exchange rate, and sovereign CDS
spread, while Index; is the closing level of global equity market volatility, and r; represents
the daily logarithmic changes in each variable collated for further descriptive analysis, and
the results are summarised in Table 1.

The daily changes in sovereign CDS spreads are used as a proxy for sovereign credit
risk, implying that huge spikes in sovereign CDS spreads are indicative of the increased risk-
iness of sovereign assets, as CDS providers demand higher risk premia (or high spreads) to
compensate for perceived incremental default risks on the underlying sovereign credit obli-
gations to the investors (Hansen and Lunde 2005; Joe 1996). Global market risk sentiment
is extracted from daily changes in the global equity market volatility index. Furthermore,
daily changes in exchange rates and Brent crude oil price are collated and used as inputs to
extract the daily volatility of oil price and exchange rates against the US dollar by fitting
appropriate generalised autoregressive conditional heteroskedasticity (GARCH) processes.

The daily volatilities extracted from GARCH models are used as the daily observations
of exchange rate risk and oil price risk over the five years, while sovereign CDS and global
risk sentiment are analysed using daily returns, not daily volatility. Before fitting the
GARCH process to model volatility, we fitted a standard autoregressive moving average
with one lag (i.e., ARMA (1,1)) as a mean model and GARCH (1,1) with one lag as a
variance model as GARCH process specification. Hansen and Lunde (2005) analysed
model performance and proved that the GARCH (1,1) model outperforms complex model
specifications in the modelling of volatility using high-frequency data such as daily and
intra-day returns; therefore, our study draws support from this finding, upon which we
deploy the GARCH (1,1) model to model daily volatility in this study. In finance studies,
GARCH (1,1) is a popular choice to filter the error series with Student-t distribution with a
variance of 1 (Jondeau and Rockinger 2006; Joe 1997; Nelsen 2006).

To extract the daily volatility, we fitted the ARMA (1,1)-GARCH (1,1) model with
standard and exponential error distributions to determine if there are symmetrical effects
of previous volatility on present-day observations and plotted the QQ plot and News

Impact Curve for further visual inspection before conducting goodness of fit tests. The
fitted ARMA (1,1) GARCH (1,1) model is defined below:

T =0+ Pri_1 +0ei_q + & )

0F = ag + €2 |+ Bor + Y1l 1€ ®)

where:
I _ 1 lf &1 < 0
170 ifeg >0.

where the r¢ is the mean model and o7 is the estimated variance of the empirical data, which
is represented by the residuals from fitted GARCH models. The variance series represents
daily volatility in the exchange rates and oil price, which is the measure of oil price risk
and currency risk for this study.
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GARCH models belong to a family of parametric estimation techniques; therefore, they
require a particular distribution to be imposed, such that in this study, a standard GARCH
(sGARCH) and exponential GARCH (eGARCH) both have standard and exponential distri-
butions, respectively. That said, the GARCH process is the most popular in the empirical
literature for modelling volatility in the financial time series (Lovreta and Pascual 2020;
Nelsen 2006). The sGARCH model imposes a non-negative parameter constraint, which is
an overly restrictive assumption and presumes that negative shocks have the same effect as
positive innovations, and this presumption is generally not supported by financial returns
data. However, the eGARCH model overcomes the non-negativity parameter constraints in
the linear model, as there are no restrictions in the exponential function, which is equipped
to handle negative values (Lovreta and Pascual 2020; Aas et al. 2009).

While due care was taken to ensure appropriate innovations distribution was assigned
during the preliminary data analysis, an exponential GARCH(1,1) model was the best-
fitted model to extract daily volatility because it captures the leverage effect of volatility
persistence, to reflect that positive /negative shocks do not have the same impact, but the
prior assumption of empirical error distribution remains a limiting factor compromising
the effectiveness of the GARCH(1,1) model. However, this is not overly concerning, as the
extracted volatility series is time invariant and used as input into the bivariate VineCopula
process, which considers the autoregressive nature of volatility. While Copulas are non-
parametric techniques used to analyse tail dependence, they are unable to capture time-
varying dependence structures. That said, Copulas deployed are time invariant, while
volatility can be time varying, and this is noted as a methodological limitation to be explored
in future studies on this subject.

2.2.2. Visual Inspection of Daily Volatilities and Changes in CDS and Global Risks

For this study, changes in sovereign CDS spreads were used as proxy for sovereign
credit risk profile, implying that huge spikes in sovereign CDS spreads implies the increased
riskiness of sovereign assets, as CDS providers demand higher-risk premia (or high spreads)
to compensate for perceived incremental default risks on the sovereign credit obligations
held by investors. Global market risk sentiment is observed from changes in the global
volatility index, as represented by logarithmic changes in the Chicago Board of Exchange
equity volatility index (VIX). Furthermore, the logarithmic changes in the exchange rates
and oil price were used as inputs to extract daily volatility by fitting appropriate generalised
autoregressive conditional heteroskedasticity (GARCH) processes to extract daily volatility
for Brent crude oil prices and each local currency against the US dollar.

Volatility clusters appear around the same time in the return’s series, and notably large
volatility clustering prevailed in Q1 2020 when massive global oil price shocks occurred,
signifying that sovereign CDS spreads spiked to record highs during the oil price shock
events, and changes in global risk sentiment also peaked to the highest levels when global
oil prices plummeted to record lows (see Figures 2 and 3). Volatility is modelled using
GARCH processes which consider the time-varying and autocorrelated nature of residuals
series over time, which are attributes characterising exchange rate and oil price history
(see visual presentations and GARCH tests). Accordingly, the GARCH process was used
to extract daily volatility (variance), and copulas were used to assess the underlying
dependence structures and compare that against linear correlation coefficients, which
presupposes that empirical financial data follow elliptical distributions.
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Figure 1. Macroeconomic variables. (a) external account balance; (b) Net portfolio investment
inflows—bonds; (c) Interest rate spreads; (d) foreign direct investment inflows (USA’bn).
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Figure 3. Volatility of returns series, reflecting recursive volatility clusters.

The GARCH models extracted daily volatility for oil price and exchange rates which was
used for further analysis of dependence structure, with results summarised in Tables 2 and 3.
Key observations from the fitted GARCH models exhibit strong evidence of the asym-
metric impact of historical shocks on the present-day volatility of oil prices and exchange
rates, with the empirical results confirming that the exponential (eGARCH) term is sta-
tistically significant in modelling exchange rates and Brent crude oil price risks. Hence,
this evidence indicates that positive historical oil price shocks have higher effects than
negative shocks on the present-day volatility, which means the impact is asymmetrical
(Longin and Solnik 2001).

2.3. The Optimal Copula

The correlated movements of financial variables are widely studied in the empirical
literature, with many studies often analysing dependence structures using simple corre-
lation and other linear measures, which hinge on the assumption of normal distribution
(Aas 2004). However, the normality of financial returns data lacks empirical rigour; therefore,
any statistical inference drawn remains questionable (Ballester and Gonzalez-Urteaga 2020;
Brechmann 2010). Against this backdrop, several non-parametric techniques have been
developed and utilised in the recent literature, and copulas have gained strong research
utility in financial econometrics (Blum et al. 2002). The study by Lokshin and Sajaia (2004)
deployed maximum likelihood estimation (MLE) techniques to estimate a bivariate sample-
selection model and the endogenous switching regression model, respectively, under the
assumption of the joint normality of marginals. However, the resultant estimators are
biased and inconsistent if joint normality assumption is used, which is often violated
by empirical financial returns exuding thicker tails than normal distribution implies. To
overcome this shortcoming, the copula approach is useful both to relax the assumption of
prior normality and estimate the models using maximum likelihood techniques so that the
estimators attain adequate efficiency (Hasebe 2013).

A copula C can be defined as a function linking univariate marginal distributions
to the joint multivariate distribution functions of at least two random variables and the
permit further decomposition of any n-dimensional joint distribution into its marginals,
thereby allowing for the accurate description of joint distributions without relying on the
assumption of distributional normality (Aas 2004). Copula theory gains more popularity
among researchers for the capability to simultaneously extract dependence structures
from the joint probability distribution function and isolate such dependence structures
from univariate marginals (Boubaker and Sghaier 2013). Copulas overcome the restrictive
assumption of joint normality in financial time series and are often used in empirical
research (Bouye et al. 2000; Embrechts et al. 2001, 2003; Aas and Berg 2009).

Formally, we define Copula C as an n-dimensional random vector x = (x1, x3) for two
dimensions (n = 2), with joint distribution function F = (x1, x7) and marginal distributions
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F;(x;) where the subscripti = 1, 2. Given this construct, Sklar’s theorem states that there
exists a copula C(u1, uy) such that:

(x1, x3) = P(X1 < x1, Xo < x2) = C(F1(x1), F2(x2)) 4)

If F; are continuous, then the copula C(u1, uy) is unique. Copulas permit different
degrees of tail dependence, the upper and the lower tail dependence, which are expressed
formally as follows:

C*(u, u)

Ay = lim P =1

0 P >l = = i ey ®
. . C(u, u)

Ap = lim P(Uj <ullh <u) = lim ———= 6

L= g Pt <) = i ©

where C* is referred to as the survival copula.

Therefore, a copula can be interpreted as a function linking the marginal distributions
of a random vector to its joint distribution (Aas 2004; Aas and Berg 2009). Many types of
dependence structures exist to estimate joint marginal distributions, but for simplicity, we
present five dependence structures from the Archimedean family, which are found to be
more common in this empirical study—see Section 3.3.1.

The approach adopted in this study was to use the VineCopula package to identify
the best-fitting and most optimal copula family type for each bivariate pairs of risk factors
and sovereign CDSs. The benefit of using the VineCopula package is that is automated
and streamlined the process to detect the most optimal copula family that best fit the
data under study (Akaike 1973). Furthermore, the authors did not have to fit and run
multiple separate copula tests and manually compare the AIC/BIC parameters to detect
the best-fitted copula model, which is an operational inefficiency noted in the approach
used by recent studies and leading papers in this subject (Hasebe 2013). We ran VineCopula
model selection to obtain the optimal bivariate copula type for daily returns and volatility
series as inputs and produce the most optimal copula family based on the AIC and/or BIC
criteria after adjusting for the necessary penalties for estimating parameters. The copulas
fitted for this study were variants that that all fell under the Archimedean and elliptical
copulas defined below. In general, most bivariate pairs were best-fitted using the Student-
t copula, which is consistent with other studies (Yang et al. 2018; Aas and Berg 2009).
The VineCopula model selection brought efficiency to the model selection process by
automating the comparison of information criterion and significantly reduced the time
taken by researchers to compare goodness of fit measures, which is the process followed in
the existing literature (Heinen and Valdesogo 2009; Fischer et al. 2009; Nelsen 2006). This
model selection approach not only compared the information criterion but also imputed
necessary penalties for parameter estimations, which is often overlooked when comparing
model fits based on AIC/BIC (Hasebe 2013; Lokshin and Sajaia 2004; Min and Czado 2010).

2.3.1. Optimal Copulas Using VineCopula Package

The daily residuals for oil price and exchange rate and changes in global volatility (VIX)
were merged with the sovereign CDS spread changes and used as inputs into the bivariate
VineCopula process to best select the most optimal copula family type for each bivariate pair
of sovereign CDS and each global risk. The optimal copula types were deduced from the
VineCopula package and then fitted into the empirical data for further analysis of tail depen-
dence structures and to estimate co-dependency parameters for each bivariate sovereign
CDS and risk factor combination. Vine copulas are gaining popularity in empirical fi-
nance studies for their pair-copula construction capabilities and the fact that they account
for reflection asymmetry when financial returns data exude varying lower or upper tail
dependence parameters for each bivariate marginals (Schirmacher and Schirmacher 2008;
Aas et al. 2009; Aas and Berg 2009; Heinen and Valdesogo 2009; Fischer et al. 2009; Min
and Czado 2010). When d-dimensional vine copulas are sufficiently specified, vine cop-
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ulas can account for flexible dependence structures through the specification of d, and
all bivariate marginals of the vine copula have upper/lower tail dependence if the bi-
variate copulas at level 1 have upper/lower tail dependence structures. Vine copu-
las include multivariate normal and Student-t copulas as special cases (Joe et al. 2010;
Schirmacher and Schirmacher 2008; Min and Czado 2010).

The bivariate model specification has two equations: a selection equation and an
outcome equation, which are defined as follows:

g — 0, if Sf =z 7+¢; <0 @)
! 1, if Sf=z7v+e; >0

where S; is an indicator of selection and z; is a vector of covariates, and the outcome of
interest is observable when S; = 1, such that

_xrBten ifSi=1
Vl‘{ 0 ifSi=0 ®)

If the errors, €5 and ¢€1; in the above equations are not independent, the ordinary
least-squares (OLS) regression estimates of B are biased and inconsistent.

According to Aas (2004), the best-fitting copula type is given by minimising the
distance of empirical copula of the data, where empirical copula (C,) is given by:

Ce(u1, ug) Zl 11—[] (Ui <)) ©)

and the optimal minimisation function is defined by:

2

" n . . .
distance (C, C,) —JZZ P Ce( irr %2)) (10)

The VineCopula packages solve this optimisation problem defined by Equation (8),
and the ultimate optimal copula family is chosen using the Akaike and Bayesian Informa-
tion Criteria (AIC and BIC, respectively), with the selection criteria formally defined and
represented below:

For observations u (i, j), i=1,............... N, j=1,.00..0.0... , N, the AIC of a
bivariate copula family CN with parameter(s) {8} is defined as:

AIC = —=2) {i=TN|In[c(u (i, 1), u (i, 2)|6] + 2k} (11)

where k = 1 for one parameter copulas and k = 2 for the two parameters copula.
Similarly, the BIC is obtained by:

BIC = —2Y {i = IN|In[c(u (i, 1), u (i, 2)|6] + In(N)k} (12)

Firstly, all available copulas are fitted using maximum likelihood estimation. Then,
the criteria are computed for all available copula families and the family with the min-
imum value is chosen. Evidently, if the BIC is chosen, the penalty for two-parameter
families is stronger than when using the AIC. Copulas are not nested relative to each other;
therefore, the above information criterion are useful to identify the best copula family
(Aas and Berg 2009; Heinen and Valdesogo 2009). If the marginals are fixed and the param-
eters to be estimated are the same, a copula with the smallest information criterion has the
largest log-likelihood value, and therefore, will be identified as the most optimal copula for
that bivariate pair of sovereign CDS and risk factors, as demonstrated by Hasebe (2013).
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2.3.2. Pairwise Tail-Dependence of Sovereign CDS and Global Risks

Considering the overwhelming statistical evidence showing that distributional nor-
mality assumption does not hold for BRICS, as affirmed by J-B goodness of fit tests, we
avoided drawing statistical inference based on measures of association assuming normality
such as Spearman linear correlation coefficient. Therefore, this study deployed the copula
approach, which consistently gains research popularity to measure dependence structure,
as copulas can identify the true underlying distributional properties of an empirical data
set (Blum et al. 2002; Aas et al. 2009). Copulas are appealing in modelling financial returns
because of their strong capability to examine skewness and kurtosis to detect the underlying
distribution of empirical data (Bouye et al. 2000).

In this study, we used copulas to investigate tail dependence structures, which allowed
for the extrapolation of co-movements in sovereign CDS and global risks when extreme
market volatility or tail events occur. Optimal copulas are fitted to each bivariate empirical
combination to extract tail dependence structures, with results summarised in Table 3
under Section 3.3.1 of the results discussion. Below, we formally present Archimedean and
elliptical copulas relevant to this study. Gaussian and Frank types are elliptical copulas,
while Clayton and Gumbel are asymmetrical and exhibit greater tail dependence on the
upper and lower tail ends of the distribution, capturing asymmetries.

Gaussian Copula

Gaussian copula is symmetrical with negative and positive tail dependence netting
each other off to zero, which is formally defined as follows:

¢uf (1) e (w2) 1 1 x? — 2oxy + y?
Cp(u], uz) —lm /700 ETPZ exp{—w}dxdy (13)

where p is the copula parameter and ¢~ !(.) represents the inverse of the standard univariate
normal distribution function with a mean of zero and variance of one.
The coefficients of the upper and lower tail dependence are given by:

VI+p

Due to symmetry, twice the sum of positive and negative tail events equals zero for
Gaussian copulas. This means that even if the correlation is very high, the extreme tail
events occur independently, and the variables do not exhibit co-movements over time
(Aas 2004).

Frank Copula

AL(X,Y)_AU(X,Y)_ZJ}E{}O¢<1+ Vl_p)_o (14)

A Frank copula is symmetrical and behaves like a Gaussian copula by netting off
positive and negative tail dependence to zero, which is formally defined as follows:

Ouq Ou,
Cr(u1, up) = —%l” (1 + G e 1>> (15)

|

The generator is given by:

e 1

Pp(t) = —ln< P ), where § # 1 (16)

Both the positive and negative dependence are equal to zero because they are sym-
metrical. In this instance, a stronger linear correlation does not imply tail dependence. If
tail events are observed, then the extreme observations occur independently of each other
(Aas 2004).

Student-t Copula
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A Student-t copula, unlike the Gaussian and Frank types, can account for joint fat tails
in the distribution function and an increased probability of joint extreme events, which
makes it superior to the Gaussian or the elliptical copula family, in general. With smaller
degrees of freedom, Student-t distribution can exhibit thicker tails than the other two
distributions (Manner 2007). Formally, a Student-t copula is defined as follows.

tud (1) ptil (u2) 2 _ 2
Cp,v(ulruz):/il 1L1 vl 1 {1+x2’”y+y}d5dt (17)

[eS) oY) Eq/l—pz U(l—pz)

where p and v are parameters of the Student-t copula and t; ! is the inverse of the standard
univariate Student-t distribution with v degrees of freedom, the statistical mean of zero and
variance defined by ;5. A Student-t copula has a degrees of freedom v parameter, such
that, when v increases, the tendency of extreme co-dependency decreases. The dependence
coefficients of upper and lower tails are given by:

A (X,Y) = Ay (X,Y) =ztv+1<p<\ﬁ1+p< ﬁvi;p) (1)

whereby t,1 is the distribution function of a univariate Student-t distribution with v + 1
degrees of freedom. For higher linear correlation p, the degrees of freedom v will be smaller,
and the tail dependence will be stronger. Most importantly, a Student-t copula denotes
asymptotic tail dependence when linear correlation coefficient p is negative and/or zero.

Clayton Copula

This is an asymmetric Archimedean and exhibits greater dependence on the negative
tails than it does in the positive tails. It is formally expressed by:

—_p—1
Ce(uq, up) = max {(uﬂ +uyf— 1) , o] (19)
and the generator is given by:
o(t) =01 (t‘e - 1), where 0¢[—1, +o0[\ {0} (20)

The positive (upper tail, Uc) and negative (lower tail, L¢) tail dependence are given

by:
Ay, =0and Ay, (21)

A Clayton copula captures co-dependency for extreme lower tail events and accounts
for asymmetry which the Student-t copula does not allow due to restrictive parameters
under the Student-t copula.

Gumbel Copula

This is also an asymmetric Archimedean but is different from Clayton in that it exhibits
a greater dependence in the upper tail than the lower tail. It is formally expressed by:

Co(uy, up) = exp(— [—ln(ui)e + (—ln(uz))e} 9_1> (22)

The generator is given by the following:
p(t) = (—=In(t))?, where § >1 (23)
The positive (upper tail, Ug) and negative (lower tail, L) tail dependence are given by:

Aug=2-2"and A;, =0 (24)
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The Gumbel copula captures co-dependency for extreme higher tail events and ac-
counts for asymmetry which Student-t copula does not accommodate, due to the restrictive
parameters thereon.

3. Results Discussion and Interpretation
3.1. Exploratory Analysis of Daily Returns Structure

Table 1. Descriptive statistics.

Descriptive Statistics: First Difference of Each Variable Volatility: Oil Price and Currency
I?:;‘;ﬁ:ir dRSA_CDS dRussia_CDS dChina_CDS dBrazil CDS  dVIX dCrude_Oil CHN_Yuan BRA_Real RSA_Zar RUS_Rbl
Mean 0.000 —0.001 —0.001 —0.001 0.0 0.000 0.00 0.00 0.00 0.00
Min —0.148 —0.208 —0.297 —0.299 —0.30 —0.28 —0.012 —0.065 —0.03 —0.05
Max 0.186 0.283 0.190 0.267 0.768 0.191 0.017 0.800 0.049 0.070
S“};,/Be" 2.842 3423 3187 3.502 8.490 2612 . . . .
Kurtosis 6.000 10.830 10.820 17.220 8.860 24.83 3.690 6.980 1.010 7.320
Skewness 0.620 0.890 0.330 1.140 1.560 —147 0.330 0.580 0.390 0.890
J-B Stat 2049 **++ 6570 *** 6409 *** 16,441 *** 4808 *+ 34,065 *** 766 2696 *** 88 3094 ***
ADF Test —23.78 —25.171 —24.959 —23.328 281 —24.376 = = = =
C“—&?“de 0.001 —0.015 —0.029 0.055 0.069 1.0 —0.003 —0.069 —0.03 —0.01
Cor_ dMkt_.V 0297 0.225 0.096 0.378 1.0 0.069 0.009 0.000 —0.01 —0.02

Source: Own calculations using Thomson Reuters data. *** Statistically significant results at 1% level.

Skewness and kurtosis are crucial measures that determine whether the empirical data
are normally distributed or non-normal, which is important to ascertain before analysing
correlation measures which presuppose that underlying data are normally distributed.
Skewness measures whether the distribution of data is symmetrical or asymmetrical,
which is the overarching quality of normally distributed random variables. The values for
skewness between —0.5 and +0.5 are considered acceptable to prove normal univariate
distribution, while skewness greater than +1 or less than —1 depicts highly skewed empiri-
cal data (Aas 2004; Hair et al. 2017, p. 61). Kurtosis measures whether the distribution of
empirical data is too peaked or too flat, and kurtosis below —1 indicates too flat distribution,
while kurtosis greater than +1 indicates highly peaked distributions, implying that such
heavily peaked or too flat distributions are not normal (Hair et al. 2017, p. 61). Kurtosis
and skewness measured outside the above guidelines represent empirical data that are not
normally distributed, and Jarque-Bera (J-B) goodness of fit tests are useful to determine if
the kurtosis and skewness fit within normal distribution parameters.

The changes in sovereign CDSs for South Africa, Russia, and China are symmetrical,
while Brazil is heavily skewed to the right, which implies that tail risk events occur inde-
pendently for the former countries, while there is a positive tail dependence structure for
Brazil. Changes in global risk sentiment and crude oil price are heavily skewed, signifying
that tail events are dominant, and the data may not be normally distributed. Again, this
implies that empirical tail observations are likely to exemplify asymmetric and positive
tail dependence structure for this bivariate pair (Heinen and Valdesogo 2009; Hong and
Preston 2005). The kurtosis measure is greater than +1 for all variables, which is evidence of
heavily peaked distribution that violates the properties of normal distribution. The kurtosis
and asymmetry measures for BRICS and global risk factors are not consistent with normal
distribution properties. This means that tail observations are prevalent in the empirical
financial data; therefore, correlation measures assuming symmetry will result in inaccurate
relationship inferences (Aas and Berg 2009; Heinen and Valdesogo 2009).

The J-B goodness of fit test is conducted to conclusively determine if the empirical
data are normally distributed. The J-B test statistics are positive, and it is close to zero
for normally distributed data. That is, the further away it is from zero, the stronger the
evidence that empirical data are not normally distributed. The ]-B test statistic is extremely
high, and the p-value is 0.00, thus reaffirming that BRICS data are not normally distributed.

Considering this evidence, it is not appropriate to analyse the dependency structure
of sovereign CDSs and global risk factors using measures of association that assume distri-
butional normality such as Spearman correlation coefficient. Hence, we need to analyse
the dependency structure considering the underlying distributional properties of each
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variable and their combined marginal distributions, and this outcome is best achieved by
using copulas to simultaneously decompose univariate dependence structures and link the
marginals to the joint distributions without prior assumption on the univariate distribution.
In this study, we analysed the association between and contrasts of the dependence struc-
tures of sovereign CDSs and global risk factors using both Spearman correlation coefficient
and rank dependent measures on “distribution-corrected data” obtained from copulas
and show that copula-based results are more robust and reliable than simple Spearman
correlation measures.

As shown in Table 1, changes in sovereign CDS spreads were broadly negative and
almost negligible on average terms; however, focusing on average changes overlooks the
inherently persistent volatility in the spreads, as evidenced by massive variance between
the day’s minimum and maximum intraday spreads. To this end, the standard deviation
provides a more accurate indication of the realised volatility, which ranges from 2.84% to
3.5% for the group understudy, with Brazil recording the highest volatility of 3.5%, while
South African had the lowest at 2.84%.

The standard deviation of oil prices and sovereign CDS spreads is much higher in the
2020-2021 period, possibly because of several shocks that occurred including the global oil
price shocks in 2020 and the deterioration in global market sentiment due to the coronavirus
outbreak, among others risks, resulting in abrupt adverse changes (i.e., deterioration) in
the sovereign credit risk profile of emerging markets. The standard deviation of global risk
sentiment was the highest at 8.5%, and oil price changes averaged 2.6%. The augmented
Dickey-Fuller (ADF Test) confirms stationarity at first difference at the 0.1% significance
level, which satisfies the necessary and required conditions to apply GARCH processes to
model volatility of the exchange rates and oil price series.

3.2. Linear Dependence Structures—Simple Linear Correlation Measure

Table 2. Linear correlation of sovereign CDSs and risk factors.

Linear Dependence: Spearman Correlation for Sovereign CDS Spreads and Risk Factors

Daily Log Changes Daily Volatility of Oil Price and Exchange Rate
dVIX dCrude_Oil Crude_Oil CHN_Yuan BRA_Real RSA_Zar RUS_Rbl

dRSA_CDS 0.297 0.001 0.004 = = —0.018 =
dRussia_CDS 0.225 —0.015 —0.012 - - - 0.154
dChina_CDS 0.096 —0.029 —0.027 0.026 - - =
dBrazil_CDS 0.378 0.055 0.058 —0.042 - -
Corr_dCrudeC 0.069 1.0 1 —0.003 —0.069 —0.033 —0.058
Corr_dMkt_VIX 1.0 0.069 0.069 0.009 0.000 —0.010 —0.330

Source: Own calculations using data from Thomson Reuters.

The Spearman correlation between crude oil price risk and sovereign CDS spreads
differs across countries, showing very weak and negligible positive association for South
Africa (0.4%), while Brazil has the highest correlation of 5.8%, which reflects the high
exposure to global oil price movements as a net exporter of oil. Similarly, oil price risk
exerts negative influence on Russian and Chinese sovereign CDS spreads, with China’s
credit risk being the most negatively impacted compared to Russia’s credit risk profile.
Similarly, the correlation between sovereign CDS and global risk sentiment is positive
across all countries under review but strong and more pronounced for Brazil (38%) and
South Africa (30%), while it is the weakest for China (10%). This means that positive global
markets news is associated with noticeable improvement in credit risk spreads for BRICS
sovereign bonds, and the opposite is true for deterioration in global market risk sentiment.
This observation is consistent with studies reporting similar results for BRICS countries
which are crucial emerging markets that are integral to global economic architecture.

Most importantly, changes in global risk sentiment affect sovereign credit risk more
than oil price risk for BRICS economies, which is exacerbated by temporary but colossal
portfolio outflows fuelled by knee-jerk, large-scale disposals of higher-yield emerging
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markets sovereign bonds and migrating funds into haven investment instruments such
as US treasury bills during the period of heightened uncertainty. The correlation strength
between exchange rate risk and sovereign CDS is generally weak across countries but is
negative for South Africa and Brazil, while it is positive for China and Russia. Although it
is relatively weak, Russia’s sovereign CDSs depict a relatively stronger association with
currency volatility than all countries across BRICS, while South Africa’s sovereign CDSs
are the least affected by currency volatility.

3.3. Analysis of Empirical Results: Tail Dependence Structures for BRICS Countries
3.3.1. Pairwise Tail Dependence of Risk Factors and Sovereign CDS

This section breaks down the dependency structure between sovereign CDSs and a
suite of global risk factors based on Vine copulas, which are used to decompose implicit de-
pendence structures from empirical data. Copulas are used to assess dependence structures
to overcome the overly restrictive assumption of normality in the distribution of marginals,
which compromises the legitimacy and accuracy of inferences drawn based on simple
Spearman correlation measurements. Given the violation of distributional normally (J-B
normality test with p-values of 0.00), this study used the VineCopula package to determine
the underlying marginals and identify the optimal copula type that fit each bivariate com-
bination of sovereign CDS and global risk factors, without making assumptions of prior
marginals. The best-fit copula type was chosen based on the AIC criteria and then fitted
onto the bivariate combinations to extract the true rank dependent measure of association,
with the results summarised in Table 3 below for further discussion on the next section.

Table 3. Dependency structure of sovereign CDS and global risk factors in BRICS.

Parameter Estimate Oil Price Volatility Global Markets Sentiment (dVIX) Exchange Rate Volatility
Dependency Type  Spearman Copula Spearman Copula Spearman Copula
Brazilian CDS 0.058 0.093 0.378 0.347 —0.042 —0.047
Copula_family - surJoe - surBB1/Gumbel - Student-t
Chinese CDS —0.027 —0.028 0.096 0.314 0.026 0.038
Copula_family - Student-t - TawnT1 - Student-t
Russian CDS —0.012 —0.004 0.225 0.268 0.154 0.165
Copula_family - Student-t - surBB7/Clayton - Student-t
South African CDS 0.004 0.009 0.297 0.258 —0.018 0.006
Copula_family - Student-t - surBB1 - Student-t

Source: Own calculations using data from Thomson Reuters.

The direction of association estimated by optimal copulas and linear correlation
measure is consistent, both confirming positive or negative co-movements of bivariate com-
binations, as Student-t copula is the most common and it exhibits elliptical properties while
accounting for tail dependence. The reason for this is that the Student-t copula caters for ex-
treme negative values, thereby capturing varying lower/upper tail dependence structures,
as lower tail dependence can be larger than upper tail dependence or vice versa. Empiri-
cally, asymmetric tail dependence is more commonly reported in the literature during more
extreme market downturns or financial crashes (Jondeau et al. 2007; Nikoloulopoulos et al.
2010; Giacomini et al. 2009; Longin and Solnik 2001; Ang and Chen 2002).

The strength of a copula’s dependency structure is more robust and accurate, as it
incorporates the empirical marginal distribution of each variable in the bivariate copula pro-
cess, thereby overcoming the restrictive presumption of normal distribution of marginals
under the Spearman correlation measures. However, South African (RSA) CDS spreads and
exchange rate risk present an exceptional case where the dependency structure changes
from negative (Spearman) to positive under distribution-corrected, copula-based measure
but remains fairly negligible. This finding further reinforces the assertion that when the
presumed joint normality of marginals is violated empirically, dependence measures and
relationship inferences drawn are likely inaccurate and spurious at best, as widely docu-
mented in the existing literature (Nikoloulopoulos et al. 2010; Hasebe 2013; Nelsen 2006;
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Joe 1997). Although the magnitude is low, the copula-based dependence structure is posi-
tive between RSA CDS and exchange rates.

Furthermore, the most valuable exposition from bivariate copulas is the reaffirmation
of the J-B normality test, confirming that the underlying empirical marginal distributions
are not normal for all variables. However, there is sufficient evidence of symmetry between
exchange rate volatility and sovereign CDSs across all BRICS countries, as confirmed by
Student-t copula fitment as the most optimal copula type to model the empirical data.
From an empirical perspective, the most optimal copula type is the Student-t copula for
oil price risk and sovereign CDSs, signifying the existence of reflection symmetry of oil
volatility on sovereign credit risk for China, Russia, and South Africa. Student—t copulas
capture reflective symmetry while sufficiently differentiating between upper and lower tail
dependence between bivariate covariates, and this finding is aligned to existing empirical
results documented in several studies (Brechmann 2010; Joe 1997; Choe et al. 2020; Lovreta
and Pascual 2020; Hansen and Lunde 2005). They applied alternative mixture copula
models to account for asymmetrical tail dependence, which our study captured through the
Student-t copula as the most optimal copula family. Our results show that the dependency
strength reduces (whether positive or negative under Spearman measure) to lower strength
under a copula measure but remains very small, except for Brazil, where there was an
increase from 5.8% to 9.3% under the empirical marginal distribution-adjusted measures.

Brazil presents a unique case where the optimal copula type is the survival Joe copula,
which captures asymmetrical tail dependence effects arising from extreme negative tail
observations, signifying those negative extreme events have a greater association with
Brazilian sovereign credit risk. The negative dependence reflects the structural design of
Brazil’s economy, which benefits a lot from advanced industries producing and processing
oil for final consumption, such as petroleum processing, automotive, cement, iron, and
chemical production industries. In 2020, Brazil’s daily oil production averaged 3.78 mn
barrels per day (bpd), making it the eighth largest global oil producer with a 4% global
market share (World Bank 2021). That said, this tail dependence structure signifies that
Brazil’s sovereign CDS spreads are negatively associated with an extreme drop in global
oil prices, while extreme oil price gains do not materially move the sovereign CDS spreads.
This result is expected, as Brazil earns foreign exchange profits and fiscal revenues from
oil exports which, if they plummet significantly, could adversely impact fiscal revenues.
Conversely, extreme price gains do not have extreme benefits, as the gains are shared with
the largest producers such as the United States of America and Saudi Arabia.

What differentiates Brazil’s dependence structure from peer oil producers such as
China and Russia (production at 4.86 mn bpd with 5% market share and 10.5 mn bpd with
11% market share, respectively) is their disproportionate share and varying propensity
to consume large oil quantities in their domestic economies. That is, China and Russia
consume 14.1 mn bpd and 3.7 mn bpd, with a global consumption market share of 14%
and 4%, respectively. Therefore, the domestic economies in China and Russia consume
very large quantities of oil production, while Brazil consumes very little relative to their
production, resulting in larger exports to the global markets. As a net-exporter of oil, the
size of exports and expected oil revenues are vulnerable to shocks induced by global oil
supply dynamics and exchange rate volatility in the emerging markets. Therefore, the coun-
try’s marginal propensity to consume oil could also determine the resultant dependence
structure amongst oil producers in BRICS.

Our empirical results confirmed that optimal copula family for sovereign CDSs and
exchange rate volatility is Student-t copula across all countries, reflecting symmetry which
is largely documented in the existing literature. The Student-t copula is appropriate and
consistent for the underlying bivariate data (refer to skewness and kurtosis in Table 1),
which reflects symmetric dependence structure, reinforcing the empirical findings in other
geographies (Longin and Solnik 2001; Ang and Chen 2002; Hong and Preston 2005). For
the global risk sentiment, the optimal copulas are the survival type (Joe-Clayton/Gumbel)
or Tawn type copulas, which are asymmetrical and consider tail observations, and this
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variable exhibits the strongest (and most positive) association with sovereign CDS spreads
of BRICS than any other global risk factor under consideration in this study. An increase
in global risk sentiment causes an increase in sovereign CDS spreads, which implies a
deterioration in perceived credit quality as global investors take bearish market views. This
implies that global risk sentiment co-moves with sovereign CDSs when extreme tail-end
observations occur, such that negative sentiment weakens CDSs, while extreme market
optimism improves CDS spreads for sovereign issuers and banks (Wang et al. 2020). Our
results are balanced enough to highlight that Vine copulas can yield different optimal
bivariate copula pairs, depending on the market structure. Caillault and Guegan (2005)
reported the naive estimation of tail dependence parameters, showing symmetric bivari-
ate dependence structures for the Thailand /Malaysian markets and asymmetric for the
Thailand /Indonesian markets and for the Malaysian /Indonesian markets.

3.3.2. Comparison of Tail Dependence Structures within and across BRICS Countries

There is overwhelming empirical evidence that global market sentiment is a crucial
positive driver of sovereign CDS spreads in BRICS. Brazil has the highest positive correla-
tion (38%) followed by China (31%), Russia (27%), and South Africa (26%), implying that
Brazil’s sovereign CDSs are more vulnerable to global risk sentiment, while South Africa
is the least impacted across BRICS. This positive dependency is expected for emerging
markets economies that are generally characterised by higher-yield sovereign bonds and
liberalised financial markets which offer international investors seamless access to local
financial markets to facilitate portfolio investments and foreign direct investment flows.
Therefore, these countries must consider financial sector regulations that mitigate major
risks that accompany the globalisation of access to local financial markets to proactively
manage the impact on the country’s credit risk profile, which ultimately affects costs of
borrowing and fiscal debt service costs.

Furthermore, oil price risk is the second biggest driver of sovereign CDS spreads
for Brazil (9.3%) and South Africa (0.9%), while exchange rate risk exhibits a very small
contribution to changes in sovereign CDS spreads. On the contrary, exchange rate risk
is the second-largest influential factor for China (3.8%) and Russia’s (16.5%) sovereign
CDS spreads, while oil price volatility contributes the lowest: 2.8% and 0.4%, respectively.
The massive cross-country variation is largely driven by different exchange rate regimes
adopted by each respective country (e.g., China operates under a pegged currency system,
while other economies are on flexible exchange rate regimes), and China’s position as the
largest oil consumer in the world plays a sizable role. Russia’s exposure to oil price volatility
is the least significant factor to sovereign CDS spreads, as oil price hedging positions
alleviate potential oil revenue volatility from currency fluctuations, and its position as a net
importer provides benefits from prepaid orders.

The dependency structure of CDS/exchange rate risk and CDS/oil price volatility
also differ significantly within each country, where one risk factor largely dominates at
a massive scale, such as Russia, where exchange rate risk scores a dependence of 16.5%,
which is highly dominant compared to oil price risk, with a dependence of —0.4%. Similar
observations hold for Brazil, where the CDS/oil price volatility strength stands at 9.3%
compared to a CDS/currency risk correlation strength of 4.7%. Finally, China exhibits a
CDS/ currency volatility dependence of 3.8% compared to the CDS association to oil price
risk of —2.8%. This finding is very crucial for Russia to consider in financial sector policy
formulation, where it is important to introduce policy measures to mitigate the large impact
of currency volatility on the fiscal oil revenues, given that an increase in currency risk leads
to an increase in sovereign CDS spreads. The oil price risk remains well contained through
existing hedging arrangements, ultimately resulting in negligible impact on CDS spreads.

Brazil and China’s cases are slightly different; the scale dominance effect is very
moderate compared to Russia, implying that Brazil and China cannot exclusively regulate
or proactively manage spill-overs from one risk factor to mitigate overall spill-over risks on
sovereign CDS spreads, and ultimately the sovereign credit risk profile. On the contrary,
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the South African dependency structure is unique; empirical evidence suggests global risk
sentiment (26%) is the single largest driver of sovereign credit risk, while exchange rate
risk and oil price volatility have negligible dependence with the sovereign CDS spreads.

4. Conclusions

This study examined the tail dependence structure of sovereign credit risk and each
of three selected global risk factors for the BRICS community using the copulas approach,
which is known for its ability to provide the “true” tail correlation based on the correct
marginal distribution. The empirical results show that global market risk sentiment is
very crucial in driving sovereign CDS spreads in the BRICS countries under extreme
market events, with Brazil having the highest co-dependency, followed by China, Russia,
and South Africa. This dependency is expected for emerging markets that are generally
characterised by higher-yield sovereign bonds and internationally liberalised financial
markets which offer foreign institutional investors seamless access to local markets to
facilitate portfolio investments and foreign direct investment flows. Therefore, it is critical
for BRICS policymakers to consider financial sector regulations that mitigate spill-over
risks, such as capital controls under distressed markets, to maintain financial system
stability, which can arise from unrestricted access to local financial markets by risk-averse
foreign investors. Such a policy can proactively manage the impact of global sentiment
on a country’s credit risk, which ultimately affects borrowing capacity and fiscal debt
service costs.

Furthermore, oil price volatility is the second biggest risk factor correlated with
sovereign CDS spreads for Brazil and South Africa, while exchange rate risk exhibits
very small co-movements to changes in sovereign CDS spreads, under extreme market
conditions dominated by tail events. On the contrary, exchange rate risk is the second
largest risk factor associated with China and Russia’s sovereign CDS spreads, while oil
price volatility exhibits the lowest association to CDS in these countries. Between oil price
and currency risk, evidence of single risk factor dominance is found for Russia, where
exchange rate risk is largely dominant (second to global sentiment), implying that Russia
can mitigate or manage spill-over effects on sovereign CDS spreads by enacting financial
sector regulations that mitigate exchange rate risk.

The optimal copula family for sovereign CDSs and exchange rate volatility is confirmed
as the Student-t copula across all countries, suggesting symmetry, and this is consistent
with expectations documented in the existing literature. For the global risk sentiment, the
optimal copula is the survival type (Joe—Clayton/Gumbel) of Tawn type copulas which
are asymmetrical and reflect one-sided tail dependence, and this variable has the strongest
(and most positive) association with sovereign CDS spreads of BRICS than any other global
risk factor studied. This implies that global risk sentiment co-moves with sovereign CDSs
when extreme tail-end observations occur, such that negative sentiment weakens CDSs,
while extreme market optimism improves CDS spreads for BRICS countries, and a similar
finding is reported for G7 countries.

Interesting results are observed for Brazil, which presents a unique case where the
optimal copula type is the survival Joe copula, which captures asymmetrical negative
tail dependence effects arising from extreme negative tail observations, signifying those
negative extreme events have greater association with Brazilian sovereign credit risk. This
implies that global risk sentiment co-moves with sovereign CDSs on the extremes such
that negative sentiment weakens CDSs, while extreme market optimism improves CDS
spreads for sovereign issuers and banks. Our results are balanced enough to highlight that
Vine copulas can yield different optimal bivariate copula pairs depending on the economic
structure and marginal propensity to consume and export oil globally.

While due care was taken to ensure appropriate distribution is fitted into the GARCH
process to model and extract volatility series, the prior assumptions of empirical distri-
bution remain a limiting factor compromising the effectiveness of the GARCH model.
However, this is mitigated by the use of the copula process to capture “distribution-
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adjusted” dependence measures which requires no parameter specification. While copulas
are non-parametric techniques that this study used to analyse tail dependence structures,
they are unable to capture time-varying dependence structures. That said, we note this as
a methodological limitation to be explored in future studies, which can analyse bivariate
dependence structures between risk factors using time-varying volatility models to capture
dynamic volatility transmissions. Beyond the mean-based dependence structure, a risk
spill-over analysis can shed further light on the volatility transmission among the selected
global risk factors. However, this could not be addressed by the empirical set up of this
study, which did not isolate nor thoroughly analyse the contributions and impact of the
pandemic on the dependence structure analysis—we suggest this for future research in this
subject area.
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