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Abstract: This paper addresses the optimal rebalancing problem of a long–short portfolio with high
net asset value under trading impact losses. The fund manager may employ leveraging as a tool to
increase portfolio returns. However, to mitigate potential leverage risks, frequent rebalancing may
become necessary, which leads to significant slippage losses that dampen portfolio performance ex
post. We consider the problem in an integrated framework by incorporating trading impact and
leverage restrictions ex ante within a mean–variance framework, where leverage control is imposed
using a chance constraint. The resulting mean–variance–leverage optimization model (MVL) is
non-convex, and we develop an efficient scheme to obtain the optimal portfolio. We investigate how
portfolio leverage modifies the MV efficient frontier in the presence of trading impact, and highlight
the significant outperformance of the proposed model relative to the standard mean–variance model.
Increased target means require less restrictions on leverage, which result in higher rates of slippage
losses. Our analysis supports the notion that leverage restrictions contribute to choosing high beta
assets, even in the presence of trading impact.

Keywords: mean–variance efficiency; portfolio leverage; market impact; non-convex optimization

“When you combine ignorance and leverage, you get some pretty interesting results.”

(Warren Buffett)

1. Introduction

Portfolio diversification is a fundamental strategy for reducing risk by combining
assets of different risk–return profiles, the cornerstone of the modern portfolio theory
(Markowitz 1952), in which standard deviation is employed as the subadditive risk mea-
sure. Subadditivity is one of the four axioms of “coherent” measures of risk (Artzner et al.
1999), which implies that a portfolio is less volatile than the sum of its component volatili-
ties. The popularity of mean–variance (MV) portfolio selection has eventually grown to
accommodate the practice of leveraging,1 or borrowing exogenous funds to invest further
in a given MV-efficient portfolio in an attempt to reach higher expected returns without
incurring a proportionate increase in portfolio risk. However, leveraging carries unique
risks to a portfolio, particularly during sudden market declines, because liquidity risks
can exacerbate losses due to market impact in forced deleveraging (Jacobs and Levy 2014).
Moreover, when over-sized short positions are present in a leveraged portfolio, even when
markets rise, the short assets may need to be ‘cover purchased’ at elevated prices, resulting
in portfolio losses (Jacobs and Levy 2012). This paper focuses on integrating leverage
restrictions and market impact losses due to portfolio rebalancing within a mean–variance
efficiency framework to provide insights on portfolio selection for high net worth funds.

We consider the situation of a large risky fund that must be rebalanced periodically
(say, monthly) to new portfolio positions for managing risks due to changes in the economy,
hence, in the asset return parameters. Optimal trades so determined are typically executed
over a shorter time period (say, over a day or two). With leveraged and large funds, the
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buy and sell orders are likely substantial in size, which inevitably lead to market impact
or slippage losses due to illiquidity. Slippage refers to the situation when trade execution
occurs at a price different (and worse) from the expected on an entry or exit from a trade.
While market orders guarantee successful trade execution, due to time delays in bid–ask
spread display, the time it takes for orders to reach the exchange, and the discrete step-
wise nature of the order book, execution prices can be substantially different from those
anticipated, hence the risk of incurring unforeseen trading losses.

Intuitively, in the absence of leverage control, choosing low risk assets and over-
weighting them relative to high-risk assets can create a levered portfolio that yields in-
creased expected returns, compared to an unlevered MV portfolio with equal risk. Such
an argument is made for the existence of a leverage risk premium for low volatility assets
(Frazzini and Pedersen 2014).

Empirically, as expected, leverage restrictions are associated with high risk assets, thus
increasing the demand for those that result in relatively flat risk–return profiles (Boguth and
Simutin 2018; Jylhä 2018; Lu and Qin 2021). Using closed-end funds that face restrictions in
employing leverage, it was recently shown that tighter leverage constraints cause investors
to hold portfolios of higher-beta securities (Jylhä and Rintamäki 2021). The model in
this paper may be used to address this concern in a more fundamental way: are higher
beta assets routinely chosen when tighter leverage conditions are imposed on a portfolio
in the presence of market impact losses? Conversely, would relaxing leverage controls
result in portfolios with lower beta stocks? Our preliminary analysis supports the notion
that leverage restrictions contribute to choosing high beta assets, even in the presence of
slippage losses of trading.

Theoretically, the MV-based CAPM implies that in meeting an improved return target,
assets of higher-risk profile need to be included under leverage restrictions; conversely, if
leverage conditions are relaxed, one may use assets of a lower risk profile with leveraging
to achieve the target. Moreover, the MV theory also suggests that the latter portfolios are
more diversified, as opposed to the more imbalanced portfolios under low risk aversion.
Consequently, an investment strategy, referred to as risk parity (RP), aims to distribute
portfolio risk somewhat equally among asset classes (with lower risk and lower return) for
better diversification (Booth and Fama 1992; Chaves et al. 2011; Maillard et al. 2010), whose
portfolio expected returns are then boosted by employing portfolio leverage. It is unclear,
however, how slippage losses in trade execution might distort this rationale and affect the
optimal portfolio choice. Our work is a step in this direction to develop insights.

Market impact depends on several factors: the price at which the trade is desired,
trade quantity relative to the market daily volume in the security, and other specifics,
such as market capitalization, and the beta of the security (Keim and Madhavan 1996,
1997, 1998; Loeb 1983). In this paper, we employ a slippage loss per unit of trade that
incorporates a fixed cost and a variable cost of trading that depends on the fraction of the
total (daily) volume traded in the asset (Edirisinghe 2007). Quadratic market impact within
continuous-time trading models is employed for deleveraging portfolios during times of
market turbulence within an MV framework (Edirisinghe et al. 2021). While many loss
models are quadratic in the trade size, slippage may grow in reality at a rate slower than
quadratic (Almgren et al. 2005; Gatheral 2010), for example, as a power function with an
exponent between one and two (DeMiguel et al. 2016), as we shall allow in our model.

In an MV-efficient portfolio, long and short positions may exist depending on risk
aversion, and thus, the portfolio carries margin risk, even in the absence of exogenous
borrowing, which we refer to as margin leveraging. Since MV theory does not account
for an acceptable level of margin leveraging, one must enforce control to generate MV
efficiency with acceptable long–short portfolios. Jacobs and Levy (2012, 2013) introduced
a (margin) leverage risk aversion into the portfolio variance minimization objective to
determine efficient portfolios, but without incorporating trading impact or exogenous
borrowing. We focus on exogenous borrowing to evaluate portfolio liability to satisfy
leverage restrictions, while incorporating slippage losses in trade execution. Noting that
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the period-ending leverage level of the portfolio is random, and the investor’s leverage
aversion is captured via satisfying a given maximum allowable leverage in ‘probability’ or
a chance-constraint (Charnes and Cooper 1959).

The three-dimensional risk–return–leverage analysis in Jacobs and Levy is close to the
analysis performed in this paper, but in our case includes the mean, variance, and allowable
leverage level of the portfolio, along with market impact costs of trading. In that sense, our
analysis provides deeper insights into how leverage restrictions affect the mean–variance
efficiency of portfolio selection as market impact (liquidity) costs become significant. The
work in this paper can be viewed as optimally improving an MV-optimal portfolio by
satisfying a leverage target in order to obtain a higher mean return under market costs of
trading, herein referred to as the MVL model. In particular, we are interested in the effect on
the portfolio variance risk as the portfolio’s leverage risk is increased under trading impact.
The resulting model is non-convex and computationally tedious. We study its theoretical
properties to devise an efficient solution scheme to obtain the MVL efficient frontier. We
provide a computational analysis of the MVL model using major ETF assets for a monthly
rebalanced portfolio with one-day trade execution, where slippage loss parameters are
estimated using millisecond transaction data.

We show that ignoring slippage losses, as in the standard MV model, leads to efficient
frontiers that significantly worsen (when losses are incorporated ex-post) compared to the
proposed MVL model embedding trading impact ex ante. Furthermore, as leverage is more
relaxed, the slippage losses can grow steeply if the portfolio target mean is sufficiently
high. In fact, an investor requiring a higher mean is compelled to relax leverage restrictions
(or less leverage risk averse), thereby incurring more trade impact losses and limiting the
extent to which the target mean can be further increased. In the limited computations, we
also find partial evidence for the previous claim that when leveraging is more restricted,
higher beta assets tend to have higher portfolio allocations.

The remainder of the paper is organized as follows. In Section 2, we present the
methodological approach for constructing the portfolio selection model by providing a
mathematical formulation of the problem. The required notation is introduced as it becomes
necessary. Section 3 simplifies the model, and a new solution procedure is developed to
determine the optimum portfolio numerically. In Section 4, we present a case study using
nine ETF assets and provide market impact and asset return parameter estimation. Section 5
presents an analysis and discussion of the proposed model. Section 6 concludes the paper.

2. Methodology

We use optimization modeling as the basic methodology to design a portfolio of assets
when the portfolio is subject to leverage restrictions and asset transactions impact trading
prices in the form of slippage losses. Since asset prices at the end of the portfolio holding
period are uncertain, the realized value of portfolio leverage is also subject to uncertainty.

To develop the model, consider a universe of n (risky) assets at the beginning of an
investment period. The investor’s initial position (i.e., the number of shares in each asset)
is x0 (∈ Rn). The (market) price of asset j at the current investment epoch is p0j per share.
At the end of the investment period, the rate of return vector is r, which indeed is a random
n-vector conditioned upon a particular history of market evolution. Thus, price of security
j changes during the investment period to p1j ≡ (1 + rj)p0j. Note that rj ≥ −1 since the
asset prices are non-negative. We use the vector notation p1 = D(p0)(1 + r), where the
diagonal matrix D(p0) := diag(p01, . . . , p0n). Let the borrowing and lending of funds be at
the (per period) risk-free rate of return r f .

We shall assume that random asset returns (per period) are normally distributed, i.e.,
r ∼ N (µ, V), where µ is the mean return vector and V is the covariance matrix of the
returns. While r is observed only at the end of the investment period, portfolio decisions
must be made at the beginning of the period, i.e., revision of portfolio positions from x0 to
x1 ∈ Rn.
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Note that x1j − x0j is the number of shares purchased in asset j if it is positive; if it is
negative, it is the number of shares sold. This trade vector is denoted by y ≡ |x1− x0| ∈ Rn,
where |.| indicates the absolute value. The portfolio allocation problem is concerned
with determining an optimal trade vector y to maximize the investor’s expected utility of
preferences whilst satisfying policy requirements.

2.1. Slippage Losses

When the fund is rebalanced, in reality, portfolio positions change from x0 to x1
along some trading trajectory t → xtj, thus incurring the market impact of trading. Our
approximation of this process for the optimal portfolio allocation is that x0 → x1 occurs at
t = 0 (without time delay) with accumulated market impact being represented by the loss
function Π(x1).

Given the current share price p0j, when the chosen trade size yj ≡ |x1j − x0j| is
significant (buy or sell order), completing the execution of the trade occurs effectively at
a price higher than p0j for a buy order, and at a lower price when it is a sell order due to,
for example, the available liquidity. We utilize fixed transactions costs and volume-based
variable costs for each unit of trading to evaluate the slippage loss. The former cost per
unit of trade in asset j is aj ≥ 0. The latter cost is expressed per unit of trade and it
depends directly on the fraction of the market volume of the asset that is being traded, yj.
Denoting the expected market volume (during the execution period) in asset j by Qj shares,
and bj ≥ 0 denoting the constant of proportionality, the impact loss per unit of trade is

cj(yj) = aj + bj p0j
( yj

Qj

) 1
2γ+1 , where γ is a non-negative integer (thus, 2γ + 1 is odd). This

is a generalization from the linear per unit variable cost function (Edirisinghe 2007) to a
less than linear per unit variable cost. Then, the total slippage loss in asset j is yjcj(yj), and
thus, the total market impact cost of portfolio rebalancing is

Π(x1) =
n

∑
j=1

[
aj + bj p0j

( yj

Qj

) 1
2γ+1

]
yj

=
n

∑
j=1

[
aj|x1j − x0j|+ bj p0jQ

−1
2γ+1
j (x1j − x0j)

2(γ+1)
2γ+1

]
, (1)

which is convex in asset positions x1, since γ is a non-negative integer. Observe that
Π(x1) is quadratic in x1 for γ = 0, but for a, b, γ > 0, the slippage costs grow slower than
quadratic in x1, yet faster than linear.

2.2. Portfolio Model of Return, Risk, and Leverage

Let the initial cash (or liability) position of the fund be K0, a positive value indicating
an initial excess cash position and a negative number for an initial liability. The net cash
generated by trading in the risky assets at t = 0 is

C0(x1) := p>0 (x0 − x1)−Π(x1), (2)

which is a concave function, and it can be positive or negative. If self-financing trading is
required, C0 ≥ 0 must be imposed, but we shall treat C0 as being unrestricted in sign. Then,
C0(x1) + K0 is the cash position of the fund after rebalancing at time ‘0’. We assume that
borrowing and lending of funds are at the (per period) risk-free rate of return, r f . Define

K1(x1) := (1 + r f )(C0(x1) + K0), (3)

which is the cash (or liability) position at the end of the horizon (at time ‘1’), and is concave.
The initial (net) asset position is A0 := p>0 x0 + K0, and that at the end of the horizon is

A1(x1) := p>1 x1 + K1(x1), (4)
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which is concave. Without loss of generality, we assume that the net asset values A0 and
A1 are positive. Observe that A1 is a random variable while K1 is deterministic. Moreover,
portfolio revision may render C0 < 0, which is the case when exogenous cash funds have
been deployed to support the current rebalancing period costing at the risk-free rate. There
are two concerns for the investor: does the portfolio net return distribution satisfy the
investor’s preferences? Additionally, does the liability position by the end of the period
violate a given maximum allowable leverage level for the fund?

To address the above concerns, denote the investor’s risk-averse utility function by
U (W) on wealth W. The objective is to maximize the expected utility of the asset po-
sition at the end of the period, i.e., Er[U (A1(x1))]. On the other hand, to control the
leverage risk for the fund, the investor applies a maximum allowable leverage level ρ.
That is, the total liability, relative to the net asset position, expressed as the random vari-
able 1

A1(x1)
max{0,−K1(x1)}, must not exceed the investor-specified level, ρ, with high

probability. Considering the reliability of satisfying the liability threshold by a minimum
probability (of satisfaction) of α ∈ (0, 1), the following chance constraint is imposed during
portfolio selection:

P
(

K−1 (x1)

A1(x1)
≤ ρ

)
≥ α, (5)

where K−1 (x1) := max{0,−K1(x1)}, a convex function in x1. Let lj and uj denote the
minimum and maximum (share) positions specified for each asset j, respectively. For
example, lj may be used to limit short positions to control the portfolio margin. The optimal
portfolio rebalancing problem is

max
x1∈[l,u]

E[U (A1(x1))]

s.t. P
(

K−1 (x1)

A1(x1)
≤ ρ

)
≥ α.

 (6)

In the portfolio model (6), we note that the leverage constraint serves as the budget

constraint. Note that if K−0
A0

> ρ holds for the initial portfolio, then the leverage threshold
is violated for sure at time ‘0’. The objective of the rebalancing model is to bring the fund
in alignment with the leverage requirement with high probability α by the end of time ‘1’
while maximizing the investor’s expected utility.

3. Solution Approach

Observe that model (6) is difficult to solve in its current form due to the probabilistic
constraint on leverage control. In this section, we develop a general solution procedure to
obtain the optimal portfolio of (6) by, first, transforming it into a quadratic optimization
model, and then, developing a special solution scheme.

When U (.) is a risk-averse utility function, and since r1 is multivariate normally
distributed, the expected utility maximizing objective in (6) is equivalent to a mean–variance
trade-off of the distribution of the portfolio net return random variable. It consists of the
asset gains and cash gains for the period, and is given by

RP(x1) :=
A1(x1)

A0
− 1 =

(1 + r)>D(p0)x1 + K1(x1)

p>0 x0 + K0
− 1. (7)

This yields

µP(x1) ≡ E[RP(x1)] =
(1 + µ)>D(p0)x1 + K1(x1)

p>0 x0 + K0
− 1

and σ2
P (x1) ≡ Var[RP(x1)] =

x>1 D(p0)VD(p0)x1

(p>0 x0 + K0)2
.

(8)
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Consequently, the model in (6) for a risk-averse decision maker is equivalent to
minimizing the variance σ2(x1) of the portfolio return, subject to a user-specified portfolio
mean return threshold m and portfolio leverage threshold ρ ≥ 0, i.e.,

f ∗(m, ρ) := min
x1∈[l,u]

σ2
P (x1)

s.t. µP(x1) ≥ m

P
(

K−1 (x1)

A1(x1)
≤ ρ

)
≥ α.


(9)

3.1. Deterministic Equivalent

The leverage constraint expression in (9) can be simplified due to the normally dis-
tributed asset returns, as follows:

P
(

K−1 (x1)

A1(x1)
≤ ρ

)
= P

(
K−1 (x1) ≤ ρ[p>1 x1 + K1(x1)]

)
= P

(
r>D(p0)x1 ≥ K−1 (x1)/ρ− K1(x1)− p>0 x1

)
= 1− P

(
r>D(p0)x1 ≤ K−1 (x1)/ρ− K1(x1)− p>0 x1

)
= 1− P

z ≤
K−1 (x1)/ρ− K1(x1)− p>0 x1 − µ>D(p0)x1√

x>1 D(p0)VD(p0)x1


= 1−Z

K−1 (x1)/ρ− K1(x1)− (1 + µ)>D(p0)x1√
x>1 D(p0)VD(p0)x1

, (10)

where z is the standard normal random variable, and Z(.) denotes the cdf of z. Noting (8),
the leverage constraint is expressed as

L(x1, ρ)− ρθA0σP(x1) ≤ 0, (11)

where the constant A0 = p>0 x0 +K0, the parameter θ := Z−1(1− α), inverse of the standard
normal cdf, and

L(x1, ρ) := K−1 (x1)− ρ
[
K1(x1) + (1 + µ)>D(p0)x1

]
. (12)

Note that L(x1, ρ) is a convex function in x1. The parameter θ in (11) may be viewed as
incorporating risk aversion in the leverage constraint when uncertainty is present. As the
reliability level α increases, θ decreases, and thus, (11) indicates that rebalancing becomes
more restrictive in order to maintain the leverage ratio within the desired level ρ; α → 0
implies (11) no imposition of any restriction on leverage. At α = 0.5, θ = 0 holds and the
leverage constraint is satisfied under risk neutrality, using only the expected asset value,
i.e., L(x1, ρ) ≤ 0. For a risk-averse decision maker, α > 0.5 holds, which implies that θ < 0,
as is considered in this paper. As θ becomes more negative, where θ ∈ (−∞, 0), the investor
become more leverage risk averse for the specified leverage level ρ.

By replacing the probabilistic leverage constraint by its deterministic equivalent in (11),
we obtain the mean–variance–leverage (MVL) model from (9), where the risk-averse in-
vestor specifies θ < 0:

f ∗(m, ρ) = min
x1∈[l,u]

σ2
P (x1)

s.t. µP(x1) ≥ m

L(x1, ρ)− ρθA0σP(x1) ≤ 0.

 (13)
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3.2. Solution Procedure

Although σ2
P (x1) and L(x1, ρ) are convex in x1, and µP(x1) and σP(x1) are concave

in x1, the MVL portfolio model (13) is a non-convex optimization problem since θ < 0.
Therefore, the computational solution of the MVL model is difficult. We consider an
iterative reformulation below, whose properties allow us to develop an efficient solution
procedure for (13).

Define the parameterized value function using the non-negative scalar parameter s:

f (m, ρ, s) := min
x1∈[l,u]

σ2
P (x1) =

1
(A0)2 [x1D(p0)VD(p0)x1]

s.t. (1 + µ)>D(p0)x1 + K1(x1) ≥ (1 + m)A0

L(x1, ρ) ≤ (ρθA0)s,

 (14)

which is a convex program; moreover, the value function f (m, ρ, s) is convex in s (Man-
gasarian 1970). Standard convex programming software can be used to solve (14) efficiently.
Additionally, note that for sufficiently large s, (14) is infeasible since θ < 0, a case denoted
by f (m, ρ, s) = +∞. Define smin and smax by

smin :=
√

f (m, ρ, 0) and smax := sup
s≥0
{s : f (m, ρ, s) < +∞}. (15)

Proposition 1. For a risk-averse optimal portfolio x∗1 of (13), define s∗ := σP(x∗1) ≡
√

f ∗(m, ρ).
The following properties hold for (14):

(i) For s ∈ [0, smax), f (m, ρ, s) is convex-nondecreasing in s.
(ii) For s ∈ [0, s∗], f (m, ρ, s) ≤ f ∗(m, ρ). Moreover, f (m, ρ, s∗) = f ∗(m, ρ).
(iii) s∗ ≥ smin, and if f (m, ρ, smin) = (smin)

2, then s∗ = smin.
(iv) If f (m, ρ, smin) > (smin)

2, then s∗ > smin.

Proof. See Appendix A.1.

The following result is fundamental in determining the optimal solution of (13).

Proposition 2. s∗ = min{s ∈ S}, where the set S is defined by

S :=
{

s ∈ [smin, smax] : f (m, ρ, s) = s2
}

. (16)

Proof. See Appendix A.2.

The properties of f in Propositions 1 and 2 are used to devise an iterative scheme to
obtain s∗, starting with the initial iterate s0 = 0. For a general iterate sk, for k ≥ 1, the
following results hold.

Proposition 3. Suppose sk < s∗ and f (m, ρ, sk) > (sk)
2. Let sk+1 :=

√
f (m, ρ, sk). Then,

f (m, ρ, sk+1) ≥ (sk+1)
2 and s∗ ≥ sk+1 hold. Moreover,

(i) if f (m, ρ, sk+1) > (sk+1)
2, then s∗ > sk+1 and

(ii) if f (m, ρ, sk+1) = (sk+1)
2, then s∗ = sk+1.

Proof. See Appendix A.3.

To see the motivation behind the algorithm, observe that if we were to set s1 = smin,
and if it turns out f (m, ρ, smin) = (smin)

2, then we must terminate the scheme, concluding
that s∗ = smin, due to Proposition 1. If, on the other hand, f (m, ρ, smin) > (smin)

2, then
we must conclude s∗ > smin, due to Proposition 1. The latter satisfies the conditions of
Proposition 3, and we set s2 =

√
f (m, ρ, smin) as the next iterate. The algorithmic steps for

obtaining an optimal portfolio of the MVL model in (13) are as follows:
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Algorithm-MVL:

(0) Initialization: Solve (14) with s = 0 and set s0 =
√

f (m, ρ, 0), and k = 0.
(1) Solve (14) with s = sk and obtain the optimal portfolio x1(k).
(2) If f (m, ρ, sk) ≤ (sk)

2, STOP; x1(k) is an optimal portfolio in (13).
(3) If f (m, ρ, sk) > (sk)

2, set sk+1 =
√

f (m, ρ, sk), k← k + 1, and go to Step (1).

An illustration of the above solution scheme is in Figure 1. The parametric convex
program (14) to be solved iteratively in the above algorithm is presented in extensive format
in Appendix A.4.

0

𝑠

𝑠∗

𝑓

𝑠𝑠

𝑠

𝑠∗ 𝑠

Figure 1. Algorithmic steps toward optimal portfolio of the MVL model in (13) using f defined
in (14).

4. Case Study and Results

We consider the frontiers between portfolio mean, and the volatility and leverage
risks, using the MVL model (9) specified with real data, and the corresponding optimal
portfolio is computed using the preceding Algorithm-MVL. We employ nine sector ETF U.S.
assets (ticker symbols XLB, XLE, XLF, XLI, XLK, XLP, XLU, XLV, and XLY), with the trading
period set to one day and the trade holding period (investment horizon) set to 20 days.
These sector-based ETF assets offer diversification benefits within various market sectors
spanning the S&P 500 index, and thus, liquidity costs are not expected to be excessive. As
such, advantages of the MVL model are not unduly magnified relative to the standard
MV-optimal portfolio that ignores market impact completely. We test a scenario of liquidity
costs to ascertain the effects of leveraging on portfolio efficiency.

4.1. Trade Impact Parameter Estimation

We use Trade and Quote (millisecond) data from NYSE to estimate slippage parameters
a and b in (1). Trade (execution) transactions data for a given day (for a given asset) are
aggregated into five-minute intervals during regular trading time, and separated by the
day of the week, using the sample time period of a fixed quarter. This way, for a given day,
the total of 390 min is divided into 78 five-minute intervals, for Monday through Friday of
trading. Assuming four weeks per month in the sample quarter, there are 78× 12 = 936
total number of 5 min intervals available for each day of the week, indexed by t = 1, . . . , 78;
d = 1, . . . , 12. To determine the net trading volume in an interval, each trade execution
needs to be classified as a ‘buy’ or a ‘sell’ since the raw data do not provide that classification,
and thus, the trade direction must be inferred. There are several rules used in the literature,
such as the tick test, quote set, or the Lee–Ready algorithm (Lee and Ready 1991). However,
since no bid-ask data are available, we use the tick rule to assign trade direction (Asquith
et al. 2010). We consider that two consecutive trades are the ‘same’ if the price difference is
no more than USD 0.005.
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For a given day d, let the open price for the day be p0,d. Having classified each trade
by the above tick rule, for each five-minute interval (denoted t) in the day d, the following
trade statistics are calculated:

1. Total trade volume: vt,d (shares);
2. Net dollar trading volume:2 st,d;
3. Open and close prices (in the 5 min interval): po

t,d and pc
t,d;

4. Total trade volume for the day d: Qd ≡ ∑T
t=1 vt,d, where T = 78.

See Figure 2 for an illustration of how the above input data are obtained from the trade
transactions.

𝑝 (1)

𝑝 (2)

𝑝 (3)

𝑝 (4)

𝑝 (5)

𝑝 (6)

𝑝 (7)

1 2 3 4 5 6 7𝑡 1 𝑡
Transaction number

Transaction price

𝒑𝒕𝒅𝒐

𝒑𝒕𝒅𝒄

𝑣 (1)

𝑣 (2)

𝒗𝒕𝒅

𝑣 (3)

1 2 3 4 5 6 7𝑡 1 𝑡
Transaction number

Transaction volume

𝑣 (7)

𝑠 𝑝 1 𝑣 1 𝑝 2 𝑣 2 𝑝 3 𝑣 3 𝑝 4 𝑣 4 𝑝 5 𝑣 5 𝑝 6 𝑣 6 𝑝 7 𝑣 7
𝑣 𝑣 1 𝑣 2 𝑣 3 𝑣 4 𝑣 5 𝑣 6 𝑣 7

Figure 2. An illustration of input data for trade impact estimation in time slot t on day d.

The slippage function in (1) represents the cost per traded share based on the net dollar
value of the trade as a ratio of the total share volume traded in the day. Given a 5 min
interval, we consider the latter price impact to be the price difference, |pc

t,d − po
t,d|. For the

case study here, we set the parameter γ = 0 in (1). The parameters a and b are estimated
using OLS regression:3

|pc
t,d − po

t,d| = a + b
|st,d|
Qd

+ εt,d, t = 1, . . . 78, d = 1, . . . 12, (17)

where εt,d is the error term (residual) of the regression model of an ETF asset for the pair t
and d.

Using the period January–March 2015, the estimated a and b are shown in Table 1. We
hold these parameters as fixed throughout our MVL computational analysis.

Table 1. Estimated parameters for the slippage loss model (case of γ = 0).

ETF XLB XLE XLF XLI XLK XLP XLU XLV XLY

R2 54.40% 61.30% 42.80% 55.20% 47.40% 52.50% 49.50% 53.00% 39.20%
a 0.270 0.140 0.284 0.429 0.321 0.324 0.294 0.602 0.590

p-value 0 0.166 0 0 0 0 0 0 0
b 0.680 5.638 1.184 1.006 0.606 0.828 1.832 1.070 0.670

p-value 0 0 0 0 0 0 0 0 0

4.2. MVL Portfolio Parameters

The initial portfolio (net risky) investment is p>0 x0 = $2 m, and the initial cash position
is K0 = −$1 m, thus, a liability. The initial wealth is A0 = p>0 x0 + K0 = $1 m. The initial
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portfolio x0 is reported in Table 2 as portfolio dollar weights, computed by p0jx0j/p>0 x0, ∀j.
Thus, the long portfolio is p>0 x+0 = $3 m, while the short portfolio value is p>0 x−0 = $1 m.
The initial positions are largely ‘long’, consistent with the prevailing conditions, including
the positive market index return (+1.5%) for the period 1–31 July. However, a negative
market performance (−0.27%) with 1.2% volatility is predicted for 3–31 August, thus
requiring portfolio revision. The annualized risk-free rate is set to r0 = 2% (used to
compute the monthly compounded rate). The lower limits on revised asset positions are
set to no more than 2% of the initial positions to control margin, i.e., lj = 0.02x0j, while
the long positions are set to being unlimited in size as allowed by the specified leverage
limit. To compute the monthly return forecasts in Table 2, a sample of 40 monthly returns
is generated for each asset, where each sample point represents the total return over a
consecutive 21 (trading) day period preceding 3 August 2015. That is, the first sample point
is for the period from 7 May to 5 June 2015, while the last sample point is for 2 July to 31
July 2015.

Table 2. Market impact parameters and asset return parameter forecasts for period 3–31 August 2015.

Parameter XLB XLE XLF XLI XLK XLP XLU XLV XLY SPY

Asset monthly return distribution parameters
Mean (µ) −0.038 −0.046 0.009 −0.019 −0.009 0.010 −0.007 0.013 0.015 −0.003
Std.Dev (σ) 0.023 0.018 0.013 0.012 0.020 0.027 0.032 0.013 0.013 0.012
Asset beta (β) 0.155 0.174 0.907 0.859 1.458 1.358 1.376 0.878 0.969 1.000

Asset correlations (ρ)
XLB (Basic Materials) 1 0.874 0.105 0.512 −0.120 −0.569 −0.607 0.461 −0.091 0.080
XLE (Energy) 1 0.040 0.509 −0.169 −0.363 −0.506 0.459 0.060 0.116
XLF (Financials) 1 0.699 0.839 0.290 0.207 0.625 0.627 0.837
XLI (Industrial Goods) 1 0.660 0.196 0.143 0.848 0.67 0.839
XLK (Technology) 1 0.473 0.498 0.586 0.647 0.881
XLP (Consumer Staples) 1 0.883 0.303 0.807 0.605
XLU (Utilities) 1 0.197 0.644 0.526
XLV (Health Care) 1 0.679 0.819
XLY (Consumer Discre) 1 0.884

Initial portfolio weights −12.5% −12.5% −12.5% −12.5% 25.0% 37.5% 37.5% 12.5% 37.5% 0
Open price $p0 (3 August) 44.45 66.57 19.75 52.43 41.41 48.41 41.70 74.80 78.22 203.80

The (initial) leverage ratio of x0 is K−0
A0

= 1.0. Due to the predicted market downturn as
indicated by the return parameters, portfolio performance could worsen significantly if the
portfolio is not rebalanced during the trading day of 3 August, and x1 is held unchanged
through 31 August. It is worthwhile noting, on hindsight, that leaving the initial portfolio
x0 as is would lead to its net value on 31 August 2015 to become USD 0.887 m (long value =
USD 2.833 m, short value = USD 0.944 m, cash liability = USD 1.002 m), yielding a portfolio
loss of 11.3% over the month; furthermore, the fund leverage ratio will be 1.126 on 31
August in that eventuality.

Portfolio rebalancing parameters are the target portfolio mean return m, the allowable
maximum leverage ρ, and leverage risk aversion θ (= Z−1(1− α), where α is the required
probability of satisfaction), specified in the MVL model (13). For α = 95%, we have
θ = −1.6449, and the MVL optimal portfolio x∗1(m, ρ) is computed by Algorithm-MVL in
Section 3.2; see Figure 3 for a sample run, where smin = s1 = 0.0397.
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Figure 3. Performance of Algorithm-MVL for (m, ρ) = (0.93%, 1.5): optimal portfolio is obtained at
iteration 4.

5. Analysis and Discussion

The mean–variance efficient frontiers of the MVL model for a range of mean parameter
m ≥ −0.27% (which is the expected return of the S&P 500 index) are plotted in Figure 4, where
leverage is unrestricted; in the same plot, we show the standard MV portfolio assuming no
market impact, and also the resulting ex post frontier when slippage losses are incorporated.
Notice the significant sub optimality of the standard MV frontier when compared to the
proposed MVL model; the security market line (SML) overestimates (ex ante) the portfolio
performance substantially when slippage losses are ignored.
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Figure 4. Effect on MV efficient frontiers due to market impact (leverage risk aversion, θ = −1.6449).

The MVL frontiers as the leverage threshold parameter varies (with aversion set to
θ = −1.6449) are shown in Figure 5. Note that for a sufficiently small target mean, the
frontiers are shared by the indicated leverage levels since the leverage constraint is not
active at small target means. The maximum leverage ρ is attained (i.e., the constraint
becomes active) as m increases to a maximum, and beyond that target mean, there does
not exist a feasible portfolio. At higher levels of ρ, the maximum attainable target mean
also increases, as indicated by ‘circles’ in Figure 5, say m̂(ρ, θ). That is, for any given
portfolio (variance) risk, by increasing the leverage threshold, the portfolio mean can be
further increased, i.e., m̂(ρ, θ) increases in ρ for fixed θ; note the ‘branching-off’ curves in
Figure 5. On the other hand, what happens if the investor becomes less leverage risk
averse, say θ = Z−1(1− 0.6) = −0.2533? Using the monthly risk-free rate of 0.1663%,
monthly Sharpe ratios are computed for the two levels of leverage aversion θ over a range
of leverage ratios ρ that yield the corresponding maximum mean m̂(ρ, θ). As Figure 6
shows, for fixed leverage ratio ρ, being less leverage risk averse helps to generate better
risk-adjusted returns.
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Figure 5. Effect of leverage ratio on MV frontiers under market impact (θ = −1.6449).
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The trading losses associated with the MVL-efficient portfolios corresponding to
the frontiers in Figure 5 are expressed as a fraction of the initial portfolio value, i.e.,
Π(x∗1(m, ρ))/A0, see (1). These slippage losses per unit of initial wealth are shown in
Figure 7. Quite interestingly, for sufficiently small target mean returns, the slippage loss
fraction declines, and then it rises rapidly. This implies, under trading impact, that the
practice of leveraging (in risk parity strategies) to increase target means results in increasing
slippage loss rates quite drastically. The indicated declines in the loss rate, i.e., ‘downward
branches’, are due to restricting leverage.
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Figure 7. Slippage loss of trading as a fraction of initial wealth as target mean and leverage restrictions.
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While leverage control at level ρ is expressed as a probabilistic constraint, depending
on the specified portfolio target mean m, the full leverage (provided by ρ) may not be
utilized in designing the optimal portfolio x∗1(m, ρ). As m increases, indeed, the model-
realized leverage also increases. We compute the (expected) leverage achieved by the
optimal portfolio, for inputs (m, ρ), by

L(m, ρ) :=
K−1 (x∗1(m, ρ))

E[A1(x∗1(m, ρ))]
=

K−1 (x∗1(m, ρ))

(1 + µ)>D(p0)x∗1(m, ρ) + K1(x∗1(m, ρ))
. (18)

Figure 8 depicts the realized leverage L(m, ρ) as the target mean and leverage threshold
are varied. As m increases, the portfolio-realized leverage also increases for fixed input
ρ until the leverage threshold is reached. For further increases in m, one must specify a
higher ρ, and consequently, the model-realized leverage increases as well.
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Figure 8. Model-realized expected leverage on target mean m as ρ is increased.

As indicated earlier, it has been argued that tighter leverage constraints cause investors
to hold portfolios of higher-beta securities (Jylhä and Rintamäki 2021). To develop insights
on this claim using the proposed MVL model, we consider relaxing leverage restrictions by
increasing ρ gradually, and check if higher beta ETF assets are chosen in optimal portfolios
with decreasing relative weights. In Figure 9, assets are ordered in increasing order of beta,
and for each asset, four leverage levels are tested. Among the more significant allocations,
the high beta (>1) asset XLP is allocated progressively less weight as leverage restrictions
are relaxed, and to a lesser extent for more moderate beta assets, e.g., XLV or XLY. In this
case, low beta assets are allocated insignificant amounts. A larger pool of assets should be
used to provide conclusive evidence for the above claim.
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Figure 9. Portfolio allocation on assets with high beta as leverage restrictions are relaxed.
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6. Conclusions

This paper presents an extended mean–variance portfolio selection model by incor-
porating trading impact and leverage restrictions. The focus is on addressing the issue of
portfolio leveraging to achieve a given target mean. We model the leverage constraint as
a chance constraint, where market impact is modeled using fixed and variable costs. The
resulting portfolio optimization model is non-convex and difficult to solve, but we develop
an efficient computational procedure that requires no more than solving a sequence of
standard convex programs iteratively.

The case study involves fairly liquid ETF assets, where one would expect the slippage
losses to be not so significant. Even in this case, we find that standard MV optimization
can underperform significantly relative to the proposed MVL model. When the investor
demands a higher target mean, leverage has to be more relaxed, and the rate of slippage
losses can grow steeply. This paper provides an objective approach to determine what the
appropriate leverage control should be in order to achieve a target mean in an MV-efficient
manner when faced with trading losses in the market. In our limited computations, we
also find partial evidence for the claim that when leveraging is more restricted, higher beta
assets tend to be chosen with greater portfolio allocations. Larger pools of differing assets
need to be incorporated in the experiments before any conclusive statements can be made
in this regard. Our future work will focus on this issue.

Author Contributions: Conceptualization, C.E. and J.J.; methodology, C.E. and J.J.; formal analysis,
C.E. and J.J.;writing—original draft preparation, C.E. and J.J.; writing—review and editing, C.E. and
J.J. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors sincerely thank the anonymous referees for their thorough and
insightful suggestions to improve the presentation of the paper. Any remaining errors in the paper
are ours.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Appendix A.1. Proof of Proposition 1

(i) To show that f is monotonic, let s1, s2 ∈ [0, smax) be such that s1 < s2. Let an optimal
solution of (14) for s = s2 be x̂1. Then, L(x̂1) ≤ (ρθA0)s2 < (ρθA0)s1, implying that
x̂1 is feasible in (14) for s = s1. Thus, f (m, ρ, s1) ≤ f (m, ρ, s2), proving that f (m, ρ, .) is
nondecreasing. The convexity follows from f being the value function of the convex
program (14) as the right hand side of a constraint varies.

(ii) For portfolio x∗1 optimal in (13), L(x∗1) ≤ (ρθA0)
√

x∗1 D(p0)VD(p0)x∗1 = (ρθA0)s∗.
Then, for s̄ ∈ [0, s∗], (ρθA0)s∗ ≤ (ρθA0)s̄ holds, and thus, that L(x∗1) ≤ (ρθA0)s∗ ≤
(ρθA0)s̄. That is, x∗1 is feasible in (14) for s = s̄, implying
f (m, ρ, s̄) ≤ x∗1 D(p0)VD(p0)x∗1/(A0)

2 = f ∗(m, ρ), as claimed.
In particular, for s = s∗, f (m, ρ, s∗) ≤ f ∗(m, ρ). By contradiction, suppose f (m, ρ, s∗) <
f ∗(m, ρ). This implies that x̃1D(p0)VD(p0)x̃1 < x∗1 D(p0)VD(p0)x∗1 , where x̃1 is an
optimal portfolio of (14) for s = s∗. By the optimality of x̃1, L(x̃1) ≤ (ρθ)s∗ =

(ρθA0)
√

x∗1 D(p0)VD(p0)x∗1 < (ρθA0)
√

x̃1D(p0)VD(p0)x̃1. This implies that x̃1 is
feasible in (9), with an objective function strictly better than f ∗(m, ρ). This violates
the optimality of x∗1 . Therefore, f (m, ρ, s∗) = f ∗(m, ρ) must hold.
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(iii) For x∗1 optimal in (9), L(x∗1) ≤ (ρθA0)
√

x∗1 D(p0)VD(p0)x∗1 < 0. Thus, x∗1 is feasible

in (14) for s = 0, implying f (m, ρ, 0) ≤ f ∗(m, ρ). That is, (smin)
2 ≤ (s∗)2, or s∗ ≥ smin.

Suppose f (m, ρ, smin) = (smin)
2. By contradiction, let s∗ > smin. Let an optimal

solution of (14) for s = smin be denoted by x̂1. Then,

f (m, ρ, smin) = x̂1D(p0)VD(p0)x̂1/(A0)
2 = (smin)

2 < (s∗)2/(A0)
2

= x∗1 D(p0)VD(p0)x∗1/(A0)
2 = f ∗(m, ρ).

Moreover, L(x̂1) ≤ (ρθA0)smin = (ρθA0)
√

x̂1D(p0)VD(p0)x̂1. Thus, x̂1 is feasible
in (9) with a strictly better objective value than f ∗(m, ρ), violating the optimality of x∗.
Hence, we must have s∗ = smin if f (m, ρ, smin) = (smin)

2.
(iv) Since x∗1 solves (9), we have L(x∗1) ≤ (ρθA0)s∗ ≤ (ρθA0)smin since s∗ ≥ smin due to

part (iii). Thus, x∗1 is feasible in (14) for s = smin, which implies f (m, ρ, smin) ≤
x∗1 D(p0)VD(p0)x∗1/(A0)

2 = (s∗)2. Given that f (m, ρ, smin) > (smin)
2, therefore,

(smin)
2 < (s∗)2 holds, or s∗ > smin.

Appendix A.2. Proof of Proposition 2

For some sk ∈ [smin, smax], let f (m, ρ, sk) = (sk)
2. Let an optimal solution of (14) for

s = sk be denoted by xk
1. Then, f (m, ρ, sk) = xk

1D(p0)VD(p0)xk
1/(A0)

2 = (sk)
2. Moreover,

L(xk
1) ≤ (ρθA0)sk = (ρθA0)

√
xk

1D(p0)VD(p0)xk
1, and thus, xk

1 is feasible in (9). Therefore,

f ∗(m, ρ) = (s∗)2 ≤ xk
1D(p0)VD(p0)xk

1/(A0)
2 = (sk)

2. Hence, we must have sk ≥ s∗ if
f (m, ρ, sk) = (sk)

2. Next, observe that min{s ∈ S} is equivalent to mins{s ∈ [s∗, smax] :
f (m, ρ, s) = s2}. Its minimum has the value s∗ since f (m, ρ, s∗) = (s∗)2, due to Proposition 1,
part (ii). This completes the proof.

Appendix A.3. Proof of Proposition 3

Noting (sk+1)
2 = f (m, ρ, sk) > (sk)

2, it follows that sk+1 > sk, which implies, due to
Proposition 1, part (i), that f (m, ρ, sk+1) ≥ f (m, ρ, sk), i.e., f (m, ρ, sk+1) ≥ (sk+1)

2. Further-
more, L(x∗) ≤ (ρθA0)s∗ < (ρθA0)sk, and thus, x∗ is feasible in (14) for s = sk, implying
(s∗)2 ≥ f (m, ρ, sk) = (sk+1)

2. That is, s∗ ≥ sk+1 holds.

(i) If f (m, ρ, sk+1) > (sk+1)
2, then sk+1 6∈ S where S is defined in (16). Hence, sk+1 6= s∗

and thus, s∗ > sk+1 must hold.
(ii) If f (m, ρ, sk+1) = (sk+1)

2, then sk+1 ∈ S. Since s∗ = min{s ∈ S], we must have
sk+1 ≥ s∗. Combining with the result proven earlier that s∗ ≥ sk+1, it follows that
s∗ = sk+1 must hold.

Appendix A.4. Extensive Formulation of the Parametric MVL Convex Program

The parametric convex program (14), to be solved iteratively, has the following exten-
sive exposition, where the constant A0 = (p>0 x0 + K0) > 0:

f (m, ρ, s) =
min

x1,y,K1,L1

1
(A0)2 [x1D(p0)VD(p0)x1]

s.t. (1 + µ)>D(p0)x1 + K1 ≥ (1 + m)A0

L1 − ρ
[
K1 + (1 + µ)>D(p0)x1

]
≤ (ρθA0)s

1
1+r f

K1 ≤ p>0 (x0 − x1)−∑j

[
ajyj + bj p0jQ

−1
2γ+1
j y

2(γ+1)
2γ+1

j

]
+ K0

L1 + K1 ≥ 0

yj − x1j ≥ −x0j, yj + x1j ≥ x0j ∀j = 1, . . . , n

x1j ∈ [lj, uj], y ≥ 0, L1 ≥ 0, K1 : unrestricted in sign.



(A1)
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Notes
1 Leverage here is the level of liability relative to the portfolio assets.
2 Uptick volume multiplied by trading price minus downtick volume multiplied by trading price for each trade and summed up

over all trades in the 5 min interval.
3 When slippage cost grows less than linearly per unit of trade, hence the case of γ > 0, the parameters a and b are estimated by

the regression: |pc
t,d − po

t,d| = a + 0.5b(pc
t,d + po

t,d)
(

vt,d
Qd

) 1
2γ+1

+ εt,d, t = 1, . . . , 78, d = 1, . . . , 12.
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