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Abstract: A retiree with a savings account balance, but without a pension, is confronted with an
important investment decision that has to satisfy two conflicting objectives. Without a pension, the
function of the savings is to provide post-employment income to the retiree. At the same time, most
retirees want to leave an estate to their heirs. Guaranteed income can be acquired by investing in an
annuity. However, that decision takes funds away from investment alternatives that might grow the
estate. The decision is made even more complicated because one does not know how long one will
live. A long life expectancy may require more annuities, and a short life expectancy could promote
more risky investments. However there are very mixed opinions about both strategies. A framework
has been developed to assess consequences and the trade-offs of alternative investment strategies.
We propose a stochastic programming model to frame this complicated problem. The objective is to
maximize expected estate value, subject to cash outflow constraints. The model is motivated by the
Markowitz mean-variance approach, but with risk measured by CVaR and additional sophisticated
constraints. The cash outflow shortages are penalized in the objective function of the problem. We
use the kernel method to build position adjustment functions that control how much is invested in
each asset. These adjustments nonlinearly depend upon asset returns in previous years. A case study
was conducted using two variations of the model. The parameters used in this case study correspond
to a typical retirement situation. The case study shows that if the market forecasts are pessimistic, it
is optimal to invest in an annuity. The case study results, codes, and data are posted on our website.

Keywords: portfolio optimization; annuities; retirement allocation; CVaR; conditional value at risk;
risk management

1. Introduction

The problem of selecting optimal portfolios for retirement has unique features that are
not addressed by more commonly used portfolio selection models used in trading. One
distinct feature of a retirement portfolio is that it should incorporate the life span of an
investor. The planning horizon depends on the age of investor, or more specifically, on a
conditional life expectancy. Another important feature is to guarantee, in some sense, that
the individual will be able to withdraw some amount of money every year from a portfolio
by selling some predefined amount of assets without injecting external funds. Finally, one
of the questions that the model tries to answer is, in what situation is it beneficial to invest
in an annuity instead of more risky assets?

Most of the portfolio optimization literature considers portfolios focusing on risk
minimization with some budget and expected profit constraints. The famous mean-variance
(or Markowitz) portfolio Markowitz (1952) minimizes portfolio variance with constraints
on the expected return. There are many directions that extend the original mean-variance
portfolio and deal with its shortcomings. One direction is to substitute variance with
some other risk measures. Variance does not distinguish positive and negative portfolio
returns; however, investors are mostly concerned only with negative returns. Rockafellar

J. Risk Financial Manag. 2022, 15, 65. https://doi.org/10.3390/jrfm15020065 https://www.mdpi.com/journal/jrfm

https://doi.org/10.3390/jrfm15020065
https://doi.org/10.3390/jrfm15020065
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jrfm
https://www.mdpi.com
https://doi.org/10.3390/jrfm15020065
https://www.mdpi.com/journal/jrfm
https://www.mdpi.com/article/10.3390/jrfm15020065?type=check_update&version=2


J. Risk Financial Manag. 2022, 15, 65 2 of 17

and Uryasev (2000, 2002) and Krokhmal et al. (2002) used conditional value-at risk (CVaR)
instead of the variance. CVaR is a convex function of its random variable and therefore
problems involving CVaR can be solved efficiently in many cases. Another important risk
measure, which is frequently used in trading, is drawdown. Drawdown can be optimized
with convex and linear programming; see Zabarankin et al. (2014). Another extension of
the portfolio theory focuses on dynamic models. In dynamic models, the decision to invest
is made over time. The dynamic models can be of two types, continuous-time and discrete-
time (multistage). In continuous-time ones, the decision to invest is made continuously, and
in discrete-time ones, the investment decisions take place at specific times. For continuous-
time portfolio selection, see Merton (1969, 1971). For the discrete-time stochastic control
model, see Samuelson (1969). A comprehensive literature review on dynamic models is
given in Rizal and Wiryono (2015). Multistage models can be formulated as stochastic
optimization problems. Mulvey and Shetty (2004) and Mulvey and Vladimirou (1992)
developed a general multistage approach for modeling financial planning problems. Shang
et al. (2016) and Bogentoft et al. (2001) used stochastic programming to solve dynamic cash
flow matching and asset/liability management problems, respectively. In general, it is
very hard to solve multistage stochastic optimization problems formulated with scenario
trees, due to the size of the problem (number of variables) growing beyond tractable
bounds. It should be mentioned that calibration of such trees is a difficult non-convex
optimization problem.

In order to avoid the dimensionality problems, Calafiore (2008) modeled the invest-
ment decisions as linear functions that remained the same across all scenarios and produced
the investment decision based on previous performance of the asset.

Takano and Gotoh (2014) modeled the investment decisions with the kernel method,
resulting in the nonlinear control functions depending upon returns of instruments.

We followed the ideas of Takano and Gotoh (2014) and modeled the multistage
portfolio decision process using the kernel method. The investment horizon was 35 years,
starting from the retirement of the investor at the age of 65. The objective was to maximize
the discounted expected terminal wealth subject to constraints on cash outflows from
the portfolio. In every scenario, the discounted weighted portfolio value was calculated;
the probabilities of death were used as weights. The probability of death was calculated
from the U.S. mortality tables. In our scenario, the investor wants to have predetermined
cash outflows obtained by selling a portion of the portfolio. Risk of shortage of these
cash outflows was managed by penalizing the cash outflow shortage in the objective
function. Furthermore, monotonicity constraints were imposed on the cash outflows
from the portfolio. Without the monotonicity constraint, the model could not provide the
necessary cash outflow on certain periods, and instead reinvest that amount to increase the
expected estate value.

We conducted a case study corresponding to a typical investment decision upon
retirement, in order to reveal the conditions leading to investments in annuities. Two
types of asset return scenarios were considered. The first type assumes that the asset
returns will be similar to the historically observed rates of the asset. The second type
of scenario assumes the future asset returns will be significantly lower. These scenarios
were created by subtracting 12% from the historical returns of all assets. The case study
showed that for scenarios of the first type, where rates are similar to the ones observed in
the past, investment in annuities is not optimal. However, when the asset growth rates are
significantly lower, our model invests only in annuities.

There have been many attempts to solve the problem of investing for retirement,
including how to allocate available funds between risky assets and annuities. See Bayraktar
and Young (2009, 2016); Gao and Ulm (2012); Milevsky (1998). While these attempts
approach the problem in a variety of ways, including minimizing the chance of lifetime
ruin as in Bayraktar and Young (2016) or mandating a target estate value as in Bayraktar and
Young (2009), they are not directly relevant to our approach due to the more sophisticated
setting involving multi-stage stochastic programming and dynamic risk management.
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Summarizing, this study had the following goals:

• Develop a dynamic mathematical programming model proving an optimal investment
strategy for an individual investor at retirement age.

• Consider two sets of scenarios of indices returns: (1) an optimistic base case set
obtained by bootstrapping existing history of returns of indices (this set is called
"optimistic"); (2) a "pessimistic" set of scenarios with dramatically reduced returns of
indices.

• Conduct a case study. In particular, identify the percentage of capital which the
investor should allocate to annuities.

2. Notations

We start with introduction of notation.

• N := number of assets available for investments,
• S := number of scenarios,
• T := portfolio investment horizon,
• rs

i,t := rate of return of asset i = 1, . . . , N during period t = 1, . . . , T in scenario
s = 1, . . . , S; we will call rate of return by just return and denote the vector of returns
by rs

t = (rs
1,t, . . . , rs

N,t) ,
• vs

m,t = {rs
m, . . . , rs

t−1} := set of returns observed from period m, until the end of period
t− 1 (not including the returns rs

t ) in scenario s,
• ds

t := discount factor at time t in scenario s; discounting is done using inflation rate ρs
t ,

ds
t = 1/(1 + ρs

t)
t ,

• pt := probability that a person will die at the age 65 + t (conditional that he is alive at
the age of 65),

• yi := vector of control variables for investment adjustment function,
• f (vs

t , yi) := investment adjustment function defining how much investment is made
in each scenario s in asset i at the end of period t,

• G(yi) := regularization function of control parameters,
• K(vs

m,t, vk
m,t) := kernel function, k = 1, . . . , S,

• xs
i,t := investment amount to i-th asset at the end of time period t in scenario s,

• xi := investments to i-th asset at time t = 0,
• us

i,t := adjustment (change in position) of asset i at the beginning of period t in sce-
nario s,

• Rs
i,t := cash outflow resulting from selling an asset i at the end of time t in scenario s,

• V0 := portfolio value at time t = 0 (initial investment),
• Vs

t := portfolio value at time t in scenario s,
• z := investment in annuity at time t = 0 (in dollars),
• As

t := yield of annuity at the end of time period t in scenario s,
• L := amount of money that the investor is planing to withdraw as each time t,
• λ := regularization coefficient, λ > 0,
• κt := penalty for the cash flow shortage at time t,
• α := upper bound on sum of absolute adjustments each year, expressed as a fraction of

the portfolio.

3. Model Formulation and Research Hypotheses

This section develops a model for optimization of a retirement portfolio. We consider
a portfolio, including stock indices, bond indices and an annuity. The annuity pays amount
As

t z at the end of each period t and does not contribute funds to the expected estate value.
The annuity is bought at time t = 0 and can not be bought or sold after that moment. It is
also assumed that the tax rate is zero (tax free environment).
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Given initial investments in assets xi, the dynamics of investments in stocks and bonds
are as follows:

xs
i,1 = (1 + rs

i,1)xi, (1)

xs
i,t = (1 + rs

i,t)(xs
i,t−1 + us

i,t−1 − Rs
i,t−1) t = 2, . . . , T.

Variables us
i,t and Rs

i,t control how much is invested at the end of each period in each
asset. us

i,t is a position adjustment for asset i at the end of time t in scenario s. Rs
i,t is cash

outflow from the portfolio, generated from selling asset i at time t in scenario s. The variable
us

i,t is defined as

us
i,t = f (vs

t , yi), (2)

where vs
t is a set of returns for all assets, by time t, in scenario s; and yi are some parameters

defining the function f . Therefore, us
i,t, are some nonlinear functions of previous returns of

assets. The explicit form of function f is not specified in this section. The only requirement
on function f is that it should be linear in yi; i.e.,

f (vs
t , γ1y1

i + γ2 y2
i ) = γ1 f (vs

t , y1
i ) + γ2 f (vs

t , y2
i ),

where γ1, γ2 ∈ R. Furthermore, it should be noted that f does not change with t. The
linearity of f with respect to yi is introduced to formulate the portfolio optimization
problem as a convex programming problem.

The total asset adjustments must sum to 0, this is expressed as a constraint:

N

∑
i=1

us
i,t = 0 . (3)

In addition to (3), the sum of absolute adjustments (over each asset i) in each period
t and scenario s is constrained to be less than or equal to some fraction α of the portfolio
value in the previous year of the same scenario:

N

∑
i=1
|us

i,t| ≤ αVs
t−1. (4)

Constraint (4) serves as additional regularization on the adjustments. Without con-
straint (4) the values of us

i,t can potentially be very large in absolute value but cancel out
due to opposite signs and still satisfy (3).

The value of the portfolio at the end of time period t in scenario s equals

Vs
t =

N

∑
i=1

xs
i,t . (5)

The objective is to maximize expected estate value of the portfolio. The expected estate
value is the weighted average of the discounted expected portfolio values in each scenario,
where the probabilities of death pt are used as weights. For every scenario s the portfolio
value Vs

t , at the end of time period t, is discounted to time 0 using discounting coefficients
ds

t , defined by inflation; therefore,

discounted estate value in scenario s =
T

∑
t=1

ptds
tV

s
t . (6)
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By averaging over scenarios, we obtain the expected estate value:

1
S

S

∑
s=1

T

∑
t=1

ptds
tV

s
t . (7)

In order to avoid over-fitting the data, we included the regularization term G(yi),
defined for every instrument i. The total regularization term is

N

∑
i=1

G(yi) . (8)

The total cash outflow from selling the assets in the portfolio equals

cash flow from portfolio =
N

∑
i=1

Rs
i,t .

The amount of money that the investor receives from the portfolio and annuity at
the end of time period t in scenario s equals As

t z + ∑N
i=1 Rs

i,t. If As
t z + ∑N

i=1 Rs
i,t < L then

there is a shortage of cash outflow and the resulting amount is penalized in the objective.
Let {κt}T

t=1 be some decreasing sequence of positive numbers, the following function is a
penalty term of cash outflow shortages in the objective

T

∑
t=1

κt

[
L− As

t z−
N

∑
i=1

Rs
i,t

]+
, (9)

where [∗]+ = max{∗, 0}. To illustrate why it is important that {κt}T
t=1 is a decreasing

sequence, consider the case where all κt are equal. Furthermore, let us assume that there
is a shortage of cash outflow, equal to the amount w, at some year t > 0. As, κt are all
equal in (9), it does not make a difference for that penalty term if there is a shortage equal
to w/t during every year until t, or just a single shortage of w at time t. However, if the
amount of w/t is reinvested before time t in the portfolio, it will (probably) increase in
value by the time t and therefore, it will increase the expected estate value of the portfolio.
Thus, if {κt}T

t=1 is not a decreasing sequence, the model will try to incur penalty as soon as
possible, even if there are enough funds in the portfolio at that earlier date, and reinvest
that shortage amount in the portfolio. Therefore the penalty from parameters κt should
outweigh any possible benefits from reinvesting at earlier dates. A simple formula for κt is
κt = κ(1+ r̄)T−t, where κ > 1 is some constant and r̄ is some percentage that is significantly
greater than the average growth rate of any asset considered in the portfolio. The parameter
κt at time t was chosen to equal 2 times the gain from constant 20% compounding over
the period T − t, i.e, κt = 2× 1.2(T−t). Since there is no investment strategy resulting in
a larger expected gain than 2 times the constant 20% compounding over T − t years for
the considered set of scenarios, it is optimal to provide the required cash outflows to the
retirees.

The model includes a constraint on monotonicity of the cash outflows from the portfolio

N

∑
i=1

Rs
i,t−1 ≥

N

∑
i=1

Rs
i,t . (10)

Without the monotonicity constraint, the model might not provide necessary cash
outflows at the end of certain years and instead, reinvest that amount to increase the
expected estate value of the portfolio. The monotonicty constraint ensures that the cash
outflow shortage occurs only in years where the portfolio value drops below the cash
outflow amount at the end of the previous year.
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We minimize the objective function, containing expected costs with minus signs,
a regularization term with penalty coefficient λ > 0 and cash outflow shortage with
penalty κt:

− 1
S

S

∑
s=1

T

∑
t=1

ptds
tV

s
t + λ

N

∑
i=1

G(yi) +
T

∑
t=1

κt

[
L− As

t z−
N

∑
i=1

Rs
i,t

]+
. (11)

The explicit form of function G is not defined in this section, however, it is assumed
that the function G(y) is a convex function in y. This is important to formulate the problem
as a convex optimization. The resulting objective function (11) is a convex function in yi
and linear in Vs

t .
Further we provide the general model formulation.

min
us

i,t ,R
s
i,t ,

V0,Vs
t ,yi ,

xs
i ,xs

i,t ,z

1
S

S

∑
s=1

T

∑
t=1

ptds
tV

s
t + λ

N

∑
i=1

G(yi) +
T

∑
t=1

κt

[
L− As

t z−
N

∑
i=1

Rs
i,t

]+
(12)

s.t.

xs
i,1 = (1 + rs

i,1)xi i = 1, . . . , N; s = 1, . . . , S

xs
i,t = (1 + rs

i,t)(xs
i,t−1 + us

i,t−1 − Rs
i,t−1) i = 1, . . . , N; t = 2, . . . , T; s = 1, . . . , S

N

∑
i=1

xi = V0 − z

Vs
t =

N

∑
i=1

xs
i,t t = 1, . . . , T; s = 1, . . . , S

N

∑
i=1

us
i,t = 0 t = 1, . . . , T; s = 1, . . . , S

N

∑
i=1

Rs
i,t ≤

N

∑
i=1

Rs
i,t−1 t = 2, . . . , T; s = 1, . . . , S

us
i,t = f (vs

m,t, yi) i = 1, . . . , N; t = 1, . . . , T; s = 1, . . . , S
N

∑
i=1
|us

i,t| ≤ αVs
t−1 t = 2, . . . , N; s = 1, . . . , S

N

∑
i=1
|us

i,1| ≤ α(V0 − z)

z ≥ 0

Rs
i,t ≥ 0

xi ≥ 0 i = 1, . . . , N

xs
i,t ≥ 0 i = 1, . . . , N; t = 1, . . . , T; s = 1, . . . , S

4. Special Case of General Formulation

This section presents a special case of the general problem formulation. We picked
functions G(yi) and f (rs

t , yi) similar to the model developed in Takano and Gotoh (2014).
Let m > 0 be some integer and Km(vs

t , vk
t ) be the kernel function defined as follows:

K(vs
m,t, vk

m,t) = exp
(
− σ

m

N

∑
i=1

t−1

∑
l=t−m−1

(rk
i,l − rs

i,l)
2
)

, (13)
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where σ > 0 is some constant. The parameter m controls how many previous years of
information is used by the kernel function to calculate the portfolio adjustments. Given
(13), the control function f (vs

t , yi) is defined as

f (vs
t , yi) =

S

∑
j=1

yj
iK(v

s
m,t, vj

m,t), where yi = (y1
i , . . . , yS

i ). (14)

Function (14) is linear in yi. By substituting (14) in constraint (2), we get the following
adjustment functions:

us
i,t =

S

∑
j=1

yj
iK(v

s
m,t, vj

m,t) i = 1, . . . , N; t = 1, . . . , T; s = 1, . . . , S. (15)

We use L2 norm as the regularization function G(yi):

G(yi) = ||yi||
2
2 =

S

∑
s=1

(ys
i )

2. (16)

Substituting (16) in the objective gives

− 1
S

T

∑
t=1

S

∑
s=1

ptds
tV

s
t + λ

N

∑
i=1
||yi||

2
2 +

T

∑
t=1

κt

[
L− As

t z−
N

∑
i=1

Rs
i,t

]+
. (17)

This model can be reduced to a convex quadratic problem by linearizing (9). Other
formulations are also possible. For example, using the L1 norm instead of the L2 norm
in (16) leads to a linear programming formulation after linearization of (9). Another
variation of this model could be linear (with respect to rates rs

i,t) adjustment functions
instead of the nonlinear kernel adjustment functions. Linear investment adjustments
will lead to a lower expected estate value. However, the dimensionality of the problem
will be reduced significantly, because the problem size (the number of parameters to be
optimized) will increase linearly with the number of scenarios, instead of quadratically, as
with kernel functions.

5. Simulation of Return Scenarios and Mortality Probabilities
5.1. Historical Simulations

We simulate return scenarios of considered investment instruments for T years in
the future. The simulations are based on end-of-year data of N assets over T̄ years. Let
t̄ ∈ {1, . . . , T̄} be a year index for a historical dataset and r̄i,t̄ be a historical return of asset i.
The returns of the indices are represented as an N × T̄ matrix:

r̄1,1 r̄2,1, . . . , r̄N,1
r̄1,2 r̄2,2, . . . , r̄N,2
. . . . . . . . . . . .
r̄1,T̄ r̄2,T̄ , . . . , r̄N,T̄

 (18)

We generate return sample paths (scenarios) with the historical simulation method,
also known as the “Bootstrap" method. The historical simulation method samples a random
row from the matrix (18) and uses this row as a possible future realization of returns of
instruments. Therefore the future simulation of returns is just a sampling of the matrix
(18) with replacement. Each such sample represents a future dynamics of return of the
assets. Note that the simulation method samples entire rows from matrix (18); therefore,
the correlations among assets were maintained in the random sample.
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5.2. Mortality Probabilities pt

Let τ be a random variable that denotes an age of death of the investor. The probability
that an investor dies in time interval [t − 1, t) since retirement at the age 65 is defined
as follows:

pt = P(t + 64 < τ ≤ t + 65 | τ > 65), t = 1, . . . , T.

It is possible to calculate pt using the mortality table of USA. We use the mortality
Table 1, which gives probability p̂t that t+ 64 < τ ≤ t+ 65, on the condition that τ > t+ 64:

p̂t = P(t + 64 < τ ≤ t + 65|τ > t + 64), t = 1, . . . , T.

It can be shown that

pt =

{
p̂t, if t = 1
p̂t ∏t−1

j=1(1− p̂j), if t = 2, . . . , T

Table 1. USA mortality table for the year 2017 with probabilities of death for male and female USA
citizens. This table gives the conditional probability of death at some age, given that person is alive
and one year younger than that.

p̂ (Age)

Age Male Female

65 0.0158 0.0098
66 0.0170 0.0107
. . . . . . . . .
119 0.8820 0.8820

Figure 1 shows pt as the function of age t.

60 70 80 90 100 110 120

Age

0

0.01

0.02

0.03

0.04

0.05

P
ro

b
a

b
ili

ty

Male

Female

Figure 1. Probability that a person dies while he/she is t + 64 years old (t = 1, . . . , T), conditional
that he/she is alive at the age of 65.

6. Case Study
6.1. Case Study Parameters

The case study results, codes and data are posted at the website, see Pertaia and
Uryasev (2019).

This case study considers a typical retirement situation in the USA. Two variants of
future asset return scenarios are considered. These two variants correspond to an optimistic
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and pessimistic view regarding the future market dynamics. In the optimistic case, the
future returns over 35 years, for all instruments, are sampled from the historical returns
over the most recent 30 years. In the pessimistic case, the market is assumed to enter into
a stagnation, similar to the Japaneses market, which has approximately zero cumulative
return for the most recent 30 years. In the pessimistic case, 12% is subtracted from each
asset return, every year, in every scenario.

Here are the parameters of the model, which correspond to typical retirement condi-
tions in the USA.

• The retiree is 65 years old.
• Investment horizon is 35 years.
• Portfolio is re-balanced at the end of each year.
• Retiree is a male (mortality probabilities for males are used in objective function).
• $500,000 is available for investment at time t = 0.
• Yearly inflation rate is 3% during the entire investment horizon.
• Yearly rate of return of annuity is 5%.
• Adjustment rules use kernel functions with parameter σ = 1.
• λ = 100.
• κt = 2× 1.2(35−t).
• α = 20%.
• m = 5

There are 10 stock and bond indexes available for investment; see Table 2.

Table 2. The list of assets in the retirement portfolio.

Index Name Index Abbreviation

Barclays Muni FI-MUNI
Barclays Agg FI-INVGRD
Russell 2000 USEQ-SM

Russell 2000 Value USEQ-SMVAL
Russell 2000 Growth USEQ-SMGRTH

S&P 500 USEQ-LG
S&P 400 Mid Cap USEQ-MID
S&P Citi 500 Value USEQ-LGVAL

S&P Citi 500 Growth USEQ-LGGRTH
MSCI EAFE NUSEQ

For each index, 30 years of yearly returns (from 1985, to 2015) were used to create
future scenarios (return sample-paths). Each scenario included 35 yearly returns, sampled
from the 30 year historical dataset (see the Historical Simulation method in Section 5). Two-
hundred scenarios were generated for both optimistic and pessimistic cases. One-hundred
scenarios out of 200, for both optimistic and pessimistic scenario datasets, were used to
find optimal investment rules in the model. The remaining 100 scenarios, not included in
the optimization, were used for evaluating the out-of-sample performance of the model.

6.2. Optimal Portfolio

The considered optimization problems were reduced to quadratic programming, by
linearizing function (9) in the objective with Portfolio Safeguard (PSG) Package, AORDA
(2021). Gurobi version 8.1.0 and Pyomo version 5.5.0 were used for solving the resulting
quadratic programming problem, which were automatically called by PSG. The case study
link (Pertaia and Uryasev (2019)) contains the corresponding code.

The coefficients of the adjustment functions yi were obtained by solving the quadratic
optimization problem corresponding to the optimal portfolio problem (12). Next, the
adjustment values for the out-of-sample dataset were evaluated, according to the formula
(14). The adjustment functions, for end of the time moment t, took previous m rates of
returns of all assets in the portfolio, observed in time interval [t−m, t− 1], and produced
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an asset adjustment for that time moment. Note that returns that go into these functions
were different on each scenario; therefore, the adjustment values were different in each
scenario as well.

In order to calculate the portfolio values on the out-of-sample data, the cash outflows
Rs

i,t are required. The model does not provide the cash outflow Rs
i,t for the out-of-sample

scenarios, as those values are calculated for the in-sample scenarios. Therefore, it is unclear
what values of Rs

i,t should be used in the out-of-sample scenarios. Additionally, despite the
constraint on positivity of asset positions in the in-sample optimization problems, a small
portion of the assets may be allocated to short positions in out-of-sample runs. Usually,
retirement portfolios do not have short positions, since that is considered a risky strategy
and is therefore not suitable for a risk averse retiree investor. Next, we show how to
circumvent these problems for the out of sample datasets.

Let Ps,t
+ and Ps,t

− be the total dollar investment in long and short positions, in a portfolio
at the end of time period t in scenario s:

Ps,t
+ =

N

∑
i=1

[xs
i,t]

+ ,

Ps,t
− =

N

∑
i=1

[−xs
i,t]

+.

The cash outflows are calculated as follows:

Rs
i,t = L

[xs
i,t−1]

+

Ps,t−1
+

. (19)

Thus, the cash outflows originate only from the long positions and are proportional
to Ps,t−1

+ .
All short positions, at the end of time period t in scenario s, are set to 0. As a result, the

amount of money equal to Ps,t
− has to be subtracted from the remaining (long) part of the

portfolio. To shrink the portfolio by Ps,t
− , each long asset position is reduced in a proportion

to Ps,t
+ . Thus, the new positions x̄s

i,t are

x̄s
i,t =

0, if xs
i,t ≤ 0

xs
i,t −

xs
i,t

Ps,t
+

Ps,t
− , otherwise.

Tables 3–7 show the average (over scenarios) investments in assets over time for opti-
mistic out-of-sample scenarios, corresponding to the model (12), with the minimum cash
flow requirements L ∈ {$10, 000; $30, 000; $50, 000; $70, 000; $90, 000}. Tables 8–11 show
the average (over scenarios) investments in assets over time for pessimistic out-of-sample
scenarios, corresponding to the model (12), with the minimum cash flow requirements
L ∈ {$10, 000; $25, 000; $30, 000; $50, 000}. Tables 8–10, show that, in the pessimistic case,
for L = $10, 000, the model invests 30% of funds in the annuity and for L = $25, 000, 100%
of investment goes into the annuities. However, for L = $30, 000 the model decreases
the annuity investment to 56%. As for L = $50, 000 (and higher) nothing is invested in
the annuities and the model selects the stock/bond indexes. Figure 2 shows the average
(taken over scenarios) portfolio values through time, constructed using the adjustment
functions, corresponding to the model (12) with the minimum cash flow requirements of
L ∈ {$10, 000; $30, 000; $50, 000; $70, 000; $90, 000}. However, in the optimistic scenarios,
the model does not invest in annuities at any minimum cash outflow requirement L.

The main conclusion from the numerical experiments is that the optimal policy does
not invest in the annuities in the base-case optimistic set of scenarios based on historical
bootstrapping. Even for the pessimistic set of scenarios, investment in annuities is optimal
only for low cash outflows not exceeding $30,000. Therefore, investment in annuities
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can be recommended only to conservative investors anticipating very pessimistic market
conditions and only in the case that the investor needs small cash outflows.

Table 3. Average investment (in thousand dollars) in assets over time for the optimistic out-of-sample
scenarios with L = $10, 000. Results are averages across scenarios.

Asset Investment t = 0 t = 5 t = 10 t = 15 t = 20 t = 25 t = 30 t = 35

Annuity 0 0 0 0 0 0 0 0
FI-MUNI 0 0 0 0 0 0 0 0
FI-INVGRD 0 3 4 6 7 11 16 25
USEQ-SM 0 0 0 0 0 0 0 0
USEQ-SMVAL 0 28 54 104 171 360 635 1177
USEQ-SMGRTH 0 1 1 2 4 7 13 19
USEQ-LG 0 0 0 0 0 0 0 0
USEQ-MID 500 779 1475 2791 4993 10,593 20,183 36,797
USEQ-LGVAL 0 0 0 0 0 0 0 0
USEQ-LGGRTH 0 4 8 15 30 72 139 380
NUSEQ 0 50 80 153 268 444 762 1186

Table 4. Average investment (in thousand dollars) in assets over time for the optimistic out-of-sample
scenarios with L = $30, 000. Results are averages across scenarios.

Asset Investment t = 0 t = 5 t = 10 t = 15 t = 20 t = 25 t = 30 t = 35

Annuity 0 0 0 0 0 0 0 0
FI-MUNI 0 0 0 0 0 0 0 0
FI-INVGRD 3 34 44 51 64 95 138 194
USEQ-SM 0 0 0 0 0 0 0 0
USEQ-SMVAL 69 28 57 105 192 366 592 1121
USEQ-SMGRTH 0 1 2 4 7 14 27 42
USEQ-LG 0 0 0 0 0 0 0 0
USEQ-MID 402 612 1025 1818 3136 6642 12,574 22,657
USEQ-LGVAL 0 0 0 0 0 0 0 0
USEQ-LGGRTH 25 30 54 102 181 448 920 2594
NUSEQ 0 45 69 124 209 365 628 996

Table 5. Average investment (in thousand dollars) in assets over time for the optimistic out-of-sample
scenarios with L = $50, 000. Results are averages across scenarios.

Asset Investment t = 0 t = 5 t = 10 t = 15 t = 20 t = 25 t = 30 t = 35

Annuity 0 0 0 0 0 0 0 0
FI-MUNI 0 7 7 7 7 10 14 21
FI-INVGRD 330 244 202 206 246 328 492 680
USEQ-SM 0 0 0 0 0 0 0 0
USEQ-SMVAL 57 137 194 281 424 693 1163 1875
USEQ-SMGRTH 0 0 0 0 0 0 0 0
USEQ-LG 0 0 0 0 0 0 0 0
USEQ-MID 36 47 58 84 108 224 416 820
USEQ-LGVAL 0 0 0 0 0 0 0 0
USEQ-LGGRTH 77 65 66 92 157 386 857 2515
NUSEQ 0 33 35 74 104 154 255 349
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Table 6. Average investment (in thousand dollars) in assets over time for the optimistic out-of-sample
scenarios with L = $70, 000. Results are averages across scenarios.

Asset Investment t = 0 t = 5 t = 10 t = 15 t = 20 t = 25 t = 30 t = 35

Annuity 0 0 0 0 0 0 0 0
FI-MUNI 0 0 0 0 0 0 0 0
FI-INVGRD 195 117 67 40 32 35 44 56
USEQ-SM 0 0 0 0 0 0 0 0
USEQ-SMVAL 46 66 67 48 43 65 99 132
USEQ-SMGRTH 0 0 0 0 0 0 0 0
USEQ-LG 0 0 0 0 0 0 0 0
USEQ-MID 107 118 73 69 88 170 320 596
USEQ-LGVAL 0 0 0 0 0 0 0 0
USEQ-LGGRTH 136 92 77 90 142 350 748 2300
NUSEQ 16 67 48 35 42 78 162 300

Table 7. Average investment (in thousand dollars) in assets over time for the optimistic out-of-sample
scenarios with L = $90, 000. Results are averages across scenarios.

Asset Investment t = 0 t = 5 t = 10 t = 15 t = 20 t = 25 t = 30 t = 35

Annuity 0 0 0 0 0 0 0 0
FI-MUNI 0 0 0 0 0 0 0 0
FI-INVGRD 65 54 17 6 5 5 6 7
USEQ-SM 0 0 0 0 0 0 0 0
USEQ-SMVAL 70 83 51 30 29 46 76 115
USEQ-SMGRTH 0 0 0 0 0 0 0 0
USEQ-LG 0 0 0 0 0 0 0 0
USEQ-MID 164 85 30 28 33 67 133 302
USEQ-LGVAL 0 0 0 0 0 0 0 0
USEQ-LGGRTH 140 107 56 48 76 204 439 1522
NUSEQ 61 58 26 12 9 14 23 42

Table 8. Average investment (in thousand dollar) in assets over time for the pessimistic out-of-sample
scenarios L = $10, 000. Results are averages across scenarios.

Asset Investment t = 0 t = 5 t = 10 t = 15 t = 20 t = 25 t = 30 t = 35

Annuity 147 147 147 147 147 147 147 147
FI-MUNI 0 0 0 0 0 0 0 0
FI-INVGRD 1 3 3 2 2 2 1 1
USEQ-SM 0 0 0 0 0 0 0 0
USEQ-SMVAL 2 3 2 3 2 1 1 0
USEQ-SMGRTH 0 0 0 1 0 0 0 0
USEQ-LG 0 0 0 0 0 0 0 0
USEQ-MID 350 350 360 378 384 355 311 303
USEQ-LGVAL 0 0 0 0 0 0 0 0
USEQ-LGGRTH 0 4 7 7 7 5 5 4
NUSEQ 0 4 4 3 3 3 2 2
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Table 9. Average investment (in thousand dollar) in assets over time for the pessimistic out-of-sample
scenarios L = $25, 000. Results are averages across scenarios.

Asset Investment t = 0 t = 5 t = 10 t = 15 t = 20 t = 25 t = 30 t = 35

Annuity 500 500 500 500 500 500 500 500
FI-MUNI 0 0 0 0 0 0 0 0
FI-INVGRD 0 0 0 0 0 0 0 0
USEQ-SM 0 0 0 0 0 0 0 0
USEQ-SMVAL 0 0 0 0 0 0 0 0
USEQ-SMGRTH 0 0 0 0 0 0 0 0
USEQ-LG 0 0 0 0 0 0 0 0
USEQ-MID 0 0 0 0 0 0 0 0
USEQ-LGVAL 0 0 0 0 0 0 0 0
USEQ-LGGRTH 0 0 0 0 0 0 0 0
NUSEQ 0 0 0 0 0 0 0 0

Table 10. Average investment (in thousand dollar) in assets over time for the pessimistic out-of-
sample scenarios L = $30, 000. Results are averages across scenarios.

Asset Investment t = 0 t = 5 t = 10 t = 15 t = 20 t = 25 t = 30 t = 35

Annuity 282 282 282 282 282 282 282 282
FI-MUNI 0 0 0 0 0 0 0 0
FI-INVGRD 43 15 1 0 0 0 0 0
USEQ-SM 0 0 0 0 0 0 0 0
USEQ-SMVAL 35 18 2 0 0 0 0 0
USEQ-SMGRTH 0 0 0 0 0 0 0 0
USEQ-LG 0 0 0 0 0 0 0 0
USEQ-MID 61 33 4 1 0 0 0 0
USEQ-LGVAL 0 0 0 0 0 0 0 0
USEQ-LGGRTH 54 27 3 0 0 0 0 0
NUSEQ 24 11 1 0 0 0 0 0

Table 11. Average investment (in thousand dollar) in assets over time for the pessimistic out-of-
sample scenarios L = $50, 000. Results are averages across scenarios.

Asset Investment t = 0 t = 5 t = 10 t = 15 t = 20 t = 25 t = 30 t = 35

Annuity 0 0 0 0 0 0 0 0
FI-MUNI 0 0 0 0 0 0 0 0
FI-INVGRD 67 32 6 1 0 0 0 0
USEQ-SM 0 0 0 0 0 0 0 0
USEQ-SMVAL 95 64 24 6 3 1 0 0
USEQ-SMGRTH 0 0 0 0 0 0 0 0
USEQ-LG 0 0 0 0 0 0 0 0
USEQ-MID 148 105 42 13 5 1 0 0
USEQ-LGVAL 0 0 0 0 0 0 0 0
USEQ-LGGRTH 128 85 30 8 3 1 0 0
NUSEQ 62 37 13 3 1 0 0 0
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Figure 2. The average (over scenarios) portfolio values for the optimistic out-of-sample dataset,
constructed using adjustment functions, corresponding to model (12) with minimum cash outflow
requirements L ∈ {$10, 000; $30, 000; $50, 000; $70, 000; $90, 000}.

6.3. Expected Shortage Times for Different Cash Outflows L

When the investor demands higher cash outflows from the portfolio, the expected
estate value of the portfolio should decrease. Furthermore, with higher cash outflow
demands, there are higher chances that there will not be enough money in the portfolio, at
some point, to finance these outflows.

To measure the cash outflow shortage resulting from the different values of L, the
following measure, named expected time shortage (or ETS) is defined:

ETS(L) =
1
S

S

∑
s=1

T

∑
t=1

pt(T − t)

(
L−∑T

t=1 Rs
i,t

)+
L

ETS is measured in years and calculates the amount of time the retiree will spend
without the necessary cash outflow L.

The parameters of the case study are used to construct the ETS values for the optimistic
and pessimistic sets of scenarios. ETS is calculated on the in-sample data, for the cash
outflow values of L ∈ {$10, 000; $15, 000; $20, 000; . . . ; $100, 000}. The resulting ETS values
are shown in Figures 3 and 4 for optimistic and pessimistic sets of scenarios, respectively.

Figure 3 shows that, with the optimistic set of scenarios, the retiree can have cash
outflows up to $50,000, without having any shortage at any time. For the values of L greater
than $50,000, the ETS grows roughly linearly. For L = $100, 000 the retiree will spend most
of their expected life without necessary cash outflow, because the portfolio cannot provide
this much cash outflow, given the initial investment of $500,000.
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Figure 3. ETS values for required cash flows L ∈ {$20, 000; $30, 000; $40, 000; . . . ; $100, 000}, calcu-
lated for the optimistic set of scenarios.
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Figure 4. ETS values for required cash flows L ∈ {$10, 000; $15, 000; $20, 000; . . . ; $100, 000}, calcu-
lated for the pessimistic set of scenarios.

It should be noted that, in the pessimistic case, if L ≤ $25, 000, the annuities can fully
cover the cash flow requirements, and therefore ETS = 0. However, if L > $25, 000, the
investment in the annuities can no longer cover the cash outflow requirements. Even if the
entire initial investment goes into the annuities, it will provide only A · z = 5% · $500, 000 =
$25, 000. Therefore, for L values higher than $25,000, the model starts to invest in stock and
bond indexes and the ETS is greater than 0.

For the pessimistic case, if the cash flow requirement is L = $100, 000, the ETS is
almost equal to the life expectancy of the retiree. This happens because, in most pessimistic
scenarios, the portfolio shrinks to 0 in 3 or 4 years for L = $100, 000. However, if L =
$30, 000, in the pessimistic case, the retiree still has relatively small ETS values of around
3 years.

Higher values of expected estate result in lower values of ETS. Figure 5 illustrates the
relationship between expected estate and ETS for the optimistic case. Figure 5 is constructed
by solving problem (12) for cash outflow values of L ∈ {$10, 000; $15, 000; . . . ; $100, 000}
and plotting the resulting values of ETS and expected estate.

We can conclude that in the optimistic case, the retiree can withdraw up to $50,000 with
zero ETS. For the pessimistic case, the retiree can withdraw up to $25,000 with zero ETS.
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Figure 5. Relationship between expected estate value and the ETS, for the optimistic set of scenarios
with cash outflow values of L ∈ {$10, 000; $15, 000; . . . ; $100, 000}.

7. Summary

We developed a multi-period investment model for retirement portfolios. The param-
eters of the model represent a typical portfolio selection problem solved in the beginning
of retirement. The model maximizes the expected estate value of an investor subject to
constraints on minimum cash outflows from the portfolio. Investment decisions are based
on adjustment rules implemented with kernel functions.

The case study showed the performance of the model in pessimistic and optimistic
asset return scenarios. In the pessimistic case, the market was assumed to enter a long term
stagnation modeled by subtracting 12% from all rates of returns of the stock/bond indexes
considered for investment. In this case, it is optimal to invest a considerable portion of
initial capital in annuities. However, investment in annuities is optimal only for low cash
outflows not exceeding $30,000. In the optimistic case, the returns of stock/bond indexes
are expected to remain similar to past observations. In this case, it is not beneficial to
invest in annuities for the given model parameters. Summarizing, investment in annuities
can be recommended only to conservative investors anticipating very pessimistic market
conditions and only in the case that the investor needs small cash outflows.

We defined a new cash outflow shortage measure called expected time shortage (ETS).
The ETS calculates the number of years with a shortage of cash outflow, given the retiree’s
minimum cash outflow requirements. The case study shows that even in the pessimistic
asset return set of scenarios, a retiree can have zero ETS for some small cash outflows, due
to significant investment in the annuities. In particular, in the optimistic and pessimistic
cases, the retiree could withdraw up to $50,000 and $25,000, accordingly, with zero ETS.
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